บทที่ 5 ผลการวิเคราะห์ด้วยวิธีไฟในต์เอลิเมนต์

ในบทนี้จะกล่าวถึงแบบจำลองไฟในต์เอลิเมนต์ของกระบวนการขึ้นรูปร้อน รวมทั้งการวิเคราะห์ผลที่ ได้จากการคำเนินงานวิจัยที่กล่าวไว้ในบทที่ 3 และทำการเปรียบเทียบกับผลการทดลองที่ได้จากการ ทดสอบกับผลการทำนายที่ได้จากการวิเคราะห์ด้วยไฟในต์เอลิเมนต์ตามเงื่อนไขต่างๆ

5.1 แบบจำลองการขึ้นรูปร้อน

ในการทำแบบจำลองไฟไนต์เอลิเมนต์สำหรับการขึ้นรูปร้อนเหล็กแผ่น จะต้องพิจารณถึงสมบัติทาง กล (Mechanical field) และสมบัติทางความร้อน (Thermal field) ของวัสคุไปพร้อมๆ กัน [8] ซึ่งจะ ส่งผลต่อการเปลี่ยนแปลงโครงสร้างจุลภาคของเหล็กกล้าที่ผ่านการขึ้นรูปร้อน ความสัมพันธ์ระหว่าง สมบัติทางกล สมบัติทางความร้อน และการเปลี่ยนแปลงโครงสร้างจุลภาคขณะทำการขึ้นรูปร้อน สามารถแสดงเป็นแผนภาพคังรูปที่ 5.1

ร**ูปที่ 5.1** ความสัมพันธ์ระหว่างสมบัติทางกล สมบัติทางความร้อน และการเปลี่ยนแปลงโครงสร้าง จุลภาคในการทำแบบจำลองการขึ้นรูปร้อน [65]

จากรรูปที่ 5.1 ความสัมพันธ์ระหว่างสมบัติทางกล สมบัติทางความร้อน และเปลี่ยนแปลง โครงสร้าง จุลภาคในการทำแบบจำลองการขึ้นรูปร้อน สามารถแสดงเงื่อนไขต่างๆ ดังนี้

- เงื่อนไขขอบเขตของความร้อนที่ขึ้นกับการเปลี่ยนแปลงรูปร่างของเหล็กกล้า (Thermal boundary conditions are deformation dependent) สามารถอธิบายได้ด้วยค่าสัมประสิทธิ์การ ถ่ายเทความร้อนระหว่างชิ้นงานกับแม่พิมพ์ที่เป็นฟังก์ชั่นของความดัน และค่าสัมประสิทธิ์ แรงเสียดทานที่เป็นฟังก์ชั่นของอุณหภูมิ
- การขยายตัวเนื่องจากความร้อน (Thermal expansion) คือค่าของความแตกต่างของความยาว หรือปริมาตรของชิ้นงานที่เปลี่ยนไปเมื่ออุณหภูมิเปลี่ยนแปลงไป 1 หน่วยองศา เมื่อเทียบกับ ความยาวหรือปริมาตรตั้งต้น การขยายตัวเนื่องจากความร้อนนั้นเป็นสมบัติเฉพาะของ

เหล็กกล้าแต่ละชนิด ซึ่งขึ้นอยู่กับองค์ประกอบทางเคมีของเหล็กกล้า โครงสร้างผลึก อุณหภูมิ ของจุดหลอมตัว (melting point) เป็นต้น

- ความร้อนแฝงเนื่องมาจากการเปลี่ยนแปลงโครงสร้างจุลภาค (Latent heat due to phase transformations) คือปริมาณความร้อนที่ใช้ในการเปลี่ยนแปลงเฟสของวัสดุ โดยอุณหภูมิใน ขณะที่โครงสร้างกำลังเปลี่ยนเฟสนั้นจะคงที่ไม่เปลี่ยนแปลง
- การเปลี่ยนแปลงโครงสร้างจุลภาคที่มีผลมาจากอุณหภูมิ อ้างอิงข้อมูลอัตราการเย็นตัวของ เหล็กกล้าโบรอนเกรค 22MnB5 ใน CCT diagram โดยที่อัตราการเย็นตัวของชิ้นงานน้อยกว่า 3°C /s โครงสร้างจุลภาคสุดท้ายจะเป็นเฟสเฟอร์ไรท์ และเพอร์ไลท์ ถ้าอัตราการเย็นตัวของ ชิ้นงานมากกว่า 30°C /s โครงสร้างจุลภาคสุดท้ายจะเป็นเฟสมาร์เทนไซต์ทั้งหมด (Full martensite)
- 5. สมบัติทางกลที่มีผลมาจากโครงสร้างจุลภาคของชิ้นงานการทำนายปริมาณโครงสร้างจุลภาค ที่เกิดขึ้นในชิ้นงานที่ผ่านการขึ้นรูปร้อนและผลที่มีต่อสมบัติทางกล ปริมาณโครงสร้าง จุลภาคที่เกิดขึ้นในชิ้นงานเช่น มาร์เทนไซต์เฟอร์ไรท์ เพิร์ลไลท์และออสเตนไนต์ที่แตกต่าง กัน ส่งผลให้ชิ้นงานมีสมบัติทางกลที่แตกต่างกัน
- การเปลี่ยนแปลงโครงสร้างจุลภาคที่ส่งผลจากความเค้นและความเครียด โดยความสัมพันธ์ ระหว่าง Stress กับ Strain ของเหล็กกล้าโบรอน เกรด 22MnB5 จะเป็นฟังก์ชันของอุณหภูมิ และ strain rate

