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Chapter 1 
 

Introduction 
 
 
1.1 General 
 

Building design can be divided into three parts: architectural design, structural 
design, and electrical and mechanical design. In addition, each part of building design 
may be divided into three stages: the conceptual design stage, the preliminary design 
stage and the detailed design stage. In architectural design, architects deal with the 
spatial aspects of activity, physical, and symbolic needs in such a way that overall 
performance integrity is assured. In structural design, structural engineers deal with 
design of structural integrity and stability. Because of the modern technology, present 
building architectures have become more aesthetic and complex. A complex shape of 
building results in a complicated building structure that is hard to be constructed. It is 
possible that changing a little architectural parts of the building results in big changes in 
design of the building structure. Thus, in all stages of architectural design, architects 
need to collaborate with structural engineers to produce the building design plan and 
construction documents. 

 
In structural design, engineers first have to select a structural system that is 

suitable for the building by considering both architectural functionality and structural 
stability. There are many types of structural system used in practice (Lin and 
Stotesbury, 1981) such as rigid-frame systems, shear-wall systems, and tubular systems. 
A building’s total structural system could be divided into two subsystems including 
vertical subsystems and horizontal subsystems. The horizontal subsystems carry floor 
loads through bending, and horizontal loads through diaphragm action. The vertical 
subsystems transfer loads from horizontal subsystems to foundations. 

 
Conceptual structural design includes selections of vertical systems, lateral 

bracing systems, and floor systems. The vertical system includes columns or walls that 
transmit gravity loads from floors to foundations. The lateral bracing system is an 
interaction between columns (or walls) and the floor system to efficiently transmit 
lateral loads from wind or seismic loads to foundations. The floor system is the 
horizontal surface that transmits gravity loads on the floor including the floor self 
weight to foundations. The floor system or horizontal system can be designed as slabs, 
beams, or beam grid systems. There are various types of floor system such as flat-plate 
floors, beam-slab floors, joist-girder floors, and waffle floors (Lin and Stotesbury, 
1981). 

 
A flat-plate floor is a floor built from slabs without beams as shown in Fig. 1.1a. 

Flat-plate floors transfer floor loads directly to columns or walls with or without drop 
panels at columns. Flat-plate floors can be constructed of reinforced concrete or 
prestressed concrete. If reinforced concrete construction is used for flat slabs, their span 
can be up to 5 m to 8 m. Reinforced concrete flat plates always need the addition of 
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Fig. 1.1. Types of slab. (a) Flat-plate floor. (b) Beam-slab floor. (c) Joist-girder floor. 
(d) Waffle floor or beam-grid floor. 

drop panels or capitals to increase the punching shear resistance at all columns. On the 
other hand, a prestressed concrete flat plate would have cables that hang over the top of 
the columns. These cables will help to carry much of the shear directly to columns. 
Furthermore, the compression produced by these cables onto the slabs helps to 
strengthen the slab against punching shear. Prestressed concrete flat plates can be 
relatively thin and span up to 8 m to 11 m between columns with a thickness of not over 
15 cm to 22 cm. 

 
Beam-slab floors are floors built from slabs and beams as shown in Fig. 1.1b. 

Beam-slab floors may be designed as one-way or two-way floors. The benefit of the 
beam-slab floor when the bay is nearly square is that beams can also be rigidly 
connected to the columns to form frames that resist lateral forces in both directions. A 
joist-girder floor shown in Fig. 1.1c is a variation on the beam-slab floor. Joist-girder 
floors comprise one-way slabs in perpendicular directions to joists. Joists transmit loads 
from slabs and their self weights to girders that support them. Actually the joist-girder 
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floor is a beam-slab floor when all slabs are one-way slabs, and girders are those beams 
supporting joists. Girders do not support slabs directly. The joist-girder floor is 
desirable when a thin concrete slab is required for various reasons such as economy or 
weight. 

 
A waffle floor or a beam-grid floor shown in Fig. 1.1d is also a variation on the 

beam-slab floor. Waffle floors carry floor loads in two-way directions through their 
beams that are constructed in a grid. To be effective, waffle floors require that column 
bays be approximately square rather than rectangular. The slab panels over the beam 
grid can be very thin because the span is short and the load is carried in two directions. 
The concrete ribs or slabs can be reinforced or prestressed. 

 
If flat-plate floors shown in Fig. 1.1a are used, the floor layout is already 

completed after obtaining column positions or column grids that are generally given as 
requirements from architects. Therefore, the remaining structural design of flat-plate 
floors is design of slab thickness. In case of waffle floors, patterns of beams and slabs 
are generally designed as a square grid. Therefore, layout design of waffle floors may be 
just design of beam spacing. Similarly, layout design of joist-girder floors is just to 
design of joist spacing, and girders are placed between columns. In case of general 
beam-slab floors in Fig. 1.1b, the first task of structural design of floors is layout design 
of beams and slabs. After obtaining layouts of beams and slabs, design of section details 
of the members can be performed. As a result, only general beam-slab floors in Fig. 
1.1b are considered in this study. 

 
Generally, preliminary structural design includes design of structural member 

layouts, estimation of structural member sizes, analysis of structures, and design of 
structures. Design of structural member layouts may be partially done in the conceptual 
design stage in collaboration with architects. Structural layout design starts from 
locating positions of columns or load-bearing walls depending on types of the vertical 
system used. Column layouts are often arranged in grids (Schodek, 2001) as shown in 
Fig. 1.2. Design patterns of columns or load-bearing walls inevitably affect patterns of 

 

 
Fig. 1.2. An example of square column grid. 



 4

beams and slabs. In addition, positions of permanent walls, such as brick walls on the 
floors and the maximum size of slabs, always influence patterns of beams and slabs of 
the floors as shown in Fig. 1.3. 

 
By considering beam-slab floors with prescribed column positions assigned by 

architects, design of structural layouts in the preliminary design stage is to design 
patterns of beams and slabs on floors. After obtaining the desired layouts, beam section 
details and slab section details can be determined next. Beam-slab layouts can be 
classified as one-way or two-way systems (Schodek, 2001). When a support grid 
consists of a square grid of columns, two-way beam-slab layouts can be obtained. 
However, beam-slab patterns may greatly be constrained by the requirement of beam 
positions to support permanent architectural walls that are used to partition floor areas 
to rooms. The space functions of the floors designed by architects naturally are unique 
for each building. Design of beam-slab layouts is heuristic. Consequently, it is hard to 
find a concrete algorithm for design of beam-slab layouts. 

 
As mentioned earlier, design of vertical systems, lateral bracing systems, and 

floor systems of buildings naturally have some links to each other. Therefore, both 
conceptual design and preliminary design are possibly considered concurrently. In the 
relevant literatures, preliminary structural design and conceptual structural design are 
usually referred to as the same thing. Normally both architectural design and structural 
design are considered in three stages as stated earlier and their tasks can be performed in 
parallel. However, for small-scaled low-rise buildings such as houses, building design 
usually starts from preparing architectural floor plans, and then creating structural floor 
plans. 
 

Nowadays computers have been widely used as a tool in design of buildings. 
There are plenty of state-of-the-art commercial programs assisting architects and 
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Fig. 1.3. An example of a beam-slab layout. 
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engineers in the detailed design stage. Examples are AutoCAD for architectural design 
of buildings, SAP2000 for structural analysis and design, and NASTRAN for general-
purposed analysis and design. However, there are only some computer programs for 
conceptual design and preliminary design and they are mostly research programs. 
Examples include SEED-config (Fenves et al., 2000), BERT (Fuyama et al., 1997), 
CADRE (Bailey and Smith, 1994), CASECAD (Maher and Balachandran, 1994), 
BGRID (Sisk et al., 2003), and CADREM (Kumar and Raphael, 1997). 

 
The early stage of conceptual design involves a balance of several requirements 

such as architectural requirements, structural requirements and mechanical 
requirements. Conceptual design is not suitable for procedural programming. It is 
because of its unclear design process. As a result, many researchers attempt to apply 
Artificial Intelligence (AI) to propose algorithms for conceptual design. Many past 
research computer programs for structural design of buildings fully support conceptual 
structural design but partially support preliminary structural design (Maher, 1984; 
Maher and Balachandran, 1994; Fenves et al., 2000). However, most of them do not 
take care of some important architectural constraints such as interior permanent walls. 
 
 
1.2 Automated structural design of buildings 
 

Structural design of buildings sequentially consists of conceptual structural 
design, preliminary structural design, and detailed structural design as shown in Table 
1.1. The nature of tasks in structural design of buildings can be separated as tasks done 
by humans (architects and engineers) and tasks executed by computers. Some tasks can 
be easily done by humans while the others are more efficiently carried out by 
computers. Although tasks in conceptual structural design are heuristic, there are several 
successful systems using artificial intelligence for assisting engineers to select the best-
concept structural system of buildings (Maher, 1984; Sabouni and Al-Mourad, 1997; 
Grierson and Khajehpour, 2002). 
 

In structural building design, structural engineers usually have a little time to 
explore potential solutions resulting in precluding a qualitative evaluation of concepts. 
Therefore, conceptual structural design relies heavily upon design experience of the 
designers in selecting the most suitable structural system for the buildings. Conceptual 
structural design may be divided into two stages. The first stage of conceptual structural 
design is collaboratively done by two parties including architects and structural 
engineers. The second stage or preliminary structural design is exclusively 
accomplished by structural engineers. Automated conceptual structural design focuses 
on creating a structural system without the user interaction during the process. 
 

The potential cost saving of the building project is largely affected by topology 
optimization that is generally more significant than sizing optimization. Therefore, this 
study is attempting to propose an automated intelligent system that supports preliminary 
structural layout design of buildings from pre-specified architectural design drawings. 
The automated system for structural design of buildings is the system that does not need 
engineers’ intervention as shown in Table 1.2. 
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Table 1.1. Tasks in structural design of buildings. 
 

Tasks Nature of tasks Usually done by 
Heuristic Computing Engineer Computer

Conceptual design      
Design of vertical systems    
Design of lateral bracing systems    
Design of floor systems    

Preliminary design      
Design of structural member layouts    
Estimation of structural member sizes    
Analysis of structures    
Design of structures    

Detailed design      
Analysis of structures    
Design of structures    
Preparation of construction drawings    

 

Table 1.2. Automated structural design of buildings. 
 

Tasks Done by engineer Done by computer

Conceptual design    
Design of vertical systems   
Design of lateral bracing systems   
Design of floor systems   

Preliminary design    
Design of structural member layouts   
Estimation of structural member sizes   
Analysis of structures   
Design of structures   

Detailed design    
Analysis of structures   
Design of structures   
Preparation of construction drawings   
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1.3 Optimization methods 
 

This section is devoted to an introduction to optimization methods. Optimization 
methods are usually applied in solutions of mathematical problems by searching for the 
best solution in a prescribed solution space. In structural design of buildings, when the 
design problem is written as a mathematical problem, an optimization method can be 
used as a tool to solve for the solution. Analysis tools such as the finite element method 
can also be used to facilitate the optimization. In design of structural member sections, 
the optimization can be used for selecting the best section from a list of available 
member sections. An optimization method will also be employed in this study. 

