บทที่ 5 ผลการทำแบบจำลองวัสดุในสภาวะการกดขึ้นรูปร้อน

ในบทนี้ จะกล่าวถึงผลจากแบบจำลองวัสดุเพิ่มเติมจากบทที่ 4 โดยจะแบ่งออกได้เป็น 3 ส่วน คือ ส่วนแรกเป็นผลการทำแบบจำลองทางวัวดุและวิเคราะห์หาสมการความแม่นยำสำหรับโลหะผสม MAB ส่วนที่สองคือผลของการใช้แบบจำลองทางพลศาสตร์ของวัสดุเพื่ออธิบายเสถียรภาพของการ เสียรูปเมื่อผ่านการกดขึ้นรูปร้อน และส่วนสุดท้ายคือผลของโครงสร้างจุลภาคและสัดส่วนปริมาตร ของการเกิดผลึกใหม่แบบพลศาสตร์ เพื่อวิเคราะห์การเกิดการคืนตัวแบบพลศาสตร์และการเกิดผลึก ใหม่แบบพลศาสตร์

5.1 ผลการสร้างแบบจำลองเพื่อทำนายพฤติกรรมการใหลโดยใช้สมการซิงกาล่า

5.1.1 อัตราความเครียดแข็ง (Work hardening rate)

จากเส้นโค้งความเครียดแข็ง (Work hardening curve) สามารถใช้ในการหาค่าความเค้นวิกฤตสำหรับ การเริ่มต้นของการเกิดผลึกใหม่แบบพลศาสตร์ ซึ่งหาได้จากความสัมพันธ์ระหว่างความเค้น-ความเครียดจริง ดังแสดงในรูปที่ 5.1 พบว่าค่าอัตราความเครียดแข็ง ($\theta = d\sigma/d\epsilon$) คำนวณได้จากการทำ คอนเวสกับความเก้นวิกฤตไปที่เส้นโค้งไหลเดิม โดยการเริ่มต้นความเครียดแข็งของการเบี่ยงเบนไป เป็นความเค้นวิกฤต (σ_c) จากนั้นคำนวณความเก้นสูงสุด (σ_p) ของการเกิดผลึกใหม่แบบพลศาสตร์ ส่งผลต่อการเปลี่ยนแปลงของอัตราความเครียดแข็ง (θ) มาถึงจุดต่ำสุด ซึ่งสอดคล้องกับการจุดเปลี่ยน โค้งของเส้นโค้ง $d\sigma/d\epsilon$ กับ σ [58]

รูปที่ 5.1 การเปลี่ยนความชันของกราฟความสัมพันธ์ระหว่างความเก้น – ความเครียดจริงเทียบกับ ก่าความเก้น

เมื่อพิจารณาจากกราฟรูปที่ 5.1 พบว่ามีค่าคงที่ที่ไม่ทราบค่าคือ ɛ_c (ความเครียดวิกฤต) ɛ_p (ความเครียดสูงสุด) σ_c (ความเค้นวิกฤต) σ_p (ความเค้นสูงสุด) ɛ_{ss} (ความเครียดที่สภาวะคงตัว) และ σ_{ss} (ความเค้นที่สภาวะคงตัว) สามารถวิเคราะห์หาค่าได้จากกราฟความสัมพันธ์ระหว่างอัตรา ความเครียดแข็งกับความเค้น โดยค่าอัตราความเครียดแข็งนั้นสามารถหาได้จากสมการที่ 2.21

ในงานวิจัยนี้เราจะใช้วิธีหาค่าความเค้นวิกฤตโดยใช้สมการ Polynomial กำลังสาม ซึ่งเป็นวิธีการที่ นำเสนอโดย Najafizadeh และ Jonas [59] ซึ่งถูกนำมาใช้เพื่อหาค่าความเค้นวิกฤตสำหรับการเกิดผลึก ใหม่แบบพลศาสตร์ โดยมองว่าค่าความเค้นวิกฤตคือจุดเปลี่ยนโค้งของกราฟความเครียดแข็ง (*dσ/dε*) กับ ความเก้น (σ) เมื่อหาอนุพันธ์อันดับสองของสมการที่ 2.21 ทำให้ได้ค่าความเค้นวิกฤติที่ทำให้การ เกิดผลึกใหม่แบบพลศาสตร์ดังแสดงในสมการที่ 2.22 รากที่สองของค่าความเค้นวิกฤตสำหรับการ เริ่มต้นของการเกิดผลึกใหม่แบบพลศาสตร์มีก่าเท่ากับศูนย์ แสดงดังในสมการที่ 2.23

เพราะฉะนั้น วิธีการนี้ได้นำมาใช้ในการกำหนดค่าของความเค้นวิกฤตที่มีการเสียรูปที่แตกต่างกัน รูปที่ 5.2 แสดงผลการหาค่าความเค้นวิกฤติ ที่ได้จากความสัมพันธ์ระหว่างความเค้นสูงสุดและ ความเครียดสูงสุด

ร**ูปที่ 5.2** ความสัมพันธ์ระหว่างอัตราความเครียดแข็งกับความเก้นจริงที่อุณหภูมิ 700, 750, 800 และ 850 องศาเซลเซียส และอัตราความเครียด 0.01, 0.1, 1 และ 10 ต่อวินาที ของการกดขึ้น รูปร้อนของวัสดุ MAB

5.1.2 อัตราการอ่อนตัว (Softening rate)

สำหรับการกดขึ้นรูป พบว่ามีการรวมตัวของคิส โลเกชันเพิ่มขึ้นที่บริเวณของความเก้นวิกฤต เนื่องจาก การเปลี่ยนรูปร้อน อีกทั้งยังพบว่ามีคิส โลเกชันถูกทำลาย เนื่องจากการเกิดผลึกใหม่แบบพลศาสตร์ ความสัมพันธ์ระหว่างความเก้น-ความเครียดจริงของการกดขึ้นรูปร้อนหลังจากก่าความเก้นสูงสุดถูก นำมาใช้ในการกำนวณความเกรียดแข็งและในอัตราการอ่อนตัว (*dσ/dε* กับ *σ*) แสดงดังรูปที่ 5.4 ซึ่ง จะเห็นว่ามีอัตราการอ่อนตัวสูงสุด (*ε**) เมื่อมีความเกรียดที่ติดลบสูงสุด [38]

