

DEVELOPMENT OF NIGSOMME ENTRAPPED WITH EXTRACTS FROM NATIVE THAI SHAE (Bombyx mori) AS ANTI-WEIMALE COSMETIC PRODUCTS

SUPANIDA WINITCHAI

DOCTOR OF PHILOSOFHY IN PEARMACY

THE GRADUATE SCHOOL GHANG MAI UNIVERSITY OCTOBER 2010

ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

DEVELOPMENT OF NIOSOMES ENTRAPPED WITH EXTRACTS FROM NATIVE THAI SILK (Bombyx mori) AS ANTI-WRINKLE COSMETIC PRODUCTS

SUPANIDA WINITCHAI

A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN PHARMACY

THE GRADUATE SCHOOL

CHIANG MAI UNIVERSITY

OCTOBER 2010

DEVELOPMENT OF NIOSOMES ENTRAPPED WITH EXTRACTS FROM NATIVE THAI SILK (Bombyx mori) AS ANTI-WRINKLE COSMETIC PRODUCTS

SUPANIDA WINITCHAI

THIS THESIS HAS BEEN APPROVED

TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN PHARMACY

EXAMINING COMMITTEE

THESIS ADVISORY COMMITTEE

Prof. Dr. Masahiko Abe

any Manogoor ...CHAIRPERSON **ADVISOR** Prof. Dr. Aranya Manosroi Prof. Dr. Aranya ManosroiMEMBERCO-ADVISOR Prof. Dr. Jiradej Manosroi Prof. Dr. Jiradej Manosroi Purgol N. MEMBER CO-ADVISOR

Assoc. Prof. Dr. Surapol Natakankitkul

W-Issaran prn-MEMBER Lect. Witchpong Issarangporn

Aurason S. MEMBER

Asst.Prof.Dr.Aurasorn Saraphanchotiwitthaya

14 October 2010 © Copyright by Chiang Mai University

ACKNOWLEDGEMENTS

I am greatly grateful to the guidance, advices, patience and the technical supports in the correction of the thesis and manuscript for publication of Prof. Dr. Aranya Manosroi, my major advisor. My sincere thanks to Prof. Dr. Jiradej Manosroi, my co-advisor for his valuable advices and supports.

I greatly appreciate Prof. Dr.Masahiko Abe, my foreign co-advisor for his suggestions.

I wish to sincerely thank Lecturer Witchpong Issarangporn, Assoc.Prof. Dr.Surapol Natakankitkul and Asst.Prof.Dr.Aurasorn Saraphanchotiwitthaya for being the examining committees of my thesis defense.

I would like to thank Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University (KAPI); Thailand Toray Science Foundation (TTSF); Kasetsart University Research and Development Institute (KURDI) and The Thailand Research Fund (TRF), and the Nanoscience and Nanotechnology Center at Faculty of Science, Chiang Mai University.

My sincere thanks to the Faculty of Pharmacy and all of the staffs and graduate students at Natural Product Research and Development Center (NPRDC), Institute for Science and Technology Research and Development, Chiang Mai University and Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University (KAPI). Finally, I would like to express my deep gratitude to my family for their continuing warm moral support throughout my study.

Supanida Winitchai

Thesis Title	Development of Niosomes Entrapped with Extracts from Native Thai Silk (<i>Bombyx mori</i>) as Anti-wrinkle Cosmetic Products	
Author	Ms. Supanida Winitchai	
Degree	Doctor of Philosophy (Pharmacy))
Thesis Advisory Committee	Prof. Dr. Aranya Manosroi Prof. Dr. Jiradej Manosroi	Advisor Co-advisor

ABSTRACT

Prof. Dr. Masahiko Abe

Co-advisor

E41094 The aim of this research was to develop an anti wrinkle serum containing niosomes entrapped with sericin and oil from native Thai silkworms (Bombyx mori). Sericin and oil were extracted from five native Thai silkworms, Keaw Sakon, Nang noi Srisaket, Sam Rong, Nang Luang and None Ruesee. The yields of oils from the five native Thai silkworms by Soxhlet and maceration methods were 24-29% and 5-7%, respectively. Oils extracted from None Ruesee by the Soxhlet method, and oils extracted from Nang Leung, Sam Rong, and None Ruesee by the maceration method showed free radical scavenging activity. Oil extracted from None Ruesee by the maceration method gave the highest free radical scavenging activity. Moreover, oil extracted by the Soxhlet extraction from None Ruesee gave the highest tyrosinase inhibition activity, but lower than that of the standard vitamin C and kojic acid. The silkworm pupae oil obtained from Soxhlet extraction had unsaturated fatty acid content in the range of 72-79 %, and alpha - linolenic acid content in the range of 32-44 %, whereas that obtained from the maceration extraction had the unsaturated fatty acid contents in the range of 75-80%, and alpha-linolenic acid contents in the range of