5.1.1 สมบัติทางกลและสมบัติทางความร้อนของเหล็กกล้าโบรอน

ในการทำแบบจำลองไฟไนต์เอลิเมนต์สำหรับการขึ้นรูปร้อนเหล็กแผ่น ชิ้นงานที่ใช้เป็นเหล็กกล้า โบรอน เกรค 22MnB5 ขนาคเคียวกับการทคลองจริงคือ กว้าง 130 มิลลิเมตร ยาว 150 มิลลิเมตร และ หนา 1.4 มิลลิเมตร โคยในขั้นตอนแรกจะนำองค์ประกอบทางเคมีของเหล็กมาคำนวณหาแผนภาพ TTT คังแสคงในรูปที่ 5.2 ซึ่งในแผนภาพจะอธิบายถึงความสัมพันธ์ของอุณหภูมิกับเวลาในการเกิด และสิ้นสุคการเปลี่ยนเฟสของ เฟสเฟอร์ไรต์ เพิร์ลไลท์ เบนไนต์ และ มาร์เทนไซต์ จากนั้นจึงนำค่า ของกราฟในแผนภาพคังกล่าวมาใช้เป็นข้อมูลการเปลี่ยนเฟสของเหล็กโดยใช้แบบจำลองทางไฟไนต์ เอลิเมนต์

ร**ูปที่ 5.2** แผนภาพ TTT ของเหล็กกล้าโบรอน เกรด 22MnB5

นอกจากนี้ค่าสมบัติทางความร้อนและสมบัติทางกลของวัสคุที่ขึ้นอยู่กับอุณหภูมิของเหล็กกล้าโบรอน เกรด 22MnB5 ได้แก่ ค่า E คือ ค่าโมคูลัสของเหล็กกล้าโบรอน, ν คืออัตราส่วนปัวซอง, c และ p คือ สัมประสิทธิ์ Cowper-Symonds สำหรับการคำนวณ flow stress, k คือ ค่าการนำความร้อนของ เหล็กกล้าโบรอน และ C_p คือ ค่าความจุความร้อนของเหล็กกล้าโบรอน [66] แสดงดังตารางที่ 5.1 และ กราฟความสัมพันธ์ระหว่าง stress กับ strain ของเหล็กกล้าโบรอน เกรด 22MnB5 เป็นฟังก์ชันของ อุณหภูมิที่ strain rate 0.1 s⁻¹ ดังแสดงในรูปที่ 5.3 และกราฟความสัมพันธ์ระหว่าง stress กับ strain ของเหล็กกล้าโบรอน เกรด 22MnB5 เป็นฟังก์ชันของ strain rate ที่อุณหภูมิ 650°C แสดงในรูปที่ 5.4

รูปที่ 5.3 Flow Stress ของเหล็กกล้าโบรอน เกรด 22MnB5 ที่ strain rate 0.1 s⁻¹ [66]

รูปที่ 5.4 Flow Stress ของเหล็กกล้าโบรอน เกรด 22MnB5 เป็นฟังก์ชันของ strain rate ที่อุณหภูมิ 650°C [1]

ตารางที่ 5.1	สมบัติทางกลและสมบัติทางความร้อนของเหล็กกล้าโบรอน เกรด 22MnB5	ที่อุณหภู	ູ່ມີ
	ต่างๆ [66]		

Terrere errotoree	E, Young's	ν,			k, thermal	C_p , heat
(°C)	modulus	Poisson's	р	с	conductivity	capacity
	(GPa)	ratio			(W/m • K)	(J/kg·K)
20	212	0.284	4.28	6.20x10 ⁹	30.7	444
100	207	0.286	4.21	8.40×10^5	31.1	487
200	199	0.289	4.1	$1.50 \mathrm{x10}^{4}$	30	520
300	193	0.293	3.97	$1.40 \mathrm{x} 10^3$	27.5	544
400	166	0.298	3.83	25.8	21.7	561
500	158	0.303	3.69	78.4		573
600	150	0.31	3.53	35.4	23.6	581
700	142	0.317	3.37	23.3		586
800	134	0.325	3.21	22.2	25.6	590
900	126	0.334	3.04	30.3		596
1000	118	0.343	2.87	55.2	27.6	603

5.1.2 สมบัติทางกลและสมบัติทางความร้อนของแม่พิมพ์

สมบัติต่างๆของแม่พิมพ์ที่ใช้ในแบบจำลองเป็นค่าสมบัติเดียวกันกับแม่พิมพ์ที่ใช้ในการทคสอบจริง กือ AISI H13 โดยมีค่าสมบัติต่างๆ จากข้อมูลของโปรแกรม DEFORM 3D แสดงดังตารางที่ 5.2 และ Flow Stress ของ AISI D2 ดังตารางที่ 5.3

Temperature	Heat capacity	Thermal conductivity	
(°C)	$(J g^{-1}K^{-1})$	(W/m·K)	
20	0.46	25	
500	0.55	28.5	
600	0.59	29.3	

ตารางที่ 5.2 สมบัติทางความร้อนของแม่พิมพ์ AISI H13 [20]

a		,	d 9	a
ตารางท 5.3 Flow	Stress ของแม่พมพ	AISI H13	ท่อณหกม่	820 องศาเซลเซียส
		11011110	119 10 119	

Strain	Stress (MPa)			
(mm/mm)	Strain rate 290 s ⁻¹	Strain rate 906 s ⁻¹		
0	343.763	507.942		
0.1	396.519	561.25		
0.2	449.275	614.558		
0.3	467.891	632.773		
0.4	468	633		

5.1.3 กระบวนการขึ้นรูปร้อน (Hot stamping process)