รูปที่ 5.3 แสดงกวามสัมพันธ์ระหว่างการอ่อนตัวกับกวามเกรียด แบ่งได้เป็น 3 บริเวณหลักๆ ดังนี้ บริเวณที่ 1 มีอัตรากวามเกรียดแข็งเป็นเส้นตรงและลดลงจนถึงจุดเปลี่ยนโก้งหรือจุดของกวามเกรียด วิกฤตซึ่งเป็นจุดเริ่มต้นของการเกิดผลึกใหม่แบบพลศาสตร์ บริเวณที่ 2 นั้นเป็นการเริ่มต้นของ กวามเกรียดแข็งจากกวามเก้นสูงสุด (σ_p) คือกวามเก้นเท่ากับ 0 และบริเวณที่ 3 นั้นเป็นการเริ่มต้นของ กวามเกรียดแข็งจากกวามเก้นสูงสุด (σ_p) คือกวามเก้นเท่ากับ 0 และบริเวณที่ 3 นั้นเป็นการเริ่มต้นของ กวามเกรียดแข็งจากกวามเก้นสูงสุด (ปียังกวามเก้นที่สภาวะกงตัว (σ_{ss}) ซึ่งกวามเก้นของทั้งสองจุดมี ก่าเท่ากับ 0 เท่ากัน อีกทั้งก่าของกวามเก้นได้มีการเปลี่ยนจากก่าบวกไปเป็นก่าลบเนื่องจากอัตราการ อ่อนตัว [58]

ร**ูปที่ 5.3** ความสัมพันธ์ระหว่างอัตราการอ่อนตัว (*θ=dσ/dε*) กับความเครียด (σ) ที่อุณหภูมิ 750 องศา เซลเซียส และอัตราความเครียดที่ 0.1 ต่อวินาที ของวัสดุ MAB ที่ผ่านการทุบขึ้นรูปร้อน

รูปที่ 5.4 ความสัมพันธ์ระหว่างอัตราการอ่อนตัวกับความเค้นจริง ที่อุณหภูมิ 700, 750, 800 และ 850 องศาเซลเซียส และอัตราความเครียค 0.01, 0.1, 1 และ 10 ต่อวินาที ของวัสคุ MAB ที่ผ่าน การทุบขึ้นรูปร้อน

โดยตารางที่ 5.1-5.4 จะแสดงค่าพารามิเตอร์ต่างๆ คือ ค่า ɛ_c (ความเครียดวิกฤต) ɛ_p (ความเครียด สูงสุด) σ_c (ความเค้นวิกฤต) σ_p (ความเค้นสูงสุด) ɛ_{ss} (ความเครียดที่สภาวะคงตัว) และ σ_{ss} (ความ เค้นที่สภาวะคงตัว) ซึ่งหาได้โดยใช้สมการที่เกี่ยวข้องกับอัตราความเครียดแข็งและอัตราการอ่อนตัว (สมการที่ 2.23) เพื่อใช้ในการคำนวณหาสมการซิงกาล่าสำหรับทำนายช่วงกลไกความเครียดแข็งของ บริเวณที่ 1 ในรูปที่ 5.3

พารามิเตอร์	700°C	750°C	800°C	850°C
E _C	0.032	0.035	0.04	0.07
ε _p	0.261	0.1485	0.18	0.279
σ_c	12.33	6.15	4.98	3.40
σ_p	13.85	9.72	7.02	4.35
\mathcal{E}_{SS}	0.78	0.8	0.62	0.7
σ_{ss}	12.2	8.4	6.4	4.2

ตารางที่ 5.1 ค่าพารามิเตอร์ต่างๆ ที่อัตราความเครียด 0.01 ต่อวินาที

ตารางที่ 5.2 ค่าพารามิเตอร์ต่างๆ ที่อัตราความเครียด 0.1 ต่อวินาที

พารามิเตอร์	700°C	750°C	800°C	850°C
ε _c	0.039	0.0396	0.0328	0.0324
ε_p	0.0261	0.315	0.014	0.0153
σ_c	23.25	13.49	10.72	7.83
σ_p	41.94	21.28	17.57	12.45
\mathcal{E}_{SS}	0.78	0.74	0.64	0.62
σ_{ss}	37	19	15.5	10

พารามิเตอร์	700°C	750°C	800°C	850°C
ε _c	0.063	0.081	0.027	0.043
$arepsilon_p$	0.38	0.45	0.20	0.23
σ_c	47.34	37.34	18.67	16.75
σ_p	65.46	51.88	28.82	24.25
\mathcal{E}_{SS}	0.78	0.74	0.64	0.62
σ_{ss}	64	50	25	21

ตารางที่ 5.3 ค่าพารามิเตอร์ต่างๆ ที่อัตราความเครียด 1 ต่อวินาที

ตารางที่ 5.4 ค่าพารามิเตอร์ต่างๆ ที่อัตรากวามเกรียด 10 ต่อวินาที

พารามิเตอร์	700°C	750°C	800°C	850°C
ε _c	0.011	0.00045	0.0221	0.0299
ε_p	0.1215	0.14	0.216	0.1665
σ_c	53.26	38.094	43.66	30.90
σ_p	109.56	82.95	59.22	48.20
\mathcal{E}_{ss}	0.6	0.7	0.6	0.56
σ_{ss}	90.49	76	54	44.5

5.1.3 สมการซิงกาล่า (Cingara Equation)

กราฟความสัมพันธ์ระหว่างความเค้น-ความเครียดจริงสามารถอธิบายบริเวณทั้งสองในรูปที่ 5.3 ได้ ดังนี้ บริเวณที่ 1 คือตั้งแต่จุดเริ่มต้นจนถึงความเค้นสูงสุดของการเสียรูปของโลหะผสม MAB ที่ อุณหภูมิสูงจะอธิบายค่าความเครียดแข็งจนถึงค่าความเค้นสูงสุดโดยใช้สมการซิงกาล่า และบริเวณที่ 2 นั้นอธิบายการเกิดผลึกใหม่แบบพลศาสตร์ด้วยสมการอาลามี่แสดงดังต่อไปนี้ [59]

สำหรับการงานวิจัยนี้ได้ใช้สมการซิงกาล่าในการพิจารณาค่าความเครียดแข็งและความเก้นสูงสุดที่ อุณหภูมิ 700, 750, 800 และ 850 องศาเซลเซียส ด้วยอัตราความเครียด 0.01, 0.1, 1 และ 10 ต่อวินาที พบว่ามีการเกิดผลึกใหม่แบบพลศาสตร์ สามารถใช้สมการซิงกาล่าในการทำนายเส้นโค้งไหลของ โลหะผสม MAB ได้ดังสมการที่ 2.16

C คือค่าคงที่ของวัสคุ ซึ่งค่าความเค้นสูงสุด และค่าความเครียคสูงสุดของเส้น โค้งไหลที่แต่ละอุณหภูมิ และอัตราความเครียดจากการใช้ลอการิทึมธรรมชาติเขียนเป็นสมการที่ 2.17