V

40-46 %. The yields of sericin obtained by alkaline (0.5 N Na₂Co₃) and a toblave method (at 121°C, three hours) were in the range of 22.57-28.34 and 28.93-35.20 %, respectively. Sericin extracted from Nangnoi Srisaket by alkaline and autoclave method gave the highest sericin contents. Sericin extracted from None Ruesee and Nang Luang by alkaline gave the highest tyrosinase inhibition activity (IC_{50} = 1.20 and 2.22 mg/ml). Sericin extracted from Nang Luang and Sam Rong by autoclave method exhibited the highest free radical scavenging activity (SC₅₀= 13.65 and 15.45 mg/ml). The percentages of the protein contents were determined by the Lowry method. The average percentages of protein contents by autoclave and alkaline methods were in the range of 20.10-25.74 and 16.52-20.19 %, respectively. Different silk varieties contain distinct sericin with various amino acid compositions, which were significantly influenced by the extraction method used. Then, oil and sericin of None Ruesee strain silkworm were entrapped in the blank niosomes composed of Tween 61 and cholesterol at 1:1 molar ratio which was prepared by the chloroform film with sonication method. The blank niosomes were physical stable with uniform size and no sedimentation. The maximum loading of the sericin and oil in nisome was 1 and 1 % w/v. The niosomes were stable for 8 weeks. The average particle size of niosomes by zetasizer analyzer was 92-800 nm. The morphology of the prepared niosomes was in the mixture of unilamellar and mutilamellar vesicles (MLVs), and large unilamellar vesicles (LUVs). The oil and sericin entrapped in niosomes gave lower free radical scavenging and tyrosinase inhibition activity than the entrapped oil and sericin. The compositions of the developed anti-wrinkle serum were 0.15 Carbopo® Ultrez 21 polymer, 1.5 C₁₄₋₂₂ alkyl alcohol and C₁₂₋₂₀ alkylglucoside, 1.6 cyclopentasiloxane, dimethiconol, dimethicone crosspolymer (and) blend, 1 sodium polyacrylate (and) dimethicone (and) cyclopentasiloxane (and) trideceth-6 (and) PEG/PPG -18/18 dimethicone, 6 niosome (containing 1%w/w sericin and 1% w/w oil of None Ruesee silkworm), 0.6 Naomi and light yellow color. The characteristics of the serum had the viscosity of 14,500 cP, pH 6.97, light yellow color with L* a* b* value of 75.57, 0.54, 28.19 with no phase separation. The total plate counts of bacteria and yeast/mold were less than 10 colony/g. The in vivo tests in human volunteers showed that this serum gave superior skin hydration determined by transepidermal water loss, and improved the skin elasticity significant after the 8-week treatment. The estimated cost of the

E41094

developed serum was 859 baht/bottle (50g). The serum was physically stable during the 8-week storage at room temperature (30 $^{\circ}$ C), 35 and 45 $^{\circ}$ C. For the consumer test, it showed that 85.4 % of the volunteers accepted the product and 86.58 % of the volunteers interested in buying this developed product. The overall satisfaction of the volunteers on the product was moderate. The developed anti-wrinkle product from this study can be further continued for commercialization.

การพัฒนานี โอโซมที่เก็บกักสารสกัดจาก ใหมพันธุ์ไทยพื้นบ้าน *(Bombyx mori) เ*พื่อเป็น ผลิตภัณฑ์เครื่องสำอางต้านริ้วรอย

นางสาวสุพนิดา วินิจฉัย

วิทยาศาสตรคุษฎีบัณฑิต (เภสัชศาสตร์)

อาจารย์ที่ปรึกษาหลัก

อาจารย์ที่ปรึกษาร่วม

อาจารย์ที่ปรึกษาร่วม

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ศ. คร. อรัญญา มโนสร้อย ศ. คร. จีรเคช มโนสร้อย ศ. คร. มาซาฮิโกะ อาเบะ **บทคัดย่อ**

งานวิจัยนี้มีวัตถุประสงค์ เพื่อพัฒนานีโอโซมที่กักเก็บเซริซินและน้ำมันสกัดจากไหมพันธุ์ไทย พื้นบ้านเพื่อเป็นผลิตภัณฑ์เครื่องสำอางด้านริ้วรอย ได้กัดเลือกไหมพันธุ์ไทยพื้นเมือง 5 สายพันธุ์ ซึ่ง ได้แก่ เขียวสกล นางน้อยศรีสะเกษ สำโรง นางเหลือง และโนนฤาษี แล้วนำมาสกัดเซริซินและน้ำมัน สกัด ผลผลิตของน้ำมันดักแด้ไหมทั้ง 5 สายพันธุ์ จากการสกัดด้วยวิธี Soxhlet และ maceration อยู่ ในช่วงร้อยละ 24-29 และ 4-7 ตามลำดับ น้ำมันดักแด้จากไหมพันธุ์โนนฤาษี จากการสกัดด้วยวิธี Soxhlet และน้ำมันดักแด้ไหมพันธุ์นางเหลือง สำโรง และโนนฤาษี จากการสกัดด้วยวิธี maceration มี ฤทธิ์ต้านอนุมูลอิสระ โดยน้ำมันจากดักแด้ไหมพันธุ์โนนฤาษีจากการสกัดด้วยวิธี maceration มี กวามสามารถต้านอนุมูลอิสระได้ดีที่สุด เมื่อเปรียบเทียบกับน้ำมันจากดักแด้ไหมพันธุ์อื่นๆ น้ำมัน