 
Optimization methods can be roughly classified as the gradient-based 

optimization methods and the non-gradient-based optimization methods or the search-
based optimization methods. One of the advantages of the search-based methods is that 
they do not need to find the gradients, making them easier to be implemented in the 
computer program. The gradient-based methods include, for example, the Newton 
method, the steepest descent method and the conjugate gradient method (Deb, 1995). 
The gradient information is usually difficult to find even in simple problems. 
Consequently, the gradient-based methods may not be applicable to some practical 
optimization problems. There are many powerful algorithms for the simple search 
methods such as the exhaustive search method, the Fibonacci search method and the 
Golden Section search method (Deb, 1995). However, the use of the simple search 
methods is normally limited to one- or two-variable non-constrained problems. 
Complex constrained problems can be solved using the advanced search methods 
including, for example, Genetic Algorithms (GAs), Ant Colony optimization (ACO), 
and Simulated Annealing (SA). 

 
GAs are global probabilistic search algorithms inspired by Darwin’s survival-of-

the-fittest theory. They have received considerable attention because of their versatile 
application to several fields. A GA starts from many points in the search space at the 
same time. These starting search points are usually selected randomly. Through the 
consideration of the fitness values of these search points, which are given based on their 
merit, and the randomized information exchange among the points, a new set of the 
search points with higher merit is created. The process is then repeated until the 
satisfactory result is obtained. Since the technique utilizes information from many 
search points at the same time, there is less chance for the search to be trapped in any of 
the local optimal points. Another distinguishing characteristic of GAs is that the 
algorithms work with coding of the parameter set not the parameters themselves. 
Generally, the binary code is used. Because of the discrete nature of GA coding, the 
algorithms are the perfect choice for those problems with discrete variables. 

 
An ACO is developed for combinatorial optimization problems. The ACO 

mimics the foraging behavior of ant colonies in the real world. The efficient foraging 
behavior of ants is achieved by indirect communication between ants via the use of 
pheromone. It is well known that ants lay and follow pheromone trails. The ACO solves 
problems by simulating this natural behavior of ants while they find their shortest path 
to the food source. Artificial ants in the ACO algorithm will repeatedly walk on 
different paths which are considered as different solutions. The path or solution with 
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high quality will receive more pheromone by artificial ants. In the next round of 
walking, artificial ants will search for better solutions by looking for the path that has 
high level of pheromone. This process can be repeated until the satisfactory result is 
obtained. 

 
An SA is inspired by an analogy between the physical annealing of solids 

(crystals) and combinatorial optimization problems. In the physical annealing process, a 
solid is first melted and the cooled very slowly, spending a long time at low 
temperatures, to obtain a perfect lattice structure corresponding to a minimum energy 
state. SA transfers this process to local search algorithms for combinatorial optimization 
problems. It does so by associating the set of solutions of the problem under 
consideration with the states of the physical system, the objective function with the 
physical energy of the solid, and the optimal solutions with the minimum energy states. 

 
Optimization methods are extensively used in engineering design problems 

(Arora, 2004). Optimization methods have been also widely used in civil engineering 
problems. Examples are the applications of GAs to optimize truss structures (Rajan, 
1995; Galante, 1996; Rajeev and Krishnamoorthy, 1997; Nanakorn and Meesomklin, 
2001), the applications of ACO to optimize truss structures (Camp et al., 1998; 
Nimityongskul, 2004), and the application of GAs to optimize reinforced concrete 
beams (Coello et al., 1997; Griffiths and Miles, 2003). 
 
 
1.4 Statement of problems 
 

Structural floor layouts of buildings normally consist of beams and slabs. 
Layouts of beams and slabs greatly affect the final design of structural elements and 
subsequently the construction cost. Structural engineers practically use their engineering 
knowledge and experiences to create suitable beam-slab layouts that satisfy given 
architectural floor plans. Under the conventional wisdom, design of beam-slab layouts 
of buildings is a task that fully needs humans’ involvement. In fact, all design tasks 
need different degrees of human intuition. Those design tasks that require a little of 
human intuition and can be systematically written as algorithms may be easily delegated 
to computers. In contrast, other design tasks that require a lot of human intuition and do 
not have clear algorithms cannot be done without designers’ experiences. Table 1.3 
shows a possible classification of structural design tasks in various design stages. The 
table aims to compare the degrees of heuristics and computing and also identify the 
roles of engineers and computers in these design tasks. It is quite apparent that the tasks 
in the conceptual and early preliminary structural design stages are heuristic and 
normally done by using engineers’ experiences. On the other hand, those tasks in the 
later design stages are more computing oriented by their nature and, consequently, more 
suitable for computers. Although it may seem that some of the heuristic design tasks 
shown in Table 1.3 are not difficult and can be handled quite easily even by engineers in 
practice, these easy tasks unfortunately prevent the whole design process from being 
completely automated. In addition, since these heuristic tasks rely on engineers’ 
experiences, their solutions will naturally come from the limited scope of each 
individual’s experiences and may not include some good alternatives. 
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A number of attempts have been made to remove the hindrances to the 
development of complete design automation that are created by different heuristic 
design tasks. The utilization of artificial intelligence (AI) makes it possible to create a 
wide range of solutions for heuristic design tasks. Some popular branches of AI that are 
used to solve design problems include knowledge-based expert systems (KBESs), case-
based reasoning (CBR) and genetic algorithms (GAs). Recently, many researchers have 
proposed computer systems to handle some heuristic tasks in structural design by using 
KBESs (Maher, 1984; Sriram, 1987; Balachandran, 1993; Tsakalias, 1994; Syrmakezis 
et al., 1996; Fuyama et al., 1997; Sabouni and Al-Mourad, 1997; Sacks and 
Warszawski, 1997; Syrmakezis and Mikroudis, 1997; Fenves et al., 2000; Sacks et al., 
2000), CBR (Bailey and Smith, 1994; Maher and Balachandran, 1994; Kumar and 
Raphael, 1997), and GAs (Grierson, 1996; Park and Grierson, 1999; Grierson and 
Khajehpour, 2002; Rafiq et al., 2003; Sisk et al., 2003). 

 
Automation of beam-slab layout design is actually an ill-defined problem, 

meaning that it is even not clear how to express explicitly the objectives of the layout 
design process. As a result, when a GA is used to solve the problem, the main issue 
becomes how to represent a layout design problem as a mathematical optimization 
problem. The quality of any proposed new GA for automated floor layout design 
therefore depends on how the representative optimization problem is written. This study 
aims to develop a new GA for beam-slab layout design. The primary input of the 
algorithm is an architectural floor plan with given positions of columns and walls. 
Before the development of the proposed GA can be done, a new coding scheme for 
beam-slab layouts must be developed. After that, the beam-slab layout design problem 
has to be written as an optimization problem. This is done by establishing appropriate 
objective and constraint functions for the problem. To make the proposed GA simple 

 
 
Table 1.3. Roles of engineers and computers in structural design of buildings. 
 

Process Process characteristic Role of 
engineers 

Role of 
computers

Degree of 
heuristics

Degree of 
computing

Conceptual design     
Design of vertical systems High Low Processor Helper 
Design of lateral bracing systems High Low Processor Helper 
Design of floor systems High Low Processor Helper 

Preliminary design     
Design of structural member layouts High Low Processor Helper 
Estimation of structural member sizes High Low Processor Helper 
Analysis of structures Low High Helper Processor
Design of structures Low High Helper Processor

Detailed design     
Analysis of structures Low High Helper Processor
Design of structures Low High Helper Processor
Preparation of construction drawings Low Low Processor Helper 
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and, as a result, more attractive, the simple GA (Goldberg, 1989) is employed as a core 
algorithm for the development of the proposed GA. To show the validity of the 
proposed algorithm, the algorithm is used to design beam-slab layouts of several 
example architectural floor plans. 

 
 

1.5 Objectives 
 

1) To develop a genetic algorithm for beam-slab layout design. 
2) To establish an appropriate coding scheme, an objective function, and 

constraints for the proposed genetic algorithm. 
 
 
1.6 Scope of this study 
 

As mentioned earlier, this study aims to create a GA for beam-slab layout design 
of buildings. The algorithm will be implemented in C++. The scope of the study is as 
follows: 

 
1) Only beam-slab floors with prescribed positions of columns and walls are 

studied. 
2) Only rectangular and rectilinear floors are considered. 
3) Construction costs are not considered. 
4) The simple GA is employed as a core search algorithm. 
5) Roulette wheel selection is used in the GA reproduction process. 
6) One-point crossover and bitwise mutation are used in the GA generation 

process. 
7) An adaptive penalty with bilinear scaling is used to handle design 

constraints. 
8) Elitism is used to keep the best individual. 
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Chapter 2 
 

Literature Reviews 
 
 

In structural building design, beam-slab layout design is a task in preliminary 
structural design. Conceptual design and preliminary design are frequently considered 
as the inseparable design process. Recently, there are attempts to concurrently handle 
conceptual and early preliminary structural design that are heuristic by using computers. 
Many past related research works employ techniques of Artificial Intelligence (AI). In 
this chapter, the literature on conceptual structural design and preliminary structural 
design that employ AI techniques is presented below.  
 
 
2.1 Conceptual structural design 

 
Conceptual structural design is not a simple process in that it requires 

considering both quantitative and qualitative criteria. It is the unstructured process 
involving the application of the designer’s experience and judgment in a qualitative 
manner to arrive at a number of alternative best-concept design scenarios. Many 
techniques of AI are employed to handle the conceptual structural design of buildings. 
Examples are knowledge-based expert systems (KBESs), case-based reasoning (CBR), 
and Genetic Algorithms (GAs). AI techniques assist engineers in exploring conceptual 
design alternatives and making design decisions by performing systematic search over a 
space of possible solutions under constraints. 

 
A KBES is an interactive system consisting of a knowledge database and an 

inference mechanism. The knowledge database is a collection of general facts of the 
problem domain. The inference mechanism is an engine that carries out the reasoning 
whereby the expert system reaches its solution. CBR involves finding solutions to new 
problems through reusing available good solutions to similar past problems. CBR 
consists of three main processes, i.e. representation of cases, indexing and retrieval of 
cases, and adaptation of cases for the current problem. A GA draws an analogy from the 
biological evolution. It uses codes to represent solutions and improves the solutions by 
using genetic operators, i.e. reproduction, crossover, and mutation. 

 
From Table 1.1, the first design stage is conceptual structural design, which 

mainly includes selection of structural systems. There are many computer-based 
techniques employing KBESs, CBR or GAs in selecting the most suitable structural 
systems of buildings. Some of these techniques perform not only conceptual structural 
design but also, at the same time, architectural layout design.  