นำสมการที่ 2.17 ไปพล็อตกราฟรูปที่ 5.5 ที่แสดงความสัมพันธ์ระหว่าง ln(σ/σ_p) กับ 1- $\varepsilon/\varepsilon_p$ + ln($\varepsilon/\varepsilon_p$) ที่อุณหภูมิ 700 องศาเซลเซียส ด้วยอัตราความเกรียด 1 ต่อวินาที เพื่อใช้ในการสร้าง แบบจำลองการไหลของเส้นโด้งจนถึงความเด้นสูงสุดของการเสียรูปทำให้สามารถกำนวณหาก่าคงที่ C ได้ดังตารางที่ 5.5 และก่าเฉลี่ยของก่ากงที่ C นั้นมีก่าเท่ากับ 0.203

ร**ูปที่ 5.5** ความสัมพันธ์ระหว่าง $\ln(\sigma/\sigma_p)$ กับ 1- $\varepsilon/\varepsilon_p + \ln(\varepsilon/\varepsilon_p)$ ที่อุณหภูมิ 700 องศาเซลเซียส ด้วย อัตราความเครียด 1 ต่อวินาที

Strain rate (s ⁻¹)	$T = 700^{\circ}C$	$T = 750^{\circ}C$	$T = 800^{\circ}C$	$\mathbf{T} = 850^{\circ}\mathbf{C}$
0.01	0.001	0.005	0.0004	0.0009
0.1	0.09	0.98	0.89	0.97
1	0.09	0.18	0.02	0.015
10	0.004	0.003	0.001	0.0005

ตารางที่ 5.5 ค่าคงที่ C ที่หาได้สำหรับสมการซิงกาล่าที่อุณหภูมิและอัตราความเครียดต่างๆ

รูปที่ 5.6 การเปรียบเทียบกราฟความเค้น-ความเครียดจริงที่ได้จากการทำนายด้วยสมการซิงกาล่าและ ผลการทดลอง ที่อุณหภูมิ 700, 750, 800 และ 850 องศาเซลเซียส และอัตราความเครียด 0.01, 0.1, 1 และ 10 ต่อวินาที

รูปที่ 5.6 แสดงผลการเปรียบเทียบกราฟความเค้น-ความเครียดจริงที่ได้จากการทำนายด้วยสมการซิง กาล่าและผลการทดลอง ซึ่งเป็นการคำนวณระหว่างความเค้นสูงสุดกับความเครียดสูงสุด และ แบบจำลองมีความสามารถในการทำนายในช่วงความเค้นเท่ากับ 0 จนถึงความเก้นสูงสุดเพราะหลัง ผ่านความเก้นสูงสุดความเก้นจะก่อยๆลดลงเนื่องมาจากความเครียดที่เพิ่มขึ้นซึ่งจะสัมพันธ์กับผลการ ทดลองจึงเหมาะกับการทำนายในช่วงความเครียดแข็งอีกด้วย

5.2 ผลการสร้างแบบจำลองเพื่อทำนายพฤติกรรมการใหลของวัสดุโดยใช้สมการอาลามี่

การสร้างแบบจำลองวัสดุสำหรับอธิบายการเกิดผลึกใหม่แบบพลศาสตร์โดยใช้ความสัมพันธ์ระหว่าง ความเค้น-ความเครียดจริงของบริเวณที่ 2 ในรูปที่ 5.3 โดยใช้สมการอาลามี่ในสร้างแบบจำลองและใช้ เพื่อหาจุดเริ่มต้นของการเกิดผลึกใหม่แบบพลศาสตร์ และเพื่อทำนายสัดส่วนปริมาตร (Volume fraction) ของการเกิดผลึกใหม่แบบพลศาสตร์ โดยอธิบายในเทอมของเส้นโค้งตัวเอส (S curves) ที่ แสดงปริมาณการเกิดผลึกใหม่แบบพลศาสตร์ ที่เป็นพึงก์ชันกับเวลา จลนศาสตร์ของการเกิดผลึกใหม่ แบบพลศาสตร์ (Kinetic of DRX) สามารถทำนายได้จากสมการที่ 2.18 [36]

ในงานวิจัยนี้ผลของการเกิดผลึกใหม่แบบพลศาสตร์จะพิจารณาที่ความเค้นสูงสุดจากการสมมติฐาน อย่างง่ายของสมการอาลามี่ในระดับที่สามารถยอมรับได้และสัดส่วนปริมาตรของการเกิดผลึกใหม่ แบบพลศาสตร์ (X₄) คำนวณจากสมการที่ 5.1 โดยเริ่มคำนวณจากค่าความเครียดสูงสุดซึ่งถือว่าเป็นจุด เริ่มการเกิดผลึกใหม่แบบพลศาสตร์จนถึงค่าความเครียดในสภาวะคงที่ (E_{ss}) ซึ่งถือว่าเป็นจุดสิ้นสุด การเกิดผลึกใหม่แบบพลศาสตร์

$$X_d = \frac{\sigma_p - \sigma}{\sigma_p - \sigma_{ss}} \tag{5.1}$$

 σ_p คือความเก้นสูงสุด σ_{ss} คือความเก้นสภาวะคงตัว และ σ คือความเก้นที่ความเครียดแตกต่างกัน กล ใกการอ่อนตัวที่พิจารณาในสมการนี้จะขึ้นอยู่กับสัดส่วนปริมาตรของการเกิดผลึกใหม่แบบ พลศาสตร์ (X_d) ส่วนการคืนตัวแบบพลศาสตร์จะไม่ได้นำมาพิจารณาร่วมด้วย โดยรูปที่ 5.7 เป็น กราฟเส้นตรงที่ได้จากการคำนวณความสัมพันธ์ระหว่าง $\ln\ln(1/(1-X_d))$ และ $\ln((\varepsilon - \varepsilon_p)/\varepsilon_p)$ ภายใด้ เงื่อนไขการเปลี่ยนรูปที่อุณหภูมิ 800 องศาเซลเซียส ด้วยอัตราความเครียด 0.01 ต่อวินาที การหาค่า X_d ในสมการที่ 5.7 สามารถเขียนใหม่เป็นสมการที่ 2.19 ซึ่งเป็นลอการิทึมธรรมชาติ สำหรับใช้ คำนวณหาค่าคงที่ของวัสดุคือ *n* และ *k* โดยอาศัยเงื่อนไขของการเสียรูปที่อุณหภูมิ 700, 750, 800 และ 850 องศาเซลเซียส ด้วยอัตราความเครียด 0.01, 0.1, 1 และ 10 ต่อวินาที นำค่าของ *k* และ *n* ที่มีค่าเท่ากับ 1.17 และ 3.14 ตามลำคับ แทนค่าลงไปในสมการที่ 5.2 ทำให้ สามารถหางลนศาสตร์การเกิดผลึกใหม่แบบพลศาสตร์สำหรับโลหะผสม MAB ได้ ซึ่งสามารถ อธิบายได้ด้วยสมการที่ 5.2 ดังนี้

$$X_d = 1 - \exp[(-1.17)(\frac{\varepsilon - \varepsilon_c}{\varepsilon_p})^{3.14}]$$
(5.2)