ผู้เขียน

ชื่อเรื่องวิทยานิพนส์

ปริญญา

E41094

้ คักแค้ไหมพันธุ์โนนถาษีจากการสกัคค้วยวิธี Soxhlet มีฤทธิ์ยับยั้งเอนไซม์ไทโรซิเนส ได้คีที่สุดแต่ ้ยังต่ำกว่าสารมาตรฐานวิตามินซีและกรคโคจิก มีองก์ประกอบของกรคไขมันไม่อิ่มตัวอยู่ร้อยละ 72-79 และแอลฟาลิโนเลนิกร้อยละ 32-44 จากการสกัคด้วยวิธี Soxhlet ในขณะที่วิธีการสกัด maceration ให้กรคไขมันไม่อิ่มตัวร้อยละ 75-80 และแอลฟาลิโนเลนิกร้อยละ 40-46 ร้อยละผลผลิต ของเซริซินไหมจากการสกัดโดยใช้โซเคียมการ์บอเนต (0.05 N Na₂CO₃) และใช้การนึ่งด้วยไอน้ำ แรงคันสูง (มิลลิเมตรปรอท) ที่อุณหภูมิ 121 องศาเซลเซียส แรงคันไอน้ำ 15 (ปอนค์ต่อตารางนิ้ว) ระยะเวลา 3 ชั่วโมง อยู่ในช่วงร้อยละ 22.57-28.34 และ 28.93-35.20 ตามลำคับ เซริซินจากไหม พันธุ์นางน้อยศรีสะเกษจากการสกัคโคยใช้โซเดียมการ์บอเนตและใช้การนึ่งค้วยไอน้ำแรงคันสูงให้ ผลผลิตสูงสุดเมื่อเปรียบเทียบกับเซริซินจากไหมพันธุ์อื่นๆ เซริซินจากไหมพันธุ์โนนฤาษี และนาง เหลืองจากการสกัดด้วยโซเดียมคาร์บอเนต มีฤทธิ์ยับยั้งเอนไซม์ไทโรซิเนส (IC50=1.20 และ 2.22 มก./มล)ได้คีที่สุด เมื่อเปรียบเทียบกับไหมพันธุ์อื่น ในขณะที่เซริซินจากไหมพันธุ์นางเหลืองและ สำโรงจากการสกัค โดยใช้การนึ่งด้วยไอน้ำแรงคันสูงมีฤทธิ์ต้านอนุมูลอิสระ(SC50=13.65 และ 15.49 มก./มล) คีที่สุดเมื่อเปรียบเทียบกับไหมพันธุ์อื่น ในการวิเคราะห์หาปริมาณร้อยละโปรตีน ด้วยวิธี Lowry จากการสกัดด้วยการนึ่งด้วยไอน้ำแรงดันสูงและโซเดียมคาร์บอเนตให้ปริมาณ โปรตีนอยู่ในช่วงร้อยละ 20.10-25.74 และ 16.52-20.19 ตามลำคับปริมาณเซริซินที่เป็น องค์ประกอบในกรคอะมิโนจากใหมพันธุ์ที่แตกต่างกันมีอิทธิพลอย่างมีนัยสำคัญจากการใช้วิธีการ สกัดที่ต่างกัน ได้กัดเลือกน้ำมันดักแด้ไหมและเซริซินรังไหมจากพันธุ์โนนฤาษีมาสกัดด้วยวิธี maceration และค่างโซเคียมการ์บอเนต ตามลำดับ เพื่อนำมาเก็บกักในนีโอโซม นีโอโซมเปล่า ประกอบด้วยทวีน 61 ผสมคอเลสเตอรอล ในอัตราส่วนโมลาร์ 1:1 จากการเตรียมโดยวิธี chloroform film ร่วมกับการใช้คลื่นความถี่สูง พบว่าให้ความคงตัวทางกายภาพ มีขนาดอนุภาค สม่ำเสมอ และ ไม่ตกตะกอน นี้โอโซมสามารถเก็บกักน้ำมันและเซริซินในปริมาณสูงสุดร้อยละ 1 และ 1 % โดยน้ำหนักต่อปริมาตร ตามลำคับ นีโอโซมที่ได้มีความคงตัวดี เมื่อเก็บเป็นเวลา 8 สัปคาห์ มีขนาดอนุภากที่วัดด้วย Zetasizer analyzer อยู่ในช่วง 92-800 นาโนเมตร นีโอโซมที่ได้มี ้ลักษณะเป็นอนุภาคผนังสองชั้นชุดเดียวจำนวนหลายชุด ผสมกับอนุภาคผนังสองชั้นชุดเดียวขนาด ใหญ่ พบว่าฤทธิ์ด้านอนุมูลอิสระ (DPPH radical scavenging metal chelating และ tyrosinase inhibition) ของนี้โอโซมที่เก็บกักน้ำมันดักแด้ไหมและเซริซินมีค่าน้อยกว่าสารสกัดที่ไม่ได้เก็บกัก ในนีโอโซม ได้พัฒนาสูตรผลิตภัณฑ์เซรัมที่มีส่วนผสมของนีโอโซมที่เก็บกักเซริซิน และน้ำมัน ้คักแค้ไหมไทยพันธุ์พื้นบ้านที่ประกอบด้วย 0.15 Carbopol[®] Ultrez 21 polymer, 1.5 C₁₄₋₂₂ alkylalcohol and C12-20 alkylglucoside, 1.6 cyclopentasiloxane, dimethiconol, dimethicone crosspolymer (and) blend, 1 sodium Polyacrylate (and) dimethicone (and) cyclopentasiloxane

