TABLE OF CONTENTS

	Page
ABTRACT (IN THAI)	i
ABTRACT (IN ENGLISH)	iii
DEDICATION	V
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvii
CHAPTER I INTRODUCTION	1
1. Rationale and Background	1
2. Experiment Aims and Objectives	3
3. Scope and Limitation of the Study	4
4. Hypothesis	4
5. Anticipated Outcome	5
CHAPTER II LITERATURE REVIEW	7
1. Alzheimer's Disease	7
2. Parkinson's Disease	14
3. Acupuncture and Meridian System	18
4. Laser Acupuncture	19
5. HT 7 Acupuncture Point	20
6. Herbal Medicines	21
CHAPTER III DEVELOPMENT OF THE NOVEL HERBAL RECIPE	27
FOR TREATING ALZHEIMER'S DISEASE AND PARKINSON'S	
DISEASE	
1. Introduction	27
2. Materials and Methods	27
3. Results	31
4. Discussion	36

TABLE OF CONTENTS (Cont.)

	Page
CHAPTER IV EFFECT OF MORINGA OLEIFERA ON MEMORY	37
DEFICIT AND NEURODEGENERATION IN ANIMAL	
MODEL OF AGE-RELATED DEMENTIA	
1. Introduction	37
2. Materials and Methods	38
3. Results	43
4. Discussion	48
CHAPTER V EFFECT OF NOVEL FOOD SUPPLEMENT "CP1"	53
ON MEMORY DEFICIT, NEURODEGENERATION AND	
CHOLINERGIC DYSFUNCTION IN ANIMAL MODEL	
OF ALZHEIMER'S DISEASE	
1. Introduction	53
2. Materials and Methods	54
3. Results	60
4. Discussion	67
CHAPTER VI EFFECT OF NOVEL FOOD SUPPLEMENT "CP1"	71
ON MOTOR AND MEMORY DEFICIT IN ANIMAL MODEL	
OF PARKINSON'S DISEASE	
1. Introduction	71
2. Materials and Methods	72
3. Results	79
4. Discussion	89
CHAPTER VII EFFECT OF LASER ACUPUNCTURE AT "HT7"	93
ON MEMORY DEFICIT AND NEURODEGENERATION IN	
ANIMAL MODEL OF ALZHEIMER'S DISEASE	
1. Introduction	93
2. Materials and Methods	94
3. Results	98
4. Discussion	105

TABLE OF CONTENTS (Cont.)

		Page
CHAPTER VIII EFF	FECT OF LASER ACUPUNCTURE AT "HT7"	107
ON MOTOR A	ND MEMORY DEFICIT IN ANIMAL MODEL	
OF PARKINSO	ON'S DISEASE	
1. Introduction		107
2. Materials an	nd Methods	109
3. Results		113
4. Discussion		122
CHAPTER IX CONC	CLUSION	125
REFERENCES		127
APPENDICES		149
APPENDIX A	Determination of Total Phenolic Compounds	151
APPENDIX B	Determination of Flavonoid Content	155
APPENDIX C	Determination of FRAP Activity	159
APPENDIX D	Determination of DPPH Radical Scavenging Activity	163
APPENDIX E	Determination of in Vitro Acetyl Cholinesterase	167
	(AChE) Inhibition	
APPENDIX F	Preparation of Phosphate Buffer SalineSolution	171
APPENDIX G	Preparation of Tissue Sections	175
APPENDIX H	Cresyl Violet Staining For Nissl Substance	179
APPENDIX I	Immunohistochemical Study of Tyrosine Hydroxylase	183
	(TH) enzyme	
APPENDIX J	Preparation of Tissue Homogenates	187
APPENDIX K	Determination of Protein	191
APPENDIX L	Determination of Lipid Peroxidation Contents	195
APPENDIX M	Determination of Catalase Activity	199
APPENDIX N	Determination of Superoxide Dismutase Activity	203
APPENDIX O	Determination of Glutathione Peroxidase Activity	207
APPENDIX P	Determination of Acetylcholinesterase	211

TABLE OF CONTENTS (Cont.)