 
In the 1980s and 1990s, many researchers had proposed an interactive system 

employing AI for assisting engineers to select the structural system. Many AI researches 
concerning conceptual structural design of buildings mostly utilized KBESs and CBR. 
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For example, Maher (1984) had proposed an interactive KBES for conceptual and 
preliminary structural design of hi-rise buildings, called HI-RISE. HI-RISE performs 
conceptual structural design by generating feasible alternatives for two functional 
systems: the lateral load resisting system and the gravity load resisting system. The 
outputs of HI-RISE are alternative structural systems without complete solutions of 
preliminary structural design. HI-RISE represents the design information in a network 
of schemas. The structure of the network is predefined by schema templates stored in 
the knowledge base. In addition, HI-RISE performs an approximate analysis and 
preliminary proportioning to determine the feasibility of the alternative. Sriram (1987) 
employed a KBES with techniques that are similar to those of HI-RISE to solve similar 
problems. 

 
Sabouni and Al-Mourad (1997) had developed a knowledge based expert 

system, called TALLEX, for preliminary design of tall buildings. The optimum 
structural system for tall buildings is selected based on the virtual number of stories. 
The main idea of the virtual number of stories is the taller the building, the more 
efficient the required structural system. The virtual number of stories is the actual 
number of stories of the building plus the additional number of stories that is converted 
from other factors such as the geometry of the building, the intensity of the design wind 
and earthquake loads, and the soil conditions. The additional number of stories is 
calculated from the multiplication of the actual number of stories and the summation of 
the numerical value of three factors: the load parameter, the material parameter, and the 
geometry parameter. The maximum addition number of stories is 0.4 times the actual 
number of stories. The numerical value of the load factor is based on the input values of 
the importance, the wind speed, and the seismic zone. The value of the material factor 
depends on the bearing capacity, the corrosion protection, and the fire protection. The 
value of the geometry factor depends on the possibility of providing enough space for a 
shear wall, the building symmetry, the possibility of providing closely spaced columns 
in the perimeter, and the opening requirements in the shear wall. The optimum 
structural system is selected from the available choices that are pre-defined in the 
system using the virtual number of stories and the rate of acceptance for each structural 
system that is based on the actual number of stories. 

 
Balachandran (1993) had developed a knowledge-based optimum design system, 

called OPTIMA, coupling the symbolic processing and numerical computation. The 
proposed system comprises five major components: user interface, semantic interpreter, 
problem formulator, problem recognizer, and problem solver. The system is mainly 
developed for optimal structural design. Although the system is a domain specific 
system for optimal design of structures, it is a problem independent system in that, for 
example, the system can solve optimization design problems of floor layouts, and sizing 
optimization design of beams. The user interfaces are as follows: menu selection, 
question-answering, pseudo-English-phrase input, and graphical input. The problem 
formulator module carries out the task of formulating a design problem as a canonical 
optimization model. The problem recognizer performs the selection of an optimization 
algorithm which is suitable for the problem. There are many implemented optimization 
algorithms available in the system for the designer to select, such as linear 
programming, and nonlinear programming. 
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Maher and Balachandran (1994) had implemented the system, called 
CASECAD, for conceptual design of hi-rise buildings employing CBR and a 
multimedia database. The information of design cases are largely derived from 
structural drawings and project reports. The design prototype stored in the case base has 
many attributes that are categorized as the function, the behavior, and the structure. The 
visualization of structural data of the design case can be stored in a DXF file and can be 
display in general CAD programs. Two kinds of indexes are employed: the category 
indexes and the attribute indexes. The best similar cases are retrieved using the nearest 
neighbor technique. The similarity of a retrieved case to the problem is measured by the 
number of matching features in their specifications. 

 
As mentioned above, there were many researchers using KBESs and CBR to 

develop the conceptual structural design of buildings. However, many systems 
employing KBESs have the difficulty of combining the knowledge of human experts 
with heuristic search in a computer system. Recently, many researchers have attempted 
to use genetic algorithms (GAs) in conceptual structural design and preliminary 
structural design. The literature concerning preliminary structural design is separately 
presented in the next section. 

 
Mathews and Rafiq (1995) had used GAs in conceptual design of concrete 

buildings and had proposed the system for generating the grid system and selecting the 
floor type. The objective of the system is to maximize the size of clear functional 
spaces, representing lettable floor areas, by minimizing the number of bays that are 
partitioned in each direction of the plan layout by the structural grid lines. The search 
space is limited to medium-rise reinforced concrete office buildings without considering 
the lateral forces. By employing the heuristic knowledge regarding cost and 
functionality, the proposed system intentionally optimizes the design of the structural 
grid layouts. The design knowledge that the system employs to evaluate and appraise 
the generated floor layout are as follows. First, floor beams and slabs will span over 
columns to form a floor system. Second, the economic limit of span length is set to 4m 
to 8m for the RC floor system. Third, columns are arranged in lines in two orthogonal 
directions for the practical purpose. Finally, the structural grid lines are preferred to be 
regularly spaced for the cost-efficient and easier construction purposes. The design 
variables include the type of the structural system and the building dimensions. The 
dimensions of each bay are limited to whole-meter or half-meter intervals. Beams and 
columns are approximately designed by interpolating the required amount of steel from 
the existing design charts implemented in the system. The design chart is prepared in 
terms of the relationship between the beam span, loaded width, and the required amount 
of longitudinal reinforcement. The objective function is defined as follows: 
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where C is a measure of the number of bays and their distribution, to be 
minimized. In addition, ix  is the width of the ith bay in the x direction while jy  is the 
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width of the jth bay in the y direction, and m and n are the number of bays. The 
quadratic penalty functions defined as the factored standard deviation of ix  and jy  are 
also applied to encourage solution with bay widths in the economic range. Each bay 
width is encoded as a separated binary substring. After obtaining the optimized 
structural grid, the system has a successive process to determine the most economic 
structural system by using the estimated pre-set unit costs. The available structural 
systems in the system are classified as the concrete frame and the steel frame. 

 
Grierson (1996) proposed a system for the conceptual structural design of 

buildings. The system employs both genetic algorithms (GAs) and a neural network 
(NN). The system is a semi-automated system in that computational techniques are 
employed to generate conceptual design while their evaluation depends on the user. 
Design variables are defined by the indices and then are coded as a binary string. The 
design variables include the building function, the building shape, the floor type, the 
vertical system, the lateral system, the lateral bracing and the foundation type. The 
proposed system starts with randomly creating a solution and then lets user to evaluate 
and then trains NN. After that the GAs are applied to generate the new solution, and 
then the user has to evaluate them again. If the current best solution satisfies the user, 
then the system will terminate. However, if the current best solution does not satisfy the 
user, then the user has to modify attribute’s the current solution and then NN will be 
trained and GAs will be applied. The system will repeat the above process until the best 
solution satisfies the user. 

 
Grierson and Park (1996) had employed GAs to propose a computer-based 

approach to conceptual topological design of a building framework. The proposed 
system has the limitation that it can search only for the optimal uniformly structural grid 
of the square-shaped building. In addition, the beam-slab-column structural system is 
only studied. The proposed system attempts to minimize the cost function consisting of 
costs for land, columns, and beams. The cost function has factors reflecting the 
variability of beams with slabs, of columns, and of land costs with changes in the span 
length and the site areas. By keeping the total required floor area constant, the number 
of bays and stories will be optimized. The square floor plan dimensions are calculated 
by the square root of the ratio of the total required floor area to the number of stories. 

 
Park and Grierson (1999) had employed the Pareto-optimal multicriteria genetic 

algorithms to handle the conceptual structural grid layout design of rectangular-shaped 
buildings. Two objective functions are investigated including minimizing the estimated 
construction cost 1( )f  and maximizing the flexibility of usable floor space  2( )f . The 
estimated construction cost is composed of the floor system cost, the column cost and 
the land cost. The flexibility of floor space usage is quantitatively defined as the 
minimization of an exponential function that relates tributary load area to the spacing of 
columns. Five basic design variables comprise the two plan dimensions, the number of 
stories and the two numbers of bays. Five related design variables are the floor type 
system, the floor plan type, the two numbers of eliminated bays, and the starting floor 
number for any one of the floor plan types. In their study, the building may have one or 
two different floor plan types over its height. Four floor plan types are available. There 
are two types of constraints applied in their study: hard constraints and soft constraints. 
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Hard constraints are composed of the specified maximum dimensions of the building 
site, the specified building height restriction and the number of eliminated bays in the x 
and y directions required to create any of the floor plan types. A soft constraint is the 
required total floor area for the building. The soft constraint may be violated to some 
extent. However, the solution that violates any of hard constraints is not allowed to 
survive as a viable design in the search to find the Pareto-optimal design set. The fitness 
evaluation is based on a distance metric related to the Pareto-optimal set. The relative 
distance D  is calculated using the Euclidean norm as shown in Eq. (2.2) 
 
 

0.520

0

( ) ( )
( ) min ,   1,..., ; 1,...,

( )
i j i

i i j

f f
D i Q j P

f

⎡ ⎤⎧ ⎫−⎪ ⎪⎢ ⎥= = =⎨ ⎬⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
∑

x x
x

x
 (2.2)

 
 
where, for the ith objective criterion, 0( )i jf x  is the objective function value for Pareto 

design 0
jx  and ( )if x  is the objective function value of the design x . The fitness value 

of the current population F  is calculated using Eq. (2.3), i.e. 
 
 

0( ) ( )F F D= −x x  (2.3)
 
 
where 0F  is the shared fitness of the current-generation Pareto-optima design set. For 
the initial population, 0F  is arbitrarily positive value that is large enough to ensure that 
F  is not negative. For later generations, 0F  is the summation of the previous 0F  and 
D  (using the previous generation 0( )i jf x ). In case that there is no new Pareto design, 

the 0F  value of the Pareto design set is retained. After assigning design fitness, the 
remaining process of the multicriteria genetic algorithms is the same as the simple GA. 
Each solution is encoded as a binary string. Each individual comprises 26 genes. The 4-
bit substring represents the 16 types of bay size parameters. The 8-bit substring 
represents the numbers of bays in x and y directions. The 6-bit substring represents the 
numbers of eliminated bays in x and y directions. The 4-bit substring represents the 
starting floor number for any one of the floor plan types. The 2-bit substring represents 
the four floor plan types, and the 2-bit represents the four floor systems. Grierson and 
Khajehpour (2002) solved similar problems also by a multicriteria GA with Pareto 
optimization. Their algorithm uses three objectives, namely minimizing the capital cost, 
minimizing the annual operating cost, and maximizing the annual income revenue. 
Binary-string design variables employed include building dimensions and structural 
system types. 
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2.2 Preliminary structural design 
 
The goal of preliminary structural design is to find a feasible arrangement of 

structural elements in space that are able to transfer, safely and efficiently, loads to the 
ground. The outcome of this stage is an initial description of the structural system in 
terms of the layout of its members with associated cross-sectional properties, 
connectivity and materials. However, the preliminary stage of a truss structure is 
probably performed simultaneously with the structural optimization. 