E41094

(and) trideceth-6 (and) PEG/PPG -18/18 dimethicone, 6 niosome, (เซริซิน 1 น้ำมันดักแด้ไหม 1% w/v จากไหมพันธุ์ โนนฤายี), 0.6 กลิ่น Naomi และให้สีเหลืองนวล อุณลักษณะของเซรัมลดริ้วรอย ที่พัฒนาได้มีค่าความหนืดเท่ากับ 14,500 cP ค่าความเป็นกรดค่างเท่ากับ 6.97 มีสีเหลืองเข้มออก น้ำตาลในระบบ L* a* b* เท่ากับ 75.57, 0.54 และ 28.19 ตามลำดับ มีความคงตัวดีไม่แยกชั้น มี จำนวนแบคทีเรีย ยีสต์ และ ราทั้งหมดน้อยกว่า 10 โคโลนีต่อกรัม เมื่อทคสอบในอาสาสมัคร พบว่าเซรัมที่พัฒนาได้มีความสามารถในการเก็บกักน้ำไว้ที่ผิว และช่วยปรับความยืดหยุ่นของ ผิวหนังให้ดีขึ้นอย่างมีนัยสำคัญหลังจากการใช้ 8 สัปดาห์ เมื่อเปรียบเทียบกับก่อนใช้ ต้นทุนการ พัฒนาผลิตภัณฑ์เซรัมลดริ้วรอย ต่อ 1 หน่วย (50 กรัม / 1 หลอด) มีราคาคาคละเนประมาณ 2963.23 บาท เซรัมลคริ้วรอยที่ได้มีความคงตัวในระหว่างการเก็บนาน 8 สัปดาห์ ที่สภาวะอุณหภูมิห้อง (30 °C) ในสภาวะอุณหภูมิ 35 และ 45 °C สำหรับการทดสอบการขอมรับของผู้บริโภคพบว่าร้อยละ 85.40 ของอาสาสมัครขอมรับผลิตภัณฑ์ และร้อยละ 86.58 ของอาสาสมัครสนใจที่จะซื้อผลิตภัณฑ์ พัฒนาได้จากการศึกษานี้ไปต่อขอดในเชิงพาณิชย์ได้ต่อไป

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
Abstract (English)	v
Abstract (Thai)	viii
List of Tables	xxiii
List of Figures	xxviii
Abbreviations and symbols	xxxii
CHAPTER 1 INTRODUCTION	1
1.1 Statement and significance of the problems	1
1.2 Objective	3
1.3 Scope of the study	3
1.4 Literature reviews	5
1.4.1 Silk worm	5
1.4.1.1 Biology of silk worm	6
1.4.1.2 Thai silk production	12
1.4.1.3 Silk worm products	22
A. Chemical composition of silk worm	22
B. Chemical composition of sericin	31
C. Chemical composition of fibroin	37
D. Chemical composition of Silk worm oil	41
1.4.1.4 Preparations of oil and sericin	49
A. Method of oil extraction from natural products	49

	Page
A.1 Rendering extraction	49
A.2 Hydraulic pressing extraction	49
A.3 Solvent extraction	49
A.4 Microwave digestion or oven extraction	50
B. Preparations of sericin	51
C. Application of sericins	51
1.4.2 Niosomes	52
1.4.2.1 Definition/Introduction	52
1.4.2.2 Formation of niosome	53
1.4.2.3 Niosome preparation methods	54
A. Hand-shaken method	54
B. Sonication method	55
C. Freeze-dried rehydration method	56
D. Reverse-phase evaporation method	56
E. Detergent depletion method	57
F. Supercritical carbon dioxide method	58
G. Microfluidization	59
H.Multiple membrane extrusion method	59
1.4.2.4 Characterization of niosomes	59
A. Morphology	59
B. Vesicle diameter	60
C. Charge	60
D. Microviscosity	60

	Page
E. Entrapment efficiency	61
F. Phase transition temperature and enthalpy change	61
G. In-vitro release	62
1.4.2.5 Advantages of niosomes	62
1.4.2.6 Comparison of niosomes and liposomes	63
1.4.2.7 Stability of niosomes	65
1.4.2.8 Applications of niosomes	65
1.4.3 In vitro biological assays	68
1.4.3.1 DPPH free radical scavenging activity assay	68
1.4.3.2 Tyrosinase inhibition assay	69
1.4.3.3 Microbial limit test	70
1.4.4 In vivo biological assays	71
1.4.4.1 Animals	71
A. Rabbit skin irritation testing	71
1.4.4.2 Human volunteers	72
A. TEWL meter/ vapometer	72
B. Cutometer	73
1.4.5 Applications of sericin and oil in cosmetics	74
1.4.6 Structure and biochemical changes in aging skin	75
1.4.7 Sericin and oil role of NMFs	82
CHAPTER 2 MATERIALS AND METHODS	86
2.1 Materials and equipments	86
2.1.1 Materials	86

	Page
2.1.2 Chemical	86
2.1.3 Human volunteers	89
2.1.4 Equipments	90
2.2 Method	91
2.2.1 Extraction of the native Thai silkworm pupa oil	91
2.2.1.1 Soxhlet extraction	91
2.2.1.2 Maceration extraction	91
2.2.1.3 Characteristics of the native Thai silkworm oil	93
2.2.1.3.1 Physicochemical stability of oils extracted	
from the native Thai silk	93
2.2.1.3.2 Determination of linoleic acid contens in	
the oil sample by HPLC	93
2.2.1.3.3 Determination of the oxidation induction	
time of the oil sample	93
2.2.1.3.4 Determination of tocopherol and	
cholesterol contents by HPLC	94
2.2.1.3.5 Determination of fatty acid contents in	
the oil sample	94
2.2.1.3.6 Physical and chemical properties of the oil	95
A: Determination of saponification value	95
B: Determination of unsaponification value	96
C: Determination of Iodine value	96
D: Determination of density	97