2 1 4

ร**ูปที่ 5.7** ความสัมพันธ์ระหว่าง ln[ln(1/(1-X_d)] และ ln[(ε-ε_c)/ε_p] ที่อุณหภูมิ 800 องศาเซลเซียส และอัตราความเครียด 0.01 ต่อวินาที ของการกดขึ้นรูปร้อนของวัสดุ MAB

ร**ูปที่ 5.8** สัดส่วนปริมาตรของการเกิดผลึกใหม่แบบพลศาสตร์ที่อุณหภูมิ 700, 750, 800 และ 850 องศาเซลเซียส ด้วยอัตราความเครียด 0.01, 0.1, 1 และ 10 ต่อวินาที

รูปที่ 5.8 แสดงกราฟเส้นโด้งของความสัมพันธ์ระหว่างการเกิดผลึกใหม่แบบพลศาสตร์ของโลหะ ผสม MAB ที่ผ่านการขึ้นรูปร้อนที่อุณหภูมิ 700, 750, 800 และ 850 องศาเซลเซียส และอัตรา ความเกรียด 0.01, 0.1, 1 และ 10 ต่อวินาที จะสังเกตได้ว่าสัดส่วนปริมาตรการเกิดผลึกใหม่แบบ พลศาสตร์จะเพิ่มขึ้นเมื่อความเกรียดจริงเพิ่มสูงขึ้น ดังที่แสดงในกราฟเส้นโด้งรูปตัวเอส

สัดส่วนปริมาตรของการเกิดผลึกใหม่แบบพลศาสตร์จะเพิ่มสูงขึ้น เมื่ออุณหภูมิและอัตราความเครียด สูงขึ้น เนื่องจากการเพิ่มขึ้นของแรงขับเคลื่อน (Driving force) ในการเกิดผลึกใหม่แบบพลศาสตร์ โดยอัตราความเครียดลดลงและอุณหภูมิเพิ่มขึ้น สัดส่วนปริมาตรของการเกิดผลึกใหม่แบบพลศาสตร์ จะเข้าสู่สภาวะคงที่เมื่อ X_d = 1 ซึ่งหมายถึงกระบวนการเกิดผลึกใหม่แบบพลศาสตร์เกิดขึ้นอย่าง สมบูรณ์ จากการเปรียบเทียบเส้นโค้งเหล่านี้พบว่า สัดส่วนปริมาตรการเกิดผลึกใหม่แบบพลศาสตร์ จะลดลงเนื่องจากการลดลงของอุณหภูมิการเปลี่ยนรูป โดยหมายถึงการเกิดผลึกใหม่แบบพลศาสตร์ จะก่อยๆ เกิดขึ้นอย่างช้าๆ ทำให้ใช้เวลาในการเกิดนาน ดังนั้นภายใต้อัตราความเครียดสูงและ อุณหภูมิต่ำของการเปลี่ยนรูปของโลหะผสม MAB มีแนวโน้มจะเกิดผลึกใหม่แบบพลศาสตร์ไม่ สมบูรณ์ กล่าวคือ "สัดส่วนปริมาตรการเกิดผลึกใหม่แบบพลศาสตร์มีแนวโน้มน้อยกว่า 1"

สัคส่วนปริมาตรของการเกิดผลึกใหม่แบบพลศาสตร์ (X₄) สามารถดูจากกราฟของรูปที่ 5.8 ได้ ว่า เปอร์เซ็นต์การเกิดผลึกใหม่แบบพลศาสตร์มีความสมบูรณ์หรือไม่ และสามารถสรุปได้ดังนี้ คือ 1) ที่อัตราความเครียด 0.01 ต่อวินาที ที่เรียงตามอุณหภูมิ 750, 800, 700 และ 850 องศาเซลเซียส มี สัดส่วนปริมาตรของการเกิดผลึกใหม่แบบพลศาสตร์อย่างสมบูรณ์ 100%

2) ที่อัตรากวามเกรียด 0.1 และ 1 ต่อวินาที ที่เรียงตามอุณหภูมิตั้งแต่ 850, 800, 700 และ 750 องสา เซลเซียส พบว่าที่อัตรากวามเกรียด 0.1 ต่อวินาที มีสัดส่วนปริมาตรของการเกิดผลึกใหม่แบบ พลสาสตร์อย่างสมบูรณ์ 100 % และที่อัตรากวามเกรียด 1 ต่อวินาที ที่อุณหภูมิ 700 และ750 องสา เซลเซียส นั้นเป็นสองอุณหภูมิที่สัดส่วนปริมาตรของการเกิดผลึกใหม่แบบพลสาสตร์อย่างไม่สมบูรณ์

3) ที่อัตรากวามเกรียดที่ 10 ต่อวินาที ที่เรียงตามอุณหภูมิตั้งแต่ 700, 750, 850 และ 800 องศาเซลเซียส มีสัดส่วนปริมาตรของการเกิดผลึกใหม่แบบพลศาสตร์เพิ่มขึ้นอย่างรวดเร็ว และการเกิดผลึกใหม่แบบ พลศาสตร์อย่างสมบูรณ์ 100 %

5.3 ผลการวิเคราะห์โครงสร้างจุลภาคและสัดส่วนปริมาตรของการเกิดผลึกใหม่แบบ พลศาสตร์

การเปรียบเทียบระหว่างโครงสร้างจุลภาคและสัดส่วนปริมาตรของการเกิดผลึกใหม่แบบพลศาสตร์ที่ ทำนายได้ในรูปที่ 5.9 พบว่าโครงสร้างจุลภาคของโลหะผสม MAB แสดงรูปแบบและเกรนที่เป็น ลักษณะโครงสร้างหลังการเสียรูปของเกรนที่ประกอบไปด้วยการคืนตัวแบบพลศาสตร์และการเกิด ผลึกใหม่แบบพลศาสตร์ โดยโครงสร้างจุลภาคของการคืนตัวแบบพลศาสตร์มักจะเกิดในลักษณะ เกรนยาวตามแนวการกดขึ้นรูป และโครงสร้างจุลภาคของการเกิดผลึกใหม่แบบพลศาสตร์มักจะเกิด ในเกรนที่มีลักษณะกลมเล็ก

