TABLE OF CONTENTS

	Page
ABSTRACT (IN THAI)	i
ABSTRACT (IN ENGLISH)	iii
DEDICATION	v
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xviii
CHAPTER I INTRODUCTION	1
1. Rationale and Significance	1
2. Objectives of the study	2
3. Research framework	3
CHAPTER II LITERATURE REVIEWS	5
1. KP and its chemical constituents	5
2. Pharmacological activities of KP	8
3. Toxicity of KP	13
4. Pharmacokinetics	14
5. Liquid Chromatography – Mass Spectrometer (LC-MS)	48
6. SMEDDS	51
7. CD	53
8. Caco-2 cells	59
CHAPTER III RESEARCH METHODOLOGY	63
1. Chemicals	63
2. Materials	64
3. Instruments	64
4. Preparation of KP crude extract	65
5. Isolation of major compounds in KP crude extract	65
6. Pharmacokinetics and bioavailability study	66
7. Organ distribution study	68
8. Effect of KP crude extract on cytochrome P450 enzymes	69

TABLE OF CONTENTS (Cont.)

		Page
9.	Excretion study	74
10	. Products development for oral bioavailability enhancement	
	of KP crude extract	75
11	. Statistical analysis	83
СНАРТЕ	R IV RESULTS	85
1.	Preparation of KP crude extract	85
2.	Pharmacokinetics and bioavailability study	85
3.	Organ distribution study	95
4.	Effect of KP crude extract on cytochrome P450 enzymes	100
5.	Excretion study	106
6.	Products development for oral bioavailability enhancement	
	of KP crude extract	157
СНАРТЕ	R V DISCUSSION	187
СНАРТЕ	R VI CONCLUSIONS	199
REFERE	NCES	201
RESEAR	CH PUBLICATION	211
VITAE		212

LIST OF TABLES

		Page
Table 1	Factors affecting drug absorption	24
Table 2	Major reactions involved in phase I metabolism	33
Table 3	Reaction types catalyzed by phase I enzymes	35
Table 4	Phase II enzymes and their reactions with functional groups	36
Table 5	Comparison of in vitro studies for drug metabolism study	43
Table 6	SMEDDS developed formulations	78
Table 7	Method validation of HPLC method	88
Table 8	Pharmacokinetic parameters and oral bioavailability of	
	methoxyflavonoids after single oral administration of	
	250 mg/kg of KP solution in rats	92
Table 9	Pharmacokinetic parameters of methoxyflavonoids after	
	single intravenous administration of 250 mg/kg of KP	
	solution in rats	94
Table 10	Tissue accumulative of PMF, TMF, and DMF in various	
	organs after oral administered of 750 mg/kg of KP	
	solution for 4 h	99
Table 11	Effect of KP on CYP450 content and enzymes activities	
	in rat liver microsomes (In vivo)	102
Table 12	2 Effect of KP crude extract on Vmax, Km, and type of	
	reaction of CYP enzyme of non-induced mouse liver	
	microsomes	105
Table 13	3 Ki, % maximum inhibition, and IC_{50} values of CYP	
	enzyme from non-induced mouse liver microsomes in	
	the presence of KP crude extract	105
Table 14	Concentration of three methoxyflavones in urine samples	
	of rats after receiving 750 mg/kg of KP solution	110
Table 15	Concentration of three methoxyflavones in feces samples	
	of rats after receiving 750 mg/kg of KP solution	112

LIST OF TABLES (Cont.)

	Page
Table 16 Proposed metabolic pathways of metabolites in rat urine	
receiving 750 mg/kg of KP solution	140
Table 17 Proposed metabolic pathways of metabolites in rat feces	
receiving 750 mg/kg of KP solution	156
Table 18 Method validation of HPLC method	159
Table 19 Solubility of methoxyflavones in various vehicles	160
Table 20 Compatibility between surfactants co-surfactants and oils	163
Table 21 Physicochemical properties of KP-SMEDDS	166
Table 22 Appearance permeability of formulations in Caco-2 cells	178
Table 23 Pharmacokinetic parameters of PMF after intravenous	
administration of KP crude extract, KP-HP-β-CD complex,	
and S-3-80	182
Table 24 Pharmacokinetic parameters of TMF after intravenous	
administration of KP crude extract, KP-HP-β-CD complex,	
and S-3-80	183
Table 25 Pharmacokinetic parameters of DMF after intravenous	
administration of KP crude extract, KP-HP-β-CD complex,	
and S-3-80	183
Table 26 Pharmacokinetic parameters of PMF after oral administration	
of KP crude extract, KP-HP- β -CD complex, and S-3-80	184
Table 27 Pharmacokinetic parameters of TMF after oral administration	
of KP crude extract, KP-HP- β -CD complex, and S-3-80	184
Table 28 Pharmacokinetic parameters of DMF after oral administration	
of KP crude extract, KP-HP- β -CD complex, and S-3-80	185

