
 1

Chapter 1

Introduction

1.1 General

Building design can be divided into three parts: architectural design, structural
design, and electrical and mechanical design. In addition, each part of building design
may be divided into three stages: the conceptual design stage, the preliminary design
stage and the detailed design stage. In architectural design, architects deal with the
spatial aspects of activity, physical, and symbolic needs in such a way that overall
performance integrity is assured. In structural design, structural engineers deal with
design of structural integrity and stability. Because of the modern technology, present
building architectures have become more aesthetic and complex. A complex shape of
building results in a complicated building structure that is hard to be constructed. It is
possible that changing a little architectural parts of the building results in big changes in
design of the building structure. Thus, in all stages of architectural design, architects
need to collaborate with structural engineers to produce the building design plan and
construction documents.

In structural design, engineers first have to select a structural system that is

suitable for the building by considering both architectural functionality and structural
stability. There are many types of structural system used in practice (Lin and
Stotesbury, 1981) such as rigid-frame systems, shear-wall systems, and tubular systems.
A building’s total structural system could be divided into two subsystems including
vertical subsystems and horizontal subsystems. The horizontal subsystems carry floor
loads through bending, and horizontal loads through diaphragm action. The vertical
subsystems transfer loads from horizontal subsystems to foundations.

Conceptual structural design includes selections of vertical systems, lateral

bracing systems, and floor systems. The vertical system includes columns or walls that
transmit gravity loads from floors to foundations. The lateral bracing system is an
interaction between columns (or walls) and the floor system to efficiently transmit
lateral loads from wind or seismic loads to foundations. The floor system is the
horizontal surface that transmits gravity loads on the floor including the floor self
weight to foundations. The floor system or horizontal system can be designed as slabs,
beams, or beam grid systems. There are various types of floor system such as flat-plate
floors, beam-slab floors, joist-girder floors, and waffle floors (Lin and Stotesbury,
1981).

A flat-plate floor is a floor built from slabs without beams as shown in Fig. 1.1a.

Flat-plate floors transfer floor loads directly to columns or walls with or without drop
panels at columns. Flat-plate floors can be constructed of reinforced concrete or
prestressed concrete. If reinforced concrete construction is used for flat slabs, their span
can be up to 5 m to 8 m. Reinforced concrete flat plates always need the addition of

 2

 (a) (b)

 (c) (d)

Fig. 1.1. Types of slab. (a) Flat-plate floor. (b) Beam-slab floor. (c) Joist-girder floor.
(d) Waffle floor or beam-grid floor.

drop panels or capitals to increase the punching shear resistance at all columns. On the
other hand, a prestressed concrete flat plate would have cables that hang over the top of
the columns. These cables will help to carry much of the shear directly to columns.
Furthermore, the compression produced by these cables onto the slabs helps to
strengthen the slab against punching shear. Prestressed concrete flat plates can be
relatively thin and span up to 8 m to 11 m between columns with a thickness of not over
15 cm to 22 cm.

Beam-slab floors are floors built from slabs and beams as shown in Fig. 1.1b.

Beam-slab floors may be designed as one-way or two-way floors. The benefit of the
beam-slab floor when the bay is nearly square is that beams can also be rigidly
connected to the columns to form frames that resist lateral forces in both directions. A
joist-girder floor shown in Fig. 1.1c is a variation on the beam-slab floor. Joist-girder
floors comprise one-way slabs in perpendicular directions to joists. Joists transmit loads
from slabs and their self weights to girders that support them. Actually the joist-girder

 3

floor is a beam-slab floor when all slabs are one-way slabs, and girders are those beams
supporting joists. Girders do not support slabs directly. The joist-girder floor is
desirable when a thin concrete slab is required for various reasons such as economy or
weight.

A waffle floor or a beam-grid floor shown in Fig. 1.1d is also a variation on the

beam-slab floor. Waffle floors carry floor loads in two-way directions through their
beams that are constructed in a grid. To be effective, waffle floors require that column
bays be approximately square rather than rectangular. The slab panels over the beam
grid can be very thin because the span is short and the load is carried in two directions.
The concrete ribs or slabs can be reinforced or prestressed.

If flat-plate floors shown in Fig. 1.1a are used, the floor layout is already

completed after obtaining column positions or column grids that are generally given as
requirements from architects. Therefore, the remaining structural design of flat-plate
floors is design of slab thickness. In case of waffle floors, patterns of beams and slabs
are generally designed as a square grid. Therefore, layout design of waffle floors may be
just design of beam spacing. Similarly, layout design of joist-girder floors is just to
design of joist spacing, and girders are placed between columns. In case of general
beam-slab floors in Fig. 1.1b, the first task of structural design of floors is layout design
of beams and slabs. After obtaining layouts of beams and slabs, design of section details
of the members can be performed. As a result, only general beam-slab floors in Fig.
1.1b are considered in this study.

Generally, preliminary structural design includes design of structural member

layouts, estimation of structural member sizes, analysis of structures, and design of
structures. Design of structural member layouts may be partially done in the conceptual
design stage in collaboration with architects. Structural layout design starts from
locating positions of columns or load-bearing walls depending on types of the vertical
system used. Column layouts are often arranged in grids (Schodek, 2001) as shown in
Fig. 1.2. Design patterns of columns or load-bearing walls inevitably affect patterns of

Fig. 1.2. An example of square column grid.

 4

beams and slabs. In addition, positions of permanent walls, such as brick walls on the
floors and the maximum size of slabs, always influence patterns of beams and slabs of
the floors as shown in Fig. 1.3.

By considering beam-slab floors with prescribed column positions assigned by

architects, design of structural layouts in the preliminary design stage is to design
patterns of beams and slabs on floors. After obtaining the desired layouts, beam section
details and slab section details can be determined next. Beam-slab layouts can be
classified as one-way or two-way systems (Schodek, 2001). When a support grid
consists of a square grid of columns, two-way beam-slab layouts can be obtained.
However, beam-slab patterns may greatly be constrained by the requirement of beam
positions to support permanent architectural walls that are used to partition floor areas
to rooms. The space functions of the floors designed by architects naturally are unique
for each building. Design of beam-slab layouts is heuristic. Consequently, it is hard to
find a concrete algorithm for design of beam-slab layouts.

As mentioned earlier, design of vertical systems, lateral bracing systems, and

floor systems of buildings naturally have some links to each other. Therefore, both
conceptual design and preliminary design are possibly considered concurrently. In the
relevant literatures, preliminary structural design and conceptual structural design are
usually referred to as the same thing. Normally both architectural design and structural
design are considered in three stages as stated earlier and their tasks can be performed in
parallel. However, for small-scaled low-rise buildings such as houses, building design
usually starts from preparing architectural floor plans, and then creating structural floor
plans.

Nowadays computers have been widely used as a tool in design of buildings.
There are plenty of state-of-the-art commercial programs assisting architects and

7.8 7.87.8

1.5

1.5 Unit: m
1

2.2
1.2

3.6

3

1.51.5 2.4 2.4 2.43 5.4

4.6

Beam
Slab

Column
Wall/Floor boundary

Fig. 1.3. An example of a beam-slab layout.

 5

engineers in the detailed design stage. Examples are AutoCAD for architectural design
of buildings, SAP2000 for structural analysis and design, and NASTRAN for general-
purposed analysis and design. However, there are only some computer programs for
conceptual design and preliminary design and they are mostly research programs.
Examples include SEED-config (Fenves et al., 2000), BERT (Fuyama et al., 1997),
CADRE (Bailey and Smith, 1994), CASECAD (Maher and Balachandran, 1994),
BGRID (Sisk et al., 2003), and CADREM (Kumar and Raphael, 1997).

The early stage of conceptual design involves a balance of several requirements

such as architectural requirements, structural requirements and mechanical
requirements. Conceptual design is not suitable for procedural programming. It is
because of its unclear design process. As a result, many researchers attempt to apply
Artificial Intelligence (AI) to propose algorithms for conceptual design. Many past
research computer programs for structural design of buildings fully support conceptual
structural design but partially support preliminary structural design (Maher, 1984;
Maher and Balachandran, 1994; Fenves et al., 2000). However, most of them do not
take care of some important architectural constraints such as interior permanent walls.

1.2 Automated structural design of buildings

Structural design of buildings sequentially consists of conceptual structural
design, preliminary structural design, and detailed structural design as shown in Table
1.1. The nature of tasks in structural design of buildings can be separated as tasks done
by humans (architects and engineers) and tasks executed by computers. Some tasks can
be easily done by humans while the others are more efficiently carried out by
computers. Although tasks in conceptual structural design are heuristic, there are several
successful systems using artificial intelligence for assisting engineers to select the best-
concept structural system of buildings (Maher, 1984; Sabouni and Al-Mourad, 1997;
Grierson and Khajehpour, 2002).

In structural building design, structural engineers usually have a little time to
explore potential solutions resulting in precluding a qualitative evaluation of concepts.
Therefore, conceptual structural design relies heavily upon design experience of the
designers in selecting the most suitable structural system for the buildings. Conceptual
structural design may be divided into two stages. The first stage of conceptual structural
design is collaboratively done by two parties including architects and structural
engineers. The second stage or preliminary structural design is exclusively
accomplished by structural engineers. Automated conceptual structural design focuses
on creating a structural system without the user interaction during the process.

The potential cost saving of the building project is largely affected by topology
optimization that is generally more significant than sizing optimization. Therefore, this
study is attempting to propose an automated intelligent system that supports preliminary
structural layout design of buildings from pre-specified architectural design drawings.
The automated system for structural design of buildings is the system that does not need
engineers’ intervention as shown in Table 1.2.

 6

Table 1.1. Tasks in structural design of buildings.

Tasks Nature of tasks Usually done by
Heuristic Computing Engineer Computer

Conceptual design
Design of vertical systems
Design of lateral bracing systems
Design of floor systems

Preliminary design
Design of structural member layouts
Estimation of structural member sizes
Analysis of structures
Design of structures

Detailed design
Analysis of structures
Design of structures
Preparation of construction drawings

Table 1.2. Automated structural design of buildings.

Tasks Done by engineer Done by computer

Conceptual design
Design of vertical systems
Design of lateral bracing systems
Design of floor systems

Preliminary design
Design of structural member layouts
Estimation of structural member sizes
Analysis of structures
Design of structures

Detailed design
Analysis of structures
Design of structures
Preparation of construction drawings

 7

1.3 Optimization methods

This section is devoted to an introduction to optimization methods. Optimization
methods are usually applied in solutions of mathematical problems by searching for the
best solution in a prescribed solution space. In structural design of buildings, when the
design problem is written as a mathematical problem, an optimization method can be
used as a tool to solve for the solution. Analysis tools such as the finite element method
can also be used to facilitate the optimization. In design of structural member sections,
the optimization can be used for selecting the best section from a list of available
member sections. An optimization method will also be employed in this study.

Optimization methods can be roughly classified as the gradient-based

optimization methods and the non-gradient-based optimization methods or the search-
based optimization methods. One of the advantages of the search-based methods is that
they do not need to find the gradients, making them easier to be implemented in the
computer program. The gradient-based methods include, for example, the Newton
method, the steepest descent method and the conjugate gradient method (Deb, 1995).
The gradient information is usually difficult to find even in simple problems.
Consequently, the gradient-based methods may not be applicable to some practical
optimization problems. There are many powerful algorithms for the simple search
methods such as the exhaustive search method, the Fibonacci search method and the
Golden Section search method (Deb, 1995). However, the use of the simple search
methods is normally limited to one- or two-variable non-constrained problems.
Complex constrained problems can be solved using the advanced search methods
including, for example, Genetic Algorithms (GAs), Ant Colony optimization (ACO),
and Simulated Annealing (SA).

GAs are global probabilistic search algorithms inspired by Darwin’s survival-of-

the-fittest theory. They have received considerable attention because of their versatile
application to several fields. A GA starts from many points in the search space at the
same time. These starting search points are usually selected randomly. Through the
consideration of the fitness values of these search points, which are given based on their
merit, and the randomized information exchange among the points, a new set of the
search points with higher merit is created. The process is then repeated until the
satisfactory result is obtained. Since the technique utilizes information from many
search points at the same time, there is less chance for the search to be trapped in any of
the local optimal points. Another distinguishing characteristic of GAs is that the
algorithms work with coding of the parameter set not the parameters themselves.
Generally, the binary code is used. Because of the discrete nature of GA coding, the
algorithms are the perfect choice for those problems with discrete variables.

An ACO is developed for combinatorial optimization problems. The ACO

mimics the foraging behavior of ant colonies in the real world. The efficient foraging
behavior of ants is achieved by indirect communication between ants via the use of
pheromone. It is well known that ants lay and follow pheromone trails. The ACO solves
problems by simulating this natural behavior of ants while they find their shortest path
to the food source. Artificial ants in the ACO algorithm will repeatedly walk on
different paths which are considered as different solutions. The path or solution with

 8

high quality will receive more pheromone by artificial ants. In the next round of
walking, artificial ants will search for better solutions by looking for the path that has
high level of pheromone. This process can be repeated until the satisfactory result is
obtained.

An SA is inspired by an analogy between the physical annealing of solids

(crystals) and combinatorial optimization problems. In the physical annealing process, a
solid is first melted and the cooled very slowly, spending a long time at low
temperatures, to obtain a perfect lattice structure corresponding to a minimum energy
state. SA transfers this process to local search algorithms for combinatorial optimization
problems. It does so by associating the set of solutions of the problem under
consideration with the states of the physical system, the objective function with the
physical energy of the solid, and the optimal solutions with the minimum energy states.

Optimization methods are extensively used in engineering design problems

(Arora, 2004). Optimization methods have been also widely used in civil engineering
problems. Examples are the applications of GAs to optimize truss structures (Rajan,
1995; Galante, 1996; Rajeev and Krishnamoorthy, 1997; Nanakorn and Meesomklin,
2001), the applications of ACO to optimize truss structures (Camp et al., 1998;
Nimityongskul, 2004), and the application of GAs to optimize reinforced concrete
beams (Coello et al., 1997; Griffiths and Miles, 2003).

1.4 Statement of problems

Structural floor layouts of buildings normally consist of beams and slabs.
Layouts of beams and slabs greatly affect the final design of structural elements and
subsequently the construction cost. Structural engineers practically use their engineering
knowledge and experiences to create suitable beam-slab layouts that satisfy given
architectural floor plans. Under the conventional wisdom, design of beam-slab layouts
of buildings is a task that fully needs humans’ involvement. In fact, all design tasks
need different degrees of human intuition. Those design tasks that require a little of
human intuition and can be systematically written as algorithms may be easily delegated
to computers. In contrast, other design tasks that require a lot of human intuition and do
not have clear algorithms cannot be done without designers’ experiences. Table 1.3
shows a possible classification of structural design tasks in various design stages. The
table aims to compare the degrees of heuristics and computing and also identify the
roles of engineers and computers in these design tasks. It is quite apparent that the tasks
in the conceptual and early preliminary structural design stages are heuristic and
normally done by using engineers’ experiences. On the other hand, those tasks in the
later design stages are more computing oriented by their nature and, consequently, more
suitable for computers. Although it may seem that some of the heuristic design tasks
shown in Table 1.3 are not difficult and can be handled quite easily even by engineers in
practice, these easy tasks unfortunately prevent the whole design process from being
completely automated. In addition, since these heuristic tasks rely on engineers’
experiences, their solutions will naturally come from the limited scope of each
individual’s experiences and may not include some good alternatives.

 9

A number of attempts have been made to remove the hindrances to the
development of complete design automation that are created by different heuristic
design tasks. The utilization of artificial intelligence (AI) makes it possible to create a
wide range of solutions for heuristic design tasks. Some popular branches of AI that are
used to solve design problems include knowledge-based expert systems (KBESs), case-
based reasoning (CBR) and genetic algorithms (GAs). Recently, many researchers have
proposed computer systems to handle some heuristic tasks in structural design by using
KBESs (Maher, 1984; Sriram, 1987; Balachandran, 1993; Tsakalias, 1994; Syrmakezis
et al., 1996; Fuyama et al., 1997; Sabouni and Al-Mourad, 1997; Sacks and
Warszawski, 1997; Syrmakezis and Mikroudis, 1997; Fenves et al., 2000; Sacks et al.,
2000), CBR (Bailey and Smith, 1994; Maher and Balachandran, 1994; Kumar and
Raphael, 1997), and GAs (Grierson, 1996; Park and Grierson, 1999; Grierson and
Khajehpour, 2002; Rafiq et al., 2003; Sisk et al., 2003).