ในกรณีจากรูปที่ 5.8 เป็นการแสดงกราฟสัดส่วนปริมาตรเกิดผลึกใหม่แบบพลศาสตร์ว่าเกิดแบบ สมบูรณ์หรือไม่สมบูรณ์ สัดส่วนปริมาตรเกรนการเกิดผลึกใหม่แบบพลศาสตร์จะลดลงและเกรนตั้ง ต้นที่ยังกงเห็นอยู่ในโครงสร้างจะเป็นการเกิดการคืนตัวแบบพลศาสตร์ ที่อุณหภูมิ 750 องศาเซลเซียส จากกราฟสัดส่วนปริมาตรของการเกิดผลึกใหม่แบบพลศาสตร์มีแนวโน้มน้อยกว่า 1 คือเป็นการเกิด ผลึกใหม่แบบพลศาสตร์ไม่ครบ 100 เปอร์เซ็นต์หรือเกิดแบบไม่สมบูรณ์ เมื่อเปรียบเทียบโครงสร้าง จุลภาคกับกราฟสัดส่วนปริมาตรการเกิดผลึกใหม่แบบพลศาสตร์มีความสอดคล้องกัน ที่อุณหภูมิ 800 องศาเซลเซียส จากกราฟสัดส่วนปริมาตรแสดงว่ามีการเกิดผลึกใหม่แบบพลศาสตร์ 100 เปอร์เซ็นต์ หรือเป็นการเกิดผลึกใหม่แบบพลศาสตร์อย่างสมบูรณ์ ซึ่งเป็นการทำนายกราฟความเก้น-ความเครียด และเมื่อเทียบกับภาพถ่ายทางโครงสร้างทางจุลภาคซึ่งจะมีลักษณะเป็นเกรนกลมมีขนาดเล็กอยู่ตาม ขอบเกรน และเป็นโครงสร้างของการเกิดผลึกใหม่แบบพลศาสตร์ จึงมีความสอดคล้องกับกราฟ สัดส่วนปริมาตรที่กำนวณได้ที่อุณหภูมิ 800 องศาเซลเซียส

จากภาพถ่ายทางโครงสร้างการคืนตัวแบบพลศาสตร์จะมีอิทธิพลต่อโครงสร้างจุลภาคแสดงที่อุณหภูมิ 750 องศาเซลเซียส แสดงดังรูปที่ 5.9 (ก) ซึ่งสามารถสรุปได้ว่าเป็นโครงสร้างที่ 750 องศาเซลเซียส เกิดการคืนตัวแบบพลศาสตร์ การเปลี่ยนแปลงอย่างช้าๆของการเกิดผลึกใหม่แบบพลศาสตร์สังเกตได้ ที่อุณหภูมิ 800 องศาเซลเซียส รูปที่ 5.9 (ข) เป็นการเกิดผลึกใหม่แบบพลศาสตร์แบบไม่ต่อเนื่อง (Discontinuous recrystallization (DDRX)) จะเกี่ยวข้องกับการเกิดนิวเคลียสของเกรนใหม่และ กระบวนการคืนสู่สภาพ (Restoration) ในช่วงอุณหภูมิสูงของโลหะผสม MAB ด้วยเหตุผลนี้จึง นำไปสู่ความจริงที่ว่าการเกิดผลึกใหม่แบบพลศาสตร์จะเกิดที่ที่อุณหภูมิสูงและความเครียดต่ำ

ร**ูปที่ 5.9** โกรงสร้างทางจุลภาคที่อัตราความเครียด 1 ต่อวินาที (ก) ที่อุณหภูมิ 750 องศาเซลเซียส (ข) ที่อุณหภูมิ 800 องศาเซลเซียส

5.4 การเปรียบเทียบกราฟความเค้น-ความเครียดจริงจากผลการทดลองและการทำนาย ด้วยสมการซิงกาล่าและสมการอาลามี่

เนื่องจากแบบจำลองของการประมาณก่าความเค้นใหลแบบการคืนตัวแบบพลศาสตร์และสมการ kinetic equation เป็นพื้นฐานสำหรับการเกิดผลึกใหม่แบบพลศาสตร์ จะเห็นได้ว่าผลการคำนวณเริ่ม จากจุดความเค้นสูงสุดที่เป็นจุดเริ่มต้นของการเกิดผลึกใหม่แบบพลศาสตร์ จนงถึงความเค้นคงที่ ทำให้มีขอบเขตของการกำนวณเฉพาะช่วงการเกิดผลึกใหม่แบบพลศาสตร์ การที่ใช้ก่าสูงสุดเป็น จุดเริ่มต้นของการเกิดผลึกใหม่แบบพลศาสตร์ เนื่องจากว่าการกำนวณหาอัตราความชันของเส้นโค้ง ใหล เมื่อเลือกก่าความเค้นวิกฤตเป็นจุดเริ่มต้นของการเกิดผลึกใหม่แบบพลศาสตร์ ทำให้ผลในการ ทำนายเส้นโค้งไหลไม่ตรงกับผลการทดสอบและมีความผิดพลาดเกิดขึ้นจากการใช้ก่าคงที่ของโลหะ ผสม MAB ทั้งหมดมาจากการเฉลี่ย เพื่อนำไปใช้เป็นก่าคงที่สำหรับใช้ในการทำนายความแม่นขำของ โลหะผสม MAB

การเริ่มต้นของการเกิดผลึกใหม่แบบพลศาสตร์เป็นการกำนวณที่จุดความเก้นสูงสุด จากการกำนวณ ข้างต้นทำให้สามารถเลือกใช้แบบจำลองที่เหมาะสมกับพฤติกรรมของเส้นโก้งไหลคือทำนายโดยใช้ สมการซิงกาล่ากำนวณในช่วงแรกที่เกิดพฤติกรรมกวามเครียดแข็งจนถึงกวามเก้นสูงสุดร่วมกับ สมการอาลามี่ในช่วงหลังจากกวามเก้นสูงสุดคังสมการที่ 5.3 ซึ่งมีกวามเหมาะสมกับการทำนาย พฤติกรรมการเกิดผลึกใหม่แบบพลศาสตร์คังแสดงในรูปที่ 5.10 และสมมติฐานนี้จะช่วยลดกวาม ยุ่งยากของสมการอาลามี่ที่สามารถยอมรับได้และมีกวามแม่นยำอีกด้วย

$$\sigma = \sigma_p - (\sigma_p - \sigma_{ss}) X_{DRX}$$
(5.3)

รูปที่ 5.10 การเปรียบเทียบกราฟความเค้น-ความเครียดจากผลการทดลองและการทำนายด้วยสมการ ซิงกาล่าและสมการอาลามี่ ของชิ้นงานทดสอบ MAB ที่กดขึ้นรูปที่อุณหภูมิ 700, 750, 800 และ 850 องศาเซลเซียส และอัตรากวามเครียด 0.01, 0.1, 1 และ 10 ต่อวินาที