ในการขึ้นรูปชิ้นงานจริงต้องมีการเก็บค่าอุณหภูมิของชิ้นงานในตำแหน่งที่กำหนดมาเพื่อนำค่าอัตรา การเย็นตัวของชิ้นงานจริงมาปรับค่าการถ่ายเทความร้อนระหว่างชิ้นงานกับแม่พิมพ์ในเบบจำลองไฟ ในต์เอลิเมนต์ให้อุณหภูมิที่ได้สอดคล้องกับการทดลองจริงหลังจากนั้นจึงนำค่า สมบัติของเหล็กที่จะ ทำการขึ้นรูป, สมบัติของแม่พิมพ์ที่ใช้และแผนภาพ TTT มาใส่แบบจำลองไฟในต์เอลิเมนต์ ซึ่ง แบบจำลองการขึ้นรูปชิ้นงานจะใช้เงื่อนไขต่างๆ ดังรูปที่ 5.5 โดยสามารถแบ่งการขึ้นรูปใน แบบจำลองออกได้เป็น 3 ขั้นตอนด้วยกันคือ ขั้นตอนที่ 1 เป็นช่วงที่ชิ้นงานถูกนำออกจากเตามี อุณหภูมิตั้งต้นเป็น 950 องศาเซลเซียส เกิดการถ่ายเทความร้อนกับอากาศ ซึ่งค่าการถ่ายเทความร้อน ระหว่างชิ้นงานกับอากาศ(Convection coefficients, *h*) แสดงดังรูปที่ 5.6 หลังจากนั้นจึงนำชิ้นงานไป วางบนแม่พิมพ์ตัวล่าง ใช้เวลา 6 วินาที ต่อมาในขั้นตอนที่ 2 เป็นช่วงที่แม่พิมพ์ตัวบนกดอัดแม่พิมพ์ ตัวถ่างเพื่อขึ้นรูปชิ้นงานใช้เวลาทั้งสิ้น 1 วินาที เนื่องจากขั้นตอนนี้ใช้เวลาน้อยในการขึ้นรูป ดังนั้นใน งานนี้ได้ใช้ก่าการถ่ายเทความร้อนระหว่างชิ้นงานกับแม่พิมพ์ (Heat transfer coefficient) เป็น 11,000 W/m²·°C ขณะทำการขึ้นรูปซึ่งเป็นข้อมูลของโปรแกรม DEFORM 3D เนื่องจากเป็นจังหวะการขึ้น รูปจึงมี Pressure ที่สูงทำให้ก่าการถ่ายเทความร้อนระหว่างชิ้นงานกับแม่พิมพ์สูงมาก และก่า สัมประสิทธิ์แรงเสียดทานระหว่างชิ้นงานกับแม่พิมพ์ (Coefficient of Friction เป็น 0.3) จากข้อมูล งานวิจัยของ [46] ก่าสัมประสิทธิ์แรงเสียดทานระหว่างชิ้นงานกับแม่พิมพ์อยู่ระหว่าง 0.3-0.6 ขึ้นอยู่ กับอุณหภูมิ ชั้นเกลือบผิว (Coating) และสารหล่อสื่น (lubricants) และสุดท้ายขั้นตอนที่ 3 เป็นช่วงที่ ความร้อนของชิ้นงานถูกถ่ายเทไปให้กับแม่พิมพ์ ก่าการถ่ายเทความร้อนระหว่างชิ้นงานกับแม่พิมพ์ แสดงดังรูปที่ 5.7 ใช้เวลาในขั้นตอนนี้ทั้งสิ้น 20 วินาที ซึ่งก่าการถ่ายเทความร้อนในรูปที่ 5.7 ได้มา จากการปรับก่าการถ่ายเทความร้อนเพื่อให้ได้อุณหภูมิที่ตรงกันระหว่างการทดลองจริงกับผล แบบจำลองทางไฟในต์เอลิเมนต์ ก่าสัมประสิทธิ์การถ่ายเทความร้อนที่เพิ่มสูงขึ้นจะแปรผันโดยตรง เมื่อความดันเพิ่มขึ้น ความดันจะสูงขึ้นเนื่องจากผิวสัมผัสระหว่างชิ้นงานและแม่พิมพ์สัมผัสการอย่าง สมบูรณ์ ดังนั้นการถ่ายเทความร้อนของชิ้นงานใปสู่แม่พิมพ์จะสูงมาก[67]

รูปที่ 5.5 กลไกการให้ความร้อนชิ้นงานในแบบจำลองการขึ้นรูปร้อน

รูปที่ 5.6 ค่าสัมประสิทธิ์การถ่ายเทความร้อนระหว่างชิ้นงานเหล็กกับอากาศ[66]

ร**ูปที่ 5.7** ค่าสัมประสิทธิ์การถ่ายเทความร้อนระหว่างชิ้นงานกับแม่พิมพ์ขณะปล่อยชิ้นงานเย็นตัวลง

โดยปกติแล้วในการขึ้นรูปแต่ละครั้งจะเกิดการสะสมของอุณหภูมิขึ้นที่แม่พิมพ์ ดังนั้นการใช้ท่อหล่อ เย็นในแม่พิมพ์จึงเป็นการช่วยถ่ายเทความร้อนออกจากแม่พิมพ์ ดังนั้นกระบวนการขึ้นรูปร้อนจึง จำเป็นต้องมีการวางหล่อเย็นชิ้นงานด้วยแม่พิมพ์ขณะขึ้นรูปเพื่อให้ได้ชิ้นงานเหล็กโบรอนที่มีความ แขึงแรงสูง ซึ่งในกระบวนการดังกล่าวจะมีการถ่ายเทความร้อนจากชิ้นงานมายังตัวแม่พิมพ์ (Heat transfer pressing – tool) ส่งผลให้แม่พิมพ์มีอุณหภูมิเพิ่มสูงขึ้น การที่แม่พิมพ์มีท่อหล่อเย็นก็จะช่วยใน การถ่ายเทความร้อนที่สะสมบนตัวแม่พิมพ์โดยมีน้ำเป็นตัวกลางพาความร้อนออกไป ดังแสดงในรูปที่ 5.8 ซึ่งอัตราการใหลของน้ำในท่อ ขนาดของท่อ อุณหภูมิของแม่พิมพ์และของน้ำเป็นปัจจัยที่มีผลต่อ การถ่ายเทความร้อนที่เกิดขึ้น โดยค่าสัมประสิทธิ์การถ่ายเทความร้อน (Convection heat transfer coefficient) อยู่ระหว่าง 100 ถึง 20,000 W/m²K [68] ซึ่งค่าสัมประสิทธิ์การถ่ายเทความร้อนของน้ำใน ท่อหล่อเย็นอธิบายได้ด้วยสมการที่ 5.1

factors	technical potential for optimization	
heat transfer pressing - tool	 preventing the formation of scale preventing/minimizing gaps in the contact zone 	pressing tool
heat conductivity within the tool	 heat conductivity of the tool material cooling surface distance between tool surface and cooling surface 	
heat transfer tool - cooling system	 turbulent flow of the cooling medium temperature of the cooling medium 	cooling medium

