

## T 146163

พยาธิสภาพของโรคพิษสุนัขบ้ายังไม่เป็นที่ทราบกันอย่างแน่ชัด ในขณะที่มีการติดเชื้อโรคพิษสุนัขบ้า มีผู้พบการเปลี่ยนแปลงในระดับของปัจจัยต่างๆ ทางระบบภูมิคุ้มกัน เช่น cytokines, antibody, free radicle เป็นต้น โครงการวิจัยนี้ทำการศึกษาบทบาทของ free radicle, Nitric oxide, ต่อพยาธิสภาพของการเกิดโรคกลัวน้ำ การศึกษาแบ่งออกเป็น 2 ส่วน คือ การศึกษาในหลอดทดลองและการศึกษาในสัตว์ทดลอง

การศึกษาในหลอดทดลองเพื่อคุณบทบาทของ NO ต่อการเพิ่มจำนวนและการแสดงออกของ gene ของเชื้อไวรัสพิษสุนัข พบว่า exogenous NO ซึ่งผลิตจาก SNP และ SNP-ascorbate มีบทบาทต่อการเพิ่มจำนวนของเชื้อแตกต่างกัน กล่าวคือ NO จาก SNP ไม่มีผลต่อการแบ่งตัวของไวรัสในขณะที่ NO จาก SNP-ascorbate ยังยังการเจริญเติบโตของไวรัสพิษสุนัขบ้า โดยความสามารถในการยับยั้งนั้นอยู่ในขั้นตอนของการแสดงออกของ gene NO สามารถกดการแสดงออกของ N, NS, M, G และ L gene เมื่อศึกษาโดยวิธี RT-PCR โดยที่ NO ไม่มีบทบาทต่อ time course ของ translation ของ gene ดังกล่าว

การศึกษาในสัตว์ทดลองโดยการกดการทำงานของ iNOS ด้วย aminoguanidine (AG) ซึ่งเป็น selective inhibitor ของ iNOS ผลพบว่าทำให้หนูตายช้าลง และเมื่อคุณการเพิ่มจำนวนของไวรัสในสมองพบว่าหนูที่การทำงานของ iNOS ถูกกด ไวรัสจะเพิ่มจำนวนล่าช้าไป 2 วัน และเมื่อดูการตายของสมองโดยขบวนการ apoptosis ก็พบว่าเกิดช้ากว่าหนูที่ติดเชื้อ แต่ไม่ได้รับ AG ความล่าช้าในการเกิด apoptosis มีความสัมพันธ์โดยตรงกับความล่าช้าในการแสดงออกของ caspase-1 gene การกดการทำงานของ iNOS ไม่มีผลต่อการแสดงออกของ anti-apoptotic gene, bcl-2 การศึกษาในสัตว์ทดลองอีกกลุ่มคือการใช้ iNOS-knockout mice ไม่ประสบผลสำเร็จเนื่องจากการติดเชื้อหนูทดลองมีอุปสรรค

TE146163

A pathophysiological mechanism of cerebral damage and impairment of neuronal function during rabies virus infection was partially known. Synthesis of nitric oxide (NO) and expression of the inducible nitric oxide synthase (iNOS) gene are strongly upregulated during rabies virus infection. In this study the effect of NO on rabies virus replication was studied both in vitro and in vivo. For in vitro study, rabies virus infected neuroblastoma cells were treated with exogenous nitric oxide generated from SNP or SNP in the presence of ascorbate. Treatment with SNP ascorbate resulted in delay and suppression of viral replication. In contrast, treatment with SNP alone did not interfere with multiplication of this virus. The mechanism of inhibition by NO was at the level of gene expression. SNP-ascorbate treatment delayed and suppressed expression of NS gene while expression of N, G, M and L genes were only suppressed but not delayed. The delay in NS gene expression correlated with a 4 hr lag period in infectious particle production. The effect of SNP ascorbate generated NO on kinetics of rabies virus protein synthesis was also investigated. The time course of translation of N and G gene was not affected by SNP-ascorbate treatment. The delayed synthesis of NS protein corresponded to the delay in gene transcription. This information suggests that nitric oxide has been effect on the time course of translation.

The effect of NO was also investigated in experimental mouse. The iNOS activity of rabies virus infected mice was suppressed by selective inhibitor of iNOS, aminoguanidine (AG). Treatment of rabies virus infected mice with AG significantly delayed their death. Prolonged survival was not due to suppression of an inflammatory response in the central nervous system. One effect of iNOS inhibition was at the level of viral replication. Treatment with AG delayed rabies virus replication by 2 days. Moreover, iNOS inhibition also suppressed on early phase of expression of an apoptotic gene, caspase-1, which resulted in slow progression of infected cells into apoptotic death. iNOS inhibition had no effect on expression of the anti-apoptotic gene, bcl-2