 
The second design stage in Table 1.1 is preliminary structural design whose 

tasks include design of structural member layouts, estimation of structural member 
sizes, analysis and design of structures. For design of beam-slab layouts, the main 
purpose is to create beam-slab layouts for given architectural floor plans. Recently, 
there have been many researchers that try to solve problems of beam-slab layout design 
by using KBESs, CBR and GAs. For example, Tsakalis (1994) proposed a knowledge 
based system called KTISMA for synthesizing the structural model of asymmetrical 
skeletal buildings made of reinforced concrete. The KTISMA system is an approach to 
create a beam and slab layout for the ceiling of an apartment. The only input required by 
the system is a proper description of the architectural floor layout. The system creates a 
solution using a simulation whereas the structural model is iteratively altered and tested 
until a “good” solution is reached. The system acting on a common blackboard employs 
many different knowledge sources such as an architectural knowledge considering the 
structural model from the aesthetic perspective, and a static knowledge considering the 
evaluation of the merit of spans and indirect support. The system employs two heuristic 
strategies: the local level heuristic and the global level heuristic. The global level 
heuristic is used for producing more solutions in case that the solutions obtained from 
the local level are not good overall solutions. At the local level of reasoning, the system 
starts with an arbitrary quadrangle evaluated by the knowledge sources of the system 
such as the span’s length evaluation, the beams’ appearance evaluation, and the beam’s 
indirect support evaluation. At the global level of reasoning, the system employs a 
variation of the backtracking algorithm using a graph path that forms a feasible solution. 

 
Syrmakezis et al. (1996) proposed a user-interactive commercial program called 

VK.EXPERT for preliminary seismic design of reinforced concrete multistory buildings 
using the knowledge-based expert system. The program consists of five modules: 
DIRECTOR for controlling program flow, DRAW for entering the input data and 
displaying the results based on a small CAD kernel, MAKE for generating alternative 
structural system configurations satisfying all constraints prescribed by the user, SIZE 
for providing an initial sizing of members (columns-beams-slabs), ASSESS for 
performing the structural analysis. The most important module is the MAKE module 
that generates a set of feasible configurations of the structural system. MAKE employs 
two basic geometric shapes, rectangles and triangles, for matching the structural system 
outline to the user-input architectural outline of the building on each floor level. 
Columns and beams are placed in the limits of currently defined architectural spaces. 
The structural layout results from combining existing architectural spaces. MAKE 
generates alternative configurations by modifying accordingly the influence of each 
design parameter based on fuzzy logic. The criterion for validating the generated 
solution is based upon the user-definable optimality of the dimensions of generated 
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slabs while the program provides reasonable default value based on the overall building 
dimensions. The program locally searches for the best solution and uses the 
backtracking technique in case the local optimal is not a good overall solution. The 
improved research-based version of the VK.EXPERT system is ERDES (Syrmakezis 
and Mikroudis, 1997). 

 
Sacks and Warszawski (1997) and Sacks et al. (2000) proposed a project model 

for an automated building system. The system represents the project information by a 
tri-hierarchical project model—spaces, assemblies, and activities. The system employs 
knowledge-based modules to automatically generate information for the design and 
construction planning of a building project. The system employs the object-oriented 
technique to invent the intelligent parametric templates of building layouts and work 
assemblies. A prototype program had been implemented on the AutoCAD platform 
using AutoLISP++ extension. The proposed system can be separated into 7 stages. 
Stage 1 is the input of the user’s requirements such as the location of the building, the 
function of the building, and its service area. Stage 2 is the generation of the preliminary 
design information called the design brief, for instance, the floor areas, performance 
specification in terms of loads. Stage 3 is the conceptual design including the building 
footprint, elevation partitioned into floor, the general function, the permitted building 
height. Stage 4 is the general design involving the layout of each floor, the division of 
each floor into its “secondary spaces” such as rooms, corridors, and service areas. Stage 
5 is the general design involving selection the main work assemblies. The assemblies—
the structural system, the exterior envelope, the sanitary systems etc.—are the systems 
which the building employs to perform its functions. Stage 6 is the detailed design 
involving each of the work assemblies. Stage 7 is the construction planning—the 
construction schedule, cost estimate and budget. The proposed system has three types of 
knowledge—the knowledge for the project model, the knowledge modules for the 
procedure, and the knowledge for the external data such as costs. The value of each 
parameter in a template is determined by application of knowledge-based procedures to 
the context data. These procedures form an integral part of the template and are 
associated with them in the same way as methods are associated with object classes in 
the object-oriented paradigm, and they may contain rules, algorithms and functions. 
Templates include features of all the knowledge types mentioned before: object classes, 
procedures for their installation, and the data used for this purpose. The proposed 
system is an interactive system and limited to rectangular-shape multistory buildings 
with a uniform floor type of RC ribbed slab on beams. The system does not have any 
automated “learning” capability, although this is desirable in a full system. 

 
Bailey and Smith (1994) had developed a case-based reasoning approach to be 

integrated with CADRE, the existing CAD system. The approach focuses on 
dimensional and topological adaptation of geometric methods of existing building 
information stored in the case base to find solutions for the new design problems. The 
proposed approach is a user-interactive system working on CADRE. The process of the 
system can be briefly explained as follows. The user selects an appropriate building case 
from the case base, then, the selected case is parameterized by CADRE and initial 
constraints describing both structural and architectural characteristics and their 
relationship to each other are generated automatically. The user also defines additional 
constraints concerning the new design problem. CADRE then attempts to solve the 
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problem using the defined constraints and the adaptation process. The generated 
constraints used in the system are, for example, span-depth ratio for beams and the 
spacing of structural frames and the overall length of a building. If the solution is not 
found after applying the constraints, the user can let the system do the topological 
adaptation process to solve the problem. It means that the solution will be changed 
considerably in details. Commonsense domain-independent rules are employed. For 
example, if longer spans are preferred, the number of frames must be less. Domain 
knowledge is employed for deciding when the type of construction needs to be changed. 
For example, a flat slab floor is suitable for spans up to 8 m, but longer than that, a 
beam-slab floor is preferable. In case that the room layout needs to be changed to satisfy 
the architectural constraints, the algorithm for generating alternative arrangements of 
rectangles is employed. 

 
Kumar and Raphael (1997) had employed the case-based reasoning technique to 

propose the system called CADREM for the conceptual design of structural layouts of a 
building. The system represents cases for different tasks by design methods containing 
the sequence of steps used in individual design problems. The design methods are 
represented using a data structure called method-object. Moreover, the retrieval process 
is organized as a process based on examples called RBEX. By using individual 
examples of retrieval, more general retrieval methods (RMs) are generated heuristically. 
The CADREM processes can be briefly explained as follows. First, the top level design 
task and a set of variables describing the problem specification are sent to the RBEX. 
After that, the similar cases are retrieved using RMs. Some tasks of the retrieved 
method are set as the low level method which would directly give partial solution to the 
problems. The remaining subtasks are iteratively solved by RBEX until the low level 
method is obtained, giving more partial solution. Finally, all the partial solutions are 
integrated into the final solution. The contents of a case are (1) a set of preconditions for 
which the design is generated, (2) the definition of the design task, and (3) the method 
used to arrive at the design. The top level task consists of four subtasks: (1) arriving at a 
pattern, (2) designing a horizontal spanning system, (3) designing a vertical support 
system and (4) designing a lateral load resisting system. The arriving at a pattern 
process has the two following subtasks: generating rows of blocks and combining rows 
of blocks. The employed method for generating rows of blocks is combining blocks in 
the horizontal direction. CADREM has many alternatives for the horizontal spanning 
system such as a one-way slab system, a two-way slab system, a waffle slab system, and 
a truss system. The method for design of a floor system has two subtasks: first, selecting 
the type of floor system and second, designing the selected floor system. The selection 
of the type of the floor system has four steps: (1) checking the aspect ratio of the 
individual blocks, (2) checking whether the dimension of the blocks are suitable for one 
system or the other, (3) checking the continuity across the blocks, and (4) considering 
construction details. 

 
Fenves et al. (1995) and Fenves et al. (2000) had proposed the conceptual-

structural-design sub-module of the Software Environment to support the Early phases 
in building Design (SEED-config). The proposed system is one of three sub-modules of 
the SEED, an interactive computer program for building design. This proposed system 
represents design information by exploiting the hierarchical nature of building 
description and employing an object-oriented data model. The system represents every 
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building element as a building unit, a general container that encapsulates the entity’s 
geometry, taxonomy, properties, relationships, and the design knowledge that generates 
it. The system encapsulates design knowledge in a set of technology nodes. A 
technology node has three basic functions: the prerequisite specification (e.g. Waffle 
slab has prerequisites: Two-way and Concrete), the applicability specification (e.g. 
Two-way slab is applicable if the slab has square dimensions and is supported on four 
sides), and the action specification. The system has a case-based reasoning system 
supporting the storing and retrieval of past solutions and their adaptation to similar 
problem solutions. Case-adaptation in the system relies on the technology nodes. If the 
technology node’s antecedents are satisfied, they are applied to the current building 
entity. The adaptation process continues down the sequence of retrieved nodes in the 
case until an applicability requirement of a technology node is violated or until the end 
of the path is reached. 

 
Because of the efficiency of GAs in finding good solutions from large search 

spaces, GAs have become a popular technique for structural design. Applications of 
GAs in structural design had been initially found in truss optimization (Goldberg, 1989; 
Rajeev and Krishnamoorthy, 1992; Adeli and Cheng, 1994). Later on, GAs have been 
used to solve more diversified types of structural design problem (Coello et al., 1997; 
Kameshki and Saka, 2001; Camp et al., 2003; Griffiths and Miles, 2003). For floor 
layout design problems, GAs have been mostly used for design of architectural floor 
layouts (Gero and Kazakov, 1998; Jo and Gero, 1998; Michalek et al., 2002; Michalek 
and Papalambros, 2002; Bausys and Pankrasovaite, 2005). They are rarely used for 
beam-slab layout design and there are only few related researches. 

 
For example, Rafiq et al. (2003) proposed an interactive conceptual building 

design system based on the structured genetic algorithm technique, called shortly SGA, 
to represent the structural system of buildings. The search space is limited to the 
uniform-grid rectangular-shaped building. The chromosomes of SGA contain two types 
of genes: (1) parameter genes which represent design parameters and (2) switch genes 
used for activating or deactivating different segments of a chromosome. The advantage 
of using the SGA is that the user can control the system to find the best solution in the 
predefined search space. For example, the user can still find out what will happen if 
concrete is used by deactivating the steel-frame switch-gene and thereby forcing the GA 
to consider the concrete option only. The required input data are the required net lettable 
floor area, the rate for rent, the imposed loading on the floor, the cost of land, and the 
required service life of the building. The problem is formulated for the minimization of 
the profit determined by subtracting the capital cost if the building structure from the 
total income.   