Automation of beam-slab layout design is actually an ill-defined problem,

meaning that it is even not clear how to express explicitly the objectives of the layout
design process. As a result, when a GA is used to solve the problem, the main issue
becomes how to represent a layout design problem as a mathematical optimization
problem. The quality of any proposed new GA for automated floor layout design
therefore depends on how the representative optimization problem is written. This study
aims to develop a new GA for beam-slab layout design. The primary input of the
algorithm is an architectural floor plan with given positions of columns and walls.
Before the development of the proposed GA can be done, a new coding scheme for
beam-slab layouts must be developed. After that, the beam-slab layout design problem
has to be written as an optimization problem. This is done by establishing appropriate
objective and constraint functions for the problem. To make the proposed GA simple

Table 1.3. Roles of engineers and computers in structural design of buildings.

Process Process characteristic Role of
engineers

Role of
computers

Degree of
heuristics

Degree of
computing

Conceptual design
Design of vertical systems High Low Processor Helper
Design of lateral bracing systems High Low Processor Helper
Design of floor systems High Low Processor Helper

Preliminary design
Design of structural member layouts High Low Processor Helper
Estimation of structural member sizes High Low Processor Helper
Analysis of structures Low High Helper Processor
Design of structures Low High Helper Processor

Detailed design
Analysis of structures Low High Helper Processor
Design of structures Low High Helper Processor
Preparation of construction drawings Low Low Processor Helper

 10

and, as a result, more attractive, the simple GA (Goldberg, 1989) is employed as a core
algorithm for the development of the proposed GA. To show the validity of the
proposed algorithm, the algorithm is used to design beam-slab layouts of several
example architectural floor plans.

1.5 Objectives

1) To develop a genetic algorithm for beam-slab layout design.
2) To establish an appropriate coding scheme, an objective function, and

constraints for the proposed genetic algorithm.

1.6 Scope of this study

As mentioned earlier, this study aims to create a GA for beam-slab layout design
of buildings. The algorithm will be implemented in C++. The scope of the study is as
follows:

1) Only beam-slab floors with prescribed positions of columns and walls are

studied.
2) Only rectangular and rectilinear floors are considered.
3) Construction costs are not considered.
4) The simple GA is employed as a core search algorithm.
5) Roulette wheel selection is used in the GA reproduction process.
6) One-point crossover and bitwise mutation are used in the GA generation

process.
7) An adaptive penalty with bilinear scaling is used to handle design

constraints.
8) Elitism is used to keep the best individual.

 11

Chapter 2

Literature Reviews

In structural building design, beam-slab layout design is a task in preliminary
structural design. Conceptual design and preliminary design are frequently considered
as the inseparable design process. Recently, there are attempts to concurrently handle
conceptual and early preliminary structural design that are heuristic by using computers.
Many past related research works employ techniques of Artificial Intelligence (AI). In
this chapter, the literature on conceptual structural design and preliminary structural
design that employ AI techniques is presented below.

2.1 Conceptual structural design

Conceptual structural design is not a simple process in that it requires

considering both quantitative and qualitative criteria. It is the unstructured process
involving the application of the designer’s experience and judgment in a qualitative
manner to arrive at a number of alternative best-concept design scenarios. Many
techniques of AI are employed to handle the conceptual structural design of buildings.
Examples are knowledge-based expert systems (KBESs), case-based reasoning (CBR),
and Genetic Algorithms (GAs). AI techniques assist engineers in exploring conceptual
design alternatives and making design decisions by performing systematic search over a
space of possible solutions under constraints.

A KBES is an interactive system consisting of a knowledge database and an

inference mechanism. The knowledge database is a collection of general facts of the
problem domain. The inference mechanism is an engine that carries out the reasoning
whereby the expert system reaches its solution. CBR involves finding solutions to new
problems through reusing available good solutions to similar past problems. CBR
consists of three main processes, i.e. representation of cases, indexing and retrieval of
cases, and adaptation of cases for the current problem. A GA draws an analogy from the
biological evolution. It uses codes to represent solutions and improves the solutions by
using genetic operators, i.e. reproduction, crossover, and mutation.

From Table 1.1, the first design stage is conceptual structural design, which

mainly includes selection of structural systems. There are many computer-based
techniques employing KBESs, CBR or GAs in selecting the most suitable structural
systems of buildings. Some of these techniques perform not only conceptual structural
design but also, at the same time, architectural layout design.

In the 1980s and 1990s, many researchers had proposed an interactive system

employing AI for assisting engineers to select the structural system. Many AI researches
concerning conceptual structural design of buildings mostly utilized KBESs and CBR.

 12

For example, Maher (1984) had proposed an interactive KBES for conceptual and
preliminary structural design of hi-rise buildings, called HI-RISE. HI-RISE performs
conceptual structural design by generating feasible alternatives for two functional
systems: the lateral load resisting system and the gravity load resisting system. The
outputs of HI-RISE are alternative structural systems without complete solutions of
preliminary structural design. HI-RISE represents the design information in a network
of schemas. The structure of the network is predefined by schema templates stored in
the knowledge base. In addition, HI-RISE performs an approximate analysis and
preliminary proportioning to determine the feasibility of the alternative. Sriram (1987)
employed a KBES with techniques that are similar to those of HI-RISE to solve similar
problems.

Sabouni and Al-Mourad (1997) had developed a knowledge based expert

system, called TALLEX, for preliminary design of tall buildings. The optimum
structural system for tall buildings is selected based on the virtual number of stories.
The main idea of the virtual number of stories is the taller the building, the more
efficient the required structural system. The virtual number of stories is the actual
number of stories of the building plus the additional number of stories that is converted
from other factors such as the geometry of the building, the intensity of the design wind
and earthquake loads, and the soil conditions. The additional number of stories is
calculated from the multiplication of the actual number of stories and the summation of
the numerical value of three factors: the load parameter, the material parameter, and the
geometry parameter. The maximum addition number of stories is 0.4 times the actual
number of stories. The numerical value of the load factor is based on the input values of
the importance, the wind speed, and the seismic zone. The value of the material factor
depends on the bearing capacity, the corrosion protection, and the fire protection. The
value of the geometry factor depends on the possibility of providing enough space for a
shear wall, the building symmetry, the possibility of providing closely spaced columns
in the perimeter, and the opening requirements in the shear wall. The optimum
structural system is selected from the available choices that are pre-defined in the
system using the virtual number of stories and the rate of acceptance for each structural
system that is based on the actual number of stories.

Balachandran (1993) had developed a knowledge-based optimum design system,

called OPTIMA, coupling the symbolic processing and numerical computation. The
proposed system comprises five major components: user interface, semantic interpreter,
problem formulator, problem recognizer, and problem solver. The system is mainly
developed for optimal structural design. Although the system is a domain specific
system for optimal design of structures, it is a problem independent system in that, for
example, the system can solve optimization design problems of floor layouts, and sizing
optimization design of beams. The user interfaces are as follows: menu selection,
question-answering, pseudo-English-phrase input, and graphical input. The problem
formulator module carries out the task of formulating a design problem as a canonical
optimization model. The problem recognizer performs the selection of an optimization
algorithm which is suitable for the problem. There are many implemented optimization
algorithms available in the system for the designer to select, such as linear
programming, and nonlinear programming.

 13

Maher and Balachandran (1994) had implemented the system, called
CASECAD, for conceptual design of hi-rise buildings employing CBR and a
multimedia database. The information of design cases are largely derived from
structural drawings and project reports. The design prototype stored in the case base has
many attributes that are categorized as the function, the behavior, and the structure. The
visualization of structural data of the design case can be stored in a DXF file and can be
display in general CAD programs. Two kinds of indexes are employed: the category
indexes and the attribute indexes. The best similar cases are retrieved using the nearest
neighbor technique. The similarity of a retrieved case to the problem is measured by the
number of matching features in their specifications.

As mentioned above, there were many researchers using KBESs and CBR to

develop the conceptual structural design of buildings. However, many systems
employing KBESs have the difficulty of combining the knowledge of human experts
with heuristic search in a computer system. Recently, many researchers have attempted
to use genetic algorithms (GAs) in conceptual structural design and preliminary
structural design. The literature concerning preliminary structural design is separately
presented in the next section.

Mathews and Rafiq (1995) had used GAs in conceptual design of concrete

buildings and had proposed the system for generating the grid system and selecting the
floor type. The objective of the system is to maximize the size of clear functional
spaces, representing lettable floor areas, by minimizing the number of bays that are
partitioned in each direction of the plan layout by the structural grid lines. The search
space is limited to medium-rise reinforced concrete office buildings without considering
the lateral forces. By employing the heuristic knowledge regarding cost and
functionality, the proposed system intentionally optimizes the design of the structural
grid layouts. The design knowledge that the system employs to evaluate and appraise
the generated floor layout are as follows. First, floor beams and slabs will span over
columns to form a floor system. Second, the economic limit of span length is set to 4m
to 8m for the RC floor system. Third, columns are arranged in lines in two orthogonal
directions for the practical purpose. Finally, the structural grid lines are preferred to be
regularly spaced for the cost-efficient and easier construction purposes. The design
variables include the type of the structural system and the building dimensions. The
dimensions of each bay are limited to whole-meter or half-meter intervals. Beams and
columns are approximately designed by interpolating the required amount of steel from
the existing design charts implemented in the system. The design chart is prepared in
terms of the relationship between the beam span, loaded width, and the required amount
of longitudinal reinforcement. The objective function is defined as follows:

2 2

1 1
min() (1) (1)

m n

i j
i j

C n x m y
= =

= − + −∑ ∑ (2.1)

where C is a measure of the number of bays and their distribution, to be
minimized. In addition, ix is the width of the ith bay in the x direction while jy is the

 14

width of the jth bay in the y direction, and m and n are the number of bays. The
quadratic penalty functions defined as the factored standard deviation of ix and jy are
also applied to encourage solution with bay widths in the economic range. Each bay
width is encoded as a separated binary substring. After obtaining the optimized
structural grid, the system has a successive process to determine the most economic
structural system by using the estimated pre-set unit costs. The available structural
systems in the system are classified as the concrete frame and the steel frame.

Grierson (1996) proposed a system for the conceptual structural design of

buildings. The system employs both genetic algorithms (GAs) and a neural network
(NN). The system is a semi-automated system in that computational techniques are
employed to generate conceptual design while their evaluation depends on the user.
Design variables are defined by the indices and then are coded as a binary string. The
design variables include the building function, the building shape, the floor type, the
vertical system, the lateral system, the lateral bracing and the foundation type. The
proposed system starts with randomly creating a solution and then lets user to evaluate
and then trains NN. After that the GAs are applied to generate the new solution, and
then the user has to evaluate them again. If the current best solution satisfies the user,
then the system will terminate. However, if the current best solution does not satisfy the
user, then the user has to modify attribute’s the current solution and then NN will be
trained and GAs will be applied. The system will repeat the above process until the best
solution satisfies the user.

Grierson and Park (1996) had employed GAs to propose a computer-based

approach to conceptual topological design of a building framework. The proposed
system has the limitation that it can search only for the optimal uniformly structural grid
of the square-shaped building. In addition, the beam-slab-column structural system is
only studied. The proposed system attempts to minimize the cost function consisting of
costs for land, columns, and beams. The cost function has factors reflecting the
variability of beams with slabs, of columns, and of land costs with changes in the span
length and the site areas. By keeping the total required floor area constant, the number
of bays and stories will be optimized. The square floor plan dimensions are calculated
by the square root of the ratio of the total required floor area to the number of stories.

Park and Grierson (1999) had employed the Pareto-optimal multicriteria genetic

algorithms to handle the conceptual structural grid layout design of rectangular-shaped
buildings. Two objective functions are investigated including minimizing the estimated
construction cost 1()f and maximizing the flexibility of usable floor space 2()f . The
estimated construction cost is composed of the floor system cost, the column cost and
the land cost. The flexibility of floor space usage is quantitatively defined as the
minimization of an exponential function that relates tributary load area to the spacing of
columns. Five basic design variables comprise the two plan dimensions, the number of
stories and the two numbers of bays. Five related design variables are the floor type
system, the floor plan type, the two numbers of eliminated bays, and the starting floor
number for any one of the floor plan types. In their study, the building may have one or
two different floor plan types over its height. Four floor plan types are available. There
are two types of constraints applied in their study: hard constraints and soft constraints.

 15

Hard constraints are composed of the specified maximum dimensions of the building
site, the specified building height restriction and the number of eliminated bays in the x
and y directions required to create any of the floor plan types. A soft constraint is the
required total floor area for the building. The soft constraint may be violated to some
extent. However, the solution that violates any of hard constraints is not allowed to
survive as a viable design in the search to find the Pareto-optimal design set. The fitness
evaluation is based on a distance metric related to the Pareto-optimal set. The relative
distance D is calculated using the Euclidean norm as shown in Eq. (2.2)

0.520

0

() ()
() min , 1,..., ; 1,...,

()
i j i

i i j

f f
D i Q j P

f

⎡ ⎤⎧ ⎫−⎪ ⎪⎢ ⎥= = =⎨ ⎬⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
∑

x x
x

x
 (2.2)

where, for the ith objective criterion, 0()i jf x is the objective function value for Pareto

design 0
jx and ()if x is the objective function value of the design x . The fitness value

of the current population F is calculated using Eq. (2.3), i.e.

0() ()F F D= −x x (2.3)

where 0F is the shared fitness of the current-generation Pareto-optima design set. For
the initial population, 0F is arbitrarily positive value that is large enough to ensure that
F is not negative. For later generations, 0F is the summation of the previous 0F and
D (using the previous generation 0()i jf x). In case that there is no new Pareto design,

the 0F value of the Pareto design set is retained. After assigning design fitness, the
remaining process of the multicriteria genetic algorithms is the same as the simple GA.
Each solution is encoded as a binary string. Each individual comprises 26 genes. The 4-
bit substring represents the 16 types of bay size parameters. The 8-bit substring
represents the numbers of bays in x and y directions. The 6-bit substring represents the
numbers of eliminated bays in x and y directions. The 4-bit substring represents the
starting floor number for any one of the floor plan types. The 2-bit substring represents
the four floor plan types, and the 2-bit represents the four floor systems. Grierson and
Khajehpour (2002) solved similar problems also by a multicriteria GA with Pareto
optimization. Their algorithm uses three objectives, namely minimizing the capital cost,
minimizing the annual operating cost, and maximizing the annual income revenue.
Binary-string design variables employed include building dimensions and structural
system types.

 16

2.2 Preliminary structural design

The goal of preliminary structural design is to find a feasible arrangement of

structural elements in space that are able to transfer, safely and efficiently, loads to the
ground. The outcome of this stage is an initial description of the structural system in
terms of the layout of its members with associated cross-sectional properties,
connectivity and materials. However, the preliminary stage of a truss structure is
probably performed simultaneously with the structural optimization.

The second design stage in Table 1.1 is preliminary structural design whose

tasks include design of structural member layouts, estimation of structural member
sizes, analysis and design of structures. For design of beam-slab layouts, the main
purpose is to create beam-slab layouts for given architectural floor plans. Recently,
there have been many researchers that try to solve problems of beam-slab layout design
by using KBESs, CBR and GAs. For example, Tsakalis (1994) proposed a knowledge
based system called KTISMA for synthesizing the structural model of asymmetrical
skeletal buildings made of reinforced concrete. The KTISMA system is an approach to
create a beam and slab layout for the ceiling of an apartment. The only input required by
the system is a proper description of the architectural floor layout. The system creates a
solution using a simulation whereas the structural model is iteratively altered and tested
until a “good” solution is reached. The system acting on a common blackboard employs
many different knowledge sources such as an architectural knowledge considering the
structural model from the aesthetic perspective, and a static knowledge considering the
evaluation of the merit of spans and indirect support. The system employs two heuristic
strategies: the local level heuristic and the global level heuristic. The global level
heuristic is used for producing more solutions in case that the solutions obtained from
the local level are not good overall solutions. At the local level of reasoning, the system
starts with an arbitrary quadrangle evaluated by the knowledge sources of the system
such as the span’s length evaluation, the beams’ appearance evaluation, and the beam’s
indirect support evaluation. At the global level of reasoning, the system employs a
variation of the backtracking algorithm using a graph path that forms a feasible solution.