	Page
E: Peroxide value	97
F: Determination of refractive index	97
G: Determination of acid value	98
2.2.1.4 Biological activities of the oil samples	98
2.2.1.4.1 Free radical scavenging assay	98
2.2.1.4.2 Tyrosinase inhibition assay	99
2.2.2 Preparation of sericin from the Thai native silk cocoon	99
2.2.2.1 Basic hydrolysis	99
2.2.2.2 Autoclave hydrolysis	100
2.2.2.3 Characteristics of sericin from the native Thai silk cocoon	101
2.2.2.3.1 Characterization of sericin from the native	
Thai silk cocoon	101
A: Total nitrogen by kjeldahl method	102
B: Loss on drying	102
C: Ash content	102
D: pH	102
E: Water solubility	102
F: Total plate count	103
2.2.2.3.2 Gel Electrophoresis of sericin from the native	
Thai silk cocoon	103
2.2.2.3.3 Fourier Transform Infrared	103
2.2.2.4 Biological activities of the sericin samples	103
2.2.2.4.1 Free radical scavenging assay of sericin	

	Page
extracted from the native Thai silk cocoon	103
2.2.2.4.2 Tyrosinase inhibition assay of sericin extracted	
from the native Thai silk cocoon	104
2.2.2.4.3 Total Amino acid profile of sericin extracted	
from the native Thai silk cocoon	105
2.2.3 Preparation of niosome entrapped with sericin and oil	
extracted from the None Ruesee silkworm	105
2.2.3.1 Preparation of blank niosomes	105
2.2.3.2 Characteristics of blank niosomes	107
A. Particle size and zeta potential determination of	
blank niosomes	107
B. Physical stability of the blank niosomes	107
C. Selection of the best blank niosomal formulation	107
2.2.3.3 Entrapment of silkworm sericin and oil in the selected	
niosomal formulation	107
2.2.3.4 Physicochemical properties and stability observation	108
A. Appearance and morphology	108
B. pH measurement	109
C. Appearence of niosomal dispersion	109
D. Determination of entrapment efficiency	109
E. Particle size and zeta potential measurement	109
F. Stability study of the niosomes entrapped with sericin	
and oil	110

	Page
G. Transmission electron microscopy	110
2.2.4 Development of anti-wrinkle serum containing niosomes	
entrapped with oil and sericin extracted from silk	111
2.2.4.1 Five serum base formulations were developed and	
one formulation was selected	111
2.2.4.2 The quality of the serum base was compared with the typic	al
facial moisturizing products sold on the market	111
2.2.4.2.1 Characteristics determination	111
A) Color	111
B) pH	111
C) Viscosity	111
D) Physical stability	112
2.2.4.2.2 Sensory quality	112
2.2.4.3 Optimizations of the best anti-wrinkle serum formulations	117
2.2.4.4 Development of serum containing niosomes entrapped	
with the silk oil and sericin	119
2.2.4.5 Development of color and fragrance of the selected serum	
formulation	<mark>119</mark>
2.2.4.5.1 Color development of the selected serum	
formulation	119
2.2.4.5.2 Fragrance development of the selected serum	
formulation	120

xvii

xviii

	Page
2.2.4.6 Quality assessment on the developed serum containing	
niosomes entrapped with silk oil and sericin	120
A. Measure the pH value with a pH Meter	120
B. Physical quality	120
C. Microbiological quality	120
D. Sensory quality	121
E. Clinical quality	121
2.2.5 Stability of the developed serum at difference storage	
temperature	122
2.2.6. Consumer acceptance study	122
2.2.7 Cost calculation for the developed serum containing niosomes	
entrapped with oil and sericin silk protein	123
2.2.8 Statistical analysis	123
CHAPTER 3 RESULTS AND DISCUSSION	124
3.1 Extraction of the native Thai silk worm pupa oil	124
3.1.1 Extraction and physico-chemical stability of oil extracted	
from Soxhlet and maceration method	124
3.1.2 Physico-chemical characteristics of oil	125
3.1.2.1 The linoleic acid contents	125
3.1.2.2 Fatty acid contents	126
3.1.2.3 Tocopherol and cholesterol contents	128
3.1.2.4 Physical and chemical contents	129

	Page
3.1.3 Biological activities of oil	130
3.1.3.1 Free radical scavenging activity	130
3.1.3.2 Tyrosinase inhibition activity	132
3.2 The native Thai silk sericin protein	134
3.2.1 Extraction and physico-chemical stability of sericin extracted from the native Thai silk cocoons by the autoclave and	
alkaline method	134
3.2.1.1 Characterization of sericin extracted from the Thai native	
silk cocoon by the autoclave and alkaline method	134
3.2.1.2 Gel electrophoresis of the sericin from the Thai native silk	
cocoon	136
3.2.1.3 Amino acid compositions	139
3.2.1.4 FTIR spectra	142
3.2.2 Biological activities of sericin	144
3.2.2.1 Free radical scavenging activity	144
3.2.2.2 Tyrosinase inhibition activity	144
3.3 Preparation of niosomes entrapped with sericin and oil extracted	
from None Ruesee silkworm	147
3.3.1 Physical stability of blank niosomes from formulations	
prepared by chloroform film method with sonication	147
3.4 Characteristics of the niosome formulations entrapped with the	
sericin and oil silkworm	150
3.4.1 The vesicular size determination	150
3.4.2 Morphology of the vesicles	150

