

ABBREVIATIONS

br	=	broad (for NMR signals)
°C	=	degree celsius
CH ₂ Cl ₂	=	dichloromethane
cm	=	centimetre
COSY	=	correlation spectroscopy
d	=	doublet (for NMR signals)
dd	=	doublet (for NMR signals)
ddd	=	doublet (for NMR signals)
D.B.E.	=	double bond equivalent
DEPT	=	distortionless enhancement by polarization transfer
DMEM	=	Dulbecco's Modified Eagle's Medium
DMSO	=	dimethylsulfoxide
ED	=	erectile dysfunction
EI-MS	=	electron impact ionization-mass spectroscopy
EtOAc	=	ethyl acetate
EtOH	=	ethanol
FBS	=	fetal bovine serum
g	=	gram
HCl	=	hydrochloric acid
HMBC	=	heteronuclear multiple-bond multiple quantum coherence
HMQC	=	heteronuclear multiple quantum coherence
HPLC	=	High Performane Liquid Chromatography
IC ₅₀	=	concentration that could inhibit 50% of the enzymatic activity
i.d.	=	internal diameter
kg	=	kilogram
L	=	litre
m	=	multiplet (for NMR signals)
<i>m/z</i>	=	Mass-over-charge ratio
MeOH	=	methanol
min	=	minute

ABBREVIATIONS (CONT.)

MHz	=	megahertz
mM	=	millimolar
mL	=	millilitre
NMR	=	Nuclear Magnetic Resonance
PDE	=	Phosphodiesterase
s	=	singlet (for NMR signals)
SD	=	standard deviation
t	=	triplet (for NMR signals)
TLC	=	Thin layer chromatography
TMS	=	tetramethylsilane
$\mu\text{g/mL}$	=	microgram per millilitre
μL	=	microlitre
μM	=	micromolar