รูปที่ 5.8 การถ่ายเทความร้อนของชิ้นงานไปยังน้ำในท่อหล่อเย็นแม่พิมพ์ [69]

$$h = \frac{k}{D} Nu$$
 Eq. 5.1

ค่า *h* คือ ค่าสัมประสิทธิ์การถ่ายเทความร้อน (W/m²K), ค่า *k* คือ ค่าการนำความร้อนของน้ำ (W/m[·]K), *D* คือ ขนาดของท่อหล่อเย็น (m) และ *Nu* คือ Nusselt Number (-) และเนื่องจากในที่นี้ *L/D*> 10 เมื่อ *L* คือความยาวของท่อหล่อเย็น (m) ซึ่งสามารถใช้ Sieder – Tate equation ในการหา Nu ได้ดังสมการที่ 5.2 [70]

$$Nu = (0.027)Re^{0.8}Pr^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$
 Eq. 5.2

ค่า *Re* คือ ค่า Reynolds Number (-) ซึ่งหาได้จากสมการ 5.3, *Pr* คือ Prandtl Number ซึ่งมีค่าอยู่ ระหว่าง 0.7 ถึง 16,700 และ μ_b คือ ค่าความหนืดพลวัดของน้ำที่อุณหภูมิเฉลี่ย (N·s/m²) และ μ_s คือ ค่าความหนืดพลวัตของน้ำที่อุณหภูมิพื้นผิว (N·s/m²)

$$Re = \frac{\rho v D}{\mu}$$
 Eq. 5.3

ค่า ρ คือ ความหนาแน่นของน้ำหล่อเย็น (kg/m³), v คือ อัตราเร็วของน้ำหล่อเย็นในท่อ (m/s), และ μ คือความหนืดสัมบูรณ์ (N·s/m²), จากความสัมพันธ์ของทั้ง 3 สมการ พบว่าค่าอัตราการ ใหลของน้ำที่ เพิ่มสูงขึ้นจะส่งผลให้การถ่ายเทความร้อนระหว่างแม่พิมพ์กับน้ำที่ใหลผ่านท่อเพิ่มสูงขึ้นและจะส่งผล ต่ออุณหภูมิของแม่พิมพ์ให้ลดลงได้รวดเร็วยิ่งขึ้น

5.2 อัตราการเย็นตัวของชิ้นงานและแม่พิมพ์

5.2.1 อัตราการเย็นตัวของชิ้นงาน

ผลของอัตราการเย็นของชิ้นงานและอุณหภูมิของแม่พิมพ์ที่ในระหว่างการขึ้นรูปชิ้นงานจริงเทียบกับ ผลการจำลองทางไฟไนต์เอลิเมนต์ แสดงในรูปที่ 5.9 จะเห็นได้ว่าอัตราการเย็นตัวของชิ้นงานและ อุณหภูมิแม่พิมพ์ที่คำนวณด้วยแบบจำลองทางไฟไนต์เอลิเมนต์ให้ผลที่ใกล้เกียงกับการขึ้นรูปจริง ในช่วงหลังจากชิ้นงานนำออกจากเตาจนเข้าสู่ขั้นตอนการขึ้นรูป อุณหภูมิของชิ้นงานที่ทำนายโดย แบบจำลองทางไฟไนต์เอลิเมนต์มีค่าที่สูงกว่าการทดลองขึ้นรูปจริงเพียงเล็กน้อย เมื่อชิ้นงานผ่านการ ขึ้นรูปเสร็จสิ้นแล้วอุณหภูมิของชิ้นงานจะลดลงอย่างรวดเร็วผลของอัตราการเย็นตัวของชิ้นงานผ่านการ แบบจำลองทางไฟไนต์เอลิเมนต์ที่ก่าว่ากว่าอัตราการเย็นตัวของชิ้นงานจากการขึ้นรูปจริงเล็กน้อย แบบจำลองทางไฟไนต์เอลิเมนต์ต่ำกว่ากว่าอัตราการเย็นตัวของชิ้นงานจากการขึ้นรูปจริงเล็กน้อย กวามคลาดเกลื่อนดังกล่าวเกิดจากก่าสัมประสิทธิ์การถ่ายเทความร้อน (Heat transfer coefficient) ของ ผิวชิ้นงานที่สัมผัสกับแม่พิมพ์ที่ใช้ในการคำนวณ

ร**ูปที่ 5.9** การเปรียบเทียบผลอัตราการเย็นตัวของชิ้นงานและอุณหภูมิของแม่พิมพ์จากการทคลองกับ แบบจำลองทางไฟไนต์เอลิเมนต์

