สารบัญ

			หน้า
บ	ทคัดย่	้อภาษาไทย	ป
บ	ทคัดย่	่อภาษาอังกฤษ	ค
กิ	ต ติกร:	รมประกาศ	1
ส	າรบัญ		າ
ร	รายการตาราง		r
ร	รายการรูปประกอบ		ል
บ	ทที่		
1.	บทเ	น้ำ	1
	1.1	ที่มาและความสำคัญของปัญหา	1
	1.2	วัตถุประสงค์ของการวิจัย	2
	1.3	ประโยชน์ที่ได้รับ	2
	1.4	ขอบเขตของการวิจัย	2
	1.5	เครื่องมือที่ใช้ในการวิจัย	2
2.	ทฤษ	มฏิและงานวิจัยที่เกี่ยว ข้อง	3
	2.1	~ ประตูระบายน้ำบางโฉมศรี	3
	2.2	อุทกภัย	9
	2.3	การพิบัติของเชื่อน	11
	2.4	ข้อมูลลักษณะของคันคิน	24
	2.5	โปรแกรมแบบจำลองทางชลศาสตร์ iRIC	26
	2.6	ทฤษฎีสมการพื้นฐาน	29
	2.6	งานวิจัยที่เกี่ยวข้อง	32
~	0.26	ว้าเขินอาร์สื่อนอ	•
5.	2 1	างสุราชาวยุ่งชาวารระ	36
	3.I	หมายุฐยหว สู้ เรื่องกว	36
	5.2	NRNINBI	50

สารบัญ (ต่อ)

			หน้า
	3.3	การรวบรวมและวิเคราะห์ข้อมูลอัตราการใหล	37
	3.4	แผนการดำเนินการศึกษา	39
	3.5	ขั้นตอนการคำเนินการศึกษา	40
	3.6	การวิเคราะห์ผลการศึกษา	49
4	ผลอา	ะสื่องเว	50
4.	Mati I	งทุกษา	50
	4.1	ผลนาวแบบขอมูล เนบวเวนพนทศกษา	50
	4.2	ผลจากการประยุกต์ใช้ โปรแกรมแบบจำลอง iRIC	60
	4.3	การประยุกต์ใช้โปรแกรมแบบจำลอง iRIC กับโปรแกรม Google Earth	89
5.	สรุปผ	เลและข้อเสนอแนะ	90
	5.1	สรุปผลการศึกษา	90
	5.2	ข้อเสนอแนะ	92
ខោ	กสารอ้	างอิง	93
ກາ	คผนว	ກ	
	ก.	โปรแกรมแบบจำลอง iRIC	96
ปร	เะ วัติผู้	ີ່ວິຈັຍ	111

รายการตาราง

ตารา	3	หน้า
4.1	แสดงการปรับเทียบค่าแมนนิ่ง ในโปรแกรมแบบจำลอง iRIC	53
	ที่อัตราการไหล 480 ลูกบาศก์เมตรต่อวินาที	
4.2	แสดงการปรับเทียบค่าแมนนิ่ง ในโปรแกรมแบบจำลอง iRIC	54
	ที่อัตราการไหล 700 ลูกบาศก์เมตรต่อวินาที	
4.3	แสดงผลการเปรียบเทียบค่าระดับคราบน้ำท่วมจากการสำรวจ	56
	และจากโปรแกรมแบบจำลองที่อัตราการใหล 480 และ 700 ลูกบาศก์เมตรต่อวินาที	
4.4	ค่าพารามิเตอรที่ใช้ในการวิเคราะห์ผลในโปรแกรมแบบจำลองแบบ iRIC	59
4.5	แสดงผลการเปรียบเทียบค่าระดับคราบน้ำท่วมจากโปรแกรมแบบจำลอง iRIC	65
	และค่าระดับคราบน้ำท่วมของจากการสำรวจ โดยตึกริดขนาด 0.50 เมตร x 0.50 เมตร	
4.6	แสดงผลการเปรียบเทียบก่าระดับกราบน้ำท่วมจากโปรแกรมแบบจำลอง iRIC	70
	และค่าระดับคราบน้ำท่วมของจากการสำรวจ โดยตึกริดขนาด 1.00 เมตร x 1.00 เมตร	
4.7	แสดงผลการเปรียบเทียบก่าระดับกราบน้ำท่วมจากโปรแกรมแบบจำลอง iRIC	75
	และค่าระดับคราบน้ำท่วมของจากการสำรวจ โดยตึกริดขนาด 1.50 เมตร x 1.50 เมตร	
4.8	แสดงผลการเปรียบเทียบขนาดความกว้างของช่องขาด	76
	และก่ากวามกาคเกลื่อนของขนาดกวามกว้างของช่องขาด ของแต่ละขนาดกริด	
4.9	แสดงผลการเปรียบเทียบค่าสัมประสิทธิ์สหสัมพันธ์ (R^2) ค่าประสิทธิภาพของ	77
	Nash and Sutcliffe (E) และค่ารากที่สองของค่าความคลาดเคลื่อนกำลังสองเฉลี่ย	
	(RMSE) ของแต่ละขนาดกริค	
4.10	แสดงผลการเปรียบเทียบค่าระดับคราบน้ำท่วมจากการสำรวจพื้นที่จริงกับ	82
	ค่าระดับคราบน้ำท่วมจากอัตราการ ใหลที่ 480 และ 700 ลูกบาศก์เมตรต่อวินาที	
4.11	แสดงผลการเปรียบเทียบขนาดความลึกและขนาดความกว้างของช่องขาด	88
	จากค่าความหนาแน่นของคินที่100%, 90% และ 80%	