	Page
3.4.3 Entrapment efficiency determination	153
3.4.4 The antioxidative activity of niosomes entrapped with None	
Ruesee sericin and oil prepared by the CFS method	155
3.5. Development of the serum containing of niosomes entrapped with	
oil and sericin from silk	158
3.5.1 Selection of the suitable serum base	158
3.5.1.1 Quality of the serum products available in the market	158
3.5.1.2 Selection of the serum base formulations	159
3.5.2 Optimization of the serum formulations	163
3.5.2.1 Quality of the basic serum formulas that had passed	
the selection	163
3.5.2.2 Optimization of the serum formations	170
3.5.3 Preparation of niosome serum formulations	174
3.5.3.1 Elasticity study of niosome serum formulations using	
Cutometer	174
3.5.3.2 Color and fragrance development of serum with niosome	
entrapped with sericin and oil from the native	
Thai silkworm	176
A. Color study of niosomes serum formulations	176
B. Fragrance study of serum formulations	177
3.5.3.3 Quality study of the serum containing of niosome	
entrapped with sericin and oil from silk	181

	Page
3.5.3.4 Physical and chemical stability of the serum containing	
niosome entrapped with oil and sericin from silk	183
A. Chemical stability of the serum containing of niosome	
entrapped with oil and sericin from silk	183
B. Physical stability of the developed serum	184
B 1. Viscosity value	184
B 2. Color value (L*a*b*)	185
3.6 Cost estimation of the oil, sericin from the native Thai silk worm	
and anti-wrinkle serum mixed with of niosomes entrapped with serici	n
and oil from silk	189
3.6.1 Estimation cost of the products from Thai native silkworm	189
3.6.2 Estimation cost of the anti-wrinkle serum containing niosomes	
entrapped with sericin and oil from Thai native silkworm	190
3.7 Consumer acceptance study on the serum containing of niosome	
entrapped with oil and sericin from silk	192
3.7.1 Demography data of volunteers	192
3.7.2 Information of consumer acceptance study on anti-wrinkle serun	n
containing niosomes entrapped with oil and sericin from silk	193
3.7.3 Decision to buy the developed product	197

CHAPTER 4 CONCLUSION

REFERENCES

206

199

		Page
APPENDICES		236
Appendix A	Chemical and physical properties of compounds used	
	in this study	239
Appendix B	Preparation of the reagent solutions for SDS-PAGE assay	240
Appendix C	Friedman test	242
Appendix D	Survey sheet consumer acceptance study	243
Appendix E	The estimated cost of niosomes entrapped with None Rues	see
	strain silkworm extracts containing sericin and oil	256
Appendix F	Cosmetic ingredients	260

CURRICULUM VITAE

266

xxiii

LIST OF TABLES

Table		Page
1	The classification of varieties of silk culture in Thailand	13
2	Characteristics of Native Thai Silkworm of Nangnoi Srisaket, Nang Lai	
	and Nang Lueng	14
3	Characteristics of Native Thai Silkworm of Chor. Yoi. 1, Chor. Yoi. 2	
	and Chor Yoi. 3	16
4	Characteristics of Native Thai Silkworm of Paengphuay, Nangmoi	
	Srisaket and Sam Rong	17
5	Characteristics of Native Thai Silkworm of None Ruesee ,Keaw Sakol	
	and Khaki	19
6	Characteristics of Native Thai Silkworm of Neueasrithun and Mor.	20
7	Types of chemical ingredients of silk	22
8	Compositions of carbohydrate in silk protein of Bombyx mori and Taihe	i
	strains.	23
9	Types and amount of amino acids found in Thai silk, wild silk and	
	foreign silk	25
10	Chemical structure, molecular weight and crystal conformation of	
	amino acids found in silk	26
11	The polarity of the amino acids found in silk	27
12	The functions of various amino acids in the body	29
13	Types, volume, and chemical structure of amino acids found in sericin	
	of Non- native silk of Chul Thai Silk Co., Ltd	33
14	Amino acid compositions in sericin and fibroin	35

xxiv

Table		Page
15	Amino acid compositions of in sericin extracted from 4 layers	36
16	Types and amount of fibroin in Bombyx mori silk in comparing	
	to G.rufobrunnae	39
17	Nutrients found in 100 grams of silk pupa	42
18	Types and amounts of amino acids found in silk pupa of Thai	
	Silk Co.,Ltd	43
19	Composition of fatty acids of silk pupa powder from species Jul1,	
	Hybrid Nakorn Rachasima and Native Thai.	45
20	Chemical composition and fatty acid contents of the silk pupa both sex	
	separated and non-separated	46
21	Chemical characteristics of extracted oil from Jul1 and Jul5 silk pupa	47
22	Ingredients of the 5 selected serum base formulations	112
23	Factors and levels used in the study	117
24	The percentage yields of the Thai native silkworm oil extracted by	
	Soxhlet and maceration	125
25	Vitamin E (mg/100g) and cholesterol contents (mg/100g) determined	
	by HPLC of oil extracted from Thai native silkworm varieties by Soxhlet	
	and maceration extraction methods	129
26	Physical and chemical characteristics of the native Thai silkworm oils	
	extracted by Soxhlet and maceration methods	131
27	Appearances, color values and % protein contents of silk protein powder	
	prepared by the autoclave and alkaline extraction methods	135