LIST OF FIGURES

	Page
Figure 1 Research framework	3
Figure 2 A: KP plant, B: KP rhizome, C: KP flower	6
Figure 3 Chemical structures of substances in KP	7
Figure 4 Pharmacokinetic process	15
Figure 5 One-compartment model	18
Figure 6 The plasma concentration-time profiles	18
Figure 7 Two-compartment model	19
Figure 8 Schematic drawing of mechanism of drug absorption	20
Figure 9 The plasma drug concentration-time profile after oral	
administration	23
Figure 10 Scheme of drug metabolism	32
Figure 11 Cytochrome P450 cycle in drug oxidation	32
Figure 12 Location of CYP450 in the cell	37
Figure 13 Michaelis-Menten enzyme kinetics	39
Figure 14 Enzymatic reaction	39
Figure 15 Lineweaver-Burk plot as competitive enzyme inhibition	40
Figure 16 Lineweaver-Burk plot as noncompetitive enzyme inhibition	41
Figure 17 Lineweaver-Burk plot as uncompetitive enzyme inhibition	41
Figure 18 Preparation of S9 and microsomes fraction	45
Figure 19 Composition of LC-MC	50
Figure 20 Example of pseudo ternary phase diagram	52
Figure 21 Structure of β-CD	54
Figure 22 Reaction of CD-drug formation	55
Figure 23 DSC curves	57
Figure 24 XRD spectrum	58
Figure 25 FT-IR spectrum	58
Figure 26 Caco-2 cell culture	60
Figure 27 A: KP rhizomes, B: KP crude extract	85

	Page
Figure 28 HPLC chromatogram of the mixture of PMF (0.0078	
μ g/ml), TMF (0.0113 μ g/ml), and DMF (0.0094 μ g/ml)	86
Figure 29 HPLC chromatogram of KP crude extract (0.400 mg/ml)	87
Figure 30 HPLC profile of rat blood after 30 min oral administration	
of 250 mg/kg KP solution	90
Figure 31 Blood concentration-time profile of methoxyflavones	
after a single oral administration of 250 mg/kg of KP	
solution to rats	91
Figure 32 HPLC profile of rat blood after 30 min intravenous	
administration of 250 mg/kg of KP solution	93
Figure 33 Blood concentration-time profile of methoxyflavones after	
a single intravenous administration of 250 mg/kg of KP	
solution to rats	94
Figure 34 HPLC chromatogram of KP solution (0.75 mg/ml)	95
Figure 35 HPLC profile of rat liver after 30 min oral administration	
of 750 mg/kg of KP solution	96
Figure 36 HPLC profile of rat kidney after 30 min oral administration	
of 750 mg/kg of KP solution	97
Figure 37 HPLC profile of rat lung after 30 min oral administration	
of 750 mg/kg of KP solution	98
Figure 38 HPLC profile of rat brain after 2 h orally administration	
of 750 mg/kg of KP solution	98
Figure 39 HPLC profile of rat testes after 10 min oral administration	
of 750 mg/kg of KP solution	99
Figure 40 Lineweaver-Burk plots of CYP450 enzyme activities in	
non-induced mouse liver microsomes	104
Figure 41 HPLC chromatogram of urine that was added with 0.06-0.11 g	
of KP crude extracts	106