5.2.2 ผลการกระจายตัวของอุณหภูมิในแม่พิมพ์

ในหัวข้อนี้ได้ทำการกำนวณการกระจายตัวของอุณหภูมิที่เกิดขึ้นในแม่พิมพ์ โดยผลของการกระจาย ตัวของอุณหภูมิที่สะสมบนแม่พิมพ์ที่กำนวณ ได้แสดงดังรูปที่ 5.10 โดยผลที่แสดงเป็นการกระจายตัว ของอุณหภูมิในแม่พิมพ์ที่มีท่อระบายความร้อนขณะเวลาที่ต่างกันหลังจากขึ้นรูปเสร็จสมบูรณ์ โดยใช้ เวลาในการเย็นตัวของชิ้นงานในแม่พิมพ์รวมทั้งสิ้น20 วินาที ผลการกำนวณการถ่ายเทความร้อนจาก ชิ้นงานไปสู่แม่พิมพ์จะสังเกตเห็นได้ว่าอุณหภูมิของแม่พิมพ์จะลดลงอย่างต่อเนื่องเมื่อเวลาเพิ่มมาก ขึ้น และบริเวณที่ใกล้กับท่อระบายความร้อนเช่นบริเวณ Bottom area จะสามารถถ่ายเทความร้อนได้ ดีกว่าบริเวณที่อยู่ไกลจากท่อระบายความร้อนเช่นบริเวณ Bottom area จะสามารถถ่ายเทความร้อนได้ ดีกว่าบริเวณที่อยู่ไกลจากท่อระบายความร้อนเช่นบริเวณ Bottom vองแม่พิมพ์จะด่ำกว่าอุณหภูมิสะสม บริเวณ Flange ดังนั้นการออกแบบและพัฒนาแม่พิมพ์ที่ให้การระบายความร้อนที่เหมาะสมมี กวามสำคัญอย่างมากในการผลิตด้วยกระบวนการขึ้นรูปร้อน รูปที่ 5.11 แสดงอุณหภูมิที่เกิดขึ้นใน แม่พิมพ์ที่มีท่อระบายความร้อนใน จะเห็นได้ว่าอุณหภูมิของแม่พิมพ์ทั้งแม่พิมพ์ด้วบนและตัวล่าง บริเวณ Bottom อุณหภูมิของแม่พิมพ์จะลดลงเร็วกว่าแม่พิมพ์บริเวณ Flange และมีอุณหภูมิสางกัน ปริเวณ 20°C เมื่อเวลาผ่านไป 20 วินาที เมื่อพิจารณาด่ำแห่งที่ 2 พบว่ามีอุณหภูมิสะสมในแม่พิมพ์ มากที่สุดเนื่องจากดำแหน่งนี้อยู่ไกลจากท่อระบายกวามร้อนมากที่สุด

ร**ูปที่ 5.10** ผลการคำนวณการกระจายตัวของอุณหภูมิที่เกิดขึ้นในแม่พิมพ์ที่มีท่อระบายความร้อนใน เวลาที่ต่างกัน (5, 10, 15 และ 20s)

5.3 อิทธิพลของอัตราการเย็นตัวต่อสมบัติทางกลของชิ้นงาน

เพื่อทำนายผลของสมบัติทางกลและ โครงสร้างจุลภาคของชิ้นงานที่ผ่านการขึ้นรูปร้อน ในงานนี้ได้ ออกแบบการเย็นตัวของชิ้นงานในแม่พิมพ์ออกเป็น 2 ขั้นตอนคือ การเย็นตัวของชิ้นงานในแม่พิมพ์ และหลังจากนั้นจึงนำชิ้นงานออกจากแม่พิมพ์มาเย็นตัวในอากาศ แสดงเป็น Profile ของอุณหภูมิ – เวลาดังรูปที่ 5.12 หลังจากที่ชิ้นงานเย็นตัวในแม่พิมพ์เป็นเวลา 4 วินาที จะเห็นว่าอุณหภูมิของชิ้นงาน ยังสูงกว่าอุณหภูมิเริ่มเกิดมาร์เทนไซต์ (M_s) เมื่อนำชิ้นงานออกจากแม่พิมพ์แล้วปล่อยให้ชิ้นงานเย็นตัว ในอากาศ (สัญลักษณ์สี่เหลี่ยม สีต่างๆ) ในทำนองเดียวกันหลังจากที่ชิ้นงานที่เย็นตัวในแม่พิมพ์เป็น เวลา 5 วินาที อุณหภูมิของชิ้นงานมีค่าใกล้เคียงกับอุณหภูมิเริ่มเกิดมาร์เทนไซต์, นอกจากนั้นส่วน ชิ้นงานที่เย็นตัวในแม่พิมพ์เป็นเวลา 6 วินาที อุณหภูมิของชิ้นงานอยู่ระหว่างอุณหภูมิเริ่มเกิดมาร์เทน ไซต์และอุณหภูมิสิ้นสุดมาร์เทนไซต์ และสุดท้ายชิ้นงานที่เย็นตัวในแม่พิมพ์เป็นเวลา 8 วินาที อุณหภูมิของชิ้นงานจะต่ำกว่าอุณหภูมิสิ้นสุดมาร์เทนไซต์

ร**ูปที่ 5.12** กราฟอุณหภูมิ-เวลาของการจำลองการขึ้นรูปร้อนโดยใช้เวลาในการเย็นตัวของชิ้นงานใน แม่พิมพ์และการเย็นตัวของชิ้นงานในอากา**ณ**เบบต่างๆ