 
Sisk et al. (2003) had proposed a user-interactive GA-based decision support 

system for the conceptual design of multistory office buildings, called BGRID. The 
required input data are divided into four parts as follows: (1) the plan dimension and 
number of floors, (2) the site location and planning restriction such as the maximum 
allowable height, and the minimum floor-to-ceiling height, (3) the location of core and 
atria, and (4) the dimensional constraints. The design solutions consist of the structural 
system, the environmental strategy, and the uniform grid system. The design variables 
are the grid, the structural-service integration strategy, the environmental strategy, and 
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the floor-to-ceiling height. The search space is limited to the rectangular-shaped steel 
buildings with a specified number of stories and dimensional constraints. The design 
variables are coded as real-coded strings. The selection technique employed in BGRID 
is the standard fitness method (Bradshaw and Miles, 1997). The standard fitness method 
ranks the population using the raw fitness values and then allocates predetermined slot 
size on the roulette wheel. The slot sizes are computed using the standard deviation of 
the normal distribution. Each individual in the population can be divided into three 
paths including the substring representing the x coordinates of the columns, the 
substring representing the y coordinates of the columns, and the substring representing 
the floor-to-ceiling height. The crossover operator is applied individually to each of 
three substrings of an individual. The system has three objective functions including 
minimizing the cost, maximizing the clear span and maximizing the use of natural 
resources. In the evaluation process, the user has to select the weighting important 
factor for such three objectives. The objective function for minimizing the clear span is 
defined as the ratio of the average span to the largest span. The penalty method is used 
when the generated solution does not pass constraints. The constraints are composed of 
three parts as follows: (1) the height restriction, (2) The compatibility of the generated 
structural system with respect to the span length, and (3) the uniformity of the grid. The 
fitness function that is to be maximized is in the following form: 
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where iobjf  = the fitness of the individual component; ibadf  = the value of the worst 
individual generated up to that point; igoodf  = the value of the best generated up to that 

point; and if  = the value of the evaluated parameter for the individual within the 
current population. 
 

Shaw et al. (2008) have recently proposed a method of determining column 
layouts for orthogonal buildings using the sweep line algorithm coupled to an adjacency 
graph. The problem include framed buildings that are defined as buildings consisting of 
columns and beams with slabs to support the floors. The proposed algorithm is called 
OBGRID (Orthogonal Building GRID). In some ways, OBGRID can be thought of as 
an enhancement of BGRID (Miles et al., 2001). The algorithm only devises layouts 
where the columns are arranged in rectangular grids. The user has to provide the 
dimensions of the boundary, the location and sizes of any atria, the maximum, 
allowable height and to specify the total number of stories. By using a sweep line 
algorithm, an orthogonal floor plan is partitioned into rectangles that are subsequently 
assigned column spacing, and an adjacency graph is constructed. The representation 
focuses on aligning columns in rows. The representation uses a separate string to store 
the x and y coordinates. The variable length genome is used. Each genome is divided 
into three distinct sections with real number encoding. Sections 1 and 2 of the genome 
contain values of column spacing in the x direction and values of column spacing in the 
y direction. Section 3contains the height parameters. In the GA operation, the mutation 
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operator selects a gene from sections 1 or 2, and then the gene is replaced with a 
randomly generated value between 0 and the maximum x or y dimension. After the 
insertion of the mutated value, if required, the genome is sorted. If a gene from section 3 
is chosen, it is mutated as normal. Single point crossover is used on each of the 
genome’s three sections. The reproduction process employs a conventional tournament 
selection technique. OBGRID applies the same fitness function as BGRID to each 
individual partition’s genome and aggregates the results. A quadratic penalty function is 
employed to compute the augmented fitness. For orthogonal buildings, having selected 
the individual to mutate, the mutation operator randomly chooses one partition and 
applies the mutation procedure. Having mutated its genome, the section is placed back 
into the building and all adjacent sections are updated to prevent column alignment 
mismatches. Once recombination has been accomplished, the altered sections are 
reinserted into the building and all other adjacent partitions updated. The algorithm has 
been tested on a number of examples. The scientific rigor of the evaluation is limited by 
the lack of test cases; however visual inspection using the heuristic of reasonably 
consistent column spacing provides a good measure of performance. This shows that the 
method works well except for complex buildings which result in a lot of partitions. 

 



 22

 
 
 

Chapter 3 
 

Genetic Algorithms 
 
 

Genetic algorithms (GAs) belong to a class of stochastic search methods. The 
concept of GAs is based on Darwin’s theory of natural selection. In addition, GAs 
operate on a population of solutions at any one time. GAs are efficient and broadly 
applicable global search procedures especially for engineering optimization problems 
(Rajeev and Krishnamoorthy, 1992; Mathews and Rafiq, 1995; Rajan, 1995; Galante, 
1996; Grierson, 1996; Camp et al., 1998; Soh and Yang, 1998; Grierson and 
Khajehpour, 2002; Krishnamoorthy et al., 2002; Foley and Schinler, 2003; Rafiq et al., 
2003; Sisk et al., 2003; Kicinger et al., 2005). GAs do not require gradient information 
and continuity assumption. Moreover, they work with a coded parameter set, not with 
the parameter themselves, and they search simultaneously from multiple points, not a 
single point. As such they are broadly used for solving nonlinear multidimensional 
problems that are usually met in the civil engineering problems. 
 

The basic idea of GAs is to start with a set of solutions, randomly generated 
using the allowable values for each design variable. A set of solution is generally called 
a population. A solution is genetically called an individual or a chromosome string or 
shortly called a string. Actually a substring is a chromosome, but in some cases there is 
only one substring in an individual, thus a substring or a string is the same thing, and 
then an individual is shortly called as a chromosome or a string. A chromosome actually 
can be created from a lot of genes depending on the coding method for a design 
variable. Moreover, when the design variable is coded as one gene then a gene is 
usually referred to as a chromosome. 
 

Each individual is also assigned a fitness value computed from an objective 
function. From the current population of individuals, a pair of individuals is selected 
randomly with a bias allocated to more fit members of the population. Random 
processes are used to generate new individuals using the selected subset of individuals. 
The size of the population is usually kept fixed. Since fitter individuals of the 
population are used to create new individuals, the successive populations have a higher 
probability of having individuals with better fitness values. The process continues until 
the stopping criterion is satisfied. GAs generally consist of a series of three processes: 
(1) coding and decoding design variables into chromosome strings or individuals, (2) 
evaluating the fitness of each individual of the population, and (3) applying genetic 
operators to generate the next generation of the population (Arora, 2004). 
 
 
3.1 Objective and fitness functions 
 

Although GAs are suitable for unconstrained optimization problems, a 
constrained optimization problem using GAs can be generally expressed as Eq. (3.1). 
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Maximize 
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In a structural design optimization problem, x is an N-dimensional vector called 
the design vector, representing N design variables to be optimized. For example, in a 
truss structure, design variables are the cross-sectional areas of all the members. In floor 
layout design, design variables are positions of beams.  

 
The function f in Eq. (3.1) is the objective function of the optimization problem. 

For example, for sizing optimization of a truss, f is the total weight of the truss. The 
constraints ig  and ih , called inequality and equality constraints respectively, are to be 
satisfied. Example are stress limits, displacement limits, beam redundancy, and column 
redundancy. The fitness function F is defined as a figure of merit. For the maximization 
problems, the fitness function can be, though not necessary, the same as the objective 
function. In the case of the minimization problems, the fitness function is an equivalent 
maximization problem chosen such that the optimum point remains unchanged. The 
following fitness function is often used: 
 
 

( ) 1/[1 ( )]F f= +x x . (3.2)
 
 
3.2 Coding and decoding 
 

An essential characteristic of GAs is the coding of the design variables. There 
are many coding schemes available, such as binary codes and real codes (Deb, 1995). 
The most common coding scheme is to transform the design variables to a binary string 
of a specific length. For multivariable optimization problems, the coding is constructed 
by concatenating as many single variable codes as the number of the design variables in 
the design problem. The length of the coded representation of a design variable 
corresponds to its range and precision. 
 
3.2.1 Binary coding 
 

The binary-coded string comprising 1’s and 0’s is broadly used. The length of 
the string is usually determined according to the desired solution accuracy. For 
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example, if four bits are used to code each variable in a two-variable function 
optimization problem, the string (0000 0000) and (1111 1111) would represent the 
vector of points 
 
 

( ) ( ) ( ) ( )
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respectively, because the substrings (0000) and (1111) have the minimum and the 
maximum decoded values. Here, ( )

1
Lx  and ( )

2
Lx  are the lower bounds of 1x  and 2x , 

respectively, while  ( )
1
Ux  and  ( )

2
Ux  are the upper bounds of 1x  and 2x , respectively. 

Any other eight-bit string can be found to represent a point in the search space 
according to a fixed mapping rule. By employing the binary coding method with an iL -
bit coding for a design variable, the obtainable accuracy in that variable is 
approximately 

( ) ( )( ) / 2 iLU L
i ix x− . 

 
3.2.2 Decoding and mapping 
 

The variable ix  is coded in a substring is  of the length iL . The decoded value, 
decoded
is , of a binary substring is  is calculated as follows: 

 
 

1

0
2Ldecoded i

i ii
s s−

=
= ∑ , (3.3)

 
 
where (0,1)is ∈  and the string is  is represented as 1 2 2 1 0( ... )L Ls s s s s− − . For example, a 

four-bit string (0111) has a decoded value of 0 1 2 3((1)2 (1)2 (1)2 (0)2 )+ + +  or 7. 
 

Different mapping rules can be established to fit different optimization 
problems. For example, the following linear mapping rule is used to decode an encoded 
design variable into an unsigned real number as shown below (Deb, 1995): 
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where ( )

1
Lx  and ( )

2
Lx  are the lower bounds of 1x  and 2x  , respectively, and ( )

1
Ux  and ( )

2
Ux  

are the upper bounds of 1x  and 2x , respectively. The length of a substring is iL . 
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3.3 Genetic operators 
 

The simple genetic algorithm (SGA) basically consists of three operators: (1) 
reproduction, (2) crossover and (3) mutation (Goldberg, 1989). 
 
3.3.1 Reproduction 
 

Reproduction is a process of selecting a set of design variables from the current 
population to create the next generation. There are many attempts to propose the 
selection techniques such as roulette wheel selection or stochastic sampling, the 
remainder stochastic sampling, and the stochastic tournament or the ranking method 
(Goldberg, 1989). All of selection techniques are biased toward more fit members of the 
current population.  
 