		Page
APPENDIX Q	Determination of Monoamine Oxidase B activity	215
APPENDIX R	Western Blotting Analysis of ERK 1/2	219
RESEARCH PUBLI	CATION	225
VITAE		227

LIST OF TABLES

		Page
Table 2-1	Schematic localization of HT7 acupuncture point	21
Table 3-1	Total phenolic compounds and flavonoid contents,	32
	DPPH and FRAP activities of selected medicinal plants	
Table 3-2	Monoamine oxidase type B (MAOB) inhibitory	33
	activity of selected medicinal plants	
Table 3-3	The total phenolic compounds, antioxidant activity and	35
	the inhibitory activities of AChE and MAOB of various	
	combinations of C.rotundus and Z. officinale	
Table 5-1	DPPH, FRAP and AChEI activities of Zingiber officinale,	61
	Cyperus rotundus and the combination	
	extract of Zingiber officinale, Cyperus rotundus (CP1)	
Table 5-2	Effect of CP1 on the oxidative stress markers such as	65
	malondialdehyde level and the activities of superoxide	
	dismutase (SOD), glutathione peroxidase (GSH-Px) and	
	catalase (CAT) in hippocampus	
Table 6-1	DPPH, FRAP, AChEI and MAOBI activities of	80
	Zingiber officinale, Cyperus rotundus and the combination	
	extract of Zingiber officinale, Cyperus rotundus (CP1)	

LIST OF FIGURES

		Page
Figure 2-1	A representative microphotograph of amyloid plaques	8
	in the AD brain	
Figure 2-2	A representative microphotograph of neurofibrillary tangles	9
Figure 2-3	Schematic diagram illustrating the changes of cholinergic	11
	neurons in normal condition and early phase of AD	
Figure 2-4	Chemical structures of AF64A	14
	(ethylcholine mustard aziridinium ion) and choline	
Figure 2-5	The schematic diagram illustrating the penetration capability	19
	through the skin of the laser beams at various wavelengths	
Figure 2-6	Anethum graveolens Linn.	22
Figure 2-7	Anacardium occidentale Linn.	22
Figure 2-8	Moringa oleifera Lam.	23
Figure 2-9	Cyperus rotundus Linn.	24
Figure 2-10	Zingiber officinale Roscoe	24
Figure 3-1	IC ₅₀ of acetylcholinesterase inhibition of the selected plants	32
	consisting of M. oleifera, Z. officinale, A. graveolens,	
	C. rotundus and A. occidentale	
Figure 4-1	Schematic diagram shows the experimental protocol	40
Figure 4-2	Effect of M.oleifera leaves extract on escape latency and	44
	retention time of memory deficit rats induced by AF64A,	
	acholinotoxin, in Morris water maze test	
Figure 4-3	Effect of M. oleifera leaves extract on neurons density in	45
	various sub-regions of hippocampus of memory deficits rats	
	induced by AF64A	
Figure 4-4	Effect of M. oleifera leaves extract on the level of	47
	malondialdehde (MDA), a lipid peroxidation product,	
	and the activity of acetylcholinesterase (AChE) enzyme	
	in hippocampus	

		Page
Figure 4-5	Effect of M. oleifera leaves extract on the activities of	48
	scavenger enzymes in hippocampus	
Figure 4-6	Schematic diagram shows the possible underlying mechanism	51
	of memory enhancing effect of M. oleifera leaves extract	
Figure 5-1	High performance liquid chromatography (HPLC)	55
	chromatogram of the combined extract of Zingiber officinale	
	and Cyperus rotundus	
Figure 5-2	The effect of CP1, the combination extract of <i>C.rotundus</i>	62
	and Z.officinale, on spatial memory	
Figure 5-3	The effect of CP1 on neuron density in various sub-regions	63
	of hippocampus including CA1, CA2, CA3 and dentate gyrus	
Figure 5-4	Effect of CP1 on an acetylcholinesterase (AChE) enzyme	66
	activity in hippocampus.	
Figure 5-5	Effect of CP1 on the level of ERK1/2 and pERK1/2 in	67
	hippocampus	
Figure 5-6	Schematic diagram shows the possible underlying mechanism	70
	of CP1	
Figure 6-1	High performance liquid chromatography (HPLC)	73
	chromatogram of the combined extract of Zingiber officinale	
	and Cyperus rotundus	
Figure 6-2	Effect of CP1 on spatial memory using the Morris water	81
	maze test in rats subjected to 6-OHDA treatment	
Figure 6-3	Effect of CP1 on apomorphine - induced rotations in rats	82
	subjected to the 6-OHDA	
Figure 6-4	The effect of CP1 on neuron density in various subregions	83
	of hippocampus including CA1, CA2, CA3 and dentate gyrus	
	of rats subjected to 6-OHDA	
Figure 6-5	The effect of CP1 on tyrosine hydroxylase positive neurons	84
	in rats subjected to 6-OHDA treatment	

