

งานวิจัยครั้งนี้มีวัตถุประสงค์ เพื่อศึกษาคุณสมบัติของโอลิโกลแซคคาไรด์ที่ได้จากการบ่มกับที่สกัดแยกได้จากเมล็ดมะขามด้วยเย็น ไขม์เซลลูลีต โดยงานวิจัยเริ่มตั้งแต่ การศึกษาผลของวิธีการลอกเปลือกเมล็ดมะขามต่อคุณสมบัติของเปลือกเมล็ดมะขามในด้านองค์ประกอบทางเคมี คุณสมบัติทางกายภาพ และคุณสมบัติด้านการไหล ผลการทดลองพบว่าการลอกเปลือกเมล็ดมะขาม 3 วิธี คือไม่ผ่านความร้อน ผ่านความร้อนที่อุณหภูมิ 150°C เป็นเวลา 15 นาที และผ่านความร้อนที่อุณหภูมิ 200°C เป็นเวลา 2 นาที ให้เปลือกเมล็ดมะขามที่มีเปอร์เซนต์ผลผลิตไม่แตกหักกัน คือประมาณ 50 เปอร์เซนต์ และมีองค์ประกอบทางเคมีที่ใกล้เคียงกัน อย่างไรก็ตามเปลือกเมล็ดมะขามที่ผ่านการลอกเปลือกโดยไม่ใช้ความร้อนจะมีค่าความสว่าง (lightness ; L* value) และความขาว (whiteness) มากกว่าเปลือกเมล็ดมะขามที่ผ่านการลอกเปลือกด้วยความร้อน โดยมีความแตกต่างอย่างมีนัยสำคัญกับเปลือกเมล็ดมะขามที่ผ่านการลอกเปลือกโดยการตั่งที่อุณหภูมิ 100°C เป็นเวลา 2 นาที

ผลการศึกษาด้านคุณสมบัติการไหลพบว่า เปลือกเมล็ดมะขามที่ผ่านการลอกเปลือกที่ความตื้นขึ้น 3 เปอร์เซนต์ มีคุณสมบัติการไหลแบบ pseudoplastic และไม่แสดงคุณสมบัติ yield stress อย่างไรก็ตามเปลือกเมล็ดมะขามที่ได้จากการลอกเปลือกโดยไม่ผ่านความร้อนจะมีค่า consistency coefficient (k) สูงกว่าเปลือกเมล็ดมะขามที่ผ่านการลอกเปลือกโดยใช้ความร้อนทั้ง 2 วิธี อย่างมีนัยสำคัญ ในขณะที่ค่า flow behavior index (n) มีค่าต่ำกว่า นอกจากนี้เปลือกเมล็ดมะขามที่ผ่านการลอกเปลือกโดยใช้ความร้อนจะสูญเสียความหนืดเมื่อทำการกวนที่อุณหภูมิ 95°C เป็นเวลา 30 นาที เมื่อทำการสกัดแยกกับเปลือกเมล็ดมะขาม หรือ xyloglucan ที่ผ่านการลอกเปลือกทั้ง 3 วิธี แล้วนำมาตรวจสอบการกระจายของน้ำหนักโมเลกุลโดยเทคนิคทางคลัมน์ โกรมาโตกราฟี และวิเคราะห์น้ำหนักโมเลกุลโดยเทคนิคการกระเจิงแสง พบว่าก้มจากเปลือก

เมล็ดคุณภาพที่ผ่านการลอกเปลือกโดยไม่ใช้ความร้อนจะมีน้ำหนักโนมเลกุลสูงสุด คือ 3.831×10^6 กรัม / โนล แสดงว่าการลอกเปลือกเมล็ดคุณภาพโดยใช้ความร้อนมีผลต่อการแตกหักของสายโพลิเมอร์ของ xyloglucan ซึ่งมีผลกระทบโดยตรงต่อคุณสมบัติด้านการไหล

เมื่อนำกัมที่สกัดจากแป้งเมล็ดคุณภาพที่ผ่านการลอกเปลือกโดยไม่ใช้ความร้อน มาทำการย่อยให้เป็นโอลิโกแซคคาไรด์ ด้วยเอนไซม์เซลลูเลส แล้วนำมาผ่านเครื่องแยกฟิวเตอร์ชัน พบร่องสารละลายโอลิโกแซคคาไรด์ที่ได้ ประกอบด้วยโอลิโกแซคคาไรด์ที่มีขนาดแตกต่างกัน 4 ชนิด ซึ่งเมื่อนำมาวิเคราะห์ด้วยเครื่อง MALDI – TOF mass spectrometer พบร่องแต่ละชนิดมีน้ำหนักโนมเลกุล 956, 960, 1424, และ 5039 ดาตั้น ตามลำดับ ผลการศึกษาคุณสมบัติการเป็นสาร prebiotic ของโอลิโกแซคคาไรด์ จากกัมเมล็ดคุณภาพ แสดงให้เห็นว่าโอลิโกแซคคาไรด์จากกัมของเมล็ดคุณภาพ สามารถช่วยการเจริญเติบโตของเชื้อจุลินทรีย์สุขภาพ (probiotic) 4 ชนิดคือ *Lactobacillus acidophilus*, *Lactobacillus casei*, *Lactobacillus plantarum* และ *Bifidobacterium bifidum* ได้ดีกว่า inulin ซึ่งเป็นสาร prebiotic ทางการค้า

This research was conducted to study the properties of oligosaccharide from enzymatic hydrolysate of tamarind kernel powder (TKP) by cellulase. First, the effect of dehulling processes on the physical and rheological properties of TKPs were studied. The results showed that the yield of TKPs from the three different dehulling processes, namely non-heating, heating at 150 °C, 15 min and roasting at 200 °C, 2 min were about 50%. The chemical compositions of TKPs from the three different dehulling processes were not significant different. However, TKP from non-heating dehulling process showed more lightness (L^* value) and whiteness than TKPs from the other two heating dehulling processes. The rheological data indicated that 3% of TKP suspensions from different dehulling processes were pseudoplastic fluids and did not exhibit yield stress. The consistency coefficient (k) of TKP from non-heating dehulling process was significantly higher than that of TKPs from the other two heating dehulling processes, whereas the flow behavior index (n) was the lowest. Inaddition, the loss of viscosity with stirring at 95 °C for 30 min was found in TKPs from heating dehulling processes. The macromolecular distribution of purified xyloglucan from TKPs was studied by gel permeation chromatography and their molecular weight (Mw) were determined by light scattering technique. The Mw of xyloglucan was found to be 3.831×10^6 , 3.440×10^6 and 3.304×10^6 g/mol respectively. This indicates the polymer degradation due to dehulling process by heating.

The purified xyloglucan of TKP from non-heating dehulling process was hydrolyzed to oligosaccharides by cellulase and the molecular weight distribution were studied by gel

TE 163789

permeation chromatography. The result indicated that hydrolyzed xyloglucan from tamarind seed composed of 4 fractions. The molecular weight of each fraction studied by MALDI-TOF mass spectrometry were 956, 960, 1424 and 5039 dalton respectively. The pooled fraction of oligosaccharides from hydrolyzed xyloglucan was evaluated for prebiotic effect and the results showed that it could promote cell growth of *Lactobacillus acidophilus*, *Lactobacillus casei*, *Lactobacillus plantarum* and *Bifidobacterium bifidum* better than inulin, a commercial used prebiotic in many food products.