Roulette wheel selection is powerful and relatively the easiest one such that it is 
used by many researchers (Goldberg, 1989; Deb, 1995; Burns, 2002). In the SGA, the 
reproduction process is the roulette wheel selection. The essential idea of the roulette 
wheel selection is that the individual with higher fitness value have larger probability of 
selection. Thus, the ith individual in the current population is selected with a probability 
proportional to its fitness iF . Since the population size is usually kept fixed in the SGA, 
the sum of the probability of each individual in the population being selected for the 
mating pool must be one. Thus, the probability for selecting the ith individual, ip , is as 
follows: 
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where n is the population size and iF  is the fitness value of the ith individual. Moreover, 
for the constrained optimization problem, the augmented fitness value a

iF  is used 
instead of iF . The details of the augmented fitness value will be explained in the next 
section. 
 

Unlike the roulette wheel selection, the tournament selection is to select the 
winner individual from a tournament competition among Nts individuals (frequently Nts 
= 2) that are randomly selected from the current population. The winner is the one with 
the highest fitness of the Nts tournament competitors. The winner is inserted into the 
mating pool. The tournament selection process is repeated until the mating pool is 
completed. Thereafter, two individuals are orderly mated and applied the crossover and 
mutation operators. 
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3.3.2 Crossover 
 

Once a new population is determined, the crossover operator is conducted as a 
means to introduce variation into a population by changing information among 
individuals of the mating pool. Many crossover operators exist in the literature such as 
one-point crossover, two-point crossover, and uniform crossover (Goldberg, 1989; Deb, 
1995; Burns, 2002). One-point crossover is relatively the easiest one to apply. In the 
crossover process, two individuals called parent individuals are picked from the mating 
pool at random and then some portions of the two individuals are exchanged resulting in 
two new individuals called offspring. 
 

One-point crossover is performed by randomly choosing a crossing point along 
the individual and by exchanging all bits on the right side of the crossing point, for 
example, as shown below. It can be observed that the bits next to the crossing point of 
two parent individuals are exchanged to two offspring individuals. 
 
 
Two parent individuals 

1x  = 1 0 1 1 1 0|1 0 0 1 

2x  = 0 1 0 1 0 0|1 0 1 1 
 
 
Two offspring individuals 

1x ′  = 1 0 1 1 1 0|1 0 1 1 

2x ′  = 0 1 0 1 0 0|1 0 0 1 
 
 

In two-point crossover, two crossing points are randomly chosen and all bits 
between these points of both considered parent individuals are exchanged. It should be 
noted that using many crossover points reduces the performance of the GA. The 
problem with many crossing points is that the building blocks are more likely to be 
disrupted. However, an advantage of having more crossing points is that the problem 
space may be searched more thoroughly. An example of two-point crossover is as 
shown below. 
 
 
Two parent individuals 

1x  = 1 0 1 |1 1 0|1 0 0 1 

2x  = 0 1 0 |1 0 0|1 0 1 1 
 
 
Two offspring individuals 

1x ′  = 1 0 1 |1 0 0|1 0 0 1 

2x ′  = 0 1 0 |1 1 0|1 0 1 1 
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In uniform crossover, each gene in the offspring is created by copying the 

corresponding gene from one or the other parent chosen according to a binary crossover 
mask. The binary crossover mask is randomly created with the same length as the parent 
chromosome string. For each bit position in the mask, its value 1 or 0, respectively, 
indicates that the first parent or the second parent contributes its values in that position 
to the first offspring, and vice versa for the second offspring. An example of uniform 
crossover is illustrated as follows. 
 
 
Two parent individuals 

1x  = 1 0 1 1 1 0 1 0 0 1 

2x  = 0 1 0 1 0 0 1 0 1 1 
 
 
Mask 
 1 1 0 0 0 1 1 0 0 0 
 
Two offspring individuals 

1x ′  = 1 0 0 1 0 0 1 0 1 1 

2x ′  = 0 1 1 1 1 0 1 0 0 1 
 
 

The crossover probability ( )CP  is a parameter to describe how often crossover 
will be performed. If there is no crossover, offspring are exact copies of parents. If there 
is crossover, offspring are made from parts of both parent’s chromosome. If CP  is 
100%, then all offspring are made by crossover. If it is 0%, whole new generation is 
made from exact copies of individuals from the old population. However, the new 
generation may not be the same as the old population. This is because there will be 
mutation process after crossover process. The mutation will be explained in the next 
section. Crossover is made in hope that new individuals or chromosome strings will 
contain good parts of old individuals from the old population such that the new 
individual will be better. However, it is good to leave some individuals of the old 
population to survive to the next generation. Generally, the parametric study is needed 
to estimate the value of CP  required for finding good solutions. 
 
3.3.3 Mutation 
 

Mutation is the important operator mimicking the behavior of natural mutation 
to ensure the diversity of the population. Mutation is used to prevent the algorithm from 
being trapped in a local minimum. There are various forms of mutation for the different 
kinds of representation such as flipping, interchanging, and inversion. In case of 
flipping, mutation changes the value of each gene from 1 to 0 and vice versa with the 
mutation probability ( )MP . In case of interchanging, two random positions of the string 
are chosen and the bits corresponding to those positions are interchanged. For inversion, 
two random positions are chosen and bits between those selected positions are reversed. 
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The mutation probability decides how often parts of the string will be mutated. 
Typically, MP  is quite low at about 1% or less. When MP  is 100%, whole chromosomes 
are altered while 0% MP  implies no change. If there is no mutation, offspring are 
generated immediately after crossover or directly copied without any change. 
 
 
3.4 Stopping criteria 
 

There are many stopping criteria employed in the literature (Ghasemi and 
Hinton, 1996; Ghasemi et al., 1999). For example, the total number of iterations can be 
used as a stopping criterion. The required number of successive iterations for the fittest 
solution that has not changed can also be used. In addition, the calculation may be set to 
stop when the difference of the fittest solution of the current iteration and that of the last 
20 iterations is smaller than a specified value. Generally, the number of iterations or 
generations is widely used as the stopping criterion. 
 
 
3.5 Elitism 
 

Generally, some very good individuals that appear in the early GA generations 
may disappear from the later generations. This is because GAs employ probabilistic 
processes in their calculations. As a result, to ensure that the best-fit individuals in the 
current generation will survive in the next generation, it is possible to place them 
directly in the next generation. The process is called elitism and GAs that employ 
elitism are called elitist GAs. The main concept of all elitist GAs is that the best solution 
or solutions are placed directly in the population of the subsequent generation regardless 
of the reproduction, crossover and mutation operators. Since most GAs use constant 
population sizes, the best solutions cannot be added to the next generation but are 
frequently used to replace some worst solutions. It is also possible to randomly pick up 
individuals that are to be replaced by the best solutions. 
 
 
3.6 Penalty functions 
 

GAs are intrinsically suitable only for unconstrained optimization problems. 
However, there are many methods that enable GAs to handle constraints. Among these 
methods, penalty function methods have been mostly used (Nanakorn and Meesomklin, 
2001; Krishnamoorthy et al., 2002; Nimityongskul, 2004). Penalty function methods 
penalize infeasible solutions, i.e. 
 
 

( ) ( ) ( )aF F P= −x x x  (3.6)
 
 
where P  is a penalty function whose value is greater than zero. In addition, aF  
represents an augmented fitness function after the penalty. The penalty function can be 
generalized as follows (Nanakorn and Meesomklin, 2001): 
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( ) ( ) [ ( )] ( ) [ ( )]

K P

G j j H j j
j j

P G Hβ βλ λ
= =

= +∑ ∑x x x  (3.7)

 
 
where 
 
 

( ) max[0, ( )]j jG g=x x , 
( ) abs[ ( )]j jH h=x x . 

 
 
where jg  and jh  are the constraint functions in Eq. (3.1). The vector jG  represents the 
degree of the inequality constraint violations. The vector jH  represents the degree of 
the equality constraint violations. In addition, ( )λG j , ( )λH j  and β  are constants. 
Generally, the values of ( )λG j  and ( )λH j  are usually the same and set as a constant. 
The value of β  is generally set as 1 or 2. 
 
 
3.7 Fitness scaling 
 

In reproduction process, the augmented fitness function aF  will be used in Eq. 
(3.5) instead of the original fitness F . Therefore, it is essential that all aF  must be 
positive. Consequently, the obtained aF  may not be directly usable as its value may be 
negative. Moreover, the difference between the highest aF  and the average aF  varies 
over generations. In early generations, the difference can be very large because it is 
common to have few extraordinary individuals with very high fitness in a population. 
As a result, the extraordinary individuals may take over a significant proportion of the 
population, and this can be undesirable and may result in premature convergence. In 
later generations, there may be insignificant diversity within the population. 
Consequently, the average aF  may be close to the highest aF . If this situation is 
unchanged, individuals with average aF  and individuals with the highest aF  will have 
nearly the same numbers of copies in future generations. In this case, the survival of the 
fittest strategy necessary for improvement becomes a random walk. To prevent all of 
these problems, the fitness function is usually scaled into a specified positive range. 
Many fitness scaling have been proposed in the literature (Goldberg, 1989). Here only 
some scaling techniques are presented including linear scaling, σ -truncation, and 
bilinear scaling. 

 
The linear scaling requires a linear relationship between the scaled fitness SF  

and the raw augmented fitness aF  as shown in Eq. (3.8). 
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( ) ( )S aF aF b= +x x  (3.8)
The coefficient a  and b  in Eq. (3.8) can be chosen in a number of ways. For 

example, from Fig. 3.1 the average raw augmented fitness a
avgF  is scaled to 1. The 

maximum scaled fitness that is to be obtained from the best members is set to C . Thus, 
the chance of the best members being selected into the mating pool is equal to C  times 
that of the average members. In other words, the number of copies of the best members 
in the mating pool is expected to be C  times that of the average members. Linear 
scaling under normal condition can be illustrated by using Fig. 3.1. The coefficient of a  
and b in Eq. (3.8) can be computed using Eq. (3.9). 

 
 

max

max

max

1  ,a a
avg

a a
avg

a a
avg

Ca
F F

F CF
b

F F

−
=

−

−
=

−

 (3.9)

 
 
In general, 1.2 to 2C =  has been used successfully (Goldberg, 1989). Normally 

there is no problem applying this linear scaling concept. Nevertheless the situation as 
shown in Fig. 3.2 may appear resulting in a negative scaled fitness value of the min

aF . 
This type of situation is common in a mature run when a few lethally bad individuals 
are far below a

avgF  and max
aF , which are relatively close together. To prevent obtaining 

negative scaled fitness, Goldberg (1989) suggests that the non-negative test be applied 
by checking whether min max( ) / ( 1.0)> − −a a a

avgF CF F C . If the condition is true, Eq. (3.9) 

can be used to scale all aF . However if it is false, aF  will be scaled as much as 
possible using Eq. (3.10). This means that min

aF  is scaled to zero as shown in Fig. 3.3, 
SF

aF
max
aFa

avgFmin
aF

min
SF

 
 

Fig. 3.1. Linear scaling. 
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instead of setting max =
SF C . 