รายการรูปประกอบ

รูป		หน้า
2.1	เส้นทางการใหลของแม่น้ำเจ้าพระยาผ่านอำเภออินทร์บุรี จังหวัดสิงห์บุรี	3
2.2	แผนที่บริเวณประตูระบายน้ำบางโฉมศรี	4
2.3	ภาพจำลองมุมมองของประตูระบายน้ำบางโฉมศรีก่อนเกิดอุทกภัย	4
2.4	ภาพจำลองขนาคของประตูระบายน้ำบางโฉมศรีก่อนเกิดอุทกภัย	5
2.5	ภาพความเสียหายของพื้นที่ของประตูระบายน้ำบางโฉมศรี	7
2.6	ภาพจำลองพื้นที่ของประตูระบายน้ำบางโฉมศรีหลังเกิดอุทกภัย	8
2.7	ความเสียหายของสะพานจากการเกิดอุทกภัย	10
2.8	ความเสียหายที่เกิดจากอุทกภัย	11
2.9	การพิบัติของเขื่อน 6 ลักษณะ ตามข้อสรุปของ USCOLD	12
2.10	การรั่วซึมของฐานรากและตัวเขื่อน	13
2.11	การพิบัติที่เกิดจากการรั่วซึมของเขื่อน	14
2.12	สถิติการพิบัติเนื่องจากน้ำล้นสันเขื่อน	16
2.13	เงื่อน Port Wing ประเทศสหรัฐอเมริกา	16
2.14	รอยแตกตามขวางแนวสันเขื่อน	17
2.15	การแตกของดินแกนเขื่อนเนื่องจากการทิ้งก้างให้เกิดการระเหยของน้ำ	17
2.16	รอยแตกขนานแนวสันเขื่อน	18
2.17	การแตกตามยาวของเขื่อนอุบลรัตน์เนื่องจากการเสริมสันเขื่อน	18
2.18	รอยแตกภายในตัวเงื่อน	19
2.19	การพิบัติเนื่องจากการแตกภายในตัวเขื่อน	19
2.20	การทรุดตัวแตกต่างกันระหว่างรอยต่อของเชื่อน RCC และเชื่อนหินถมแกนดินเหนียว	20
	ของเขื่อนคลองมะเดื่อ	
2.21	การเคลื่อนพังของเขื่อนในระหว่างการก่อสร้าง	20
2.22	การพิบัติแบบเลื่อนใถลของเขื่อน Calaveras ระหว่างการก่อสร้าง	21
2.23	การเคลื่อนพังของเขื่อนในระหว่างเก็บกักน้ำ	21
2.24	การเคลื่อนพังในระหว่างการลดระดับน้ำ	22
2.25	การพิบัติจากการกัดเซาะ	22
2.26	การกัดเซาะตัวเขื่อน	22
2.27	ความเสียหายของเขื่อน SHI-KONG ประเทศไต้หวัน	23