	Page
Figure 42 HPLC chromatogram of feces that was added with	
0.06-0.11 g of KP crude extracts	107
Figure 43 HPLC profile of rat urine after receiving 750 mg/kg of	
KP solution for 12 h	108
Figure 44 Profile of methoxyflavones concentrations with times of	
urine samples of rats after receiving 750 mg/kg of KP	
solution for 72 h	109
Figure 45 HPLC profile of rat feces after receiving 750 mg/kg of	
KP solution for 12 h	111
Figure 46 Profile of methoxyflavones concentrations of feces samples	
of rats after receiving 750 mg/kg of KP solution for 72 h	111
Figure 47 Total ion chromatogram of TMF for optimization the	
collision energy	113
Figure 48 Mass spectrum of TMF ($m/z = 313$) at various collision energy	
(10-70 eV)	114
Figure 49 A: mass spectrum of metabolite in urine in full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
255 (M1), and C: fragmentation pathway of the metabolite	
in MS/MS mode	116
Figure 50 Proposed metabolic pathway of M1	117
Figure 51 A: mass spectrum of metabolite in urine as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
285 (M2), and C: fragmentation pathway of the metabolite	
in MS/MS mode	118
Figure 52 Proposed metabolic pathway of M2	120
Figure 53 A: mass spectrum of metabolite in urine as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
315 (M3), and C: fragmentation pathway of the metabolite	
in MS/MS mode	121

	Page
Figure 54 Proposed metabolic pathway of M3	123
Figure 55 A: mass spectrum of metabolite in urine as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
345 (M4), and C: fragmentation pathway of the metabolite	
in MS/MS mode	124
Figure 56 Proposed metabolic pathway of M4	126
Figure 57 A: mass spectrum of metabolite in urine as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
349 (M5), and C: fragmentation pathway of the metabolite	
in MS/MS mode	127
Figure 58 Proposed metabolic pathway of M5	128
Figure 59 A: mass spectrum of metabolite in urine as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
359 (M6), and C: fragmentation pathway of the metabolite	
in MS/MS mode	129
Figure 60 Proposed metabolic pathway of M6	131
Figure 61 A: mass spectrum of metabolite in urine as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
365 (M7), and C: fragmentation pathway of the metabolite	
in MS/MS mode	132
Figure 62 Proposed metabolic pathway of M7	134
Figure 63 A: mass spectrum of metabolite in urine as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
379 (M8), and C: fragmentation pathway of the metabolite	
in MS/MS mode	135
Figure 64 Proposed metabolic pathway of M8	137

	Page
Figure 65 A: mass spectrum of metabolite in urine as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
415 (M9), and C: fragmentation pathway of the metabolite	
in MS/MS mode	138
Figure 66 Proposed metabolic pathway of M9	139
Figure 67 A: mass spectrum of metabolite in feces as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
255 (M10), and C: fragmentation pathway of the metabolite	
in MS/MS mode	141
Figure 68 Proposed metabolic pathway of M10	142
Figure 69 A: mass spectrum of metabolite in feces as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
285 (M11), and C: fragmentation pathway of the metabolite	
in MS/MS mode	143
Figure 70 Proposed metabolic pathway of M11	144
Figure 71 A: mass spectrum of metabolite in feces as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
301 (M12), and C: fragmentation pathway of the metabolite	
in MS/MS mode	145
Figure 72 Proposed metabolic pathway of M12	147
Figure 73 A: mass spectrum of metabolite in feces as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
315 (M13), and C: fragmentation pathway of the metabolite	
in MS/MS mode	148
Figure 74 Proposed metabolic pathway of M13	150
Figure 75 A: mass spectrum of metabolite in feces as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
331 (M14), and C: fragmentation pathway of the metabolite	
in MS/MS mode	151