การทำนายการเปลี่ยนแปลงโครงสร้างจุลภาคในระหว่างการขึ้นรูปร้อนและการเย็นตัวของเหล็ก โบรอนอาศัยข้อมูลจากแผนภาพ TTT จากรูปรูปที่ 5.2 ในแบบจำลองไฟไนต์เอลิเมนต์จะเห็นได้ว่า อุณหภูมิเริ่มเกิดมาร์เทนไซต์จะอยู่ที่ประมาณ 400 °C อัตราการเย็นตัววิกฤตของเหล็กกล้าโบรอนอยู่ที่ ประมาณ 30 °C/s เมื่ออัตราการเย็นตัวของชิ้นงานสูงกว่าอุณหภูมิวิกฤตจะเกิดการเปลี่ยนเฟสออสเตน ในต์ (FCC)ไปเป็นเฟสมาร์เทนไซต์ (BCT) ได้อย่างสมบูรณ์เมื่อการเย็นตัวของชิ้นงานทำให้อุณหภูมิ ลดลงไปต่ำกว่าอุณหภูมิ M, รูปที่ 5.13 แสดงผลการทำนายปริมาณโครงสร้างจุลภาคต่างๆ ที่เกิดขึ้นใน ชิ้นงานที่เย็นตัวในแม่พิมพ์ที่เวลาต่างๆ กันและต่อด้วยการเย็นตัวของชิ้นงานในอากาศ เมื่อชิ้นงานเย็น ตัวในแม่พิมพ์ 4 วินาทีแล้วนำชิ้นงานออกจากแม่พิมพ์แล้วให้ชิ้นงานเย็นตัวต่อในอากาศ จากผลการ ทำนายพบว่าโครงสร้างจุลภาคของชิ้นงานที่เกิดขึ้นประกอบด้วยฟสเบนไนต์ประมาณ 50% และเฟส มาร์เทนไซต์ประมาณ 50% ในทำนองเดียวกัน เมื่อปล่อยให้ชิ้นงานเย็นตัวในแม่พิมพ์ 5 วินาที แล้วนำ ชิ้นงานออกจากแม่พิมพ์แล้วให้ชิ้นงานเย็นตัวต่อในอากาศ พบว่าโครงสร้างจุลภาคของชิ้นงาน ชิ้นงาน (Bottom) เนื่องจากเมื่อนำชิ้นงานออกจากแม่พิมพ์ อุณหภูมิของชิ้นงานส่วนใหญ่อยู่ต่ำกว่า อุณหภูมิเริ่มเกิดเฟสมาร์เทนไซต์ (M) จึงทำให้ชิ้นงานส่วนใหญ่มีเฟสมาร์เทนไซต์ แต่บริเวณตรง กลางของชิ้นงาน (Bottom) มีอัตราการเย็นตัวที่ช้ากว่าบริเวณอื่นๆ ทำให้บริเวณนี้เกิดเฟสเบนไนต์ และเมื่อปล่อยชิ้นงานให้เย็นตัวในแม่พิมพ์เป็นเวลา 6-8 วินาที แล้วนำชิ้นงานออกจากแม่พิมพ์แล้วให้ ชิ้นงานเย็นตัวต่อในอากาศ โครงสร้างจุลภาคที่เกิดขึ้นในชิ้นงานเป็นเฟสมาร์เทนไซต์ ทั้งชิ้นงาน เนื่องจากอุณหภูมิของชิ้นงานที่ออกจากแม่พิมพ์ต่ำกว่าอุณหภูมิเริ่มเกิดมาร์เทนไซต์ (M) จึงทำให้ ชิ้นงานมีเฟสมาร์เทนไซต์อย่างสมบูรณ์

สำหรับการทำนายการกระจายตัวของความแข็งของชิ้นงานที่เย็นตัวในแม่พิมพ์เป็นเวลา4, 5, 6, และ 8s แล้วนำชิ้นงานออกจากแม่พิมพ์ปล่อยให้เย็นตัวในอากาศ การทำนายความแข็งจากแบบจำลองไฟ ในต์เอลิเมนต์จะทำการคำนวณค่าความแข็งจากความแข็งของโครงสร้างต่างๆ ที่ได้จากการทดลอง โดยกำหนดให้ เฟสเบนในต์และมาร์เทนไซต์มีความแข็งประมาณ 23 HRC และ 50 HRC ตามลำคับ รูปที่ 5.14 แสดงการผลคำนวณการกระจายตัวของความแข็งของชิ้นงานที่ผ่านการขึ้นรูปร้อนและเย็น ตัวในแม่พิมพ์เป็นเวลา 4, 5, 6, และ 8s หลังจากนั้นนำชิ้นงานปล่อยให้เย็นตัวในอากาศ จะสังเกตเห็น ได้ว่าก่าความแข็งเพิ่มสูงขึ้นเมื่อเวลาในการเย็นตัวของชิ้นงานในแม่พิมพ์เพิ่มขึ้น เมื่อพิจารณาเวลาการ เย็นตัวของชิ้นงานในแม่พิมพ์ที่ 4 วินาที การก่าความแข็งจะอยู่ที่ระหว่าง 30-40 HRC ซึ่งสอดคล้องกับ ผลการทำนายโครงสร้างจุลภาคที่เกิดขึ้นในกรณีเดียวกัน สำหรับการเย็นตัวของชิ้นงานในแม่พิมพ์ที่ 5 วินาที จะเห็นว่าก่าความแข็งของชิ้นงานอยู่ประมาณ 50 HRC ยกเว้นที่บริเวณตรงกลางของชิ้นงาน (Bottom) ซึ่งจะมีค่าความแข็งประมาณ 45 HRC เนื่องจากบริเวณนี้เกิด โครงสร้างแบบเบน ในต์ด้วย สุดท้ายเมื่อพิจารณาการเย็นตัวของชิ้นงานในแม่พิมพ์ที่ช่วง 6-8 วินาที ค่าของความแข็งที่ได้ของ ชิ้นงานอยู่ที่ประมาณ 50 HRC เมื่อพิจารณาผลของ โครงสร้างจุลภาคและความแข็งที่ได้แล้ว ในการ ขึ้นรูปร้อนควรจะต้องให้เวลาการเย็นตัวของชิ้นงานในแม่พิมพ์ไม่น้อยกว่า 8 วินาที เนื่องจากการเย็น ตัวของชิ้นงานในแม่พิมพ์ในช่วง 6-7 วินาทีนั้น อุณหภูมิของชิ้นงานจะยังสูงกว่าจุดสิ้นสุดมาร์เทน ไซต์ (M_i) และเมื่อนำชิ้นงานออกจากแม่พิมพ์ช่วงเวลานี้จะเกิดการบิดเบี้ยวของชิ้นงานเนื่องจากจะเกิด การเพิ่มขึ้นของปริมาตรประมาณ 3 % จากการบิดตัวของโครงสร้างจาก FCC ไปเป็น BCT [31]

ร**ูปที่ 5.14** ผลการทำนายการกระจายตัวของความแข็งของชิ้นงานที่ผ่านการขึ้นรูปร้อนและเย็นตัวใน แม่พิมพ์ในเวลา 4, 5, 6, และ 8s หลังจากนั้นจึงนำชิ้นงานออกจากแม่พิมพ์มาปล่อยให้เย็น ตัวในอากาศ