Syrmakezis et al. (1996) proposed a user-interactive commercial program called

VK.EXPERT for preliminary seismic design of reinforced concrete multistory buildings
using the knowledge-based expert system. The program consists of five modules:
DIRECTOR for controlling program flow, DRAW for entering the input data and
displaying the results based on a small CAD kernel, MAKE for generating alternative
structural system configurations satisfying all constraints prescribed by the user, SIZE
for providing an initial sizing of members (columns-beams-slabs), ASSESS for
performing the structural analysis. The most important module is the MAKE module
that generates a set of feasible configurations of the structural system. MAKE employs
two basic geometric shapes, rectangles and triangles, for matching the structural system
outline to the user-input architectural outline of the building on each floor level.
Columns and beams are placed in the limits of currently defined architectural spaces.
The structural layout results from combining existing architectural spaces. MAKE
generates alternative configurations by modifying accordingly the influence of each
design parameter based on fuzzy logic. The criterion for validating the generated
solution is based upon the user-definable optimality of the dimensions of generated

 17

slabs while the program provides reasonable default value based on the overall building
dimensions. The program locally searches for the best solution and uses the
backtracking technique in case the local optimal is not a good overall solution. The
improved research-based version of the VK.EXPERT system is ERDES (Syrmakezis
and Mikroudis, 1997).

Sacks and Warszawski (1997) and Sacks et al. (2000) proposed a project model

for an automated building system. The system represents the project information by a
tri-hierarchical project model—spaces, assemblies, and activities. The system employs
knowledge-based modules to automatically generate information for the design and
construction planning of a building project. The system employs the object-oriented
technique to invent the intelligent parametric templates of building layouts and work
assemblies. A prototype program had been implemented on the AutoCAD platform
using AutoLISP++ extension. The proposed system can be separated into 7 stages.
Stage 1 is the input of the user’s requirements such as the location of the building, the
function of the building, and its service area. Stage 2 is the generation of the preliminary
design information called the design brief, for instance, the floor areas, performance
specification in terms of loads. Stage 3 is the conceptual design including the building
footprint, elevation partitioned into floor, the general function, the permitted building
height. Stage 4 is the general design involving the layout of each floor, the division of
each floor into its “secondary spaces” such as rooms, corridors, and service areas. Stage
5 is the general design involving selection the main work assemblies. The assemblies—
the structural system, the exterior envelope, the sanitary systems etc.—are the systems
which the building employs to perform its functions. Stage 6 is the detailed design
involving each of the work assemblies. Stage 7 is the construction planning—the
construction schedule, cost estimate and budget. The proposed system has three types of
knowledge—the knowledge for the project model, the knowledge modules for the
procedure, and the knowledge for the external data such as costs. The value of each
parameter in a template is determined by application of knowledge-based procedures to
the context data. These procedures form an integral part of the template and are
associated with them in the same way as methods are associated with object classes in
the object-oriented paradigm, and they may contain rules, algorithms and functions.
Templates include features of all the knowledge types mentioned before: object classes,
procedures for their installation, and the data used for this purpose. The proposed
system is an interactive system and limited to rectangular-shape multistory buildings
with a uniform floor type of RC ribbed slab on beams. The system does not have any
automated “learning” capability, although this is desirable in a full system.

Bailey and Smith (1994) had developed a case-based reasoning approach to be

integrated with CADRE, the existing CAD system. The approach focuses on
dimensional and topological adaptation of geometric methods of existing building
information stored in the case base to find solutions for the new design problems. The
proposed approach is a user-interactive system working on CADRE. The process of the
system can be briefly explained as follows. The user selects an appropriate building case
from the case base, then, the selected case is parameterized by CADRE and initial
constraints describing both structural and architectural characteristics and their
relationship to each other are generated automatically. The user also defines additional
constraints concerning the new design problem. CADRE then attempts to solve the

 18

problem using the defined constraints and the adaptation process. The generated
constraints used in the system are, for example, span-depth ratio for beams and the
spacing of structural frames and the overall length of a building. If the solution is not
found after applying the constraints, the user can let the system do the topological
adaptation process to solve the problem. It means that the solution will be changed
considerably in details. Commonsense domain-independent rules are employed. For
example, if longer spans are preferred, the number of frames must be less. Domain
knowledge is employed for deciding when the type of construction needs to be changed.
For example, a flat slab floor is suitable for spans up to 8 m, but longer than that, a
beam-slab floor is preferable. In case that the room layout needs to be changed to satisfy
the architectural constraints, the algorithm for generating alternative arrangements of
rectangles is employed.

Kumar and Raphael (1997) had employed the case-based reasoning technique to

propose the system called CADREM for the conceptual design of structural layouts of a
building. The system represents cases for different tasks by design methods containing
the sequence of steps used in individual design problems. The design methods are
represented using a data structure called method-object. Moreover, the retrieval process
is organized as a process based on examples called RBEX. By using individual
examples of retrieval, more general retrieval methods (RMs) are generated heuristically.
The CADREM processes can be briefly explained as follows. First, the top level design
task and a set of variables describing the problem specification are sent to the RBEX.
After that, the similar cases are retrieved using RMs. Some tasks of the retrieved
method are set as the low level method which would directly give partial solution to the
problems. The remaining subtasks are iteratively solved by RBEX until the low level
method is obtained, giving more partial solution. Finally, all the partial solutions are
integrated into the final solution. The contents of a case are (1) a set of preconditions for
which the design is generated, (2) the definition of the design task, and (3) the method
used to arrive at the design. The top level task consists of four subtasks: (1) arriving at a
pattern, (2) designing a horizontal spanning system, (3) designing a vertical support
system and (4) designing a lateral load resisting system. The arriving at a pattern
process has the two following subtasks: generating rows of blocks and combining rows
of blocks. The employed method for generating rows of blocks is combining blocks in
the horizontal direction. CADREM has many alternatives for the horizontal spanning
system such as a one-way slab system, a two-way slab system, a waffle slab system, and
a truss system. The method for design of a floor system has two subtasks: first, selecting
the type of floor system and second, designing the selected floor system. The selection
of the type of the floor system has four steps: (1) checking the aspect ratio of the
individual blocks, (2) checking whether the dimension of the blocks are suitable for one
system or the other, (3) checking the continuity across the blocks, and (4) considering
construction details.

Fenves et al. (1995) and Fenves et al. (2000) had proposed the conceptual-

structural-design sub-module of the Software Environment to support the Early phases
in building Design (SEED-config). The proposed system is one of three sub-modules of
the SEED, an interactive computer program for building design. This proposed system
represents design information by exploiting the hierarchical nature of building
description and employing an object-oriented data model. The system represents every

 19

building element as a building unit, a general container that encapsulates the entity’s
geometry, taxonomy, properties, relationships, and the design knowledge that generates
it. The system encapsulates design knowledge in a set of technology nodes. A
technology node has three basic functions: the prerequisite specification (e.g. Waffle
slab has prerequisites: Two-way and Concrete), the applicability specification (e.g.
Two-way slab is applicable if the slab has square dimensions and is supported on four
sides), and the action specification. The system has a case-based reasoning system
supporting the storing and retrieval of past solutions and their adaptation to similar
problem solutions. Case-adaptation in the system relies on the technology nodes. If the
technology node’s antecedents are satisfied, they are applied to the current building
entity. The adaptation process continues down the sequence of retrieved nodes in the
case until an applicability requirement of a technology node is violated or until the end
of the path is reached.

Because of the efficiency of GAs in finding good solutions from large search

spaces, GAs have become a popular technique for structural design. Applications of
GAs in structural design had been initially found in truss optimization (Goldberg, 1989;
Rajeev and Krishnamoorthy, 1992; Adeli and Cheng, 1994). Later on, GAs have been
used to solve more diversified types of structural design problem (Coello et al., 1997;
Kameshki and Saka, 2001; Camp et al., 2003; Griffiths and Miles, 2003). For floor
layout design problems, GAs have been mostly used for design of architectural floor
layouts (Gero and Kazakov, 1998; Jo and Gero, 1998; Michalek et al., 2002; Michalek
and Papalambros, 2002; Bausys and Pankrasovaite, 2005). They are rarely used for
beam-slab layout design and there are only few related researches.

For example, Rafiq et al. (2003) proposed an interactive conceptual building

design system based on the structured genetic algorithm technique, called shortly SGA,
to represent the structural system of buildings. The search space is limited to the
uniform-grid rectangular-shaped building. The chromosomes of SGA contain two types
of genes: (1) parameter genes which represent design parameters and (2) switch genes
used for activating or deactivating different segments of a chromosome. The advantage
of using the SGA is that the user can control the system to find the best solution in the
predefined search space. For example, the user can still find out what will happen if
concrete is used by deactivating the steel-frame switch-gene and thereby forcing the GA
to consider the concrete option only. The required input data are the required net lettable
floor area, the rate for rent, the imposed loading on the floor, the cost of land, and the
required service life of the building. The problem is formulated for the minimization of
the profit determined by subtracting the capital cost if the building structure from the
total income.

Sisk et al. (2003) had proposed a user-interactive GA-based decision support

system for the conceptual design of multistory office buildings, called BGRID. The
required input data are divided into four parts as follows: (1) the plan dimension and
number of floors, (2) the site location and planning restriction such as the maximum
allowable height, and the minimum floor-to-ceiling height, (3) the location of core and
atria, and (4) the dimensional constraints. The design solutions consist of the structural
system, the environmental strategy, and the uniform grid system. The design variables
are the grid, the structural-service integration strategy, the environmental strategy, and

 20

the floor-to-ceiling height. The search space is limited to the rectangular-shaped steel
buildings with a specified number of stories and dimensional constraints. The design
variables are coded as real-coded strings. The selection technique employed in BGRID
is the standard fitness method (Bradshaw and Miles, 1997). The standard fitness method
ranks the population using the raw fitness values and then allocates predetermined slot
size on the roulette wheel. The slot sizes are computed using the standard deviation of
the normal distribution. Each individual in the population can be divided into three
paths including the substring representing the x coordinates of the columns, the
substring representing the y coordinates of the columns, and the substring representing
the floor-to-ceiling height. The crossover operator is applied individually to each of
three substrings of an individual. The system has three objective functions including
minimizing the cost, maximizing the clear span and maximizing the use of natural
resources. In the evaluation process, the user has to select the weighting important
factor for such three objectives. The objective function for minimizing the clear span is
defined as the ratio of the average span to the largest span. The penalty method is used
when the generated solution does not pass constraints. The constraints are composed of
three parts as follows: (1) the height restriction, (2) The compatibility of the generated
structural system with respect to the span length, and (3) the uniformity of the grid. The
fitness function that is to be maximized is in the following form:

j ibad
iobj

igood ibad

f f
f

f f
−

=
−

 (2.4)

where iobjf = the fitness of the individual component; ibadf = the value of the worst
individual generated up to that point; igoodf = the value of the best generated up to that

point; and if = the value of the evaluated parameter for the individual within the
current population.

Shaw et al. (2008) have recently proposed a method of determining column
layouts for orthogonal buildings using the sweep line algorithm coupled to an adjacency
graph. The problem include framed buildings that are defined as buildings consisting of
columns and beams with slabs to support the floors. The proposed algorithm is called
OBGRID (Orthogonal Building GRID). In some ways, OBGRID can be thought of as
an enhancement of BGRID (Miles et al., 2001). The algorithm only devises layouts
where the columns are arranged in rectangular grids. The user has to provide the
dimensions of the boundary, the location and sizes of any atria, the maximum,
allowable height and to specify the total number of stories. By using a sweep line
algorithm, an orthogonal floor plan is partitioned into rectangles that are subsequently
assigned column spacing, and an adjacency graph is constructed. The representation
focuses on aligning columns in rows. The representation uses a separate string to store
the x and y coordinates. The variable length genome is used. Each genome is divided
into three distinct sections with real number encoding. Sections 1 and 2 of the genome
contain values of column spacing in the x direction and values of column spacing in the
y direction. Section 3contains the height parameters. In the GA operation, the mutation

 21

operator selects a gene from sections 1 or 2, and then the gene is replaced with a
randomly generated value between 0 and the maximum x or y dimension. After the
insertion of the mutated value, if required, the genome is sorted. If a gene from section 3
is chosen, it is mutated as normal. Single point crossover is used on each of the
genome’s three sections. The reproduction process employs a conventional tournament
selection technique. OBGRID applies the same fitness function as BGRID to each
individual partition’s genome and aggregates the results. A quadratic penalty function is
employed to compute the augmented fitness. For orthogonal buildings, having selected
the individual to mutate, the mutation operator randomly chooses one partition and
applies the mutation procedure. Having mutated its genome, the section is placed back
into the building and all adjacent sections are updated to prevent column alignment
mismatches. Once recombination has been accomplished, the altered sections are
reinserted into the building and all other adjacent partitions updated. The algorithm has
been tested on a number of examples. The scientific rigor of the evaluation is limited by
the lack of test cases; however visual inspection using the heuristic of reasonably
consistent column spacing provides a good measure of performance. This shows that the
method works well except for complex buildings which result in a lot of partitions.

 22

Chapter 3

Genetic Algorithms

Genetic algorithms (GAs) belong to a class of stochastic search methods. The
concept of GAs is based on Darwin’s theory of natural selection. In addition, GAs
operate on a population of solutions at any one time. GAs are efficient and broadly
applicable global search procedures especially for engineering optimization problems
(Rajeev and Krishnamoorthy, 1992; Mathews and Rafiq, 1995; Rajan, 1995; Galante,
1996; Grierson, 1996; Camp et al., 1998; Soh and Yang, 1998; Grierson and
Khajehpour, 2002; Krishnamoorthy et al., 2002; Foley and Schinler, 2003; Rafiq et al.,
2003; Sisk et al., 2003; Kicinger et al., 2005). GAs do not require gradient information
and continuity assumption. Moreover, they work with a coded parameter set, not with
the parameter themselves, and they search simultaneously from multiple points, not a
single point. As such they are broadly used for solving nonlinear multidimensional
problems that are usually met in the civil engineering problems.

The basic idea of GAs is to start with a set of solutions, randomly generated
using the allowable values for each design variable. A set of solution is generally called
a population. A solution is genetically called an individual or a chromosome string or
shortly called a string. Actually a substring is a chromosome, but in some cases there is
only one substring in an individual, thus a substring or a string is the same thing, and
then an individual is shortly called as a chromosome or a string. A chromosome actually
can be created from a lot of genes depending on the coding method for a design
variable. Moreover, when the design variable is coded as one gene then a gene is
usually referred to as a chromosome.

Each individual is also assigned a fitness value computed from an objective
function. From the current population of individuals, a pair of individuals is selected
randomly with a bias allocated to more fit members of the population. Random
processes are used to generate new individuals using the selected subset of individuals.
The size of the population is usually kept fixed. Since fitter individuals of the
population are used to create new individuals, the successive populations have a higher
probability of having individuals with better fitness values. The process continues until
the stopping criterion is satisfied. GAs generally consist of a series of three processes:
(1) coding and decoding design variables into chromosome strings or individuals, (2)
evaluating the fitness of each individual of the population, and (3) applying genetic
operators to generate the next generation of the population (Arora, 2004).

3.1 Objective and fitness functions

Although GAs are suitable for unconstrained optimization problems, a
constrained optimization problem using GAs can be generally expressed as Eq. (3.1).

 23

Maximize

1 2() [()], (, ,...,) ,N
NF F f x x x= = ∈x x x R (3.1)

under constraints defined as

() 0, 1,2,..., ,
() 0, 1,2,..., .

i

i

g i K
h i P

≤ =
= =

x
x

In a structural design optimization problem, x is an N-dimensional vector called
the design vector, representing N design variables to be optimized. For example, in a
truss structure, design variables are the cross-sectional areas of all the members. In floor
layout design, design variables are positions of beams.

The function f in Eq. (3.1) is the objective function of the optimization problem.

For example, for sizing optimization of a truss, f is the total weight of the truss. The
constraints ig and ih , called inequality and equality constraints respectively, are to be
satisfied. Example are stress limits, displacement limits, beam redundancy, and column
redundancy. The fitness function F is defined as a figure of merit. For the maximization
problems, the fitness function can be, though not necessary, the same as the objective
function. In the case of the minimization problems, the fitness function is an equivalent
maximization problem chosen such that the optimum point remains unchanged. The
following fitness function is often used:

() 1/[1 ()]F f= +x x . (3.2)

3.2 Coding and decoding

An essential characteristic of GAs is the coding of the design variables. There
are many coding schemes available, such as binary codes and real codes (Deb, 1995).
The most common coding scheme is to transform the design variables to a binary string
of a specific length. For multivariable optimization problems, the coding is constructed
by concatenating as many single variable codes as the number of the design variables in
the design problem. The length of the coded representation of a design variable
corresponds to its range and precision.

3.2.1 Binary coding

The binary-coded string comprising 1’s and 0’s is broadly used. The length of
the string is usually determined according to the desired solution accuracy. For

 24

example, if four bits are used to code each variable in a two-variable function
optimization problem, the string (0000 0000) and (1111 1111) would represent the
vector of points

() () () ()
1 2 1 2(,) and (,)L L T U U Tx x x x ,

respectively, because the substrings (0000) and (1111) have the minimum and the
maximum decoded values. Here, ()

1
Lx and ()

2
Lx are the lower bounds of 1x and 2x ,

respectively, while ()
1
Ux and ()

2
Ux are the upper bounds of 1x and 2x , respectively.

Any other eight-bit string can be found to represent a point in the search space
according to a fixed mapping rule. By employing the binary coding method with an iL -
bit coding for a design variable, the obtainable accuracy in that variable is
approximately

() ()() / 2 iLU L
i ix x− .