 
 

max

min

max

1  ,a a
avg

a

a a
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F F
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−

=
−

 (3.10)

 
 

The bilinear scaling is shown in Fig. 3.4. The minimum scaled fitness is set to 
zero to avoid negative fitness values while the scaled fitness of the average fitness of all 
individuals a

avgF  is set to one. Furthermore, the maximum scaled fitness that is to be 
obtained from the best members is set to C . Thus, the chance of the best members 
being selected into the mating pool is equal to C  times that of the average members. 
Here, SF  denotes the scaled fitness. In addition min

aF  denotes the minimum fitness value 
after the penalty while max

aF  denotes the fitness value of the best members. This scaled 
fitness function SF  can be computed by using Eq. (3.11), i.e. 
 
 

max

max max

min

min min

1( ) ( )                    if ( )

1( ) ( )                        if ( )

a a
avgS a a a
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S a a a
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F CFCF F F F
F F F F

FF F F F
F F F F

−−
= + ≥

− −

= + ≤
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x x x

x x x

 (3.11)

 
 

There is one alternative method to circumvent obtaining negative scaled fitness 
in the linear scaling, which is called σ -truncation. This method is applied before using 
the linear scaling method in order to prevent negative scaled fitness. In this procedure, a 
constant is subtracted from raw augmented fitness value aF  to obtain aF  as  

 
 

( )a a a
avgF F F cσ= − −  (3.12)

 
 

where the constant c is chosen as a reasonable multiple of the population standard 
deviation σ  (between 1 and 3) and negative results ( 0aF < ) are set to zero. Following 
σ -truncation, the linear scaling can proceed as described earlier without that danger of 
negative scaled fitness. 
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Fig. 3.2. Difficulty of the linear scaling. 
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Fig. 3.3. Modified linear scaling. 
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3.8 Adaptive penalty function 
 

The penalty scheme used in GAs plays an important role in the performance of 
GAs. Generally, the penalty is more important when the optimal solution lies on or 
close to the boundary between feasible and infeasible search spaces, which is often 
found in the structural design optimization problems. From Eq. (3.7), the general 
penalty function has many coefficients that need to be set before computing the value of 
the penalty. It is well known that, for various stages of the calculation, different degrees 
of penalty are needed. Nevertheless, it is not easy to set appropriate values of these 
coefficients for different generations. Therefore, all coefficients are usually constant for 
all generations. There are some penalty schemes whose penalty coefficients can be 
varied manually in order to adjust the strength of the penalty during the calculation 
(Adeli and Cheng, 1994; Rajan, 1995). Recently, a new penalty scheme had been 
proposed by Nanakorn and Meesomklin (2001). The basic idea of their adaptive penalty 
scheme is to penalize infeasible solutions so that the individual chance of the best 
infeasible members being selected into the mating pool with respect to that of the 
average feasible members is always the same in all generations. Here, only the main 
concept of this adaptive penalty scheme is discussed. Complete details of the scheme, 
including its implementation, can be found in the work by Nanakorn and Meesomklin 
(2001). 

 
In the work by Nanakorn and Meesomklin (2001), a modified bilinear scaling 

scheme shown in Fig. 3.5 is employed for the fitness scaling. In the figure, SF  is the 
scaled fitness and min

aF  represents the minimum augmented fitness in the generation. In 

addition, ,a
avgF F  and ,

max
aF F  denote, respectively, the average and maximum augmented 

fitness values of all feasible individuals in the generation. Note that, for feasible 

SF

aF
max
aFa

avgFmin
aF

 
 

Fig. 3.4. Bilinear scaling. 
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individuals, the augmented fitness aF  and the original fitness F  are the same. It can be 
seen from the figure that the scaled fitness of the average fitness of all feasible 
individuals is set to one while the maximum scaled fitness that is to be obtained from 
the best feasible members is set to C. Hence, the individual chance of the best members 
being selected into the mating pool is equal to C times that of the average feasible 
members. For the case where there is only one feasible individual in the generation, the 
scaled fitness of this individual will be set to one.  

 
Next, the individual chance of the best infeasible members being selected into 

the mating pool is set to be equal to ϕ  times that of the average feasible members, i.e.  
 
 

( ),
avg( )                           for ,S S

d dF Fϕ ϕ≤ = ∀ ∈Fx x U  (3.13)

 
 

where U denotes the infeasible search space with respect to the constraints. In addition, 
,S

avgF F  is the scaled value of the average fitness of all feasible individuals, which from 
Fig. 3.5 is equal to one. Eq. (3.13) allows the factor λ  in Eq. (3.7) to be calculated in 
each generation. In summary, the employed adaptive penalty scheme requires two 
constant input parameters to be prescribed prior to the calculation. The parameters are C 
and ϕ  In the penalty scheme by Nanakorn and Meesomklin (2001), Eq. (3.11) becomes 
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Fig. 3.5. Bilinear scaling for the adaptive penalty scheme. 
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Chapter 4 
 

Layout Design of Beam-Slab Floors using a GA 
 
 

A new GA for beam-slab layout design is proposed in this study. Details of the 
proposed algorithm are presented in this chapter. The algorithm implementation will be 
presented in the next chapter. The primary input of the algorithm is an architectural 
floor plan with given positions of columns and walls. First, the representation of beam-
slab layouts is presented. After that, the fitness function and design constraints are 
established. Finally, the proposed GA is developed. The proposed GA uses the simple 
GA (Goldberg, 1989) as its core algorithm. The simple GA is modified by adding the 
elitism and the adaptive penalty function. 
 
 
4.1 Primary representation of beam-slab layouts 
 

In order to use a GA for beam-slab layout design, it is essential to establish how 
beam-slab layouts are coded in the algorithm. In this study, binary strings will be used 
to represent beam-slab layouts. To begin coding, a grid is superimposed on a given 
architectural floor plan in such a way that there are grid lines passing through all 
columns and wall lines. Each line segment of this grid represents a possible position of 
a beam segment. Therefore, the spacing of the grid can be set based on the required 
degree of precision for beam positions. A one-bit chromosome is attached to each line 
segment. If the value of the one-bit chromosome is one, it means that there is a beam 
segment on that line segment. Naturally, if the value is zero, there is no beam segment. 
A slab is simply defined as a rectangular area that is completely surrounded by beams. 
For example, Fig. 4.1a is a rectilinear floor plan. By considering the columns and wall 
lines, Fig. 4.1a grid in Fig. 4.1b can be obtained. Examples of a beam segment and a 
slab are also shown in Fig. 4.1b. In addition, Fig. 4.1c shows an example of a beam-slab 
layout for the floor and Fig. 4.1d depicts its corresponding code. Note that the 
representations of columns, walls, beams, and slabs used in Fig. 4.1c will be employed 
throughout this study.  
 
 
4.2 Geometrically invalid layouts 
 

All possible beam segments in the grid that are not prescribed in advance as part 
of the problem setup are used as the design variables of the problem. Placing beam 
segments arbitrarily may result in layouts that are not geometrically valid. 
Geometrically invalid layouts are those layouts that consist of at least one invalid beam 
segment. In this study, as shown in Fig. 4.2, invalid beam segments include 

 
1) any isolated beam segment, 
2) any beam segment with one free end, 
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3) any two beam segments that form an L-shaped interior beam, and 
4) any two beam segments that form a concave L-shaped beam on the outer 

boundary of the floor. 
 

As shown in Fig. 4.2, an isolated beam segment is a beam segment that is not 
connected to any other beam segments. This isolated beam is considered as an invalid 
beam because it is obviously unrealistic. The rest are considered as invalid beams since 
all of them result in non-rectangular slabs. Non-rectangular slabs cannot efficiently 
transfer floor loads to the supporting beams. Note that, in the consideration of two beam 
segments that form a concave L-shaped exterior beam, only beam segments that are on 
the outer boundary of the floor are included. 
 
 
4.3 Proposed coding scheme 
 

During the GA iteration, it is likely that some individuals that appear in the 
population may represent geometrically invalid layouts. A penalty scheme may be used 

 

 

Slab

Beam 
segment

 
 
 (a) (b) 

 

     

Column

Slab
Beam

Wall/
Floor boundary

       
 
 (c) (d) 

 
Fig. 4.1. A rectilinear floor. (a) An example of a floor plan. (b) A grid. (c) A beam-slab 
layout. (d) The corresponding code. 
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to take care of these geometrically invalid layouts. However, it is difficult to devise this 
penalty scheme because it is not clear how to evaluate the degrees of the disadvantages 
of these layouts. If the penalties for these geometrically invalid layouts are not known, it 
will not be possible to obtain the penalized fitness of the layouts. This study proposes a 
new concept to handle this problem. The concept is not to treat geometrically invalid 
layouts as bad layouts that have to be penalized. Instead, each geometrically invalid 
layout will be mapped to a geometrically valid layout whose fitness will be used as the 
fitness of the original geometrically invalid layout. In the real implementation, each 
individual will have two corresponding chromosome strings instead of one. The first 
chromosome string, called the original string, represents the original shape of the layout 
that may or may not be geometrically valid. The second chromosome string, called the 
derived string, represents the shape of the geometrically valid layout derived from the 
first string by mapping. If the original string already represents a geometrically valid 
layout, the derived string is the same as the original string. In the mapping process, the 
derived geometrically valid layout is obtained from the original geometrically invalid 
layout by removing invalid beam segments from the original layout. The proposed 
mapping algorithm is shown as follows: 
 
 

Algorithm Chromosome_Mapping 
Input: An original geometrically invalid chromosome string 
Output: The derived geometrically valid chromosome string 
• Copy the original chromosome string to the derived chromosome string 
• while the derived chromosome string represents a geometrically invalid layout 

do 
o Remove all isolated beam segments by changing their chromosomes 

from one to zero in the derived chromosome string 
o Remove all beam segments with one free end by changing their 

chromosomes from one to zero in the derived chromosome string 
o Remove all pairs of beam segments that form an L-shaped interior beam 

by changing their chromosomes from one to zero in the derived 
 
 

 
 

Fig. 4.2. Examples of all defined invalid beams. 
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chromosome string 
o Remove all pairs of beam segments that form a concave L-shaped 

exterior beam on the outer boundary of the floor by changing their 
chromosomes from one to zero in the derived chromosome string. 

 
 

Since the fitness of each individual is obtained from its derived geometrically 
valid layout, it can be said that the original string is in fact decoded into the 
geometrically valid layout represented by the derived string. As the search space of the 
problem is the space that contains all possible strings, the mapping process allows all 
individuals in the search space to be interpreted as geometrically valid layouts. As a 
result, there are seemingly no geometrically invalid layouts at all in the search space. 