รูปที่ 5.15 แสดงผลการกำนวณก่ากวามแข็งของชิ้นงานที่ผ่านการขึ้นรูปร้อนด้วยเบบจำลองไฟในต์เอ ลิเมนต์ พบว่าบริเวณตรงกลางชิ้นงานที่ตำแหน่งที่ 6 (ตรงกลางของชิ้นงาน) มีก่ากวามแข็งที่ต่ำเมื่อ เวลาการเย็นตัวในแม่พิมพ์ของชิ้นงานเป็น 4 และ 5 วินาที แต่เมื่อเวลาของการเย็นตัวของชิ้นงานใน แม่พิมพ์เพิ่มขึ้นเป็น 8 วินาที กวามแข็งทุกจุดในชิ้นงานจะมีก่ากวามแข็งเท่ากันคือที่ประมาณ 50 HRC เพราะฉะนั้นการทำให้ชิ้นงานมีกวามแข็งที่สม่ำเสมอทั้งชิ้นงานจะต้องปล่อยให้ชิ้นงานเย็นตัวใน แม่พิมพ์เป็นเวลาที่เหมาะสม

รูปที่ 5.15 ผลการทำนายค่าความแข็งในตำแหน่งต่างๆ บนชิ้นงานที่ผ่านการขึ้นรูปร้อนและเย็นตัวใน แม่พิมพ์ที่เวลา 4, 5, และ 8s หลังจากนั้นนำชิ้นงานออกจากแม่พิมพ์และปล่อยให้เย็นตัวใน อากาศ

5.4 การทำนายสมบัติทางกลจากผลของแบบจำลองทางไฟในต์เอลิเมนต์

ผลการทำนายความแข็งด้วยแบบจำลองทางไฟในต์เอลิเมนต์ของการขึ้นรูปร้อนของชิ้นงานที่ตำแหน่ง 2, 4 และ 6 จากรูปที่ 5.15 สามารถนำมาใช้ในการทำนายสมบัติทางกลของเหล็กด้วยโมเดล Voce ที่มี พารามิเตอร์ *A*, *B* และ *n* เป็นฟังก์ชันของก่าความแข็งจากตารางที่ 4.3 รูปที่ 5.16 (a) แสดงผลการ ทำนายค่า yield strength ของชิ้นงานที่ตำแหน่ง 2, 4 และ 6 หลังการขึ้นรูปและที่เย็นตัวในแม่พิมพ์เป็น เวลา 4, 5, และ 8s หลังจากนั้นจึงนำชิ้นงานออกจากแม่พิมพ์ปล่อยให้เย็นตัวในอากาศ พบว่าก่า yield strength เพิ่มสูงขึ้นเมื่อเวลาในการเย็นตัวของชิ้นงานในแม่พิมพ์เพิ่มขึ้น และการทำนายก่า tensile strength ของชิ้นงานที่ผ่านการขึ้นรูปร้อนที่ตำแหน่ง 2, 4 และ 6 และเย็นตัวในแม่พิมพ์เป็นเวลา 4, 5, และ 8s แสดงดังรูปที่ 5.16 (b) พบว่าก่า tensile strength เพิ่มสูงขึ้นเมื่อเวลาในการเย็นตัวของชิ้นงาน ในแม่พิมพ์สูงขึ้น ผลของกวามแม่นยำการทำนาย yield strength และ tensile strength มีก่าเพิ่มสูงขึ้น นั้นมาจากสมการเส้นตรง (Linear equation) และสมการพหุนาม (Polynomial equations) จากสมการ ที่ 3.5-3.7

รูปที่ 5.16 (a) ผลการทำนายค่า yield strength (A) และ (b) ผลการทำนายค่า tensile strength (B) ของ ชิ้นงานที่ผ่านการขึ้นรูปร้อนตำแหน่ง 2, 4 และ 6 และเย็นตัวในแม่พิมพ์เป็นเวลา 4, 5, และ 8s หลังจากนั้นจึงนำชิ้นงานออกจากแม่พิมพ์ปล่อยให้เย็นตัวในอากาศด้วยโมเคลของ Voce

ผลการการทำนายกราฟความเก้นความเกรียดจริงด้วย Voce โมเดลโดยอาศัยผลการกำนวณก่าความ แข็งจากไฟในต์เอลิเมนต์ของชิ้นงานที่ผ่านการขึ้นรูปร้อนที่บริเวณตำแหน่งปีก (Flange) และเย็นตัว ในแม่พิมพ์เป็นเวลา 4, 5, และ 8s หลังจากนั้นนำชิ้นงานออกจากแม่พิมพ์ปล่อยให้เย็นตัวในอากาศ โดยให้ตำแหน่งที่ 2 เป็นตัวแทนของบริเวณ Flange แสดงดังรูปที่ 5.17 พบว่าการทำนายกราฟความ เก้นความเครียดจริงด้วย Voce โมเดลโดยอาศัยผลการกำนวณก่าความแข็งจากไฟในด์เอลิเมนต์เพิ่ม สูงขึ้นเมื่อเวลาการเย็นตัวของชิ้นงานในแม่พิมพ์นานขึ้น และเมื่อเปรียบเทียบผลการทดลองผลการ ทำนายกราฟความเค้นความเครียดที่ได้จาก Voce โมเดลโดยอาศัยผลการกำนวณก่าความแข็งจากไฟ ในต์เอลิเมนต์พบว่าเวลาการเย็นตัวของชิ้นงานในแม่พิมพ์ตั้งแต่ 5 วินาทีขึ้นไปจะได้ผลการทำนายที่ ใกล้เกียงกับการทดลองจริง เนื่องจากความแข็งของชิ้นงานที่เย็นตัวในดั้งแต่ 5 วินาทีขึ้นไปมี ค่าประมาณ 50 HRC ถึงแม้ว่าจะให้เวลาของชิ้นงานเย็นตัวในแม่พิมพ์นานขึ้น ค่าความแข็งของชิ้นงาน จะไม่เพิ่มสูงขึ้นอีก เนื่องจากโครงสร้างบริเวณนี้เป็นเฟสมาร์เทนไซต์ตั้งแต่วินาทีที่ 5 ทำให้ก่าความ แข็งไม่เพิ่มสูงขึ้นอีก เนื่องจากโครงสร้างบริเวณนี้เป็นเฟสมาร์เทนไซต์ตั้งแต่วินาทีที่ 5 ทำให้ก่ากวาม แข็งไม่เพิ่มสูงขึ้น