3.2.2 Decoding and mapping

The variable ix is coded in a substring is of the length iL . The decoded value,
decoded
is , of a binary substring is is calculated as follows:

1

0
2Ldecoded i

i ii
s s−

=
= ∑ , (3.3)

where (0,1)is ∈ and the string is is represented as 1 2 2 1 0(...)L Ls s s s s− − . For example, a

four-bit string (0111) has a decoded value of 0 1 2 3((1)2 (1)2 (1)2 (0)2)+ + + or 7.

Different mapping rules can be established to fit different optimization
problems. For example, the following linear mapping rule is used to decode an encoded
design variable into an unsigned real number as shown below (Deb, 1995):

() ()
() ()

2 1i

U L
L decodedi i

i i iL
x xx x s−

= +
−

, (3.4)

where ()

1
Lx and ()

2
Lx are the lower bounds of 1x and 2x , respectively, and ()

1
Ux and ()

2
Ux

are the upper bounds of 1x and 2x , respectively. The length of a substring is iL .

 25

3.3 Genetic operators

The simple genetic algorithm (SGA) basically consists of three operators: (1)
reproduction, (2) crossover and (3) mutation (Goldberg, 1989).

3.3.1 Reproduction

Reproduction is a process of selecting a set of design variables from the current
population to create the next generation. There are many attempts to propose the
selection techniques such as roulette wheel selection or stochastic sampling, the
remainder stochastic sampling, and the stochastic tournament or the ranking method
(Goldberg, 1989). All of selection techniques are biased toward more fit members of the
current population.

Roulette wheel selection is powerful and relatively the easiest one such that it is
used by many researchers (Goldberg, 1989; Deb, 1995; Burns, 2002). In the SGA, the
reproduction process is the roulette wheel selection. The essential idea of the roulette
wheel selection is that the individual with higher fitness value have larger probability of
selection. Thus, the ith individual in the current population is selected with a probability
proportional to its fitness iF . Since the population size is usually kept fixed in the SGA,
the sum of the probability of each individual in the population being selected for the
mating pool must be one. Thus, the probability for selecting the ith individual, ip , is as
follows:

1

i
i n

j
j

Fp
F

=

=

∑
 ,

(3.5)

where n is the population size and iF is the fitness value of the ith individual. Moreover,
for the constrained optimization problem, the augmented fitness value a

iF is used
instead of iF . The details of the augmented fitness value will be explained in the next
section.

Unlike the roulette wheel selection, the tournament selection is to select the
winner individual from a tournament competition among Nts individuals (frequently Nts
= 2) that are randomly selected from the current population. The winner is the one with
the highest fitness of the Nts tournament competitors. The winner is inserted into the
mating pool. The tournament selection process is repeated until the mating pool is
completed. Thereafter, two individuals are orderly mated and applied the crossover and
mutation operators.

 26

3.3.2 Crossover

Once a new population is determined, the crossover operator is conducted as a
means to introduce variation into a population by changing information among
individuals of the mating pool. Many crossover operators exist in the literature such as
one-point crossover, two-point crossover, and uniform crossover (Goldberg, 1989; Deb,
1995; Burns, 2002). One-point crossover is relatively the easiest one to apply. In the
crossover process, two individuals called parent individuals are picked from the mating
pool at random and then some portions of the two individuals are exchanged resulting in
two new individuals called offspring.

One-point crossover is performed by randomly choosing a crossing point along
the individual and by exchanging all bits on the right side of the crossing point, for
example, as shown below. It can be observed that the bits next to the crossing point of
two parent individuals are exchanged to two offspring individuals.

Two parent individuals

1x = 1 0 1 1 1 0|1 0 0 1

2x = 0 1 0 1 0 0|1 0 1 1

Two offspring individuals

1x ′ = 1 0 1 1 1 0|1 0 1 1

2x ′ = 0 1 0 1 0 0|1 0 0 1

In two-point crossover, two crossing points are randomly chosen and all bits
between these points of both considered parent individuals are exchanged. It should be
noted that using many crossover points reduces the performance of the GA. The
problem with many crossing points is that the building blocks are more likely to be
disrupted. However, an advantage of having more crossing points is that the problem
space may be searched more thoroughly. An example of two-point crossover is as
shown below.

Two parent individuals

1x = 1 0 1 |1 1 0|1 0 0 1

2x = 0 1 0 |1 0 0|1 0 1 1

Two offspring individuals

1x ′ = 1 0 1 |1 0 0|1 0 0 1

2x ′ = 0 1 0 |1 1 0|1 0 1 1

 27

In uniform crossover, each gene in the offspring is created by copying the

corresponding gene from one or the other parent chosen according to a binary crossover
mask. The binary crossover mask is randomly created with the same length as the parent
chromosome string. For each bit position in the mask, its value 1 or 0, respectively,
indicates that the first parent or the second parent contributes its values in that position
to the first offspring, and vice versa for the second offspring. An example of uniform
crossover is illustrated as follows.

Two parent individuals

1x = 1 0 1 1 1 0 1 0 0 1

2x = 0 1 0 1 0 0 1 0 1 1

Mask
 1 1 0 0 0 1 1 0 0 0

Two offspring individuals

1x ′ = 1 0 0 1 0 0 1 0 1 1

2x ′ = 0 1 1 1 1 0 1 0 0 1

The crossover probability ()CP is a parameter to describe how often crossover
will be performed. If there is no crossover, offspring are exact copies of parents. If there
is crossover, offspring are made from parts of both parent’s chromosome. If CP is
100%, then all offspring are made by crossover. If it is 0%, whole new generation is
made from exact copies of individuals from the old population. However, the new
generation may not be the same as the old population. This is because there will be
mutation process after crossover process. The mutation will be explained in the next
section. Crossover is made in hope that new individuals or chromosome strings will
contain good parts of old individuals from the old population such that the new
individual will be better. However, it is good to leave some individuals of the old
population to survive to the next generation. Generally, the parametric study is needed
to estimate the value of CP required for finding good solutions.

3.3.3 Mutation

Mutation is the important operator mimicking the behavior of natural mutation
to ensure the diversity of the population. Mutation is used to prevent the algorithm from
being trapped in a local minimum. There are various forms of mutation for the different
kinds of representation such as flipping, interchanging, and inversion. In case of
flipping, mutation changes the value of each gene from 1 to 0 and vice versa with the
mutation probability ()MP . In case of interchanging, two random positions of the string
are chosen and the bits corresponding to those positions are interchanged. For inversion,
two random positions are chosen and bits between those selected positions are reversed.

 28

The mutation probability decides how often parts of the string will be mutated.
Typically, MP is quite low at about 1% or less. When MP is 100%, whole chromosomes
are altered while 0% MP implies no change. If there is no mutation, offspring are
generated immediately after crossover or directly copied without any change.

3.4 Stopping criteria

There are many stopping criteria employed in the literature (Ghasemi and
Hinton, 1996; Ghasemi et al., 1999). For example, the total number of iterations can be
used as a stopping criterion. The required number of successive iterations for the fittest
solution that has not changed can also be used. In addition, the calculation may be set to
stop when the difference of the fittest solution of the current iteration and that of the last
20 iterations is smaller than a specified value. Generally, the number of iterations or
generations is widely used as the stopping criterion.

3.5 Elitism

Generally, some very good individuals that appear in the early GA generations
may disappear from the later generations. This is because GAs employ probabilistic
processes in their calculations. As a result, to ensure that the best-fit individuals in the
current generation will survive in the next generation, it is possible to place them
directly in the next generation. The process is called elitism and GAs that employ
elitism are called elitist GAs. The main concept of all elitist GAs is that the best solution
or solutions are placed directly in the population of the subsequent generation regardless
of the reproduction, crossover and mutation operators. Since most GAs use constant
population sizes, the best solutions cannot be added to the next generation but are
frequently used to replace some worst solutions. It is also possible to randomly pick up
individuals that are to be replaced by the best solutions.

3.6 Penalty functions

GAs are intrinsically suitable only for unconstrained optimization problems.
However, there are many methods that enable GAs to handle constraints. Among these
methods, penalty function methods have been mostly used (Nanakorn and Meesomklin,
2001; Krishnamoorthy et al., 2002; Nimityongskul, 2004). Penalty function methods
penalize infeasible solutions, i.e.

() () ()aF F P= −x x x (3.6)

where P is a penalty function whose value is greater than zero. In addition, aF
represents an augmented fitness function after the penalty. The penalty function can be
generalized as follows (Nanakorn and Meesomklin, 2001):

 29

1 1
() () [()] () [()]

K P

G j j H j j
j j

P G Hβ βλ λ
= =

= +∑ ∑x x x (3.7)

where

() max[0, ()]j jG g=x x ,
() abs[()]j jH h=x x .

where jg and jh are the constraint functions in Eq. (3.1). The vector jG represents the
degree of the inequality constraint violations. The vector jH represents the degree of
the equality constraint violations. In addition, ()λG j , ()λH j and β are constants.
Generally, the values of ()λG j and ()λH j are usually the same and set as a constant.
The value of β is generally set as 1 or 2.

3.7 Fitness scaling

In reproduction process, the augmented fitness function aF will be used in Eq.
(3.5) instead of the original fitness F . Therefore, it is essential that all aF must be
positive. Consequently, the obtained aF may not be directly usable as its value may be
negative. Moreover, the difference between the highest aF and the average aF varies
over generations. In early generations, the difference can be very large because it is
common to have few extraordinary individuals with very high fitness in a population.
As a result, the extraordinary individuals may take over a significant proportion of the
population, and this can be undesirable and may result in premature convergence. In
later generations, there may be insignificant diversity within the population.
Consequently, the average aF may be close to the highest aF . If this situation is
unchanged, individuals with average aF and individuals with the highest aF will have
nearly the same numbers of copies in future generations. In this case, the survival of the
fittest strategy necessary for improvement becomes a random walk. To prevent all of
these problems, the fitness function is usually scaled into a specified positive range.
Many fitness scaling have been proposed in the literature (Goldberg, 1989). Here only
some scaling techniques are presented including linear scaling, σ -truncation, and
bilinear scaling.

The linear scaling requires a linear relationship between the scaled fitness SF

and the raw augmented fitness aF as shown in Eq. (3.8).

 30

() ()S aF aF b= +x x (3.8)
The coefficient a and b in Eq. (3.8) can be chosen in a number of ways. For

example, from Fig. 3.1 the average raw augmented fitness a
avgF is scaled to 1. The

maximum scaled fitness that is to be obtained from the best members is set to C . Thus,
the chance of the best members being selected into the mating pool is equal to C times
that of the average members. In other words, the number of copies of the best members
in the mating pool is expected to be C times that of the average members. Linear
scaling under normal condition can be illustrated by using Fig. 3.1. The coefficient of a
and b in Eq. (3.8) can be computed using Eq. (3.9).

max

max

max

1 ,a a
avg

a a
avg

a a
avg

Ca
F F

F CF
b

F F

−
=

−

−
=

−

 (3.9)

In general, 1.2 to 2C = has been used successfully (Goldberg, 1989). Normally

there is no problem applying this linear scaling concept. Nevertheless the situation as
shown in Fig. 3.2 may appear resulting in a negative scaled fitness value of the min

aF .
This type of situation is common in a mature run when a few lethally bad individuals
are far below a

avgF and max
aF , which are relatively close together. To prevent obtaining

negative scaled fitness, Goldberg (1989) suggests that the non-negative test be applied
by checking whether min max() / (1.0)> − −a a a

avgF CF F C . If the condition is true, Eq. (3.9)

can be used to scale all aF . However if it is false, aF will be scaled as much as
possible using Eq. (3.10). This means that min

aF is scaled to zero as shown in Fig. 3.3,
SF

aF
max
aFa

avgFmin
aF

min
SF

Fig. 3.1. Linear scaling.

 31

instead of setting max =
SF C .

max

min

max

1 ,a a
avg

a

a a
avg

a
F F

Fb
F F

=
−

=
−

 (3.10)

The bilinear scaling is shown in Fig. 3.4. The minimum scaled fitness is set to
zero to avoid negative fitness values while the scaled fitness of the average fitness of all
individuals a

avgF is set to one. Furthermore, the maximum scaled fitness that is to be
obtained from the best members is set to C . Thus, the chance of the best members
being selected into the mating pool is equal to C times that of the average members.
Here, SF denotes the scaled fitness. In addition min

aF denotes the minimum fitness value
after the penalty while max

aF denotes the fitness value of the best members. This scaled
fitness function SF can be computed by using Eq. (3.11), i.e.

max

max max

min

min min

1() () if ()

1() () if ()

a a
avgS a a a

avga a a a
avg avg

a
S a a a

avga a a a
avg avg

F CFCF F F F
F F F F

FF F F F
F F F F

−−
= + ≥

− −

= + ≤
− −

x x x

x x x

 (3.11)

There is one alternative method to circumvent obtaining negative scaled fitness
in the linear scaling, which is called σ -truncation. This method is applied before using
the linear scaling method in order to prevent negative scaled fitness. In this procedure, a
constant is subtracted from raw augmented fitness value aF to obtain aF as

()a a a
avgF F F cσ= − − (3.12)

where the constant c is chosen as a reasonable multiple of the population standard
deviation σ (between 1 and 3) and negative results (0aF <) are set to zero. Following
σ -truncation, the linear scaling can proceed as described earlier without that danger of
negative scaled fitness.

 32

SF

aF
max
aFa

avgFmin
aF

min
SF

Fig. 3.2. Difficulty of the linear scaling.

SF

aF
max
aF

max
SF

a
avgFmin

aF

Fig. 3.3. Modified linear scaling.

 33

3.8 Adaptive penalty function

The penalty scheme used in GAs plays an important role in the performance of
GAs. Generally, the penalty is more important when the optimal solution lies on or
close to the boundary between feasible and infeasible search spaces, which is often
found in the structural design optimization problems. From Eq. (3.7), the general
penalty function has many coefficients that need to be set before computing the value of
the penalty. It is well known that, for various stages of the calculation, different degrees
of penalty are needed. Nevertheless, it is not easy to set appropriate values of these
coefficients for different generations. Therefore, all coefficients are usually constant for
all generations. There are some penalty schemes whose penalty coefficients can be
varied manually in order to adjust the strength of the penalty during the calculation
(Adeli and Cheng, 1994; Rajan, 1995). Recently, a new penalty scheme had been
proposed by Nanakorn and Meesomklin (2001). The basic idea of their adaptive penalty
scheme is to penalize infeasible solutions so that the individual chance of the best
infeasible members being selected into the mating pool with respect to that of the
average feasible members is always the same in all generations. Here, only the main
concept of this adaptive penalty scheme is discussed. Complete details of the scheme,
including its implementation, can be found in the work by Nanakorn and Meesomklin
(2001).

In the work by Nanakorn and Meesomklin (2001), a modified bilinear scaling

scheme shown in Fig. 3.5 is employed for the fitness scaling. In the figure, SF is the
scaled fitness and min

aF represents the minimum augmented fitness in the generation. In

addition, ,a
avgF F and ,

max
aF F denote, respectively, the average and maximum augmented

fitness values of all feasible individuals in the generation. Note that, for feasible

SF

aF
max
aFa

avgFmin
aF

Fig. 3.4. Bilinear scaling.

 34

individuals, the augmented fitness aF and the original fitness F are the same. It can be
seen from the figure that the scaled fitness of the average fitness of all feasible
individuals is set to one while the maximum scaled fitness that is to be obtained from
the best feasible members is set to C. Hence, the individual chance of the best members
being selected into the mating pool is equal to C times that of the average feasible
members. For the case where there is only one feasible individual in the generation, the
scaled fitness of this individual will be set to one.

Next, the individual chance of the best infeasible members being selected into

the mating pool is set to be equal to ϕ times that of the average feasible members, i.e.

