สารบัญ

หน้า

บทคัดย่อภาษาไทย	ข
บทคัดย่อภาษาอังกฤษ	ঀ
กิตติกรรมประกาศ	ฉ
สารบัญ	¥
รายการตาราง	IJ
รายการรูปประกอบ	IJ
รายการสัญลักษณ์	ନ
ประมวลศัพท์และคำย่อ	ຄ

บทที่

1.	บทนํ	1	1
	1.1	ที่มาของงานวิจัยและปัญหาในการทำวิจัย	1
	1.1.1	ที่มาของงานวิจัย	1
	1.1.2	ปัญหาที่นำไปสู่งานวิจัย	4
	1.2	งานวิจัยที่เกี่ยวข้อง	4
	1.3	แนวกิดใหม่ในการทำวิจัย	9
	1.4	วัตถุประสงค์ของงานวิจัย	9
	1.5	ขอบเขตของงานวิจัย	10
	1.6	ประ โยชน์ที่คาดว่าจะ ได้รับจากงานวิจัย	11
2.	ทฤษส์		12
	2.1	เซลล์แสงอาทิตย์	12
	2.1.1	ประเภทของเซลล์แสงอาทิตย์	12
	2.2	เซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	15
	2.2.1	องก์ประกอบของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	16
	2.2.2	หลักการทำงานของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	18

หน้า

պ

2.2.3	การวัดประสิทธิภาพของเซลล์แสงอาทิตย์	19
2.3	เทคนิคอิมพีแดนซ์สเปกโทรสโกปีเชิงเคมีไฟฟ้า	21
2.3.1	หลักการทำงานของเทคนิคอิมพีแคนซ์สเปกโทรสโกปีเชิงเคมีไฟฟ้า	21
2.3.2	ส่วนย่อยของอิมพีแคนซ์และแบบจำลองของวงจรสมมูล	25
2.3.3	แบบจำลองอิมพีแคนซ์พื้นฐาน	29
2.4	ระบบอิเล็กโตรไลต์ในเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	36
2.4.1	ระบบอิเล็กโตรไลต์แบบของเหลว	37
2.4.2	ระบบอิเล็กโตรไลต์แบบของแข็ง	38
2.4.3	ระบบอิเล็กโตรไลต์แบบคล้ายของแข็ง	42
2.5	พอลิไวนิลลิคีนฟลูออไรค์-เฮกซะฟลูออโรโพรพิลีน	45
2.6	สารตัวเติมสำหรับพอลิเมอร์อิเล็กโตรไลต์	46
2.7	การปั่นเส้นใยด้วยไฟฟ้าสถิต	46
2.7.1	หลักการพื้นฐานของเทคนิคการปั่นเส้นใยด้วยไฟฟ้าสถิต	47
2.7.2	ตัวแปรสำคัญที่ส่งผลต่อลักษณะสัณฐานวิทยาของเส้นใย	48
3. ก ⁻	ารดำเนินงานวิจัย	53
3.1	สารเคมีและอุปกรณ์ที่ใช้ในงานวิจัย	53
3.1.1	สารเกมีที่ใช้ในงานวิจัย	53
3.1.2	อุปกรณ์ที่ใช้ในงานวิจัย	54
3.2	ขั้นตอนการคำเนินงานวิจัย	55
3.2.1	การศึกษาผลของสภาวะการเตรียมต่อโครงสร้างและสมบัติของแผ่นเส้นใย	
	พอลิไวนิลลิดีนฟลูออไรด์-เฮกซะฟลูออโรโพรพิลีน	55
3.2.2	การศึกษาผลของปริมาณอนุภาคนาโนแลนทานัมออกไซด์ที่มีต่อโครงสร้างและ	
	สมบัติของแผ่นเส้นใยวัสดุเชิงประกอบ	56
3.2.3	การขึ้นรูปและทคสอบประสิทธิภาพเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงที่ใช้แผ่นเส้นใย	
	วัสคุเชิงประกอบนาโนเป็นสารอิเล็กโตรไลต์	57
3.3	การเตรียมวัสคุและกระบวนการขึ้นรูปชิ้นงาน	58
3.3.1	การเตรียมสารละลายพอลิไวนิลลิคีนฟลูออไรด์-เฮกซะฟลูออโรโพรพิลีน	58
3.3.2	การเตรียมสารละลายวัสคุเชิงประกอบนาโนของพอลิไวนิลลิดีนฟลูออไรด์-	
	เฮกซะฟลูออโรโพรพิลีน	59

