Research Title:	Nanomaterials for Renewable Fuel. Part I. – Synthesis of Lepidocrocite-type
Titanate Nanosh	eet and Its Corresponding Nanomaterials as Base Catalysts for Conversion of
Fatty Acid to Diesel Fuel	
Researcher:	Dr. Tosapol Maluangnont
Faculty:	College of Nanotechnology
Researcher:	Assoc. Prof. Tawan Sooknoi
Faculty:	Faculty of Science

ABSTRACT

This project studies Lepidocrocite titanate K_{0.8}Zn_{0.4}Ti_{1.6}O₄, and other nanomaterials including titanate nanotubes from the rolling of nanosheets, $A_2Ti_6O_{13}$ (A = K, Na, Li), $Na_2Ti_3O_7$, and $K_2Ti_4O_9$ as a basic material. They were characterized by powder X-ray diffraction (PXRD), N_2 adsorption-desorption, and scanning electron microscopy (SEM). The basic nature of these materials was investigated using CO₂ temperature programmed desorption (CO₂ TPD). Most of the tested titanates are weakly basic, desorbing $\rm CO_2$ in the range 50-300 $^{\circ}\rm C$ similar to anatase TiO₂. The basicity of layered alkali titanates such as Na₂Ti₃O₇ and K₂Ti₄O₉ is larger than that of the tunneled alkali titanates (A2Ti6O13) and Lepidocrocite titanate K0.8Zn0.4Ti1.6O4, but much lower than that of MgO. These titanates are capable of catalyzing the ketonization of acetic acid into acetone, without prior reduction, under N₂. However, anatase TiO₂ and Lepidocrocite titanate are inactive for such reaction. The conversion of acetic acid over titanate nanotubes is larger than the estimation based on the basicity. These results suggest the synergism between the basicity and the nanostructures. The application of K₂Ti₆O₁₃ in the ketonization of heptanoic acid into 7-tridecanone was further demonstrated. The ketonization of acids is considered as an important step in the production of renewable fuel from biomass. Titanate nanomaterials can be potentially applied as a base catalyst for the conversion of fatty acid into diesel fuel.

Keywords : Alkali titanates, biomass, ketonization, basicity