รูป		หน้า
2.28	บริเวณด้านข้างของคันดินที่แม่น้ำซาคราเมนโต ในประเทศสหรัฐอเมริกา	24
2.29	คันคินป้องกันน้ำท่วมที่แม่น้ำมิสซิสซิปปี ในรัฐหลุยส์เซียนา	25
2.30	คันดินของสามเหลี่ยมปากแม่น้ำมิสซิสซิปปี้ ในรัฐหลุยส์เซียนา	26
2.31	ผังจำลองระบบโครงสร้างการทำงานของโปรแกรมแบบจำลอง iRIC	27
2.32	หน้าต่างของ Pre-processor และ Post-processor พร้อมประมวลผล โคย Solver	28
2.33	ตัวอย่างข้อมูลอนุกรมของการเวลากับอัตราการใหล	29
3.1	ขอบเขตพื้นที่ศึกษา ต.ชีน้ำร้าย อ.อินทร์บุรี จ.สิงห์บุรี	36
3.2	ขอบเขตในการศึกษาและเก็บรวบข้อมูลต่างๆ	37
3.3	ข้อมูลอัตราการใหลจากโครงการเพิ่มประสิทธิภาพการบริหารจัดการน้ำ	38
	บริเวณประตูระบายน้ำบางโฉมศรี กรมชลประทาน กระทรวงเกษตรและสหกรณ์	
3.4	ข้อมูลอัตราการใหลจากสำนักชลประทานที่ 10 จังหวัดลพบุรี	38
3.5	แบบจำลองทางกายภาพของคันดินเหนียวบริเวณรอยต่อประตูระบายน้ำบางโฉมศรี	41
	ในบริเวณมหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี	
3.6	ขนาคของแบบจำลองทางกายภาพของคันดินเหนียวบริเวณ	41
	รอยต่อประตูระบายน้ำบางโฉมศรีมาตราส่วน 1:8.5	
3.7	เปรียบเทียบพฤติกรรมการพังทลายระหว่างแบบจำลองทางกายภาพ	42
	กับโปรแกรมแบบจำลอง iRIC	
3.8	พื้นที่ทำการสำรวจและเก็บตัวอย่าง	43
3.9	โครงสร้างไซฟ่อนคลองระบายใหญ่ ชัยนาท - ป่าสัก 2	43
3.10	บริเวณพื้นที่คลองส่งน้ำ ชัยนาท - อยุธยา	44
3.11	การสำรวจพื้นที่บริเวณประตูระบายน้ำบางโฉมศรี	45
3.12	การกำหนคพิกัคของพื้นที่ศึกษาและขนาคของกริคในโปรแกรม	47
	แบบจำลอง iRIC (Nays 2D)	
3.13	การกำหนดค่าระดับของพื้นที่ศึกษาในโปรแกรมแบบจำลอง iRIC (Nays 2D)	47
3.14	การกำหนดค่าพารามิเตอร์ต่างๆ ในโปรแกรมแบบจำถอง iRIC (Nays 2D)	48
3.15	การแสดงผลคำนวณและพฤติกรรมทางชลศาสตร์	48
	ในโปรแกรมแบบจำลอง iRIC (Nays 2D)	
4.1	แสดงการเก็บค่าระดับของคราบน้ำท่วมในบริเวณพื้นที่รอบๆประตูระบายน้ำบางโฉมศรี	51