	3.3.3	การขึ้นรูปแผ่นเส้นใยโดยการปั่นด้วยไฟฟ้าสถิต	59
	3.3.4	การขึ้นรูปแผ่นฟิล์มด้วยวิธีการหล่อ	61
	3.3.5	การเตรียมพอลิเมอร์อิเล็ก โตร ไลต์	61
	3.3.6	การประกอบเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	62
	3.4	การวิเคราะห์ โครงสร้างและทคสอบสมบัติของชิ้นงาน	65
	3.4.1	โครงสร้างสัณฐานวิทยา	65
	3.4.2	โครงสร้างผลึก	66
	3.4.3	สมบัติทางความร้อน	67
	3.4.4	การทดสอบความเป็นรูพรุน	67
	3.5	การทคสอบสมบัติทางเคมีไฟฟ้าของพอลิเมอร์อิเล็กโตรไลต์	68
	3.5.1	การทคสอบอัตราส่วนการดูคซับสารอิเล็กโตรไลต์	68
	3.5.2	การทดสอบการรั้วซึมออกของสารอิเล็กโตรไลต์	68
	3.5.3	การวัดค่าการนำไอออน	69
	3.6	การวัคประสิทธิภาพเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	70
4.	ผลกา	รทดลอง	71
	4.1	การศึกษาผลของสภาวะการเตรียมต่อ โครงสร้างและสมบัติของแผ่นเส้นใย	
		พอลิไวนิลลิคืนฟลูออไรด์-เฮกซะฟลูออโรโพรพิลีน	71
	4.1.1	โครงสร้างสัณฐานวิทยา	71
	4.1.2	โครงสร้างผลึกและสมบัติทางความร้อน	75
	4.1.3	ความเป็นรูพรุน	77
	4.1.4	การดูดซับสารอิเล็กโตร ไลต์และการรั่วซึมออกของสารอิเล็กโตร ไลต์	78
	4.1.5	การนำไอออน	79
	4.2	การศึกษาผลของปริมาณของอนุภาคนาโนแลนทานัมออกไซด์ที่มีต่อโครงสร้าง	
		และสมบัติทางใฟฟ้าเคมีของแผ่นเส้นใยวัสดุเชิงประกอบนาโน	82
	4.2.1	โครงสร้างสัณฐานวิทยา	82
	4.2.2	โครงสร้างผลึกและสมบัติทางความร้อน	86
	4.2.3	ความเป็นรูพรุน	89
	4.2.4	การดูคซับสารอิเล็กโตร ไลต์และการรั่วซึมออกของสารอิเล็กโตร ไลต์	89
	4.2.5	การนำไอออน	90