(),
avg() for ,S S

d dF Fϕ ϕ≤ = ∀ ∈Fx x U (3.13)

where U denotes the infeasible search space with respect to the constraints. In addition,
,S

avgF F is the scaled value of the average fitness of all feasible individuals, which from
Fig. 3.5 is equal to one. Eq. (3.13) allows the factor λ in Eq. (3.7) to be calculated in
each generation. In summary, the employed adaptive penalty scheme requires two
constant input parameters to be prescribed prior to the calculation. The parameters are C
and ϕ In the penalty scheme by Nanakorn and Meesomklin (2001), Eq. (3.11) becomes

, ,
max ,

, , , ,
max max

,min
, ,

min min

1() () if ()

1() () if ()

a a
avgS a a a

avga a a a
avg avg

a
S a a a

avga a a a
avg avg

F CFCF F F F
F F F F

FF F F F
F F F F

−−
= + ≥

− −

= + ≤
− −

F F
F

F F F F

F
F F

x x x

x x x
 (3.14)

 35

SF

aFmin

aF
F~,a

avgF F~,
max
aF

Fig. 3.5. Bilinear scaling for the adaptive penalty scheme.

 36

Chapter 4

Layout Design of Beam-Slab Floors using a GA

A new GA for beam-slab layout design is proposed in this study. Details of the
proposed algorithm are presented in this chapter. The algorithm implementation will be
presented in the next chapter. The primary input of the algorithm is an architectural
floor plan with given positions of columns and walls. First, the representation of beam-
slab layouts is presented. After that, the fitness function and design constraints are
established. Finally, the proposed GA is developed. The proposed GA uses the simple
GA (Goldberg, 1989) as its core algorithm. The simple GA is modified by adding the
elitism and the adaptive penalty function.

4.1 Primary representation of beam-slab layouts

In order to use a GA for beam-slab layout design, it is essential to establish how
beam-slab layouts are coded in the algorithm. In this study, binary strings will be used
to represent beam-slab layouts. To begin coding, a grid is superimposed on a given
architectural floor plan in such a way that there are grid lines passing through all
columns and wall lines. Each line segment of this grid represents a possible position of
a beam segment. Therefore, the spacing of the grid can be set based on the required
degree of precision for beam positions. A one-bit chromosome is attached to each line
segment. If the value of the one-bit chromosome is one, it means that there is a beam
segment on that line segment. Naturally, if the value is zero, there is no beam segment.
A slab is simply defined as a rectangular area that is completely surrounded by beams.
For example, Fig. 4.1a is a rectilinear floor plan. By considering the columns and wall
lines, Fig. 4.1a grid in Fig. 4.1b can be obtained. Examples of a beam segment and a
slab are also shown in Fig. 4.1b. In addition, Fig. 4.1c shows an example of a beam-slab
layout for the floor and Fig. 4.1d depicts its corresponding code. Note that the
representations of columns, walls, beams, and slabs used in Fig. 4.1c will be employed
throughout this study.

4.2 Geometrically invalid layouts

All possible beam segments in the grid that are not prescribed in advance as part
of the problem setup are used as the design variables of the problem. Placing beam
segments arbitrarily may result in layouts that are not geometrically valid.
Geometrically invalid layouts are those layouts that consist of at least one invalid beam
segment. In this study, as shown in Fig. 4.2, invalid beam segments include

1) any isolated beam segment,
2) any beam segment with one free end,

 37

3) any two beam segments that form an L-shaped interior beam, and
4) any two beam segments that form a concave L-shaped beam on the outer

boundary of the floor.

As shown in Fig. 4.2, an isolated beam segment is a beam segment that is not
connected to any other beam segments. This isolated beam is considered as an invalid
beam because it is obviously unrealistic. The rest are considered as invalid beams since
all of them result in non-rectangular slabs. Non-rectangular slabs cannot efficiently
transfer floor loads to the supporting beams. Note that, in the consideration of two beam
segments that form a concave L-shaped exterior beam, only beam segments that are on
the outer boundary of the floor are included.

4.3 Proposed coding scheme

During the GA iteration, it is likely that some individuals that appear in the
population may represent geometrically invalid layouts. A penalty scheme may be used

Slab

Beam
segment

 (a) (b)

Column

Slab
Beam

Wall/
Floor boundary

 (c) (d)

Fig. 4.1. A rectilinear floor. (a) An example of a floor plan. (b) A grid. (c) A beam-slab
layout. (d) The corresponding code.

 38

to take care of these geometrically invalid layouts. However, it is difficult to devise this
penalty scheme because it is not clear how to evaluate the degrees of the disadvantages
of these layouts. If the penalties for these geometrically invalid layouts are not known, it
will not be possible to obtain the penalized fitness of the layouts. This study proposes a
new concept to handle this problem. The concept is not to treat geometrically invalid
layouts as bad layouts that have to be penalized. Instead, each geometrically invalid
layout will be mapped to a geometrically valid layout whose fitness will be used as the
fitness of the original geometrically invalid layout. In the real implementation, each
individual will have two corresponding chromosome strings instead of one. The first
chromosome string, called the original string, represents the original shape of the layout
that may or may not be geometrically valid. The second chromosome string, called the
derived string, represents the shape of the geometrically valid layout derived from the
first string by mapping. If the original string already represents a geometrically valid
layout, the derived string is the same as the original string. In the mapping process, the
derived geometrically valid layout is obtained from the original geometrically invalid
layout by removing invalid beam segments from the original layout. The proposed
mapping algorithm is shown as follows:

Algorithm Chromosome_Mapping
Input: An original geometrically invalid chromosome string
Output: The derived geometrically valid chromosome string
• Copy the original chromosome string to the derived chromosome string
• while the derived chromosome string represents a geometrically invalid layout

do
o Remove all isolated beam segments by changing their chromosomes

from one to zero in the derived chromosome string
o Remove all beam segments with one free end by changing their

chromosomes from one to zero in the derived chromosome string
o Remove all pairs of beam segments that form an L-shaped interior beam

by changing their chromosomes from one to zero in the derived

Fig. 4.2. Examples of all defined invalid beams.

 39

chromosome string
o Remove all pairs of beam segments that form a concave L-shaped

exterior beam on the outer boundary of the floor by changing their
chromosomes from one to zero in the derived chromosome string.

Since the fitness of each individual is obtained from its derived geometrically
valid layout, it can be said that the original string is in fact decoded into the
geometrically valid layout represented by the derived string. As the search space of the
problem is the space that contains all possible strings, the mapping process allows all
individuals in the search space to be interpreted as geometrically valid layouts. As a
result, there are seemingly no geometrically invalid layouts at all in the search space.

An example of how to derive a geometrically valid beam-slab layout of a

rectangular floor is shown in Fig. 4.3. The first subfigure Fig. 4.3a shows the
geometrically invalid beam-slab layout of a rectangular floor and the derived
geometrically valid beam-slab layout obtaining from the proposed mapping algorithm.
The detailed steps of the mapping process are shown in Fig. 4.3b. In this example it
should be noted that there is no concave L-shaped beam on the outer boundary of the
floor to be removed in the mapping algorithm. In case of a rectilinear floor, it will
always have a concave L-shaped beam on the outer boundary to be considered. For
example, Fig. 4.4 shows how to derive a geometrically valid beam-slab layout of a
rectilinear floor. The first subfigure Fig. 4.4a shows the geometrically invalid beam-slab
layout of a rectilinear floor and the derived geometrically valid beam-slab layout
obtaining from the proposed mapping algorithm. The detailed steps of the mapping
process are shown in Fig. 4.4b. Note that the derived geometrically valid beam-slab
layout of a rectilinear floor may not occupy the whole floor area.

(a)

 1 2 3 4

(b)

Fig. 4.3. (a) An example of geometrically invalid beam-slab layout of a rectangular
floor and the derived geometrically valid beam-slab layout. (b) Steps of deriving the
derived geometrically valid beam-slab layout of a rectangular floor.

 40

(a)

Invalid

Invalid

1 2 3

Invalid

4 5 6

7 8

(b)

Fig. 4.4. (a) An example of geometrically invalid beam-slab layout of a rectilinear floor
and the derived geometrically valid beam-slab layout. (b) Steps of deriving the derived
geometrically valid beam-slab layout of a rectilinear floor.

 41

Although the proposed mapping scheme enables each geometrically invalid

individual to be interpreted as a geometrically valid layout and, subsequently, to be
evaluated, the process does have its disadvantage. Many different geometrically invalid
layouts can generally be mapped to the same corresponding geometrically valid layout.
For example, a rectangular layout with beams only along its entire outer boundary can
be the derived layout of many different geometrically invalid layouts that have the same
outer-boundary beams and some additional interior beams that are not connected to the
outer-boundary beams. This characteristic of the mapping scheme creates a bias in the
reproduction process. The reason is that different geometrically valid layouts will not
have the same number of representatives in the search space. If more geometrically
invalid layouts are mapped to a certain geometrically valid layout, that particular
geometrically valid layout will subsequently have more representatives in the search
space. The proposed mapping scheme will in general yield more representatives in the
search space for those geometrically valid layouts that have larger slabs and fewer
beams. This is because, in the mapping process, beams are always removed from
geometrically invalid layouts to obtain geometrically valid ones. Although layouts with
larger slabs and fewer beams are generally more preferred, it is necessary that layouts
with smaller slabs and more beams be adequately explored. In this study, the bias is
alleviated by prescribing a special individual in the initial population. This special
individual represents the layout that contains all possible beam segments. For example,
Fig. 4.5b shows the special individual to be prescribed in the initial population for the
grid in Fig. 4.5a. In addition, Fig. 4.6 shows examples illustrating the concept of the
proposed coding of beam-slab layouts. Finally, Fig. 4.7 illustrates the crossover and
mutation processes of two individuals A and B, denoted by their original strings. These
two original strings are interpreted as geometrically valid layouts via their derived
strings. The two original strings are used as the parent strings in the crossover process to
obtain two offspring strings. The two offspring strings then mutate and, finally, two new
individuals C and D are obtained. These individuals C and D are also interpreted as
geometrically valid layouts via their derived strings.

 (a) (b)

Fig. 4.5. (a) The grid. (b) The special individual that contains all possible beam
segments.

 42

Corresponding
geometrically valid layout

(Derived string)

Individual
(Original string)

1110001100001111
111111111101111

1110001000001111
111111100001111

1110001110001111
111111111001111

1110001110001111
111111100001111

1110001000001111
111111110001111

1110001110011111
111111111101111

1110001110001111
111111101101111

Decoding

Decoding

1110001000001111
111111100001111

Decoding

Decoding

Decoding

Fig. 4.6. Example illustrating the concept of the proposed coding scheme.

 43

Individual A

1110001100001111
111110011101111

1110000000001111
111111110011111

Individual B

Original string Original stringDerived string

1110000000001111
111000000001111

Derived string

1110000000001111
111111100001111

1110001100001111
111111110011111

1110000000001111
111110011101111

1110001100001111
111111110001111

Mutation

Original string Derived string

1110001000001111
111111100001111

Original string Derived string

1110000001001111
111110011101111

1110000000001111
111000000001111

Mutation

Crossover

Individual C Individual D

Decoding Decoding

DecodingDecoding

Fig. 4.7. Crossover and mutation processes.

 44

4.4 Problem formation

After establishing the coding scheme, the next step is to write the representative
optimization problem for beam-slab layout design. This is explicitly done by defining
the problem’s objective function as well as constraints. It is desirable that the
representative optimization problem is simple but still able to yield reasonably good
beam-slab layouts. In the literature, there are several kinds of objective functions such
as the project profit (Rafiq et al., 2003), the flexibility of space (Sisk et al., 2003), and
the weight of the structure (Nanakorn and Meesomklin, 2001). The objective and
constraint functions used in this study are described in the next sections.

4.4.1 Objective function

As mentioned earlier, in this study, the primary input of the proposed algorithm
is an architectural floor plan with given positions of columns and walls. If the beam-slab
layout of the input architectural floor plan is to be prepared by a designer, it is expected
that the designer will try to utilize the given columns to support beams and,
subsequently, slabs as efficiently as possible. The efficient column utilization can be
defined differently from one designer to another. This study mimics this kind of
consideration by defining the objective function F of the problem as

1

1() ()
()

SN

d i d
S d i

F S
N =

= ∑x x
x

. (4.1)

Note that the proposed objective function is a function of the derived chromosome
string denoted as dx . To obtain the objective function written in Eq. (4.1), a score is
given to each slab based on the number of corner columns it has. In the expression of
the objective function, iS is the score assigned to slab i, and SN is the total number of
slabs in the layout. The slab score is given as 1, 0.75, 0.5, 0.25, or 0 if the slab has 4, 3,
2, 1, or 0 corner columns, respectively. Fig. 4.8a shows examples of all five types of
slab with different corresponding slab scores. The idea behind the proposed objective
function and the slab scoring is based on two assumptions pertaining to the efficient
column utilization. First, for a slab, the column utilization is considered better if the slab
has more corner columns. This is because corner columns allow efficient load transfer
from the slab, via beams, to the columns. Second, the column utilization of the whole
floor is considered better if there are fewer slabs in the floor for the given columns. The
first assumption is considered in the objective function by the use of the slab score iS
and the second assumption by the use of the total number of slabs SN . With the form of
the objective function in Eq. (4.1), the representative optimization problem for beam-
slab layout design becomes the maximization problem of the proposed objective
function. Since a GA is to be used to solve this optimization problem, the proposed
objective function can be directly employed as the fitness function of the proposed GA.
According to this fitness function, a beam-slab layout that has fewer slabs and more

 45

corner columns of slabs will have higher fitness. Since the employed fitness function
encourages layouts that have fewer slabs, it will also encourage layouts that have fewer
beams. As an example, Fig. 4.8b and c show two different layouts for the same floor. It
can be seen that the total beam length of the layout with higher fitness is shorter than the
total beam length of the layout with lower fitness. Using the fitness function that
encourages layouts with fewer beams is desirable because, for the same floor plan,
layouts with longer beam lengths generally have higher construction costs.

4.4.2 Design constraints

Two types of design constraint are employed in this study, i.e.
1) wall constraint, and
2) slab constraint.

The wall constraint states that all walls must be directly supported by beams.

With an x-y coordinate system that is in alignment with the floor plan, the slab
constraint states that the length of a slab in the x direction must not exceed a prescribed
maximum length for the x direction, and the length in the y direction must not exceed a
prescribed maximum length for the y direction. It should be noted that the spacing of the
grid used in the calculation must not be set too large that the slab constraint cannot be
satisfied. In addition, the slab constraint also states that the whole floor must be
completely covered by slabs.

Define the penalty function P from these two constraints as

Score
= 1.00

Score
= 0.75

Score
= 0.50

Score
= 0.25

Score
= 0

(a)

 (b) (c)

Fig. 4.8. Examples of slabs with different scores.

 46

() () [() ()]d d wall d slab dP E H Hλ λ= = +x x x x (4.2)

where λ is a non-negative factor and E is the total degree of constraint violation. In
addition, wallH and slabH are the degrees of wall and slab constraint violation,
respectively. They are defined as

()() ,W d
wall d

W

LH
L
′

=
xx (4.3)

() ()() .S d S d
slab d

S

A AH
A

′ ′′+
=

x xx (4.4)

In Eq. (4.3), WL′ denotes the total length of wall segments that are not directly
supported by beams. In addition, WL denotes the total wall length. In Eq. (4.4), SA′ is
the total area of slabs that have at least one side longer than the corresponding
prescribed maximum length and SA′′ is the total floor area that is not covered by slabs.
Here, SA is the total floor area.

In this study, the factor λ will be automatically determined in each GA
generation using the adaptive penalty scheme proposed by Nanakorn and Meesomklin
(2001). Brief details of the employed adaptive penalty scheme are presented in Section
3.8. By employing the penalty function in Eq. (4.2), the augmented fitness function aF
is obtained as

() () if ,a
d d dF F= ∈x x x F

() () () otherwisea
d d dF F P= −x x x

(4.5)

where F denotes the feasible search space with respect to the wall and slab constraints.

Fitness and constraints using the above equations are explained by an example

in Fig. 4.9. In the figure, a rectilinear floor and its example layout are given. The floor
has three areas or rooms. The example layout has three slabs. The two top slabs have a
score of 1 because they have four corner columns. The bottom slab has a score of 0.5
because it has only two corner columns. The total slab score is 1+1+0.5=2.5. The
number of slabs is 3. Hence, the raw fitness computed using Eq. (4.1) is 2.5/3=0.83333.
The total length of the walls is 51 m. The total length of the walls that are not supported
by beams is 25 m. Hence, the wall constraint violation computed using Eq. (4.3) is
25/51=0.49019. By assuming the maximum slab size to be 4 m, all three slabs in the
example layout do not violate the slab size constraint. Thus, SA′ in Eq. (4.4) is zero.