รูป

รูป

4.2	แสดงระดับของคราบน้ำท่วมในบริเวณพื้นที่รอบๆประตูระบายน้ำบางโฉมศรี	51
4.3	สภาพพื้นที่บริเวณ โครงสร้างประตูระบายน้ำบางโฉมศรี	52
4.4	สภาพบริเวณพื้นที่ที่ใช้ในการสอบเทียบและเก็บข้อมูลก่าระดับกราบน้ำท่วมจริง	53
4.5	แสคงผลการเปรียบเทียบการพังทลายของคันคินและสภาพพื้นที่น้ำท่วมในบริเวณ	55
	ประตูระบายน้ำบาง โฉมศรี จากโปรแกรมแบบจำลอง iRIC และสภาพพื้นที่จริง	
4.6	ผลจากการเปรียบเทียบค่าระดับคราบน้ำท่วมจากการสำรวจและจากโปรแกรม	57
	แบบจำลองที่อัตราการไหล 480 และ 700 ลูกบาศก์เมตรต่อวินาที	
4.7	กราฟแสดงอัตราการไหลที่ 480 ลูกบาศก์เมตรเทียบกับเวลา	58
4.8	กราฟแสดงอัตราการไหลที่ 700 ลูกบาศก์เมตรเทียบกับเวลา	59
4.9	แสดงการตึกริดขนาด 0.50 เมตร x 0.50 เมตร จากจำนวนกริด 320,000 กริด	60
4.10	แสดงการเปรียบเทียบช่วงเวลาก่อนและหลังของการพังทลายของคันดิน	61
	โดยตีกริดขนาค 0.50 เมตร x 0.50 เมตร	
4.11	แสดงพฤติกรรมทางชลศาสตร์ของการพังทลายของคันดิน	62
	ด้วยโปรแกรมแบบจำลอง iRIC โดยตีกริดขนาด 0.50 เมตร x 0.50 เมตร	
4.12	แสดงความกว้างของช่องขาด โดยตึกริดขนาด 0.50 เมตร x 0.50 เมตร	64
4.13	ผลการคำนวณเปรียบเทียบค่าระดับคราบน้ำท่วมจากโปรแกรมแบบจำลอง	64
	และระดับคราบน้ำท่วมจากการสำรวจโดยตีกริดขนาด 0.50 เมตร x 0.50 เมตร	
4.14	แสดงการตีกริดขนาด 1.00 เมตร x 1.00 เมตร จากจำนวนกริด 80,000 กริด	65
4.15	แสดงการเปรียบเทียบช่วงเวลาก่อนและหลังของการพังทลายของคันดิน	66
	ด้วยโปรแกรมแบบจำลอง iRIC โดยตีกริดขนาด 1.00 เมตร x 1.00 เมตร	
4.16	แสดงพฤติกรรมทางชลศาสตร์ของการพังทลายของคันดิน	67
	ด้วยโปรแกรมแบบจำลอง iRIC โดยตีกริดขนาด 1.00 เมตร x 1.00 เมตร	
4.17	แสดงความกว้างของช่องขาด โดยตึกริดขนาด 1.00 เมตร x 1.00 เมตร	69
4.18	ผลการคำนวณเปรียบเทียบค่าระดับคราบน้ำท่วมจากโปรแกรมแบบจำลอง	69
	และระดับคราบน้ำท่วมจากการสำรวจโดยตีกริดขนาด 1.00 เมตร x 1.00 เมตร	
4.19	แสดงการตึกริดขนาด 1.50 เมตร x 1.50 เมตร จากจำนวนกริด 35,378 กริด	70