หน้า

4.3	การขึ้นรูปและทคสอบประสิทธิภาพเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงที่ใช้	
	วัสดุเชิงประกอบนาโนเป็นสารอิเล็กโตรไลต์	91
4.3.	1 ประสิทธิภาพเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง	91
4.3.	2 ความคงทนของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	92
4.4	การเปรียบเทียบผลการทคลองที่ได้กับงานวิจัยที่เกี่ยวข้อง	94
5. สรุ ร	ปผลการทดลองและข้อเสนอแนะ	97
5.1	สรุปผลการทคลอง	97
5.1.	1 การศึกษาผลของสภาวะการเตรียมต่อโครงสร้างและสมบัติของแผ่นเส้นใย	
	พอลิไวนิลลิดีนฟลูออไรด์-เฮกซะฟลูออโรโพรพิลีน	97
5.1.	2 การศึกษาผลของปริมาณของอนุภาคนาโนแลนทานัมออกไซค์ที่มีต่อโครงสร้าง	
	และสมบัติของแผ่นเส้นใยวัสคุเชิงประกอบนาโนของพอลิเมอร์ดังกล่าว	98
5.1.	3 การขึ้นรูปและทคสอบประสิทธิภาพเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงที่ใช้	
	วัสดุเชิงประกอบนาโนเป็นสารอิเล็กโตรไลต์	98
5.2	ข้อเสนอแนะ	99
เอกสา	รอ้างอิง	101
ภาคผา	นวก	114
<u> </u>	าาพถ่ายจุลทรรศน์แบบใช้แสงของแผ่นแส้นใยพอลิไวนิลลิดีนฟลูออไรด์-เฮกซะฟลูออ	
Ĵ	ัรโพรพิลีน	114
ป. ศ	าวามหนาของแผ่นเส้นใยและแผ่นฟิล์ม PVdF-HFP	117
ค. 1	าราฟ Nyquist ที่ได้จากการทดสอบความต้านทานเชิงซ้อนของแผ่นเส้นใยวัสดุเชิง	
	ประกอบนาโน	119
ง. 1	lระสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง	121
ประวัด	້າผູ້ວີຈັຍ	124

รายการตาราง

ตารา	19	หน้า
2.1	ประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงระบบของแข้งที่ใช้ HTMs	
	ที่แตกต่างกัน	41
3.1	รายละเอียดสารเคมีที่ใช้ในงานวิจัย	53
4.1	ค่าความเป็นรูพรุนของแผ่นฟิล์มและแผ่นเส้นใย PVdF-HFP ประเภทต่างๆ (ใช้ความ	
	เข้มข้นของสารละลายพอลิเมอร์ร้อยละ 12 โคยน้ำหนัก)	77
4.2	ค่าการดูดซับสารอิเล็กโตรไลต์ ความเป็นผลึก และค่าการนำไอออนของชิ้นงาน	
	PVdF-HFP ที่ผ่านกระบวนการขึ้นรูปโดยวิธีการปั่นด้วยไฟฟ้าสถิตและการหล่อขึ้นรูป	81
4.3	อุณหภูมิในการหลอมตัว (T_m) เอนทาลปีของการหลอมเหลว (ΔH_m) และความเป็น	
	ผลึก (X_c) ของแผ่นเส้นใยวัสคุเชิงประกอบนาโนของ PVdF-HFP ที่เติมอนุภาค La $_2\mathrm{O}_3$	
	ในปริมาณต่างๆ	88
4.4	ค่าการดูคซับสารอิเล็กโตร ไลต์ ค่าการรั่วซึมออกของสารอิเล็กโตร ไลต์ ความเป็นผลึก	
	และค่าการนำไอออนของแผ่นเส้นใยวัสคุเชิงประกอบนาโนของ PVdF-HFP ที่เติม	
	อนุภาค La ₂ O ₃ ในปริมาณต่างกัน	90
4.5	ค่าพารามิเตอร์ที่ได้จากการทดสอบประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไว	
	แสงที่ใช้สารอิเล็กโตรไลต์ชนิดต่างๆ	92
4.6	การเปรียบเทียบค่าการดูดซับสารอิเล็กโตรไลต์ ค่าการนำไอออน และประสิทธิภาพ	
	เซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงของสารอิเล็กโตรไลต์แบบเจลจากแผ่นเส้นใย	
	PVdF-HFP	94
4.7	การเปรียบเทียบค่าการดูคซับสารอิเล็กโตรไลต์ ค่าการนำไอออน และประสิทธิภาพ	
	เซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงของแผ่นเส้นใยวัสคุเชิงประกอบนาโนของ	
	PVdF-HFP ที่เติมสารตัวเติมชนิดต่างๆ	95