จากการเปรียบเทียบระหว่างผลการทำนายและผลการทคลองของสมการซิงกาล่าและสมการอาลามี่ ในรูปที่ 5.11 ค่าที่ทำนายเปรียบเทียบกับผลการทคลอง สำหรับทุกอุณหภูมิและอัตราความเครียดของ การเสียรูปที่มีความสัมพันธ์ระหว่างการทำนายและผลการทคลองที่ได้จากการหาค่า R และ AARE มี ค่าเท่ากับ 0.8636 และ13.04% ตามลำคับ ซึ่งจะแสดงให้เห็นถึงความสามารถให้การทำนายที่ดีของขีด ความสามารถของ (ก) สมการซีเนอร์โฮโลมอนด์ในรูปที่ 4.8 (ข) สมการซิงกาล่าและสมการอาลามี่ใน รูปที่ 5.11 ผลของการทำนายจะแสดงให้เห็นว่าสมการซิงกาล่าและสมการอาลามี่ของผลที่ได้จะเป็นที่ ยอมรับในการพิจารณาโลหะผสม MAB

รูปที่ 5.11 ความสัมพันธ์ระหว่างผลการทคลองและการทำนายโดยสมการซิงกาล่ากับสมการอาลามี่

ตารางที่ 5.6 ค่าสัมประสิทธิ์สหสัมพันธ์ทางสถิติ (R) เปรียบเทียบกับแบบจำลองทางคณิ	ตศาสตร์

Titles	Authors	Materials	Model	Accuracy
				(%)
Modeling high-temperature tensile deformation behavior of	De-Hua Yu et	AZ31B magnesium	Zener-Hollomon equation	0.9963
AZ31B magnesium alloy considering strain effects	al.	alloy		
Flow behavior of Nickel Aluminium Bronze under hot	Thossatheppita	Nickel Aluminum	Zener-Hollomon equation	0.98
deformation	k et al.	Bronze(NAB Alloy)		
Constitutive equations for elevated temperature flow	Rezaei et al.	Commercially pure	Zener-Hollomon equation	0.992
behavior of commercial purity aluminum		aluminum		
		(AA1070)		
High temperature deformation behavior of Al-Cu-Mg alloys	Banerjee et al.	- Alloy-A(Al-6.2%	Zener-Hollomon equation	0.80
micro-alloyed with Sn		Cu-0.6% Mg alloy)		
		- Alloy-B(Al-		0.95
		6.2%Cu-0.6% Mg		
		alloy containing		
		0.06w% of Sn)		
High-temperature flow behavior modeling of 2099 alloy	Zhang et al.	2099 alloy	Zener-Hollomon equation	0.998
considering strain effects				
Hot compression deformation characteristics of Mg-Mn alloy	Fang et al.	Mg-Mn alloy	Zener-Hollomon equation	0.979
The flow behavior modeling of cast A356 aluminum alloy at	Haghdadi et al.	A356 Aluminum	Zener-Hollomon equation	0.991
elevated temperatures considering the effect of strain		alloy		
Prediction of flow stress for NO8028 alloy under hot	Wang et al.	NO8028 alloy	Avrami equation	0.998
working conditions				

ในกรณีของโลหะผสม MAB ที่มีส่วนผสมหลักคือ ทองแดง จากการศึกษางานวิจัยที่เกี่ยวข้องกับ โลหะที่มีส่วนผสมของทองแดงที่ได้นำผลของเส้นโด้งไหลที่อุณหภูมิสูงโดยใช้สมการของ แบบจำลองทางคณิตศาสตร์มาใช้ในการหาความเหมาะสมต่อวัสดุ สำหรับการศึกษาค้นคว้างานวิจัย ในตารางที่ 5.6 ผลการทดลองจากการทดสอบกดขึ้นรูปร้อนที่จะคำนวณจากสมการแบบจำลอง (Model equation) มี (ก) สมการซีเนอร์โฮโลมอนด์ (ข) สมการซิงกาล่าและสมการอาลามี่ ดังนั้น ผลกระทบที่มีต่อความแม่นยำของการทำนายเส้นโด้งไหล ควรจะนำมาพิจารณา เพื่อที่จะได้สมการที่ เหมาะสมต่อวัสดุ และจะเห็นได้ว่าการทำนายของความเด้นไหลจากแบบจำลองที่ได้จากงานวิจัยว่า แบบจำลองไหนเหมาะสมต่อวัสดุ

เพื่อเป็นที่ยืนยันและยอมรับสำหรับการทำนายของแบบจำลองทางคณิตศาสตร์ ในสมการซีเนอร์โฮ โลมอนด์ผลของการทำนายไม่เหมาะสมกับโลหะผสม MAB เมื่อเปรียบเทียบระหว่างเส้นโค้งไหล โดยเฉพาะอย่างยิ่งที่อุณหภูมิต่ำและอัตราความเครียดต่ำ พฤติกรรมนี้แสดงให้เห็นว่าเส้นกราฟที่ได้ จากการกำนวณของสมการซีเนอร์โฮโลมอนด์ไม่เหมาะสมกับโลหะผสม MAB และการทำนายของ เส้นโค้งไหลที่ใช้สมการซิงกาล่า (ถึงความเค้นสูงสุด) และสมการอาลามี่ (หลังความเค้นสูงสุด) สำหรับแบบจำลองนี้เป็นที่ยอมรับสำหรับผลการทดลองทุกๆบริเวณของการเสียรูป เพราะเมื่อ เปรียบเทียบผลระหว่างการทำนายกับผลการทดลองมีความใกล้เคียงกัน เนื่องมาจากมีความสัมพันธ์ ของการคืนตัวแบบพลสาสตร์และการเกิดผลึกใหม่แบบพลศาสตร์ระหว่างการกดขึ้นรูปร้อน ได้ใช้วิธี หาค่าสัมประสิทธิ์สหสัมพันธ์ (R) และ ก่าเฉลี่ยความผิดพลาดสัมพัทธ์ (AARE) การกำนวณ แบบจำลองทาคณิตศาสตร์ของสมการซิงกาล่าและสมการอาลามี่แสดงให้เห็นถึงผลการเปรียบเทียบ ระหว่างผลการทำนายกับผลการทดลองที่ดี ทำให้เพิ่มความเชื่อมั่นของก่าคงที่ของโลหะผสม MAB ที่ กำนวณได้

5.5 ผลการทำนายเสถียรภาพการขึ้นรูปของโลหะผสม MAB ในระหว่างการกด ขึ้นรูปร้อน [60-64]