 47

Obviously, the top half of the example layout has no slab. Thus, SA′′ in Eq. (4.4) is 36
m2. The total floor area of the given floor is 72 m2. Therefore, the slab constraint
violation computed using Eq. (4.4) is (0+36)/72=0.5. Hence, the penalty value P
computed using Eq. (4.2) is (0.49019+0.5)λ=0.99019λ . Finally, the augmented fitness
in Eq. (4.5) becomes 0.83333-0.99019λ . Noted that the value of λ can be computed
after raw fitness and constraint violations of all individuals in the population are known.
The value of λ is computed using the adaptive penalty scheme as explained earlier.
After obtaining λ , the augmented fitness of all individuals can be computed.

4.4.3 Elitism

As noted earlier, the proposed coding scheme for beam-slab layouts introduces
the bias toward layouts with larger slabs and fewer beams. To alleviate the bias, the
layout that contains all possible beam segments is inserted into the initial population.
With proper grid spacing, this special layout is always feasible since it always satisfies
both wall and slab constraints. To make certain that the influence of this insertion does
not disappear during the GA operators, elitism is employed in the proposed GA. The
main concept of all elitist GAs is that the best solution or solutions are placed directly in
the population of the subsequent generation regardless of the reproduction, crossover
and mutation operators. In this study, the elitist solution is the best individual
determined by using the following elitism rule of comparison.

Slab score = 2.5
Wall constraint = 0.49019

Slab constraint = 0.5
Raw fitness = 0.83333

Augmented fitness = 0.83333-0.99019λ

Fig. 4.9. Examples of fitness and constraint calculations.

 48

Consider two layouts, iLayout and jLayout , that are geometrically valid. iLayout is
better than jLayout when

1. iLayout is feasible while jLayout is not.

2. Both layouts are feasible but iLayout has larger fitness than jLayout .

3. Both layouts are feasible and have the same fitness. Nevertheless, iLayout has a
shorter total length of beams than jLayout .

4. Both layouts are feasible and have the same fitness and total length of beams.
Nevertheless, iLayout has fewer beams than jLayout . Note that connecting
beam segments on the same grid line are counted as one beam. Fig. 4.10 shows
examples of how the number of beams is counted.

5. Both layouts are infeasible but iLayout has a smaller total degree of constraint
violation than jLayout .

6. Both layouts are infeasible and have the same total degree of constraint violation.
Nevertheless, iLayout has larger fitness than jLayout .

7. Both layouts are infeasible and have the same fitness and total degree of
constraint violation. Nevertheless, iLayout has a shorter total length of beams
than jLayout .

8. Both layouts are infeasible and have the same fitness and total degree of
constraint violation. In addition, they also have the same total length of beams.
Nevertheless, iLayout has fewer beams than jLayout .

Since all individuals are always interpreted as geometrically valid layouts

through their derived layouts, they can always be compared using the above elitism rule
of comparison. Due to the inserted special individual in the initial population and the
elitism process, there will always be at least one feasible individual in each generation.
As a result, to obtain the elitist solution, it is actually not necessary to consider the
comparison between two infeasible individuals. However, the comparison between two
infeasible individuals is necessary for finding the worst individual to be replaced by the
elitist solution in the elitism process. In this study, the elitism process is simply done by

Fig. 4.10. The number of beams.

 49

finding the best individual of the current population based on the above elitism rule of
comparison. If this best individual is, based on the same rule of comparison, better than
the existing elitist solution obtained from all the past generations, then the individual
becomes the elitist solution. After that, this updated elitist solution is used to replace the
worst individual of the generation. The worst individual of the generation is obtained
also by using the above elitism rule of comparison. The elitism rule of comparison is
used only to compare the superiority of individuals for the elitism process. In the
reproduction process, the relative superiority of individuals is also considered.
However, the reproduction process constructs the mating pool of each generation by
using the scaled fitness values. Nevertheless, it can be seen that the best individual
obtained by the elitism rule of comparison will also be the best feasible individual that
has the highest fitness.

4.5 Algorithm

The GA operators used in this study include the roulette wheel selection, one-
point crossover, and bitwise mutation. In addition, the elitism and the adaptive penalty
scheme are employed. The flow chart of the proposed GA is shown in Fig. 4.11. The
proposed GA for beam-slab layout design also can be summarized as follows:

Algorithm GA_for_Beam_Slab_Layout_Design
Input: An architectural floor plan, the maximum allowable slab length, the required
number of generations ()GN , and the population size ()N
Output: The best beam-slab layout that is the elitist solution obtained from all
generations
• Randomly generate the initial population of 1N − individuals
• Add one individual containing all possible beam segments to the initial

population
• Create the derived chromosome strings from the original strings by mapping
• Determine the fitness and degrees of constraint violation of all individuals
• Find the best individual of the generation based on the elitism rule of

comparison and set it as the elitist solution
• Obtain the augmented fitness of all individuals based on the adaptive penalty

scheme
• Obtain the scaled fitness
• Implement the roulette-wheel selection, the crossover operator and the mutation

operator
• Replace the old population with the new one
• for 1j ← to GN do

o Create the derived chromosome strings from the original strings by
mapping

o Determine the fitness and degrees of constraint violation of all
individuals

o Find the best and worst individuals of the generation based on the elitism
rule of comparison and update the elitist solution if necessary

 50

o Replace the worst individual of the generation with the elitist solution
o Obtain the augmented fitness of all individuals based on the adaptive

penalty scheme
o Obtain the scaled fitness
o Implement the roulette-wheel selection, the crossover operator and the

mutation operator
o Replace the old population with the new one.

 51

Fig. 4.11. Flow chart of the proposed GA.

 52

Chapter 5

Examples and Results

To show the validity of the proposed GA for beam-slab layout design, the
algorithm is used to solve nine beam-slab layout problems. The input data of all the
problems are architectural floor plans with given positions of walls and columns. Since
it is apparent that there must be beams on the outer boundary of the floor, beam
segments are placed in advance on all line segments representing the outer boundary.
Thus, these beam segments are removed from the list of the design variables. In all
problems, the parameters C and ϕ in the fitness scaling and adaptive penalty processes
are set to four and one, respectively. Setting C = 4 means that the individual chance of
the best feasible members being selected into the mating pool is equal to four times that
of the average feasible members. Setting 1ϕ = means that the individual chance of the
best infeasible members being selected into the mating pool is equal to that of the
average feasible members. All together, the two parameters indicate that the individual
chance of the best feasible members being selected into the mating pool is equal to four
times that of the best infeasible members. In the GA process, the crossover probability
of 0.85 and the mutation probability of 0.005 are used for all problems. To allow the
efficiency of the proposed algorithm to be clearly discussed, the problems are solved by
using various population sizes. In order to examine both the quality and uniformity of
the obtained results, the algorithm is run for 100 times for each population size. The
number of generations used for all runs in Problems 1 to 4 is 500 while the number of
generations used in Problems 5 to 9 is 2,000. The 100 runs for each population size are
collectively called a calculation set. The best solution of a run is the best layout found in
that run, which is the elitist solution obtained from all generations. Since there are 100
runs in a calculation set, there will be 100 best solutions from these 100 runs. Among
these 100 best solutions, the best one determined by the elitism rule of comparison will
be the best solution of the calculation set. Note again that all individuals in the
algorithm are always interpreted as geometrically valid layouts represented by their
derived strings. As a result, solutions are shown here by using their derived layouts.

5.1 Problem 1

The first problem is an architectural floor plan shown in Fig. 5.1a. It can be seen
from the positions of the walls that the floor consists of three separate areas. Two of
these areas are of rectangular shapes while the third area is not. A uniform grid with
spacing of 0.5 m is employed as shown in Fig. 5.1b. Rather small spacing is used here
to show the validity of the proposed algorithm since smaller spacing results in a larger
search space. By placing beams on the boundary of the floor in advance, this grid results
in 418 design variables. The maximum allowable length of a slab is preset to 4 m. For
this problem, four calculation sets for four different population sizes of 100, 200, 300

 53

and 400 individuals are analyzed. As aforementioned, each calculation set consists of
100 runs.

Table 5.1 shows the statistics of the obtained results. For each population size or

calculation set, the maximum, average, minimum and standard deviation (SD) values of
the fitness of the 100 best solutions from the 100 runs are found. Note that the
maximum fitness obtained from each calculation set is the fitness of the best solution
among the 100 best solutions obtained from the 100 runs. It is found from the results
that the best solutions of all calculation sets are in fact the same and this best layout is
shown in Fig. 5.1c. It can be seen that the best layout in Fig. 5.1c is a feasible beam-slab
layout that satisfies both wall and slab constraints. In addition, the layout is
unquestionably a good layout that can really be used in the next design process. Three
large slabs in the layout are suitably supported, through beams, by their corner columns.
In the area where the presence of the walls necessitates more beams, smaller slabs are
appropriately created. Note that this study does not intend to claim that this best layout
from the algorithm is the best possible layout. In fact, the best possible layout can never
be identified since different designers will have their own opinions of what the best
layout should be. From Table 5.1, it can also be seen that the SD values for all
calculation sets are very small. In fact, the maximum coefficient of variation of all
calculation sets, which is found in the calculation set with the population size of 100, is
only 0.13. This means that the algorithm provides rather uniform results. The table also
reports the appearance percentage of the best solution of each calculation set. The
obtained percentages for all calculation sets are very high, especially for the population

 (a) (b)

(c)

Fig. 5.1. Problem 1. (a) The given floor plan. (b) The grid. (c) The best solution.

 54

sizes of 300 and 400. Also in the table, the average numbers of generations required for
the solution convergence are reported. It can be seen that the algorithm requires, on
average, less than 140 generations for obtaining its best layout. In fact, for the
population size of 400, the algorithm requires, on average, less than 100 generations to
get the best layout.

Fig. 5.2 shows an example evolution of layouts from a run with 100 individuals.

The best layout of the run is obtained at the 128th generation. The best layout obtained
is also the problem's best layout, which is shown in Fig. 5.1c. In addition, Fig. 5.3
shows the convergences of the fitness and the total beam length of the elitist solution
from the same run shown in Fig. 5.2. It can be seen that the fitness rises quickly during
the first 120 generations and reaches its convergence at the 128th generation.
Concurrently, the total beam length decreases rapidly during the first 120 generations
and reaches the lowest value of 51 m at the 128th generation. The decrease of the total
beam length during the evolutionary process is expected even though the total beam
length is not directly included in the objective function. As aforementioned, this is
because, with all other conditions being the same, the employed fitness function
encourages layouts that have fewer slabs and layouts with fewer slabs have fewer
beams.

Table 5.1. Problem 1: statistics of the results.

 Calculation set of 100 runs

Population Size
100 200 300 400

Maximum fitness 0.667 0.667 0.667 0.667
Average fitness 0.636 0.652 0.665 0.664
Minimum fitness 0.214 0.389 0.500 0.428
SD of fitness 0.080 0.055 0.016 0.024
Appearance percentage of the best
solution of the calculation set (%)

86 93 99 99

Average required number of
generations for the solution
convergence

130.1 113.8 110.8 94.2

 55

 Gen-0 Gen-20 Gen-40

 Gen-60 Gen-80 Gen-100

 Gen-128-Best Gen-200 Gen-500

Fig. 5.2. Problem 1: a typical evolution of solution.

 56

0 50 100 150 200 250 300 350 400 450 500
0.0179

0.3423

0.6667

Generation

Fitness Value and Total Beam Length

Fi
tn

es
s

V
al

ue

0 50 100 150 200 250 300 350 400 450 500

51
69.5
88
106.5
125
143.5
162
180.5
199
217.5
236

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

Fig. 5.3. Problem 1: a typical development of the fitness and the total beam length.

 57

5.2 Problem 2

The second problem is an architectural floor plan shown in Fig. 5.4a. For this
problem, a uniform grid with spacing of 0.5 m is employed as shown in Fig. 5.4b. By
placing beams on the boundary of the floor in advance, this grid results in 480 design
variables. Similar to the previous problem, the maximum allowable length of a slab is
preset to 4 m. In addition, four calculation sets for four different population sizes of
100, 200, 300 and 400 individuals are also analyzed and each calculation set also
consists of 100 runs.

Table 5.2 shows the statistics of the obtained results. Similar to the previous

problem, the best solutions of all calculation sets are the same as shown in Fig. 5.4c and
is found to be a good layout. From Table 5.2, the SD values for all calculation sets are
very small. In fact, the maximum coefficient of variation of all calculation sets, which is
found in the calculation set with the population size of 100, is only 0.06. Actually, for
the population sizes of 300 and 400, the SD values are zero. This is because all 100 best
solutions of all 100 runs within each of these two calculation sets are the same. These
results further confirm that the proposed algorithm provides uniform results. It can be
observed also from Table 5.2 that, for the population sizes of 200 and greater, the
algorithm requires, on average, less than 100 generations to reach the convergence.

3 221

Unit: m

2

1
1

4

Kitchen
& Dining

WC

Bedroom Living

Bedroom

y
x

 (a) (b)

(c)

Fig. 5.4. Problem 2. (a) The given floor plan. (b) The grid. (c) The best solution.

 58

Fig. 5.5 shows a typical evolution of layouts from a run with 100 individuals.
The best layout of the run is obtained at the 124th generation. The best layout obtained
is also the problem's best layout, which is illustrated in Fig. 5.4c. In addition, Fig. 5.6
depicts the convergences of the fitness and the total beam length of the same run shown
in Fig. 5.5. The fitness rises quickly after the 75th generation and reaches its
convergence at the 124th generation. The total beam length decreases rapidly also after
the 75th generation and reaches the lowest value of 59 m at the 124th generation.

Table 5.2. Problem 2: statistics of the results.

 Calculation set of 100 runs

Population Size
100 200 300 400

Maximum fitness 0.500 0.500 0.500 0.500
Average fitness 0.490 0.498 0.500 0.500
Minimum fitness 0.375 0.375 0.500 0.500
SD of fitness 0.030 0.014 0 0
Appearance percentage of the best
solution of the calculation set (%)

89 97 100 100

Average required number of
generations for the solution
convergence

124.6 99.2 98.1 76.6

 59

 Gen-0 Gen-20 Gen-40

 Gen-60 Gen-80 Gen-100

 Gen-124-Best Gen-200 Gen-500

Fig. 5.5. Problem 2: a typical evolution of solution.

 60

0 50 100 150 200 250 300 350 400 450 500
0.0156

0.2578

0.5

Generation

Fitness Value and Total Beam Length

Fi
tn

es
s

V
al

ue

0 50 100 150 200 250 300 350 400 450 500

59

80

101

122

143

164

185

206

227

248

269

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

Fig. 5.6. Problem 2: a typical development of the fitness and the total beam length.

 61

5.3 Problem 3

The third problem is an architectural floor plan shown in Fig. 5.7a. This floor is
larger and more complicated than the previous two examples. The floor has one interior
column that is out of alignment with the other columns. This irregularity is often
encountered by engineers in practice and is intentionally adjusted herein to increase the
difficulty of the problem. Similar to the previous problems, a uniform grid with spacing
of 0.5 m is employed for this problem as shown in Fig. 5.7b. With the outer boundary
beams placed in advance, this grid yields 666 design variables. The maximum allowable
length of a slab is preset to 4 m. For this problem, four calculation sets for four different

1.5 2

2.5

1.5

4

1

Unit: m

Kitchen &
Dining

WC

Bedroom Living

Bedroom

WC

22 2.5

y

x

(a)

(b)

(c)

Fig. 5.7. Problem 3. (a) The given floor plan. (b) The grid. (c) The best solution.

 62

population sizes of 500, 600, 700 and 800 individuals are analyzed. Similar to the
previous problems, each calculation set consists of 100 runs.

Table 5.3 shows the statistics of the obtained results. The best solutions of all

calculation sets are the same. The best layout from the algorithm is shown in Fig. 5.7c.
The algorithm efficiently provides simple beam-slab patterns in the area with simple
wall lines and beam-slab patterns that are more involved in the area with complex wall
lines. In addition, the algorithm handles the area around the column that is out of
alignment quite well. As presented in Table 5.3, the SD values for all calculation sets
are very small. The maximum coefficient of variation of all calculation sets, found in
the calculation set with the population size of 500, is only 0.02. For this problem, the
algorithm requires, on average, less than 190 generations to obtain the convergence.

Fig. 5.8 shows a typical evolution of layouts from a run with 500 individuals.

The best layout of the run, which is also the best layout found for this problem shown in
Fig. 5.7c, is obtained at the 187th generation. In Fig. 5.8, there is the change of pattern
from Gen-150 to Gen-187 because the bottom left slab of Gen-187 has more corner
columns than that of Gen-150. Fig. 5.9 shows the convergences of the fitness and the
total beam length of the same run shown in Fig. 5.8. The fitness rises quickly during the
first 75 generations before reaching its convergence at the 187th generation. Similarly,
the total beam length decreases rapidly during the first 75 generations and reaches the
lowest value of 80.5 m at the 187th generation.