xxv

Table		Page
28	Characteristics of sericin protein from Bombyx mori Linn.	
	(Native Thai silk) and the commercial sericin product	137
29	The amino acid profiles of various sericin sample extracted by different	
	methods from different species of Bombyx mori Linn (native Thai silk)	
	and the commercial sericin product	141
30	The physical appearances of the blank niosomes (Tween 61/ cholesterol	
	at 1:1 molar ratio) prepared by CFS after kept at 4, 25 and 45 °C at	
	initial 1, 2 and 3 months	148
31	The physical properties including vesicular size, the polydispersity index (PDI), pH, color and dispersibility of blank niosomes (Tween 61/ cholesterol at 1:1 molar ratio) by CFS kept at different temperatures	
	for 3 months	149
32	Physical appearances (vesicular size, pH and physical appearances)	
	of niosomes (Tween 61/ cholesterol at 1:1 molar ratio) entrapped	
	with sericin and oil at 1 and 1 % w/w respectively, of the niosomal	
	forming materials kept at various temperatures for 3 months	151
33	The entrapment efficiencies (%EE) of niosomes entrapped with	
	None Ruesee strain silkworm extracts containing sericin and oil prepared	l
	by the CFS method	153
34	Tyrosinase inhibition activities (IC $_{50}$) and DPPH radical scavenging	
	activity (SC ₅₀) of niosomes entrapped with None Ruesee strain	
	silkworm sericin and oil extracts prepared by CFS	155
35	Color and pH quality of ant wrinkle serum products available in the	
	market	157
36	Appearances of the five anti-wrinkle serum products	159
37	Physical and chemical quality of the five anti-wrinkle serum products	159

xxvi

Table		Page
38	Scores of preference by the volunteer with the different characteristics	
	of the five anti-wrinkle serum products	160
39	Percentages of feeling score (frequency) of the volunteers on various	
	characteristics of anti-wrinkle serum basic formulas 1-5	161
40	Summary of the product quality value of the commercial product	
	compared with the basic formula serum	163
41	Quantitative descriptive analysis (QDA) of the basic serum formula	
	compared with the market products	165
42	Quality value of basic formula serum added Seppic gel [®] 305,	
	Simugel EG and CDRM 2051 at the level of 0.5% w/w	167
43	Just-about-right score of the volunteers with serum added with	
	CDRM 2051, Simugel EG and Sepigel 305 at the level of 0.5% w/w	168
44	Elasticity of skin and the ability of treansepidermal water loss loss on the	
	skin by the 3 formulas of the anti-wrinkle serum	169
45	Preference scores on various features of the anti-wrinkle serum	170
46	Equations of the relations between the preference scores of serum	
47	and the production factors	171
47	Comparisons of factor values used to explain skin elasticity before and	
40	after adding niosomes entrapped with oil and sericin from silk	174
48	Ur and Uf values of the serum with 6% niosomes entrapped with oil	
	and sericin from silk after using for 0, 2 and 4 weeks	174
49	The total rank of the preference ranking on color of serum with niosomes	
	entrapped with sericin and oil from the native Thai silkworm	176

xxvii

50 Scores on fragrance preferences in the serum formula mixed with	
niosomes entrapped sericin and oil from the native Thai silkworm 17	17
51 Fragrances of volunteers by the just-about-right method 17	78
52 Ingredients of the serum products mixed and the selected fragrance 17	79
53 Chemical, physical properties and micro-organism contamination of	
the serum products containing niosomes entrapped with sericin and	
oil from silk and the selected fragrances 18	81
54 Sensory qualities of the serum products containing niosomes	
entrapped with sericin and oil from silk 18	32
55 The estimated costs of oil and sericin from the Thai native silkworm 18	8
56 The estimated costs of niosomes entrapped with sericin and oil from	
Thai native silkworm 18	9
57 The estimated costs of the developed anti-wrinkle serum containing	
niosomes entrapped with sericin and oil from Thai native silkworm 19	1
58Personal data of the volunteers in the consumer acceptance study19	3
59 Information obtained from the consumers acceptance study 19	5
60 Preference levels of the volunteers on the characteristics of the anti-	
wrinkle serum containing niosomes 19	6
61 Satisfaction levels of the volunteers on the characteristics	
the anti-wrinkle serum containing niosomes 19	7
62 Decision to buy the anti-wrinkle serum containing niosomes 197	7
Table B1 Preparation of the separating gel and stacking gel	

xxviii

Table	Page
Table E1 Estimated cost calculation of oil from the silkworm pupa	257
Table E2 Estimated cost calculation of sericin from silk cocoon	257
Table E3 Costs of the serum with base compositions	258
Table F 1 The of common names and international nomenclature of cosmetic	
ingredients	260

xxix

LIST OF FIGURES

Figure	P	Page
1	Life cycle of silkworm	7
2	Silk cocoon	9
3	Composition of silk filament	23
4	Structure of silk	23
5	Structure of β -sheet and α -helix of silk	24
6	Chain molecule of silk	24
7	Electron photos of 2 fibroin fibers which are joined together by sericin	32
8	4XRD of sericin, which has amorphous structure in comparing to fibroin	34
9	FTIR Spectrum of sericin shows the random coil	34
10	Composition of fibroin cocoon	38
11	Structure of β -sheet silk of in fibroin	38
12	3D structure of β -form of fibroin in silk	38
13	Schematic drawings of a niosome	54
14	Schematic representation of the three steps of niosome preparation by	
	hand-shaken method. 1: Addition of an aqueous phase to the dry thin	
	lipid film. 2: Swelling and peeling of the lipid film under vigorous agitatio	on.
	3: Milky suspension of the equilibrated niosome	55
15	Reaction of the DPPH radical in the presence of the antioxidant	
	compound during the DPPH assay	69
16	Melanogenesis pathway	70
17	Deformation-time curve of the viscoelasticity of the skin	73