รายการรูปประกอบ

รูป		หน้า
1.1	ตัวอย่างของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงและองค์ประกอบของเซลล์	
	แสงอาทิตย์ชนิคสีย้อมไวแสง	1
1.2	ตัวอย่างของแบตเตอรี่ลิเธียมและองค์ประกอบของแบตเตอรี่ลิเธียม	2
1.3	องค์ประกอบและลักษณะการประกอบเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงในกรณีที่	
	ใช้พอลิเมอร์เป็นสารอิเล็กโตรไลต์	2
1.4	ค่าร้อยละของการดูคซับสารอิเล็กโตรไลต์และกราฟอาร์เรเนียสของค่าการนำ	
	ใอออนของ PVdF-HFP/TiO ₂ ที่เตรียมด้วยวิธีการหล่อขึ้นรูปและวิธีการเปลี่ยนเฟส	6
1.5	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราคของ PVdF-HFP ที่ขึ้นรูป	
	ด้วยวิธีการเปลี่ยนเฟสและวิธีการปั่นด้วยไฟฟ้าสถิต	7
1.6	กราฟอาร์เรเนียสของค่าการนำไอออนของ PVdF-HFP ที่ขึ้นรูปด้วยวิธีการเปลี่ยน	
	เฟสและวิธีการปั่นด้วยไฟฟ้าสถิต	7
2.1	ชนิดของเซลล์แสงอาทิตย์แบ่งตามประเภทของสารกึ่งตัวนำและยุคการพัฒนา	12
2.2	เซลล์แสงอาทิตย์ที่ทำจากซิลิคอนชนิดผลึกเดี่ยว	13
2.3	เซลล์แสงอาทิตย์ที่ทำจากซิลิคอนชนิดหลายผลึก	13
2.4	เซลล์แสงอาทิตย์จากสารกึ่งตัวนำซิลิคอนที่ไม่เป็นผลึก	14
2.5	เซลล์แสงอาทิตย์แบบฟิล์มบาง	14
2.6	เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง	15
2.7	ส่วนประกอบของเซลล์แสงอาทิตย์ชนิคสารอินทรีย์	15
2.8	เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง	16
2.9	ส่วนประกอบและกลไกการทำงานของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	16
2.10	ความสัมพันธ์ระหว่างมุมที่แสงอาทิตย์กระทำกับเส้นตั้งฉากที่ผิวโลกกับค่ามวล	
	อากาศ	19
2.11	กราฟลักษณะเฉพาะของกระแสไฟฟ้าและความต่างศักย์ (I-V curve) ของเซลล์	
	แสงอาทิตย์	20
2.12	ความสัมพันธ์ระหว่างศักย์ไฟฟ้าที่ป้อนเข้าสู่ระบบและสัญญาณกระแสไฟฟ้า	
	ตอบสนอง	22
2.13	อิมพีแดนซ์ในระบบพิกัดฉากและระบบพิกัดเชิงขั้ว	24
2.14	กราฟ Nyquist และกราฟ Bode ที่ความถี่ต่างๆ	24
2.15	กราฟ Nyquist และกราฟ Bode ของวงจรสมมูลของขั้วไฟฟ้าโพลาไรส์อุคมคติ	30