รูปที่ 5.17 ผลการทำนายกราฟความเค้นความเครียดจริงของชิ้นงานที่ผ่านการขึ้นรูปร้อนที่บริเวณ ตำแหน่งปีก (Flange) หลังการเย็นตัวในแม่พิมพ์เป็นเวลา 4, 5, และ 8s และนำชิ้นงานออก จากแม่พิมพ์เพื่อเย็นตัวในอากาศเทียบกับผลการทดลองกราฟความเค้นความเครียดจริงของ ชิ้นงานที่ผ่านการขึ้นรูปร้อนที่บริเวณตำแหน่งปีก (Flange)

ผลการการทำนายกราฟความเก้นความเครียดจริงด้วย Voce โมเดลโดยอาสัยผลการกำนวณก่าความ แข้งจากไฟในต์เอลิเมนต์ของชิ้นงานที่ผ่านการขึ้นรูปร้อนที่บริเวณตำแหน่งตรงกลาง (Bottom) และ เย็นตัวในแม่พิมพ์เป็นเวลา 4, 5, และ 8s หลังจากนั้นนำชิ้นงานออกจากแม่พิมพ์ปล่อยให้เย็นตัวใน อากาศ โดยให้ตำแหน่งที่ 6 เป็นตัวแทนของบริเวณ Bottom แสดงดังรูปที่ 5.18 พบว่าการทำนายกราฟ กวามเก้นความเกรียดจริงด้วย Voce โมเดลโดยอาศัยผลการกำนวณก่าความแข็งจากไฟในต์เอลิเมนต์ เพิ่มสูงขึ้นเมื่อเวลาการเย็นตัวของชิ้นงานในแม่พิมพ์นานขึ้น และเมื่อเปรียบเทียบผลการทดลองผล การทำนายกราฟความเก้นความเครียดที่ได้จาก Voce โมเดลโดยอาศัยผลการกำนวณก่าความแข็งจาก ใฟในด์เอลิเมนต์พบว่าเวลาการเย็นตัวของชิ้นงานในแม่พิมพ์ตั้งแต่ 8 วินาทีขึ้นไปจะได้ผลการทำนาย ที่ใกล้เกียงกับการทดลองจริง และเมื่อพิจารณา True strain ในช่วง 0-0.01 จะเห็นได้ว่าก่าความแข้งจาก ใฟในด์เอลิเมนต์พบว่าเวลาการเย็นตัวของชิ้นงานในแม่พิมพ์ตั้งแต่ 8 วินาทีขึ้นไปจะได้ผลการทำนาย ที่ใกล้เกียงกับการทดลองจริง และเมื่อพิจารณา True strain ในช่วง 0-0.01 จะเห็นได้ว่าก่าความเล้น (Stress) จากการทดลองจริง และเมื่อพิจารณา True strain ในช่วง 0-0.01 จะเห็นได้ว่าก่าความเล้น ใหต์ที่มีขนาดที่แตกต่างกับบริเวณปีก (Flange) โดยที่บริเวณตรงกลางของชิ้นงานมีกลุ่มของมาเทน ใชต์ที่มีขนาดที่ละเอียดกว่าบริเวณปีกงองชิ้นงานส่งผลให้สมบัติทางกลมีความแตกต่างกัน ดังที่กล่าว ในหัวข้อ 4.2 ดังนั้นการใช้โมเดลของ Voce มาประยุกต์ใช้จึงมีความกลาดเกลี่อนเกิดขึ้นในช่วง Strain ต่ำๆ

รูปที่ 5.18 ผลการทำนายกราฟความเค้นความเครียดจริงของชิ้นงานที่ผ่านการขึ้นรูปร้อนที่บริเวณ ตำแหน่งตรงกลาง (Bottom) หลังการเย็นตัวในแม่พิมพ์เป็นเวลา 4, 5, และ 8s และนำ ชิ้นงานออกจากแม่พิมพ์เพื่อเย็นตัวในอากาศเทียบกับกราฟความเค้นความเครียดจริงของ ชิ้นงานที่ผ่านการขึ้นรูปร้อนที่บริเวณตำแหน่งตรงกลาง (Bottom)

ผลการการทำนายกราฟความเก้นกวามเกรียดจริงด้วย Voce โมเดลโดยอาศัยผลการกำนวณก่าความ แข็งจากไฟในต์เอลิเมนต์ของชิ้นงานที่ผ่านการขึ้นรูปร้อนที่บริเวณตำแหน่งด้านข้าง (Wall) และเย็น ตัวในแม่พิมพ์เป็นเวลา 4, 5, และ 8s หลังจากนั้นนำชิ้นงานออกจากแม่พิมพ์ปล่อยให้เย็นตัวในอากาศ โดยให้ตำแหน่งที่ 4 เป็นตัวแทนของบริเวณ Wall แสดดังรูปที่ 5.19 พบว่าการทำนายกราฟกวามเก้น กวามเกรียดจริงด้วย Voce โมเดลโดยอาศัยผลการกำนวณก่ากวามแข็งจากไฟในต์เอลิเมนต์เพิ่มสูงขึ้น เมื่อเวลาการเย็นตัวของชิ้นงานในแม่พิมพ์นานขึ้นและเวลาการเย็นตัวของชิ้นงานในแม่พิมพ์ตั้งแต่ 8 วินาทีขึ้นไปจะได้ผลการทำนายกราฟกวามเก้นความเกรียดสูงที่สุด เนื่องจากกวามแข็งของชิ้นงานที่ เย็นตัวตั้งแต่ 8 วินาทีขึ้นไปมีก่าประมาณ 50 HRC ถึงแม้ว่าจะให้เวลาของชิ้นงานเย็นตัวในแม่พิมพ์

รูปที่ 5.19 ผลการทำนายกราฟความเค้นความเครียดจริงของชิ้นงานที่ผ่านการขึ้นรูปร้อนบริเวณ ตำแหน่งค้านข้าง (Wall) หลังการเย็นตัวในแม่พิมพ์เป็นเวลา 4, 5, และ 8s และนำชิ้นงาน ออกจากแม่พิมพ์เพื่อเย็นตัวในอากาศ