		Page
Figure 6-6	Effect of CP1 on the activity of acetylcholinesterase	85
	(AChE) in the hippocampus and striatum	
Figure 6-7	Effect of CP1 on the activity of monoamine oxidase-B	86
	(MAO-B) in the hippocampus and striatum of rats	
	subjected to 6-OHDA rats	
Figure 6-8	Effect of CP1 on the malondialdehyde (MDA) level	87
	in the hippocampus and striatum of rats subjected to	
	6-OHDA rats	
Figure 6-9	Effect of CP1 on the activity of catalase (CAT) in the	87
	hippocampus and striatum of rats subjected to 6-OHDA rats	
Figure 6-10	Effect of CP1 on the activity of superoxide dismutase (SOD)	88
	in the hippocampus and striatum of rats subjected to	
	6-OHDA rats	
Figure 6-11	Effect of CP1 on the activity of glutathione peroxidase	88
	(GSH-Px) in the hippocampus and striatum of rats	
	subjected to 6-OHDA rats	
Figure 6-12	Schematic diagram concerning the possible mechanisms to	92
	improve memory and motor disorders of CP1 in	
	Hemiparkinsonian rats induced by the unilateral injection	
	of 6-OHDA into right substantia nigra	
Figure 7-1	Effect of laser acupuncture on escape latency using the Morris	98
	water maze test in rats with Alzheimer's disease	
Figure 7-2	Effect of laser acupuncture on retention time using the	99
	Morris water maze test in rats with Alzheimer's disease	
Figure 7-3	The effect of laser acupuncture on neuron density in	100
	sub-regions of hippocampus including CA1, CA2, CA3	
	and dentate gyrus	
Figure 7-4	Effect of laser acupuncture on the level of malondialdehyde	101
	(MDA), a product of lipid peroxidation, in the hippocampus	

		Page
Figure 7-5	Effect of laser acupuncture on the activity of catalase	102
	(CAT) in the hippocampus	
Figure 7-6	Effect of laser acupuncture on the activity of superoxide	102
	dismutase (SOD) in the hippocampus	
Figure 7-7	Effect of laser acupuncture on the activity of glutathione	103
	peroxidase (GSH-Px) in the hippocampus	
Figure 7-8	Effect of laser acupuncture on the activity of	103
	acetylcholinesterase (AChE) in the hippocampus	
Figure 7-9	Effect of laser acupuncture on the level of ERK1/2	104
	and pERK1/2in hippocampus	
Figure 7-10	Schematic diagram concerning the possible mechanisms	106
	to improve spatial memory of laser acupuncture at HT7	
	in Alzheimer's disease rats induced by AF64A.	
Figure 8-1	Effect of laser acupuncture on spatial memory using the Morris	114
	water maze test in Parkinson's disease rats	
Figure 8-2	Effect of laser acupuncture on apomorphine - induced	115
	rotations in Parkinson's disease rats	
Figure 8-3	Effect of laser acupuncture on the neurons density in	116
	various sub-regions of hippocampus after treatments	
Figure 8-4	Photographic image of neurons with cresyl violet	116
	stained in various sub-regions of hippocampus	
Figure 8-5	The effect of laser acupuncture on tyrosine hydroxylase	117
	positive neuron density in substantia nigra	
Figure 8-6	Effect of laser acupuncture on the activity of	118
	acetylcholinesterase (AChE) in the hippocampus	
	and striatum	
Figure 8-7	Effect of laser acupuncture on the activity of monoamine	119
	oxidase-B (MAO-B) in the hippocampus and striatum	