ข้		
2.16	กราฟ Nyquist ของวงจรสมมูลของขั้วไฟฟ้าโพลาไรส์อุคมคติที่มีพื้นผิวไม่เรียบ	31
2.17	กราฟ Nyquist ของวงจรสมมูลของตัวเก็บประจุยิ่งยวค	32
2.18	กราฟ Nyquist ของแบบจำลองสำหรับวงจรสมมูลแรนเคิลที่ไม่มีการสูญเสีย	
	เนื่องจากการแพร่ของสาร	33
2.19	กราฟ Nyquist ของแบบจำลองระบบที่มีขั้วไฟฟ้าโพลาไรส์สำหรับปฏิกิริยาวิวิธพันธุ์	34
2.20	วงจรสมมูลสำหรับระบบที่มีขั้วไฟฟ้าโพลาไรส์สำหรับปฏิกิริยาวิวิธพันธุ์	35
2.21	กราฟ Nyquist และวงจรสมมูลของเซรามิกออกไซค์ของแข็ง	36
2.22	โครงสร้างและส่วนประกอบของระบบอิเล็กโตรไลต์แบบของแข็งที่ใช้วัสคุส่งผ่าน	
	โฮลเป็นตัวกลาง	39
2.23	โครงสร้างทางเคมีของ OMeTAD	40
2.24	โครงสร้างทางเคมีของเจลที่ทำจากอนุพันธ์ของกรคอะมิโนที่มีน้ำหนักโมเลกุลต่ำ	43
2.25	ประสิทธิภาพของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงเมื่อเวลาผ่านไป	44
2.26	ประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงที่เตรียมจากระบบอิเล็กโตรไลต์	
	แบบคล้ายของแข็งและระบบอิเล็ก โตร ไลต์แบบของเหลวเมื่อเวลาผ่านไป	45
2.27	โครงสร้างทางเคมีของ PVdF-HFP	45
2.28	แผนภาพชุดอุปกรณ์การผลิตเส้นใยโดยเทคนิคปั่นด้วยไฟฟ้าสถิต	47
2.29	ลักษณะการเกลื่อนที่แบบไม่เสถียรของลำสารละลายพอลิเมอร์	48
2.30	ผลของความเข้มข้นของพอลิเมอร์ที่มีต่อลักษณะสัณฐานวิทยาของเส้นใย	49
2.31	ภาพถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของเส้นใยพอลิสไตรีนที่	
	เตรียมจากสารละลายความเข้มข้นร้อยละ 20 โดยใช้ตัวทำละลายต่างกัน THF และ	
	DMF	50
2.32	ลักษณะการเกิดกรวยเทเลอร์เมื่อเพิ่มความต่างศักย์ไฟฟ้า	51
2.33	ภายถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของเส้นใยไคโตซานที่	
	ระยะห่างระหว่างปลายเข็มกับวัสคุรองรับ 14, 15 และ 16 เซนติเมตร	51
3.1	แผนผังการดำเนินงานวิจัยเพื่อศึกษาผลของสภาวะการเตรียมต่อโครงสร้างและ	
	สมบัติของแผ่นเส้นใยพอถิไวนิถถิดีนฟลูออไรค์-เฮกซะฟลูออโรโพรพิลีน	56
3.2	แผนผังการดำเนินงานวิจัยเพื่อศึกษาผลของปริมาณของอนุภาคนาโน La ₂ O ₃ ที่มีต่อ	
	โครงสร้างและสมบัติของแผ่นเส้นใยวัสดุเชิงประกอบนาโนของ PVdF-HFP	57