Figure		Page
18	Silkworm pupa (left) and silk cocoon (right) from the five Thai native	
	silkworms Bombyx mori (Linn.); (A): Keaw Sakol; (B): Nangnoi Srisako	et;
	(C): Nang Leung; (D): Sam Rong and (E): None Ruesee	87
19	Extraction processes of the native Thai silkworm pupa oil by	
	Soxhlet extraction	92
20	Extraction process of the native Thai silkworm pupa oil by	
	the maceration extraction	92
21	Extraction of process sericin from the Thai native silk cocoon	
	prepared by extraction using basic hydrolysis	100
22	Extraction of process sericin from the Thai native silk cocoon prepared	
	by extraction using autoclave hydrolysis	101
23	Preparation processes of niosomes	106
24	The bottom-view of bottle showed different degrees of sedimentation	108
25	Preparation process of the serum base formulation 1	115
26	Preparation process of the anti-wrinkle serum formulation 2	115
27	Preparation process of the serum base formulation 3	116
28	Preparation process of the serum base formulations 4	116
29	Preparation process of the serum base formulations 5	116
30	Thai native silkworm pupa varieties silkworm pupa	124
31	The appearances of the native Thai silkworm pupa oil	125
32	The percentages of fatty acids in the native Thai silkworm oil	

extracted by Soxhlet and maceration methods 127

Figur	e	Page
33	SC ₅₀ (mg/ml) values by DPPH scavenging assay of oil from	
	various Thai native silkworm pupa prepared by the Soxhlet	
	and maceration method	132
34	IC ₅₀ (mg/ml) values by tyrosinase inhibition activity assay of oil from	
	various Thai native silkworm pupa prepared by the Soxhlet and	
	maceration process	133
35	Appearances of silk protein powder prepared by (a) autoclave	
	and (b) alkaline methods	135
36	Separation of protein by the SDS-PAGE method at 12.5% gel and	
	dyeing by comassie brilliant blue R-250	138
37	FTIR spectra of sericin from difference silk varieties obtained	
	from autoclave extraction processes compared with Promois®	142
38	FTIR spectra of sericin from difference silk varieties obtained	
	from alkaline extraction processes compared with Promois®	143
39	SC ₅₀ (mg/ml) values by DPPH scavenging assay of sericin	
	from various Thai native silk cocoon prepared by autoclaving	
	and basic hydrolysis in comparing to the standard antioxidants	
	(vitamin C, vitamin E and BHT)	145
40	IC ₅₀ (mg/ml) values by tyrosinase inhibition activity assay of sericin	
	from various Thai native silk cocoon prepared by autoclaving and basic	
	hydrolysis in comparing to the standard antioxidants (vitamin C and	
	kojic acid)	146

xxxi

xxxii

Figure	e	Page
41	Niosomes entrapped with sericin and oil from None Ruesee silkworm	
	by Canon EOS450D	150
42	Morphology of niosomes entrapped with the sericin and oil silkworm	
	prepared by CFS investigated by TEM with the magnification of ×15.k	150
43	Response surface graphs showing relations between the concentrations	
	of Montanov L and DCCB 3031 with the effects on preference	
	of skin firmness (a) and overall preference (b)	171
44	Contour plot graphs showing the score range of suitable preference	
	in the productions of raised skin firmness such as preference on	
	firmness (a)and overall preference (b)	172
45	Contour plot graph of the preference score value on the raised skin face	
	firmness and overall preference upon superimpose area derived of the	
	green area which are Montanov L and the DCCB3031 suitable amount	172
46	The Ur and Uf values of skin after using the serum base mixed	
	with 6 % w/w niosomes entrapped with sericin and oil at 0, 2 and 4 week	ks 175
47	The serum containing niosomes entrapped with sericin and oil	
	from the native Thai silkworm and the selected fragrance	180
48	Changes of pH of the developed serum stored at 30, 35 and 45°C	
	for 8 weeks.	183
49	Viscosity changes of the developed serum stored at 30, 35 and $45^{\circ}C$	
	for 8 weeks	184

xxxiii

Figure		Page
50	Change of the lightness value (L*) of the developed serum stored	
	at 30, 35 and 45°C for 8 weeks	185
51	Changes of color value on the a* of the developed serum stored	
	at 30, 35 and 45°C for 8 weeks	186
52	Changes of color value in b* of the developed serum stored	
	at 30, 35 and 45°C for 8 weeks	187

xxxiv

ABBREVIATIONS AND SYMBOLS

CFS	Chloroform film method with sonication
CFU	Colony forming unit
CHCl ₃	Chloroform
DPPH	1, 1-Diphenyl-2-picryhydracyl
TEM	transmission electron microscopy
FT-IR	Fourier transforms infrared spectroscopy
HPLC	High performance liquid chromatography
IC ₅₀	Concentration providing 50% of tyrosinase inhibition activity
LPO	Lipid peroxide
LUV	Large unilamellar vesicle
mg	Milligram
mL	Milliliter
MLV	Multilamellar vesicle
mM	Millimolar
nm	Nanometer
ppm	Parts per million
SC ₅₀	Concentration providing 50% free radical scavenging activity
SUV	Small unilamellar vesicle
TEA	Triethanolamine
TEWL	Transepidermal water loss
Tween 61	Polyoxyethylene sorbitan monostearate
μg	Microgram

XXXV

μL	Microliter
°C	Celcius degree
Psi	Pound-force per square inch
mmHg	Millimeter of mercury
g.	Gram
kg.	Kiligram
cP	Centric point