ល្ង

หน้า

รูป		หน้า
4.20	แสดงการเปรียบเทียบช่วงเวลาก่อนและหลังของการพังทลายของคันดิน	71
	ด้วยโปรแกรมแบบจำลอง iRIC โดยตีกริดขนาด 1.50 เมตร x 1.50 เมตร	
4.21	แสดงพฤติกรรมทางชลศาสตร์ของการพังทลายของกันดิน	72
	ด้วยโปรแกรมแบบจำลอง iRIC โดยตีกริดขนาด 1.50 เมตร x 1.50 เมตร	
4.22	แสดงความกว้างของช่องขาด โดยตึกริดขนาด 1.50 เมตร x 1.50 เมตร	74
4.23	ผลการกำนวณเปรียบเทียบค่าระดับคราบน้ำท่วมจากโปรแกรมแบบจำลอง	74
	และระคับคราบน้ำท่วมจากการสำรวจโคยตีกริคขนาค 1.50 เมตร x 1.50 เมตร	
4.24	แสดงผลการเปรียบเทียบขนาดกวามกว้างช่องขาดของแต่ละขนาดกริด	77
4.25	แสดงผลการเปรียบเทียบพฤติกรรมการพังทลายของคันดิน	78
	ที่อัตราการใหล 480 และ 700 ลูกบาศก์เมตรต่อวินาที	
4.26	แสดงผลเปรียบเทียบพฤติกรรมการพังทลายของกันดินตามช่วงเวลาที่ 50-400 วินาที	79
	ที่อัตราการใหล 480 และ 700 ลูกบาศก์เมตรต่อวินาที	
4.27	แสดงผลเปรียบเทียบพฤติกรรมการพังทลายของกันดินตามช่วงเวลาที่ 500-7,200 วินาที	80
	ที่อัตราการใหล 480 และ 700 ลูกบาศก์เมตรต่อวินาที	
4.28	ผลเปรียบเทียบค่าระดับคราบน้ำจากอัตราการไหลที่ 480 และ 700 ลูกบาศก์เมตรต่อวินาที	82
4.29	ผลการพังทลายของคันดินจากค่าความหนาแน่นของดิน ช่วงเวลาที่ 50 และ500 วินาที	83
4.30	ผลการพังทลายของคันดินจากค่าความหนาแน่นของดิน ช่วงเวลาที่ 700 และ 3,000 วินาที	84
4.31	ผลการพังทลายของคันดินจากค่าความหนาแน่นของดิน ช่วงเวลาที่ 5,000	85
	และ 7,200 วินาที	
4.32	ผลการพังทลายของคันดินจากค่าความหนาแน่นของดินที่ 100%, 90% และ 80%	86
	ในช่วงเวลาที่ 7,200 วินาที	
4.33	การนำผลจากโปรแกรมแบบจำลอง iRIC ไปประยุกต์ใช้กับโปรแกรม Google Earth	89
ก.1	แสดงหน้าหลักเริ่มต้นของโปรแกรม iRIC Nays2D	97
ก.2	แสดงการเลือก Solver ในการใช้งานของโปรแกรม iRIC (Nays2D)	97
ก.3	แสดงหน้าจอหลักของ Solver เลือกใช้งานของโปรแกรม iRIC (Nays2D)	98
ก.4	แสดงการนำเข้าข้อมูลภาพพื้นหลังในโปรแกรม iRIC (Nays2D)	98
ก.5	แสดงการเลือกข้อมูลภาพพื้นหลังในโปรแกรม iRIC (Nays2D)	99
ก.6	แสดงข้อมูลภาพพื้นหลังในโปรแกรม iRIC (Nays2D)	99

รูป		หน้า
ก.7	แสดงขั้นตอนการสร้างกริด	100
ก.8	แสดงขั้นตอนการใส่ขนาดความกว้างของกริดที่ต้องการ	100
ก.9	แสดงขั้นตอนการใส่ขนาดความยาวของกริดที่ต้องการ	101
ก.10	แสดงขนาดของกริดที่ได้สร้างเสร็จเรียบร้อย	101
ก.11	แสดงขั้นตอนการกำหนดค่าระดับ Elevation	102
ก.12	แสดงขั้นตอนการตั้งก่าก่าระดับ Elevation	102
ก.13	แสดงขั้นตอนการใส่ค่าระดับ Elevation	103
ก.14	แสดงการใส่ค่าระดับ Elevation เรียบร้อยแถ้ว	103
ก.15	แสดงการ Setting the calculation conditions	104
ก.16	แสดงการตั้งก่า Solver Type	105
ก.17	แสดงการตั้งค่า Boundary Condition	105
ก.18	แสดงการตั้งค่าอัตราการใหล	106
ก.19	แสดงการตั้งค่า Time	106
ก.20	แสดงการตั้งก่า Bed material	107
ก.21	แสดงการตั้งค่า Bank erosion	107
ก.22	แสดงการตั้งค่า Manning's roughness coefficient	108
ก.23	แสดงการใส่ค่า Manning's roughness coefficient	108
ก.24	แสดงการ Run Program	109
ก.25	แสดงผลรายการคำนวณของโปรแกรมแบบจำลอง iRIC (Nays2D)	109
ก.26	แสดงการตั้งก่าโปรแกรมแบบจำลอง iRIC เพื่อทำการใส่ก่าพิกัด	110
ก.27	แสดงการประยุกต์ใช้โปรแกรมแบบจำลอง iRIC กับโปรแกรม Google Earth	110