ງິ

U		
3.3	แผนผังการคำเนินงานวิจัยเพื่อศึกษาผลของการใช้เส้นใยวัสดุเชิงประกอบนาโน	
	เป็นสารอิเล็กโตรไลต์ที่มีต่อประสิทธิภาพเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	58
3.4	การปั่นเส้นใยด้วยไฟฟ้าสถิตโดยใช้แผ่นอะลูมิเนียมฟอล์ยเป็นอุปกรณ์รองรับเส้นใย	60
3.5	การปั่นเส้นใยด้วยไฟฟ้าสถิตโดยใช้วัสดุรองรับแบบโรเตอร์	60
3.6	แผ่นเส้นใยที่ได้จากการปั่นเส้นใยด้วยไฟฟ้าสถิต	61
3.7	การสกรีนไทเทเนียมไคออกไซค์ลงบนกระจก FTO โคยใช้บล็อกสกรีน	62
3.8	การถ้างกระจกด้วยเอทานอลหลังจากแช่สีย้อมไวแสง	63
3.9	การสกรีนแพตตินัมลงบนกระจก FTO โดยใช้บล็อกสกรีน	63
3.10	ส่วนประกอบของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	64
3.11	การผนึกเซลล์โดยใช้เครื่องเป่าลมร้อน	64
3.12	เซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงก่อนและหลังหยอคสารอิเล็กโตรไลต์	65
3.13	กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	66
3.14	เครื่องวิเคราะห์การเลี้ยวเบนของรังสีเอ็กซ์	66
3.15	แผ่นชิ้นงานหลังจากแช่ในสารละลายอิเล็กโตรไลต์	69
3.16	การวางแผ่นชิ้นงานลงบนแผ่นสแตนเลส	69
3.17	การเตรียมชิ้นงานเพื่อวัดก่ากวามต้านทานรวมของระบบ	70
3.18	การวัดประสิทธิภาพเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงด้วยเครื่องจำลองแสงเทียม	70
4.1	ภาพถ่ายจุลทรรศน์อิเล็กตรอนแบบส่องกราดของเส้นใย PVdF-HFP ที่ความเข้มข้น	
	ต่างๆ ร้อยละ 12, ร้อยละ 14, ร้อยละ 16 และ ร้อยละ 18 โดยน้ำหนัก (ใช้ความต่าง	
	ศักย์ไฟฟ้า 10 กิโลโวลต์)	72
4.2	ผลของความเข้มข้นของสารละลายพอลิเมอร์ต่อขนาดเส้นผ่านศูนย์กลางเฉลี่ยของ	
	เส้นใย PVdF-HFP (ใช้ความต่างศักย์ไฟฟ้า 10 กิโลโวลต์)	73
4.3	ภาพถ่ายจุลทรรศน์อิเล็กตรอนแบบส่องกราดของเส้นใย PVdF-HFP ที่ความต่าง	
	ศักย์ไฟฟ้าต่างๆ 10, 12, 14, และ 16 กิโลโวลต์ (ใช้ความเข้มข้นของสารละลายพอลิ	
	เมอร์ร้อยละ12 โดยน้ำหนัก)	74
4.4	ผลของความต่างศักย์ไฟฟ้าต่อขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใย PVdF-HFP	
	(ใช้ความเข้มข้นของสารละลายพอลิเมอร์ร้อยละ12 โคยน้ำหนัก)	74

รูป

หน้า

รูป		หน้า
4.5	รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของชิ้นงาน PVdF-HFP ประเภทต่างๆ (ใช้ความ	
	เข้มข้นของสารละลายพอลิเมอร์ร้อยละ 12 โคยน้ำหนัก)	75
4.6	DSC เทอร์โมแกรมของชิ้นงาน PVdF-HFP ประเภทต่างๆ (ใช้ความเข้มข้นของ	
	สารละลายพอลิเมอร์ร้อยละ 12 โคยน้ำหนัก)	76
4.7	ภาพถ่ายจุลทรรศน์อิเล็กตรอนแบบส่องกราดของ PVdF-HFP ที่ขึ้นรูปโดยการปั้น	
	ด้วยไฟฟ้าสถิตและการหล่อ	77
4.8	ความสัมพันธ์ระหว่างค่าการดูคซับสารอิเล็กโตรไลต์กับระยะเวลาของชิ้นงาน	
	PVdF-HFP ประเภทต่างๆ (โดยใช้ความเข้มข้นของสารละลายพอลิเมอร์ร้อยละ 12	
	โดยน้ำหนัก)	78
4.9	ความสัมพันธ์ระหว่างอัตราส่วนการดูคซึมสัมพัทธ์กับระยะเวลาของชิ้นงาน PVdF-HFP	
	ประเภทต่างๆ (ใช้ความเข้มข้นของสารละลายพอลิเมอร์ร้อยละ12 โดยน้ำหนัก)	79
4.10	กราฟ Nyquist และวงจรสมมูลของชิ้นงาน PVdF-HFP ประเภทต่างๆ (ใช้ความ	
	เข้มข้นของสารละลายพอลิเมอร์ร้อยละ12 โดยน้ำหนัก)	80
4.11	ภาพถ่ายจุลทรรศน์อิเล็กตรอนแบบส่องกราดของแผ่นเส้นใยวัสคุเชิงประกอบนา	
	โนของ PVdF-HFP ที่เติมอนุภาค La $_2O_3$ ร้อยละ 0, 2, 4, 6, 8 และ 10 โดยน้ำหนัก	
	ของพอลิเมอร์ (ใช้ความเข้มข้นของสารละลายพอลิเมอร์ร้อยละ 12 โดยน้ำหนัก	
	และใช้ความต่างศักย์ไฟฟ้า 14 กิโลโวลต์) บันทึกโดยใช้อุปกรณ์ตรวจวัดสัญญาณ	
	แบบ secondary electron	83
4.12	ภาพถ่ายจุลทรรศน์อิเล็กตรอนแบบส่องกราดของแผ่นเส้นใยวัสดุเชิงประกอบนา	
	โนของ PVdF-HFP ที่เติมอนุภาค La $_2O_3$ ร้อยละ 0, 2, 4, 6, 8 และ 10 โดยน้ำหนัก	
	ของพอลิเมอร์ (ใช้ความเข้มข้นของสารละลายพอลิเมอร์ร้อยละ 12 โดยน้ำหนัก	
	และใช้ความต่างศักย์ไฟฟ้า 14 กิโลโวลต์) บันทึกโดยใช้อุปกรณ์ตรวจวัดสัญญาณ	
	แบบ back scattering	84