		Page
Figure 8-8	Effect of laser acupuncture on the malondialdehyde	120
	(MDA) level in the hippocampus and striatum	
Figure 8-9	Effect of laser acupuncture on the activity of catalase	120
	(CAT) in the hippocampus and striatum	
Figure 8-10	Effect of laser acupuncture on the activity of superoxide	121
	dismutase (SOD) in the hippocampus and striatum	
Figure 8-11	Effect of laser acupuncture on the activity of glutathione	121
	peroxidase (GSH-Px) in the hippocampus and striatum	
Figure 8-12	Schematic diagram concerning the possible mechanisms	124
	to improve memory and motor disorders of laser acupuncture	
	at HT7 in Parkinson's disease rats induced by the unilateral	
	injection of 6-OHDA	

LIST OF ABBREVIATIONS

6-OHDA 6-hydroxydopamine

μl Microliter

Ach Acetylcholine

AChE Acetylcholinesterase

ACSF Artificial cerebrospinal fluid

AD Alzheimer's disease

AF64A Ethylcholine mustard aziridinium

ANOVA Analysis of variance

APP Amyloid precursor protein

ATP Adenosine Triphosphase

Aβ Amyloid β peptide

BDNF Brain-derived neurotrophic factor

BW Body weight

°C Celsius degree

Ca²⁺ Calcium ion

CA1 Cornuammonis area 1
CA2 Cornuammonis area 2
CA3 Cornuammonis area 3

ChAT Choline acetyltransferase

Cl Chloride ion

cm Centimeter

CNS Central nervous system

CO₂ Carbon dioxide

DA Dopamine

DAB 3, 3' diaminobenzidine

DG Dentate gyrus

LIST OF ABBREVIATIONS (Cont.)

DNA Deoxy ribonucleic acid

DPPH 2,2-diphenyl-1-picrylhydrazyl

DW Distilled water

ECL Enhanced chemiluminescence

ERK Extracellular signal-regulated kinase

e.g. For example

etc Et cetera

GABA Gamma-aminobutyric acid

g/kg BW Gram per kilogram body weight

GLU Glutamate

G Gram

GSH-Px Glutathione peroxidase

h hour

H⁺ Hydrogen ion

HMs Herbal medicines

H₂O Water

H₂O₂ Hydrogen peroxide

HRP horse radish peroxidase

HT Heart Meridian

i.c.v. Intracerebroventricular

i.p. Intraperitoneal

K⁺ Potassium

kg Kilogram

KPBS Krebs phosphate buffer saline

LD₅₀ Lethargy dose

L-DOPA Levodopa

M Mole

ml Milliliter

min. Minutes

LIST OF ABBREVIATIONS (Cont.)

mg Milligram

mg/kg BW Milligram per kilogram body weight

mW milliwatts

MAO Monoamine oxidase enzyme

MAOA Monoamine oxidase enzyme type A
MAOB Monoamine oxidase enzyme type B

MDA Malondialdehyde

MPP⁺ 1-methyl-4-phenyl-2,3-dihydropyridium ion
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MWM Morris water maze

NAD Nicotinamide adenine dinucleotide

NADH Nicotinamide adenine dinucleotide (oxidized form)

NADP⁺ Nicotinamide adenine dinucleotide phosphate (oxidized form)

NADPH Nicotinamide adenine dinucleotide phosphate (reduced form)

NGF Nerve growth factor

nm Nanometer
nmoles Nanamoles
NT Neurotrophin
Na⁺ Sodium ion

NE Norepinephrine

NFT Neurofibrillary tangles
NMDA N-methyl-D-aspatate

Nss Normal saline solution

 O_2 Oxygen

O2⁻ Superoxide radical

OH - Hydrogen ion

OH. - Hydroxy radical

PD Parkinson's disease

PD-D Parkinson's disease with dementia

LIST OF ABBREVIATIONS (Cont.)

PKC Protein kinase C

PVDF Polyvinylidenedifluoride

QE Quercetin equivalents

ROS Reactive oxygen species

SDAT Senile dementia of the Alzheimer type

SDS Sodium dodecyl sulfate

SDS-PAGE Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

SEM Standard error of mean

SNpc Substantia nigra pars compacta

SOD Superoxide dismutase

TBA Thiobarbituric acid

TCM Traditional Chinese medicine

TH Tyrosine hydroxylase

TPTZ Tripyridyltriazine

UPS Ubiquitin proteosomal system

Vit C Vitamin C