	Page
Figure 76 Proposed metabolic pathway of M14	153
Figure 77 A: mass spectrum of metabolite in feces as full scan mode,	
B: product ions of the metabolite in MS/MS mode at $m/z =$	
345 (M15), and C: fragmentation pathway of the metabolite	
in MS/MS mode	154
Figure 78 Proposed metabolic pathway of M15	156
Figure 79 HPLC chromatogram of KP crude extract (0.400 mg/ml)	157
Figure 80 HPLC chromatogram of the mixture of PMF (2.60 μ g/ml),	
TMF (3.33 µg/ml) and DMF (1.77 µg/ml)	158
Figure 81 KP solubility in various oils, surfactants, and co-surfactant	161
Figure 82 Pseudo-ternary phase diagram composed of S-3 (1:1 ratio	
of Cremophor [®] EL and propylene glycol)	164
Figure 83 Pseudo-ternary phase diagram composed of S-3 (2:1 ratio	
of Cremophor [®] EL and propylene glycol)	165
Figure 84 KP-SMEDDS formulations	167
Figure 85 Phase solubility profile of KP crude extract and β -CD	168
Figure 86 Phase solubility profile of KP crude extract and HP- β -CD	168
Figure 87 KP-HP-β-CD complex	169
Figure 88 DSC curves of KP crude extract, physical mixture,	
KP-HP- β -CD complex, and HP- β -CD	170
Figure 89 Dissolution profile of KP crude extract in 0.1 N HCl	171
Figure 90 Dissolution profile of KP crude extract in 0.2 M PBS pH 6.8	171
Figure 91 Dissolution profile of S-3-80 in 0.1 N HCl	172
Figure 92 Dissolution profile of S-3-80 in 0.2 M PBS pH 6.8	172
Figure 93 Dissolution profile of S-3-85 in 0.1 N HCl	173
Figure 94 Dissolution profile of S-3-85 in 0.2 M PBS pH 6.8	173
Figure 95 Dissolution profile of KP-HP-β-CD in 0.1 N HCl	174
Figure 96 Dissolution profile of KP-HP-β-CD in 0.2 M PBS pH 6.8	174

		Page
Figure 97	Time courses of degradation of methoxyflavones in S-3-80	
	in various conditions	175
Figure 98	Time courses of degradation of methoxyflavones in S-3-85	
	in various conditions	176
Figure 99	Time courses of degradation of methoxyflavones in	
	KP-HP-β-CD in various conditions	176
Figure 100	Particle size of S-3-80 in various conditions	177
Figure 101	Particle size of S-3-85 in various conditions	177
Figure 102	Blood concentration-time profile of PMF in rats after	
	intravenous or oral administration of KP crude extract,	
	KP-HP-β-CD complex, and S-3-80	180
Figure 103	Blood concentration-time profile of TMF in rats after	
	intravenous or oral administration of KP crude extract,	
	KP-HP-β-CD complex, and S-3-80	181
Figure 104	Blood concentration-time profile of DMF in rats after	
	intravenous or oral administration of KP crude extract,	
	KP-HP-β-CD complex, and S-3-80	182

LIST OF ABBREVIATIONS

ALT	Alanine transaminase enzyme
APCI	Atmospheric pressure chemical ionization
AST	Aspartate aminotransferase enzyme
AUC	Area under the curve
BW	Body weight
BUN	Blood urea nitrogen
□-CD	β-cyclodextrin
CBC	Complete blood count
CD	Cyclodextrin
CI	Chemical ionization
CID	Collision-induced dissociation,
Cl	Clearance
Cmax	Maximum concentration
Cr	Creatinine
DMF	5,7-dimethoxyflavone
DSC	Differential Scanning Calorimetry
ESI	Electrospray ionization
FAB	Fast atom bombardment
FT-IR	Fourier transforms infrared spectroscopy
HP-□-CD	Hydroxypropyl-β-cyclodextrin
HPLC	High performance liquid chromatography
IC50	50% Inhibitory concentration
Ke	Elimination rate constant
Ki	Inhibition constant
Km	Michaelis constant in Michaelis-Menten kinetic
KP	Kaempferia parviflora
LD50	50% Lethal concentration
LC-MS	Liquid Chromatography – Mass Spectrometer
LOD	Limit of detection
LOQ	Limit of quantitation

LIST OF ABBREVIATIONS (Cont.)

MRP	Multidrug resistance associated-protein
PMF	3,5,7,3',4'-pentamethoxyflavone
SMEDDS	Self-microemulsifying drug delivery system
t1/2	Half-life
TEER	Transepithelial electrical resistance
TMF	5,7,4'-trimethoxyflavone
Tmax	Time to maximum concentration
TOF	Time of flight analyzers
Vd	Volume of distribution
Vmax	Maximum reaction rate
XRD	X-ray powder diffraction