4.13	ภาพถ่ายจุลทรรศน์อิเล็กตรอนแบบส่องกราคของแผ่นเส้นใยวัสคุเชิงประกอบนา	
	โนของ PVdF-HFP ที่เติมอนุภาค La ₂ O ₃ ร้อยละ 2, 4, 6, 8 และ 10 โดยน้ำหนักของ	
	พอลิเมอร์ (ใช้ความเข้มข้นของสารละลายพอลิเมอร์ร้อยละ 12 โคยน้ำหนัก และใช้	
	ความต่างศักย์ไฟฟ้า 14 กิโลโวลต์) ภาพซ้ายบันทึกโดยใช้อุปกรณ์ตรวจวัคสัญญาณ	
	แบบ backscattered electron และภาพขวาเป็นสัญญาณ X-ray (L $_{lpha}$) ของธาตุ La $_2{ m O}_3$	
	ที่วิเคราะห์แบบ dot mapping)	85
4.14	ขนาดเส้นผ่านศูนย์กลางเฉลี่ยของแผ่นเส้นใยวัสดุเชิงประกอบนาโนของ PVdF-HFP	
	ที่เติมอนุภาค La2O3 ปริมาณต่างกัน	86
4.15	รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของแผ่นเส้นใยวัสคุเชิงประกอบนาโนของ	
	PVdF-HFP ที่เติมอนุภาค La ₂ O ₃ ในปริมาณต่างๆ	87
4.16	DSC เทอร์โมแกรมของแผ่นเส้นใยวัสคุเชิงประกอบนาโนของ PVdF-HFP ที่เติม	
	อนุภาค La ₂ O ₃ ในปริมาณต่างๆ	88
4.17	ความเป็นรูพรุนของแผ่นเส้นใยวัสคุเชิงประกอบนาโนของ PVdF-HFP ที่เติม	
	อนุภาค La ₂ O ₃ ในปริมาณต่างๆ	89
4.18	กราฟความสัมพันธ์ระหว่างความหนาแน่นของกระแสไฟฟ้าและความต่าง	
	ศักย์ไฟฟ้าของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงที่ใช้สารอิเล็กโตรไลต์แบบต่างๆ	91
4.19	การเปลี่ยนแปลงค่าประสิทธิภาพเซลล์ของแสงอาทิตย์ชนิคสีย้อมไวแสงที่ใช้สาร	
	อิเล็กโตรไลต์ชนิดต่างๆ ตามเวลา	93
4.20	ภาพถ่ายเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงที่ใช้สารอิเล็กโตรไลต์แบบของเหลว,	
	แผ่นฟิล์ม PVdF-HFP, แผ่นเส้นใย PVdF-HFP และแผ่นเส้นใย PVdF-HFP +	
	10%La ₂ O ₃ เมื่อเวลา 0 ชั่วโมง และ 192 ชั่วโมง	93

รูป

หน้า