Table 5.3. Problem 3: statistics of the results.

 Calculation set of 100 runs

Population Size
500 600 700 800

Maximum fitness 0.500 0.500 0.500 0.500
Average fitness 0.496 0.497 0.497 0.497
Minimum fitness 0.454 0.417 0.458 0.458
SD of fitness 0.012 0.012 0.010 0.009
Appearance percentage of the best
solution of the calculation set (%)

92 94 94 95

Average required number of
generations for the solution
convergence

187.4 177.6 163.2 175.6

 63

 Gen-0 Gen-20

 Gen-40 Gen-80

 Gen-100 Gen-150

 Gen-187-Best Gen-500

Fig. 5.8. Problem 3: a typical evolution of solution.

 64

0 50 100 150 200 250 300 350 400 450 500
0.017

0.2585

0.5

Generation

Fitness Value and Total Beam Length

Fi
tn

es
s

V
al

ue

0 50 100 150 200 250 300 350 400 450 500

80.5
109.5
138.5
167.5
196.5
225.5
254.5
283.5
312.5
341.5
370.5

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

Fig. 5.9. Problem 3: a typical development of the fitness and the total beam length.

 65

5.4 Problem 4

The fourth problem is an architectural floor plan shown in Fig. 5.10a. The floor
has several rooms and the columns are not in perfect alignment. In this problem, two
uniform grids with spacing of 0.5 m and 1 m are employed as shown in Fig. 5.10b and
c. The larger grid spacing of 1 m is also used in this problem in order to show that, in
real practice, larger values of spacing can be used as long as the values still allow the
slab constraint to be satisfied. The maximum allowable length of a slab is again preset
to 4 m. With the outer-boundary beams placed in advance, the 0.5-m grid requires 634
design variables while the 1-m grid involves 149 design variables. Four calculation sets
for four different population sizes of 500, 600, 700 and 800 individuals are analyzed for
the 0.5-m grid. For the 1-m grid, four different population sizes of 100, 200, 300 and

(a)

 (b) (c)

(d)

Fig. 5.10. Problem 4. (a) The given floor plan. (b) The 0.5-m grid. (c) The 1-m gird. (d)
The best solution.

 66

400 individuals are used for the latter. Each calculation set consists of 100 runs. The
smaller population sizes are adopted for the 1-m grid because the search space of the 1-
m grid is smaller than that of the 0.5-m grid.

Table 5.4 shows the statistics of the obtained results for the 0.5-m grid. Similar

to all previous problems, it is found from the results that the best solutions of all
calculation sets are the same. The best layout is shown in Fig. 5.10d. It can be seen that
the obtained best layout is reasonably good. All irregular wall and column locations are
well taken care of by the algorithm. The layout can positively be used in the next design
process. In addition, the SD values for all calculation sets shown in Table 5.4 are very
small. The maximum coefficient of variation of all calculation sets, found in the
calculation set with the population size of 500, is only 0.04. In addition, the algorithm
requires, on average, less than 175 generations to obtain the convergence. Table 5.5
shows the statistics of the obtained results for the 1-m grid. The best solutions of all
calculation sets with the 1-m grid are the same as the best layout obtained from the 0.5-

Table 5.4. Problem 4: statistics of the results for the 0.5-m grid.

 Calculation set of 100 runs

Population Size
500 600 700 800

Maximum fitness 0.550 0.550 0.550 0.550
Average fitness 0.541 0.543 0.543 0.543
Minimum fitness 0.500 0.500 0.500 0.500
SD of fitness 0.019 0.017 0.017 0.019
Appearance percentage of the best
solution of the calculation set (%)

82 86 85 88

Average required number of
generations for the solution
convergence

167.3 171.7 165.9 157.1

Table 5.5. Problem 4: statistics of the results for the 1-m grid.

 Calculation set of 100 runs

Population Size
100 200 300 400

Maximum fitness 0.550 0.550 0.550 0.550
Average fitness 0.546 0.548 0.548 0. 550
Minimum fitness 0.500 0.500 0.500 0. 550
SD of fitness 0.014 0.010 0.009 0
Appearance percentage of the best
solution of the calculation set (%)

90 95 97 100

Average required number of
generations for the solution
convergence

130.5 126.1 96.6 104.6

 67

m grid. Nevertheless, the SD values for the calculation sets with the 1-m grid are much
smaller than those from the 0.5-m grid. In addition, the maximum coefficient of
variation of all calculation sets with the 1-m grid, found in the calculation set with the
population size of 100, is only 0.03. Moreover, for the 1-m grid, the algorithm requires,
on average, less than 135 generations to obtain the convergence.

Fig. 5.11 shows a typical evolution of layouts for the 0.5-m grid from a run with

500 individuals. The best layout of the run is obtained at the 159th generation. This best
layout is also the best layout found for this problem, which is shown in Fig. 5.10d.
Moreover, Fig. 5.12 shows the convergences of the fitness and the total beam length of
the same run shown in Fig. 5.11. It can be seen that the fitness rises quickly after the
80th generation and reaches its convergence at the 159th generation. The total beam
length decreases rapidly after the 80th generation before reaching the lowest value of 76
m at the 159th generation.

 68

 Gen-0 Gen-20

 Gen-40 Gen-80

 Gen-100 Gen-150

 Gen-159-Best Gen-500

Fig. 5.11. Problem 4: a typical evolution of solution.

 69

0 50 100 150 200 250 300 350 400 450 500
0.0179

0.2839

0.55

Generation

Fitness Value and Total Beam Length

Fi
tn

es
s

V
al

ue

0 50 100 150 200 250 300 350 400 450 500

76

103.5

131

158.5

186

213.5

241

268.5

296

323.5

351

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

Fig. 5.12. Problem 4: a typical development of the fitness and the total beam length for
the 0.5-m grid.

 70

5.5 Problem 5

The fifth problem is taken from a floor plan of an existing public building. Fig.
5.13a shows the architectural floor plan of the building and Fig. 5.13b shows the real
structural beam-slab layout. The architectural floor plan is slightly simplified to obtain a
rectangular floor and the simplified plan is shown in Fig. 5.14a. This simplified plan is
used as the input of the proposed algorithm. It can be seen from the real structural
layout in Fig. 5.13b that both precast as well as cast-in-place slabs are used. The
maximum length of the precast slabs is 4 m. In addition, the precast slabs are placed
parallel to the x direction. To be able to compare the layout obtained from this study
with the real structural layout, the maximum allowable slab length in the x direction is
preset to 4 m in the algorithm. The maximum allowable slab length in the y direction is
preset to 8 m, which is the maximum column spacing. In this problem, due to the
complexity of the positions of walls and columns, a non-uniform grid is used. The
maximum grid spacing is set to 4 m in order that the slab constraint can be satisfied in

(a)

(b)

Fig. 5.13. Problem 5: (a) The real architectural floor plan. (b) The real structural floor
plan.

 71

both directions. To construct the non-uniform grid, grid lines are first placed on all
columns and wall lines. After that, the spacing between all grid lines is checked. If any
spacing is found to be greater than the maximum grid spacing of 4 m, an additional grid
line will be inserted at the middle of the interval. Since there will be no beam in the stair
and lift opening areas, the line segments of the grid in these two areas are removed. The
obtained non-uniform grid is shown in Fig. 5.14b. With the outer-boundary beams
placed in advance, this grid results in 269 design variables. For this problem, four
calculation sets for four different population sizes of 20, 40, 60 and 80 individuals are
analyzed. Each set consists of 100 runs. In the algorithm, the stair and lift openings are
treated as part of the floor area, not as openings, and the calculation is performed as if
there is no opening. However, a slab that fits any opening area exactly will not be
penalized even if it violates the slab constraint.

Table 5.6 shows the statistics of the obtained results. The best solutions of all

calculation sets are found to be the same. The best layout from the algorithm is shown
in Fig. 5.14c. This layout is found to be in good agreement with the real structural
layout shown in Fig. 5.13b. In fact, if the simplified parts are disregarded, the two
layouts are exactly the same. The SD values in Table 5.6 for all calculation sets are very
small. The coefficients of variation of all calculation sets are found to be the same and
equal to 0.01. For this problem, the algorithm requires, on average, less than 1,140
generations to obtain the convergence. Fig. 5.15 shows a typical evolution of layouts
from a run with 20 individuals. Fig. 5.16 shows the convergences of the fitness and the
total beam length of the same run shown in Fig. 5.15.

Table 5.6. Problem 5: statistics of the results.

 Calculation set of 100 runs

Population Size
20 40 60 80

Maximum fitness 0.311 0.311 0.311 0.311
Average fitness 0.310 0.310 0.310 0.310
Minimum fitness 0.304 0.300 0.300 0.304
SD of fitness 0.002 0.002 0.002 0.002
Appearance percentage of the best
solution of the calculation set (%)

37 52 42 46

Average required number of
generations for the solution
convergence

1074.3 942.8 1003.0 1136.6

 72

(a)

(b)

(c)

Fig. 5.14. Problem 5: (a) The simplified architectural floor plan. (b) The grid. (c) The
best solution.

 73

Gen-0

Gen-200

Gen-400

Gen-600

Fig. 5.15. Problem 5: a typical evolution of solution.

 74

Gen-800

Gen-1004-Best

Gen-2000

Fig. 5.15. (continued)

 75

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1759

0.2434

0.311

Generation

Fitness Value and Total Beam Length
Fi

tn
es

s
V

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800 2000

697
720.3
743.6
766.9
790.2
813.5
836.8
860.1
883.4
906.7
930

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

Fig. 5.16. Problem 5: a typical development of the fitness and the total beam length.

 76

5.6 Problem 6

The sixth problem is a rectilinear floor plan shown in Fig. 5.17a. The floor has a
stair opening. A uniform grid with spacing of 0.5 m is employed as shown in Fig. 5.17b.
By placing beams on the outer boundary of the floor in advance, this grid results in 683
design variables. The maximum allowable length of a slab is set to 3.5 m. In addition,
four calculation sets for four different population sizes of 20, 40, 60 and 80 individuals
are analyzed, and each calculation set also consists of 100 runs.

Table 5.7 shows the statistics of the obtained results. It is found that the best

solutions of all calculation sets are the same. This best solution is shown in Fig. 5.17c
and is found to be a good layout. From Table 5.7, it can also be seen that the SD values
for all calculation sets are small. In fact, the maximum coefficient of variation of all
calculation sets, which is found in the calculation set with the population size of 20, is
only 0.09. Table 5.7 shows that, for the population sizes of 40 and greater, the algorithm
requires, on average, less than 1,000 generations to reach the solution convergence.

Fig. 5.18 shows a typical evolution of layouts from a run with 20 individuals.

The best layout of the run is obtained at the 962th generation. This best layout is also
the best layout found for this problem, which is shown in Fig. 5.17c. In addition, Fig.
5.19 shows the convergences of the fitness and the total beam length of the same run
shown in Fig. 5.18. The fitness rises quickly after the 50th generation and reaches its
convergence at the 962th generation. Moreover, the total beam length decreases rapidly
also after the 50th generation and reaches the lowest value of 101.5 m at the 962th
generation.

Table 5.7. Problem 6: statistics of the results.

 Calculation set of 100 runs

Population Size
20 40 60 80

Maximum fitness 0.515 0.515 0.515 0.515
Average fitness 0.473 0.495 0.506 0.509
Minimum fitness 0.355 0.382 0.397 0.456
SD of fitness 0.044 0.031 0.022 0.016
Appearance percentage of the best
solution of the calculation set (%)

38 60 78 88

Average required number of
generations for the solution
convergence

1078.5 999.1 859.2 918.0

 77

Te
rr

ac
e

W
C

W
C

(a)

 (b)

(c)

Fig. 5.17. Problem 6. (a) The given floor plan. (b) The grid. (c) The best solution.

 78

 Gen-0 Gen-100

 Gen-500 Gen-700

 Gen-962-Best Gen-2000

Fig. 5.18. Problem 6: a typical evolution of solutions.

 79

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0244

0.2696

0.5147

Generation

Fitness Value and Total Beam Length
Fi

tn
es

s
V

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800 2000

101.5

129.95

158.4

186.85

215.3

243.75

272.2

300.65

329.1

357.55

386

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

Fig. 5.19. Problem 6: a typical development of the fitness and the total beam length.

 80

5.7 Problem 7

The seventh problem is taken from a floor plan of a real building. Fig. 5.20a
shows the architectural floor plan of the building and Fig. 5.20b shows the real
structural beam-slab layout. The plan in Fig. 5.20a is used as the input of the proposed
algorithm. It can be seen from the real structural layout in Fig. 5.20b that one-way slabs
with short spans of 3.9 m are mostly used in the floor. These one-way slabs are placed
parallel to the x direction. To be able to compare the layout obtained from this study
with the real structural layout, the maximum allowable slab length in the x direction is
preset to 3.9 m. In addition, the maximum allowable slab length in the y direction is
preset to 7.8 m, which is the maximum column spacing. Due to the complexity of the

(a)

(b)

Fig. 5.20. Problem 7. (a) The real architectural floor plan. (b) The real structural floor
plan.

 81

positions of walls and columns, a non-uniform grid is used. The maximum grid spacing
is set to 3.9 m in order that the slab constraint can be satisfied in both directions. The
non-uniform grid is constructed using the same procedure as the previous example.
Since there will be no beam in the stair and lift opening areas, the line segments of the
grid in these two areas are removed. The obtained non-uniform grid is shown in Fig.
5.21a. With the outer-boundary beams placed in advance, this grid results in 203 design
variables. For this problem, four calculation sets for four different population sizes of
20, 40, 60 and 80 individuals are analyzed. Each calculation set consists of 100 runs.
The stair and lift openings are treated as part of the floor area, not as openings, and the
calculation is performed as if there is no opening. However, a slab that fits any opening
area exactly will not be penalized even if it violates the slab constraint.

Table 5.8 shows the statistics of the obtained results. The best solutions of all
calculation sets are found to be the same. The best layout from the algorithm is shown
in Fig. 5.21b. This layout is found to be a good layout although it is not exactly the
same as the real structural layout shown in Fig. 5.20b. The SD values in Table 5.8 for
all calculation sets are very small. The maximum coefficient of variation of the
calculation sets is equal to 0.004. For this problem, the algorithm requires, on average,
less than 760 generations to obtain the convergence. Fig. 5.22 shows a typical evolution
of layouts from a run with 20 individuals. Fig. 5.23 shows the convergences of the
fitness and the total beam length of the same run shown in Fig. 5.22.

Table 5.8. Problem 7: statistics of the results.

 Calculation set of 100 runs

Population Size
20 40 60 80

Maximum fitness 0.267 0.267 0.267 0.267
Average fitness 0.266 0.266 0.267 0.267
Minimum fitness 0.262 0.262 0.267 0.262
SD of fitness 0.001 0.001 0 0.
Appearance percentage of the best
solution of the calculation set (%)

30 56 71 76

Average required number of
generations for the solution
convergence

649.8 705.5 731.4 754.9

 82

(a)

(b)

Fig. 5.21. Problem 7. (a) The grid. (b) The best solution.

 83

Gen-0

Gen-100

Gen-500

Fig. 5.22. Problem 7: a typical evolution of solutions.

 84

Gen-700

Gen-725-Best

Gen-2000

Fig. 5.22. (continued)

 85

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1416

0.2041

0.2667

Generation

Fitness Value and Total Beam Length
Fi

tn
es

s
V

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800 2000

483
500.3
517.6
534.9
552.2
569.5
586.8
604.1
621.4
638.7
656

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

Fig. 5.23. Problem 7: a typical development of the fitness and the total beam length.

 86

5.8 Problem 8

The eighth problem is also a real floor plan of an existing building. Fig. 5.24a
shows the architectural floor plan of the building and Fig. 5.24b shows the real
structural beam-slab layout. The angles of two floor corners are not right angles. As a
result, they are changed to be right angles. The simplified floor plan is shown in Fig.
5.25a. This simplified plan is used as the input of the proposed algorithm. In the real
structural layout in Fig. 5.24b, precast as well as cast-in-place slabs are used. The
maximum length of the precast slabs is 3 m while the maximum length of the cast-in-
place slabs is 4 m. In addition, the precast slabs are placed parallel to the x direction. To
be able to compare the layout obtained from this study with the real structural layout,
the maximum allowable slab length in the x direction is preset to 3 m. In addition, the
maximum allowable slab length in the y direction is preset to 8 m, which is the
maximum column spacing. In this problem, a non-uniform grid is used. The maximum

(a)

Precast slab
Cast-in-place slab

1.5 4 2 3 3 3 3 1.53 3 2.3 3.7

1.5

1.5

2

1.3

1
1.5

2.5

Unit: m

3.2

(b)

Fig. 5.24. Problem 8: (a) The real architectural floor plan. (b) The real structural floor
plan.