แบบจำลอง DMM ได้ถูกนำมาประยุกต์ใช้ในการทำนายพฤติกรรมการเปลี่ยนรูปของวัสดุในระหว่าง การขึ้นรูปร้อน โดยอาศัยกราฟความสัมพันธ์ระหว่างความเก้น-กวามเครียดจริง ซึ่งเป็นฟังก์ชันของ อุณหภูมิ อัตรากวามเกรียดและกวามเกรียด สมบัติการขึ้นรูปของโลหะที่อุณหภูมิสูงจะเปลี่ขนแปลงไปเมื่อความสามารถในการตอบสนองต่อ อัตราความเครียด (Strain rate sensitivity, *m*) และอุณหภูมิเปลี่ยนแปลง งานที่ได้จากการขึ้นรูปแบบ ถาวรถูกเปลี่ยนเป็นความร้อนที่อัตราการขึ้นรูปสูง ส่งผลให้เกิดพฤติกรรมการอ่อนตัวของวัสดุขึ้น และทำให้เกิดข้อจำกัดในการขึ้นรูปวัสดุ แบบจำลอง DMM ได้ถูกนำมาใช้ในการทำนายพฤติกรรม การเปลี่ยนรูปของวัสดุในระหว่างการขึ้นรูปร้อน โดยอาศัยกราฟความสัมพันธ์ระหว่างความเค้น-ถวามเครียดจริง หลักการทั่วไปของแบบจำลอง DMM มีแนวกิดในเรื่องการทำนายความสามารถใน การขึ้นรูปของวัสดุ โดยอาศัยการรวมความสัมพันธ์ของสมการคอนสทิทิวทีพ ความสามารถใน การขึ้นรูปของวัสดุ โดยอาศัยการรวมความสัมพันธ์ของสมการคอนสทิทิวทีพ ความสามารถใน การ ขึ้นรูปร้อน และการเปลี่ยนแปลงโครงสร้างจุลภาค DMM ภายใต้อุณหภูมิและอัตราความเครียดที่ แตกต่างกัน โดยมีตัวแปรที่สำคัญกือ ความสามารถในการตอบสนองต่ออัตราความเครียด (Strain rate sensitivity, *m*) และความสามารถในการตอบสนองต่ออุณหภูมิ (Temperature sensitivity, *s*) ดังแสดง ในสมการที่ 5.4 ค่าความสามารถในการตอบสนองต่ออัตราความเครียดสามารถหาได้จากความชัน ของความเก้นเทียบกับอัตรากวามเกรียดที่อุณหภูมิกงที่ในกราฟ log *ap*-log *i* ที่แต่ละอุณหภูมิ ดัง แสดงในรูปที่ 5.12

รูปที่ 5.12 กราฟระหว่าง $\log \sigma_p$ เทียบกับ $\log \dot{\varepsilon}$ สำหรับคำนวณหาค่า m

ค่าความสามารถในการตอบสนองต่ออุณหภูมิสามารถหาได้จากสมการ 5.5 ซึ่งหาจากความชั่นของ กราฟระหว่าง ln σ_p เทียบกับ 1/T ในแต่ละอุณหภูมิ ดังแสดงในรูปที่ 5.13

 $S = \frac{1}{T} \left\{ \frac{\partial (\ln \sigma_p)}{\partial \left(\frac{1}{T}\right)} \right\}_{\dot{s}}$ (5.5)

รูปที่ 5.13 กราฟระหว่าง $\log\sigma$ เทียบกับ 1/T สำหรับคำนวณหาค่า s

การพิจารณาเสถียรภาพของการเปลี่ยนรูปแบบถาวรของวัสคุนั้น จะพิจารณาในส่วนของอุณหภูมิและ อัตราความเครียด เมื่อมีการปลคปล่อยพลังงานเข้าสู่ภาวะสมคุล โคยจะใช้เกณฑ์ในการพิจารณา ทั้งหมด 4 เกณฑ์ดังสมการ 2.26-2.29โดยถ้าผลการทดสอบอยู่ภายใต้เกณฑ์ที่กำหนดไว้ แสดงว่าการ เปลี่ยนรูปของวัสคุมีเสถียรภาพ

สมการที่ 2.26 เป็นเกณฑ์ที่แสดงถึงความสามารถในการตอบสนองต่ออัตราความเครียด โดยมีแนวคิด พื้นฐานที่ว่า วัสดุจะ ไม่ปลดปล่อยพลังงานเมื่อความสามารถในการตอบสนองต่ออัตราความเครียดมี ค่าเท่ากับศูนย์หรือติดลบ ที่สภาวะดังกล่าวจะทำให้วัสดุเกิดการแตกหักในระหว่างการขึ้นรูปร้อน ขณะที่ก่าความสามารถในการตอบสนองต่ออัตราความเครียดเพิ่มขึ้น มีแนวโน้มทำให้สภาวะการเสีย รูปเฉพาะจุด (Localised Deformation) ของวัสดุลดลง ส่งผลให้วัสดุสามารถยืดตัวได้มากขึ้นโดยไม่ เกิดการกอด (Necking) ก่าความสามารถในการตอบสนองต่ออัตราความเครียดของวัสดุ MAB ที่หาได้

อยู่ในช่วง 0.1- 0.45 ดังรูปที่ 5.14 ซึ่งอยู่ในขอบเขตของเกณฑ์ในสมการที่ 2.26 ทุกช่วงอุณหภูมิ สมการที่ 2.27 เป็นเกณฑ์ที่แสดงถึงสภาพความสม่ำเสมอของสนามความเค้นของชิ้นงานระหว่างการ เปลี่ยนรูป ตลอดจนแนวโน้มที่อาจทำให้เกิดสภาวะความเครียดเฉพาะจุด (Strain localization) โดย จากสมการ 2.27 นี้ จะสามารถหาค่าได้จากความชันของความสามารถในการตอบสนองต่ออัตรา ความเครียดกับ log & ในแต่ละอุณหภูมิที่ทดสอบ ดังตัวอย่างในรูปที่ 5.14 อัตราการเปลี่ยนแปลงค่า ความสามารถในการตอบสนองต่ออัตราความเครียด (m) กับอัตราความเครียด (log &) ของโลหะผสม MAB ตามสมการที่ 2.27 มีค่าบวกที่อัตราความเครียดระหว่าง 0.01-0.1 s⁻¹ ที่อุณหภูมิ 850 องสา เซลเซียส และที่อัตราความเครียดระหว่าง 1.0 - 10 s⁻¹ ที่ทุกอุณหภูมิ การขึ้นรูปในช่วงดังกล่าว ไม่อยู่ ในขอบเขตของเกณฑ์เสถียรภาพ เพื่อพิจารณาในเงื่อนไขอื่น คือ ที่อัตราความเครียดระหว่าง 0.01-0.1 s⁻¹ ในอุณหภูมิ 700, 750 และ 800 องสาเซลเซียส รวมทั้งที่อัตราความเครียดระหว่าง 0.1-1.0 s⁻¹ ในทุก ช่วงอุณหภูมิ อัตราการเปลี่ยนแปลงค่าความสามารถในการตอบสนองต่ออัตราความเครียดกับอัตรา ความเครียดมีค่าเป็นลบ ดังนั้นจึงอยู่ในเกณฑ์เสถียรภาพ

ร**ูปที่ 5.14** กราฟระหว่าง *m* เทียบกับ log*i* ที่แต่ละอุณหภูมิ

สมการที่ 2.28 เป็นเกณฑ์ที่แสดงถึงเสถียรภาพของการขึ้นรูปโดยจัดเป็นกระบวนการที่ผันกลับไม่ได้ (Irreversible process) โดยเทียบเกณฑ์กวามสามารถในการตอบสนองต่ออุณหภูมิกับอัตราการเกิดเอน โทรปีสุทธิ (Net entropy production) ต้องมีก่าเป็นบวกเสมอ ซึ่งเป็นไปตามเงื่อนไขของกระบวนการ ที่ผันกลับไม่ได้ ก่ากวามสามารถในการตอบสนองต่ออุณหภูมิที่ต่ำ มีแนวโน้มเกิดพฤติกรรมการคืน ดัวแบบพลศาสตร์ ในขณะที่ก่ากวามสามารถในการตอบสนองต่ออุณหภูมิที่สู่ง จะแสดงพฤติกรรม การเกิดผลึกใหม่แบบพลศาสตร์ ดังแสดงในรูปที่ 5.15 เพื่อพิจารณาเกณฑ์เสถียรภาพที่จาก กวามสามารถในการตอบสนองต่ออุณหภูมิ พบว่ามีก่ากวามสามารถในการตอบสนองต่ออุณหภูมิอยู่ ในช่วง 4-7 ซึ่งอยู่ในขอบเขตของเกณฑ์เสถียรภาพตามสมการที่ 2.28 สำหรับทุกอุณหภูมิและอัตรา กวามเกรียดที่ทดสอบ

ร**ูปที่ 5.15** กราฟระหว่าง*ง* เทียบกับ log*่*ะ ในแต่ละอุณหภูมิ

ในสมการที่ 2.29 เป็นเกณฑ์ที่แสดงถึงเสถียรภาพของการขึ้นรูป โดยอาศัยกวามสัมพันธ์ของอัตรา เปลี่ยนแปลงของความสามารถในการตอบสนองต่ออุณหภูมิกับอัตราความเครียด โดยจะต้องมีค่าน้อย ้กว่าหรือเท่ากับ 0 จึงจะถือว่าการขึ้นรูปมีเสถียรภาพ ในทางกลับกันขณะที่อัตราความเครียคสูงขึ้นมีผล ทำให้ระดับความร้อนอะเดียแบติก (Adiabatic heating) เพิ่มขึ้น นั่นหมายถึงในขณะขึ้นรูปมีการคาย ้ความร้อนออกจากวัสดุทำให้ระบบการเปลี่ยนรูปแบบถาวรของวัสดุมีอุณหภูมิสูงขึ้น ความร้อนที่คาย ้ออกมามากหรือน้อยขึ้นอยู่กับอัตราความเครียด หากการเปลี่ยนรูปวัสดุกระทำด้วยอัตราความเครียดที่ ้สูง ส่งผลให้วัสดุคายความร้อนออกสู่ระบบไม่ทัน อุณหภูมิในระหว่างการเปลี่ยนรูปของวัสดุจึงสูง ทำ ให้อัตราเปลี่ยนแปลงของความสามารถในการตอบสนองต่ออณหภมิกับอัตราความเครียดมีค่าเป็น บวก เกิดสภาวะการเปลี่ยนรูปเฉพาะจุด (Flow localization) อันเนื่องมาจากความร้อนอะเดียแบติก ้สภาวการณ์นี้จะไม่เป็นไปตามเกณฑ์เสถียรภาพตามสมการที่ 2.29 แต่หากความสามารถในการ ์ตอบสนองต่ออุณหภูมิมีก่าน้อยกว่าอัตรากวามเกรียดที่สูงขึ้น มีแนวโน้มทำให้การเกิดกวามเกรียด เฉพาะงุค (Strain localization) และการเกิดแถบเฉือนจากอะเดียแบติก (Adiabatic shear band) ที่ถคลง หมายถึงการเปลี่ยนรูปแบบถาวรของวัสดุ MAB ยังคงมีเสถียรภาพ เมื่อพิจารณาอัตราการเปลี่ยนแปลง ้ของความสามารถในการตอบสนองต่ออุณหภูมิที่มีต่ออัตรากวามเกรียด จะพบว่าอัตราดังกล่าวมีค่า ้เป็นบวกที่อัตราความเครียคระหว่าง 0.01-0.1 s⁻¹ ในทุกช่วงอุณหภูมิ การขึ้นรูปในช่วงดังกล่าว ไม่อยู่ ในขอบเขตของเกณฑ์เสถียรภาพในสมการที่ 2.29 ถ้าพิจารณาที่เงื่อนไขอื่น คือ ที่อัตราความเครียค ระหว่าง 0.1-10 s⁻¹ ในทุกช่วงอุณหภูมิ อัตราการเปลี่ยนแปลงความสามารถในการตอบสนองต่อ อุณหภูมิต่ออัตราความเครียดมีค่าเป็นลบ คือ อยู่ในเกณฑ์เสถียรภาพสำหรับสมการที่ 2.29

ตารางที่ 5.7 สรุปขอบเขตของแต่ละเกณฑ์เสถียรภาพในทุกช่วงอุณหภูมิและอัตราความเครียดในการ วิเคราะห์เสถียรภาพการกดขึ้นรูปร้อนของโลหะผสม MAB

Criteria	Strain rate	700°C	750°C	800°C	850°C
0 < m < 1	A11	~	~	~	~
$\frac{\partial \mathbf{m}}{\partial (\log \dot{\varepsilon})} \leq 0$	0.01-0.1 s ⁻¹	~	×	~	~
	0.1-1 s ⁻¹	~	~	~	~
	1-10 s ⁻¹	×	×	×	×
s > 1	A11	~	~	~	~
$\frac{\partial s}{\partial (\log \dot{\varepsilon})} \leq 0$	0.01-0.1 s ⁻¹	×	×	×	×
	0.1-1 s ⁻¹	~	~	~	~
	1-10 s ⁻¹	~	~	~	~

✓ Satisfied × Unsatisfied

สรุปได้ว่า การเปลี่ยนรูปแบบถาวรของโลหะผสม MAB ที่มีความเสถียรภาพสำหรับเงื่อนไขของ กระบวนการในช่วงอัตราความเครียด 0.1-1 ต่อวินาที ที่อุณหภูมิ 700-850 องศาเซลเซียส สำหรับการ ดำเนินงานต่อไปจะอาศัยบทสรุปจากการศึกษาและข้อมูลที่เกี่ยวข้องในการทดสอบไปสู่การปรับปรุง และควบคุมกระบวนการขึ้นรูปของโลหะผสม MAB