 87

grid spacing is set to 3 m in order that the slab constraint can be satisfied in both
directions. Since there will be no beam in the stair opening areas and some other
opening areas along the floor boundary, the line segments of the grid in these areas are
removed. The obtained non-uniform grid is shown in Fig. 5.25b. With the outer-
boundary beams placed in advance, this grid results in 199 design variables. For this
problem, four calculation sets for four different population sizes of 20, 40, 60 and 80
individuals are analyzed. Each calculation set consists of 100 runs. In the algorithm, the
openings are treated as part of the floor area, not as openings, and the calculation is
performed as if there is no opening. However, a slab that fits any opening area exactly
will not be penalized even if it violates the slab constraint.

Table 5.9 shows the statistics of the obtained results. The best solutions of all
calculation sets are found to be the same. The best layout from the algorithm is shown
in Fig. 5.25c. This layout is found to be in good agreement with the real structural
layout shown in Fig. 5.24b. The SD values in Table 5.9 for all calculation sets are zero.
For this problem, the algorithm requires, on average, less than 430 generations to obtain
the convergence. Fig. 5.26 shows a typical evolution of layouts from a run with 20
individuals. Fig. 5.27 shows the convergences of the fitness and the total beam length of
the same run shown in Fig. 5.26.

Table 5.9. Problem 8: statistics of the results.

 Calculation set of 100 runs

Population Size
20 40 60 80

Maximum fitness 0.287 0.287 0.287 0.287
Average fitness 0.287 0.287 0.287 0.287
Minimum fitness 0.287 0.287 0.287 0.287
SD of fitness 0 0 0 0
Appearance percentage of the best
solution of the calculation set (%)

100 100 100 100

Average required number of
generations for the solution
convergence

428.7 270.7 254.7 263.7

 88

(a)

(b)

(c)

Fig. 5.25. Problem 8: (a) The simplified architectural floor plan. (b) The grid. (c) The
best solution.

 89

Gen-0

Gen-100

Gen-200

Fig. 5.26. Problem 8: a typical evolution of solutions.

 90

Gen-300

Gen-425-Best

Gen-2000

Fig. 5.26. (continued)

 91

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1422

0.2146

0.287

Generation

Fitness Value and Total Beam Length
Fi

tn
es

s
V

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800 2000

362
376
390
404
418
432
446
460
474
488
502

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

Fig. 5.27. Problem 8: a typical development of the fitness and the total beam length.

 92

5.9 Problem 9

The last problem is the same floor plan as that of the fifth problem. The floor
plan is slightly adjusted from the actual to a rectilinear one in contrast to a simplified
rectangular floor plan adopted in the fifth problem. In fact, only the angles of the four
floor corners are changed to be right angles. Fig. 5.28a shows the architectural floor
plan of the building and Fig. 5.28b shows the real structural beam-slab layout. The
simplified floor plan is shown in Fig. 5.29a. Similar to the fifth problem, the maximum
allowable slab length in the x direction is preset to 4 m. In addition, the maximum
allowable slab length in the y direction is preset to 8 m. In this problem, a non-uniform
grid is used. The maximum grid spacing is set to 4 m in order that the slab constraint
can be satisfied in both directions. The obtained non-uniform grid is shown in Fig.
5.29b. With the outer-boundary beams placed in advance, this grid results in 272 design
variables. For this problem, four calculation sets for four different population sizes of
20, 40, 60 and 80 individuals are analyzed. Each calculation set consists of 100 runs.

(a)

(b)

Fig. 5.28. Problem 9: (a) The real architectural floor plan. (b) The real structural floor
plan.

 93

Table 5.10 shows the statistics of the obtained results. The best solutions of all
calculation sets are found to be the same. The best layout from the algorithm is shown
in Fig. 5.29c. This layout is found to be in good agreement with the real structural
layout shown in Fig. 5.28b. In fact, if the simplified parts are disregarded, the two
layouts are exactly the same. The SD values in Table 5.10 for all calculation sets are
very small. The coefficients of variation of all calculation sets are found to be the same
and equal to 0.01. For this problem, the algorithm requires, on average, less than 1,380
generations to obtain the convergence. Fig. 5.30 shows a typical evolution of layouts
from a run with 20 individuals. Fig. 5.31shows the convergences of the fitness and the
total beam length of the same run shown in Fig. 5.30.

Table 5.10. Problem 9: statistics of the results.

 Calculation set of 100 runs

Population Size
20 40 60 80

Maximum fitness 0.310 0.310 0.310 0.310
Average fitness 0.307 0.308 0.308 0.307
Minimum fitness 0.300 0.294 0.298 0.296
SD of fitness 0.003 0.003 0.003 0.003
Appearance percentage of the best
solution of the calculation set (%)

40 45 42 38

Average required number of
generations for the solution
convergence

1147.5 1116.0 1222.1 1371.9

 94

(a)

(b)

(c)

Fig. 5.29. Problem 9: (a) The simplified architectural floor plan. (b) The grid. (c) The
best solution.

 95

Gen-0

Gen-100

Gen-500

Fig. 5.30. Problem 9: a typical evolution of solutions.

 96

Gen-700

Gen-926-Best

Gen-2000

Fig. 5.30. (continued)

 97

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1733

0.2414

0.3095

Generation

Fitness Value and Total Beam Length
Fi

tn
es

s
V

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800 2000

727.4

751.06

774.72

798.38

822.04

845.7

869.36

893.02

916.68

940.34

964

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

Fig. 5.31. Problem 9: a typical development of the fitness and the total beam length.

 98

Chapter 6

Conclusions

 In this study, a new genetic algorithm for beam-slab layout design of rectangular
and rectilinear floors is successfully proposed. The input of the proposed algorithm is an
architectural floor plan with given positions of columns and walls. Beam segments
attached to line segments of a grid that is superimposed on the floor plan are used as the
design variables. By using a newly proposed coding scheme for beam-slab layouts, any
pattern of beam segments can always be interpreted as a geometrically valid beam-slab
layout. In this study, the beam-slab layout design problem is written as an optimization
problem by using an objective function that is written based on how well slabs are
supported by columns. In addition, constraints based on positions of walls, the
maximum slab dimensions as well as the total floor area are developed. The GA used in
this study is derived from the simple GA by adding adaptive penalty and elitism
processes.

 From the example problems, it can be seen that the proposed GA successfully
finds good layouts of beams and slabs for the given floor plans. The obtained beam-slab
layouts in the example problems are found to be practical layouts that can really be used
in the next structural design step. From Problems 1 to 4, the rectangular floor plans with
the 0.5-m fine grids are used. The results show that the proposed GA can find good
results even though the grids are fine. Problems 6 to 9 are rectilinear floors. Problem 6
is tested with the 0.5-m fine grid. The obtained results are also good. The floor plans of
Problems 7 to 9 are simplified from some real existing floor plans. These Problems are
solved by using the coarser grids. The obtained results agree quite well with the real
structural floor plans. Although it may be argued that the beam-slab layouts of all
example problems can be designed without much difficulty by humans, this study
intends to demonstrate that this particular design task, which is highly heuristic, can be
performed acceptably by computers. Finally, it can be concluded that the proposed GA,
together with the proposed layout coding technique, can efficiently help automate
design of beam-slab layouts.

In this study, all positions of columns are prescribed as part of the input data.
The future study of this research may include those problems where the positions of
columns are unknown and, as a result, become part of the design variables. Moreover,
different search algorithms such as the particle swarm optimization may be tried in
order to possibly increase the efficiency of the computation.

 99

References

Adeli, H. and Cheng, N.-T., 1994. Integrated genetic algorithm for optimization of
space structures. Journal of Aerospace Engineering. 6: 315-328.

Arora, J. S., 2004. Introduction to optimum design. Amsterdam. Academic Press.

Bailey, S. F. and Smith, I. F. C., 1994. Case-based preliminary building design. Journal
of Computing in Civil Engineering. 8: 455-468.

Balachandran, B., 1993. Knowledge-based optimum design. Southampton.
Computational Mechanics Publications.

Bausys, R. and Pankrasovaite, I., 2005. Optimization of architectural layout by the
improved genetic algorithm. Journal of Civil Engineering and Management. 11: 13-21.

Bradshaw, J. and Miles, J. C., 1997. Using standard fitnesses with genetic algorithms.
Advances in Engineering Software. 28: 425-435.

Burns, S., A., 2002. Recent advances in optimal structural design. Reston. American
Society of Civil Engineers.

Camp, C., Pezeshk, S. and Cao, G., 1998. Optimized design of two-dimensional
structures using a genetic algorithm. Journal of Structural Engineering. 124: 551-559.

Camp, C. V., Pezeshk, S. and Hansson, H., 2003. Flexural design of reinforced concrete
frames using a genetic algorithm. Journal of Structural Engineering. 129: 105-115.

Coello, C. C., Hernandez, F. S. and Farrera, F. A., 1997. Optimal design of reinforced
concrete beams using genetic algorithms. Expert Systems with Applications. 12: 101-
108.

Deb, K., 1995. Optimization for engineering design: Algorithms and examples. New
Delhi. Prentice-Hall.

Fenves, S. J., Rivard, H. and Gomez, N., 2000. SEED-config: A tool for conceptual
structural design in a collaborative building design environment. Artificial Intelligence
in Engineering. 14: 233-247.

Fenves, S. J., Rivard, H., Gomez, N. and Chiou, S.-C., 1995. Conceptual structural
design in SEED. Journal of Architectural Engineering. 1: 179-186.

Foley, C. M. and Schinler, D., 2003. Automated design of steel frames using advanced
analysis and object-oriented evolutionary computation. Journal of Structural
Engineering. 129: 648-660.

Fuyama, H., Law, K. H. and Krawinkler, H., 1997. An interactive computer assisted
system for conceptual structural design of steel buildings. Computers & Structures. 63:
647-662.

 100

Galante, M., 1996. Genetic algorithms as an approach to optimize real-world trusses.
International Journal for Numerical Methods in Engineering. 39: 361-382.

Gero, J. S. and Kazakov, V. A., 1998. Evolving design genes in space layout planning
problems. Artificial Intelligence in Engineering. 12: 163-176.

Ghasemi, M. R. and Hinton, E., 1996. Truss optimization using genetic algorithms.
Advaced in Computational Structures Technology. Edinburgh. Civil-Comp Press: 59-
75.

Ghasemi, M. R., Hinton, E. and Wood, R., D., 1999. Optimization of trusses using
genetic algorithms for discrete and continuous variables. Engineering Computations.
16: 272-301.

Goldberg, D. E., 1989. Genetic algorithms in search, optimization, and machine
learning. Massachusetts. Addison-Wesley.

Grierson, D. E., 1996. Automated conceptual design of structural systems. Advances in
Computation Structures Technology. Edinburgh. Civil-Comp Press: 157-161.

Grierson, D. E. and Khajehpour, S., 2002. Method for conceptual design applied to
office buildings. Journal of Computing in Civil Engineering. 16: 83-103.

Grierson, D. E. and Park, K., -W., 1996. Optimal conceptual topological design.
Proceedings of the first ASCE U.S.-Japan joint seminar on structural optimization.
Chicago. American Society of Civil Engineers: 91-96.

Griffiths, D. R. and Miles, J. C., 2003. Determining the optimal cross-section of beams.
Advanced Engineering Informatics. 17: 59-76.

Jo, J. H. and Gero, J. S., 1998. Space layout planning using an evolutionary approach.
Artificial Intelligence in Engineering. 12: 149-162.

Kameshki, E. S. and Saka, M. P., 2001. Optimum design of nonlinear steel frames with
semi-rigid connections using a genetic algorithm. Computers and Structures. 79: 1593-
1604.

Kicinger, R., Arciszewski, T. and DeJong, K., 2005. Evolutionary design of steel
structures in tall buildings. Journal of Computing in Civil Engineering. 19: 223-238.

Krishnamoorthy, C. S., Venkatesh, P. P. and Sudarshan, R., 2002. Object-oriented
framework for genetic algorithms with application to space truss optimization. Journal
of Computing in Civil Engineering. 16: 66-75.

Kumar, B. and Raphael, B., 1997. CADREM: A case-based system for conceptual
structural design. Engineering with Computers (Historical Archive). 13: 153-164.

Lin, T. Y. and Stotesbury, S. D., 1981. Structural concepts and systems for architects
and engineers. New York. John Wiley & Sons.

 101

Maher, M. L., 1984. HI-RISE: A knowledge-based expert system for the preliminary
structural design of high rise buildings. Ph.D. Thesis, Department of Civil Engineering.
Carnegie-Mellon University:

Maher, M. L. and Balachandran, B., 1994. Multimedia approach to case-based structural
design. Journal of Computing in Civil Engineering. 3: 359-376.

Mathews, J. D. and Rafiq, M. Y., 1995. Adaptive search to assist in the conceptual
design of concrete buildings. Developments in Neural Networks and Evolutionary
Computing for Civil and Structural Engineering. Edinburgh. Civil-Comp Press: 179-
187.

Michalek, J. J., Choudhary, R. and Papalambros, P. Y., 2002. Architectural layout
design optimization. Engineering Optimization. 34: 461-484.

Michalek, J. J. and Papalambros, P. Y., 2002. Interactive design optimization of
architectural layouts. Engineering Optimization. 34: 485-501.

Miles, J. C., Sisk, G. M. and Moore, C. J., 2001. The conceptual design of commercial
buildings using a genetic algorithm. Computers & Structures. 79: 1583-1592.

Nanakorn, P. and Meesomklin, K., 2001. An adaptive penalty function in genetic
algorithms for structural design optimization. Computers & Structures. 79: 2527-2539.

Nimityongskul, N., 2004. An ant colony optimization algorithm for sizing optimization
of structures. Civil engineering. Sirindhorn International Institute of Technology,
Thammasat University:

Park, K.-W. and Grierson, D. E., 1999. Pareto-optimal conceptual design of the
structural layout of buildings using a multicriteria genetic algorithm. Computer-Aided
Civil and Infrastructure Engineering. 14: 163-170.

Rafiq, M. Y., Mathews, J. D. and Bullock, G. N., 2003. Conceptual building design---
evolutionary approach. Journal of Computing in Civil Engineering. 17: 150-158.

Rajan, S. D., 1995. Sizing, shape, and topology design optimization of trusses using
genetic algorithm. Journal of Structural Engineering. 121: 1480-1487.

Rajeev, S. and Krishnamoorthy, C. S., 1992. Discrete optimization of structures using
genetic algorithms. Journal of Structural Engineering. 118: 1233-1250.

Rajeev, S. and Krishnamoorthy, C. S., 1997. Genetic algorithms-based methodologies
for design optimization of trusses. Journal of Structural Engineering. 123: 350-358.

Sabouni, A. R. and Al-Mourad, O. M., 1997. Quantitative knowledge based approach
for preliminary design of tall buildings. Artificial Intelligence in Engineering. 11: 143-
154.

Sacks, R. and Warszawski, A., 1997. A project model for an automated building
system: Design and planning phases. Automation in Construction. 7: 21-34.

 102

Sacks, R., Warszawski, A. and Kirsch, U., 2000. Structural design in an automated
building system. Automation in Construction. 10: 181-197.

Schodek, D. L., 2001. Structures. New Jersey. Prentice-Hall.

Shaw, D., Miles, J. and Gray, A., 2008. Determining the structural layout of orthogonal
framed buildings. Computers & Structures. 86: 1856-1864.

Sisk, G. M., Miles, J. C. and Moore, C. J., 2003. Designer centered development of GA-
based DSS for conceptual design of buildings. Journal of Computing in Civil
Engineering. 17: 159-166.

Soh, C.-K. and Yang, J., 1998. Optimal layout of bridge trusses by genetic algorithms.
Computer-Aided Civil and Infrastructure Engineering. 13: 247-254.

Sriram, D., 1987. Knowledge-based approaches for structural design. Topics in
engineering. Southampton. Computational Mechanics Publications.

Syrmakezis, C. A., Mikroudis, C. A. and Rouva, S., 1996. Development of the
VK.Expert system for computer-aided preliminary design of reinforced concrete
buildings. Information Processing in Civil and Structural Engineering Design. Civil-
Comp Press: 45-51.

Syrmakezis, C. A. and Mikroudis, G. K., 1997. ERDES--an expert system for the
aseismic design of buildings. Computers & Structures. 63: 669-684.

Tsakalias, G. E., 1994. KTISMA: A blackboard system for structural model synthesis of
asymmetrical skeletal reinforced concrete buildings. Artificial Intelligence and Object
Oriented Approaches for Structural Engineering. Edinbugh. Civil-Comp Press: 15-21.