 
An example of how to derive a geometrically valid beam-slab layout of a 

rectangular floor is shown in Fig. 4.3. The first subfigure Fig. 4.3a shows the 
geometrically invalid beam-slab layout of a rectangular floor and the derived 
geometrically valid beam-slab layout obtaining from the proposed mapping algorithm. 
The detailed steps of the mapping process are shown in Fig. 4.3b. In this example it 
should be noted that there is no concave L-shaped beam on the outer boundary of the 
floor to be removed in the mapping algorithm. In case of a rectilinear floor, it will 
always have a concave L-shaped beam on the outer boundary to be considered. For 
example, Fig. 4.4 shows how to derive a geometrically valid beam-slab layout of a 
rectilinear floor. The first subfigure Fig. 4.4a shows the geometrically invalid beam-slab 
layout of a rectilinear floor and the derived geometrically valid beam-slab layout 
obtaining from the proposed mapping algorithm. The detailed steps of the mapping 
process are shown in Fig. 4.4b. Note that the derived geometrically valid beam-slab 
layout of a rectilinear floor may not occupy the whole floor area. 

 
 

 
(a) 

 

          
 1 2 3 4 

(b) 
 

Fig. 4.3. (a) An example of geometrically invalid beam-slab layout of a rectangular
floor and the derived geometrically valid beam-slab layout. (b) Steps of deriving the
derived geometrically valid beam-slab layout of a rectangular floor. 
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Fig. 4.4. (a) An example of geometrically invalid beam-slab layout of a rectilinear floor
and the derived geometrically valid beam-slab layout. (b) Steps of deriving the derived
geometrically valid beam-slab layout of a rectilinear floor. 
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Although the proposed mapping scheme enables each geometrically invalid 

individual to be interpreted as a geometrically valid layout and, subsequently, to be 
evaluated, the process does have its disadvantage. Many different geometrically invalid 
layouts can generally be mapped to the same corresponding geometrically valid layout. 
For example, a rectangular layout with beams only along its entire outer boundary can 
be the derived layout of many different geometrically invalid layouts that have the same 
outer-boundary beams and some additional interior beams that are not connected to the 
outer-boundary beams. This characteristic of the mapping scheme creates a bias in the 
reproduction process. The reason is that different geometrically valid layouts will not 
have the same number of representatives in the search space. If more geometrically 
invalid layouts are mapped to a certain geometrically valid layout, that particular 
geometrically valid layout will subsequently have more representatives in the search 
space. The proposed mapping scheme will in general yield more representatives in the 
search space for those geometrically valid layouts that have larger slabs and fewer 
beams. This is because, in the mapping process, beams are always removed from 
geometrically invalid layouts to obtain geometrically valid ones. Although layouts with 
larger slabs and fewer beams are generally more preferred, it is necessary that layouts 
with smaller slabs and more beams be adequately explored. In this study, the bias is 
alleviated by prescribing a special individual in the initial population. This special 
individual represents the layout that contains all possible beam segments. For example, 
Fig. 4.5b shows the special individual to be prescribed in the initial population for the 
grid in Fig. 4.5a. In addition, Fig. 4.6 shows examples illustrating the concept of the 
proposed coding of beam-slab layouts. Finally, Fig. 4.7 illustrates the crossover and 
mutation processes of two individuals A and B, denoted by their original strings. These 
two original strings are interpreted as geometrically valid layouts via their derived 
strings. The two original strings are used as the parent strings in the crossover process to 
obtain two offspring strings. The two offspring strings then mutate and, finally, two new 
individuals C and D are obtained. These individuals C and D are also interpreted as 
geometrically valid layouts via their derived strings. 
 
 
 

 

   
 

 (a) (b) 
 

Fig. 4.5. (a) The grid. (b) The special individual that contains all possible beam
segments. 
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Decoding
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Fig. 4.6. Example illustrating the concept of the proposed coding scheme. 
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Individual A

1110001100001111
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Individual B

Original string Original stringDerived string
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111000000001111

Derived string

1110000000001111
111111100001111
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1110000000001111
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1110001100001111
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Original string Derived string
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111000000001111

Mutation

Crossover

Individual C Individual D

Decoding Decoding

DecodingDecoding

 
 

Fig. 4.7. Crossover and mutation processes. 
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4.4 Problem formation 
 

After establishing the coding scheme, the next step is to write the representative 
optimization problem for beam-slab layout design. This is explicitly done by defining 
the problem’s objective function as well as constraints. It is desirable that the 
representative optimization problem is simple but still able to yield reasonably good 
beam-slab layouts. In the literature, there are several kinds of objective functions such 
as the project profit (Rafiq et al., 2003), the flexibility of space (Sisk et al., 2003), and 
the weight of the structure (Nanakorn and Meesomklin, 2001). The objective and 
constraint functions used in this study are described in the next sections. 
 
 
4.4.1 Objective function 
 

As mentioned earlier, in this study, the primary input of the proposed algorithm 
is an architectural floor plan with given positions of columns and walls. If the beam-slab 
layout of the input architectural floor plan is to be prepared by a designer, it is expected 
that the designer will try to utilize the given columns to support beams and, 
subsequently, slabs as efficiently as possible. The efficient column utilization can be 
defined differently from one designer to another. This study mimics this kind of 
consideration by defining the objective function F  of the problem as 
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Note that the proposed objective function is a function of the derived chromosome 
string denoted as dx . To obtain the objective function written in Eq. (4.1), a score is 
given to each slab based on the number of corner columns it has. In the expression of 
the objective function, iS  is the score assigned to slab i, and SN  is the total number of 
slabs in the layout. The slab score is given as 1, 0.75, 0.5, 0.25, or 0 if the slab has 4, 3, 
2, 1, or 0 corner columns, respectively. Fig. 4.8a shows examples of all five types of 
slab with different corresponding slab scores. The idea behind the proposed objective 
function and the slab scoring is based on two assumptions pertaining to the efficient 
column utilization. First, for a slab, the column utilization is considered better if the slab 
has more corner columns. This is because corner columns allow efficient load transfer 
from the slab, via beams, to the columns. Second, the column utilization of the whole 
floor is considered better if there are fewer slabs in the floor for the given columns. The 
first assumption is considered in the objective function by the use of the slab score iS  
and the second assumption by the use of the total number of slabs SN . With the form of 
the objective function in Eq. (4.1), the representative optimization problem for beam-
slab layout design becomes the maximization problem of the proposed objective 
function. Since a GA is to be used to solve this optimization problem, the proposed 
objective function can be directly employed as the fitness function of the proposed GA. 
According to this fitness function, a beam-slab layout that has fewer slabs and more 
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corner columns of slabs will have higher fitness. Since the employed fitness function 
encourages layouts that have fewer slabs, it will also encourage layouts that have fewer 
beams. As an example, Fig. 4.8b and c show two different layouts for the same floor. It 
can be seen that the total beam length of the layout with higher fitness is shorter than the 
total beam length of the layout with lower fitness. Using the fitness function that 
encourages layouts with fewer beams is desirable because, for the same floor plan, 
layouts with longer beam lengths generally have higher construction costs. 
 
 
4.4.2 Design constraints 

 
Two types of design constraint are employed in this study, i.e. 
1) wall constraint, and 
2) slab constraint. 
 
The wall constraint states that all walls must be directly supported by beams. 

With an x-y coordinate system that is in alignment with the floor plan, the slab 
constraint states that the length of a slab in the x direction must not exceed a prescribed 
maximum length for the x direction, and the length in the y direction must not exceed a 
prescribed maximum length for the y direction. It should be noted that the spacing of the 
grid used in the calculation must not be set too large that the slab constraint cannot be 
satisfied. In addition, the slab constraint also states that the whole floor must be 
completely covered by slabs. 

 
Define the penalty function P from these two constraints as 
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Fig. 4.8. Examples of slabs with different scores. 
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( ) ( ) [ ( ) ( )]d d wall d slab dP E H Hλ λ= = +x x x x  (4.2)
 
 
where λ  is a non-negative factor and E is the total degree of constraint violation. In 
addition, wallH and slabH  are the degrees of wall and slab constraint violation, 
respectively. They are defined as 
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In Eq. (4.3), WL′ denotes the total length of wall segments that are not directly 
supported by beams. In addition, WL  denotes the total wall length. In Eq. (4.4), SA′  is 
the total area of slabs that have at least one side longer than the corresponding 
prescribed maximum length and SA′′  is the total floor area that is not covered by slabs. 
Here, SA  is the total floor area. 
 

In this study, the factor λ  will be automatically determined in each GA 
generation using the adaptive penalty scheme proposed by Nanakorn and Meesomklin 
(2001). Brief details of the employed adaptive penalty scheme are presented in Section 
3.8. By employing the penalty function in Eq. (4.2), the augmented fitness function aF  
is obtained as 
 
 

( ) ( )                               if ,a
d d dF F= ∈x x x F  

( ) ( ) ( )                   otherwisea
d d dF F P= −x x x  

(4.5)

 
 
where F denotes the feasible search space with respect to the wall and slab constraints. 

 
Fitness and constraints using the above equations are explained by an example 

in Fig. 4.9. In the figure, a rectilinear floor and its example layout are given. The floor 
has three areas or rooms. The example layout has three slabs. The two top slabs have a 
score of 1 because they have four corner columns. The bottom slab has a score of 0.5 
because it has only two corner columns. The total slab score is 1+1+0.5=2.5. The 
number of slabs is 3. Hence, the raw fitness computed using Eq. (4.1) is 2.5/3=0.83333. 
The total length of the walls is 51 m. The total length of the walls that are not supported 
by beams is 25 m. Hence, the wall constraint violation computed using Eq. (4.3) is 
25/51=0.49019. By assuming the maximum slab size to be 4 m, all three slabs in the 
example layout do not violate the slab size constraint. Thus, SA′  in Eq. (4.4) is zero. 
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Obviously, the top half of the example layout has no slab. Thus, SA′′  in Eq. (4.4) is 36 
m2. The total floor area of the given floor is 72 m2. Therefore, the slab constraint 
violation computed using Eq. (4.4) is (0+36)/72=0.5. Hence, the penalty value P  
computed using Eq. (4.2) is (0.49019+0.5)λ=0.99019λ . Finally, the augmented fitness 
in Eq. (4.5) becomes 0.83333-0.99019λ . Noted that the value of λ  can be computed 
after raw fitness and constraint violations of all individuals in the population are known. 
The value of λ  is computed using the adaptive penalty scheme as explained earlier. 
After obtaining λ , the augmented fitness of all individuals can be computed. 
  
 
4.4.3 Elitism 
 

As noted earlier, the proposed coding scheme for beam-slab layouts introduces 
the bias toward layouts with larger slabs and fewer beams. To alleviate the bias, the 
layout that contains all possible beam segments is inserted into the initial population. 
With proper grid spacing, this special layout is always feasible since it always satisfies 
both wall and slab constraints. To make certain that the influence of this insertion does 
not disappear during the GA operators, elitism is employed in the proposed GA. The 
main concept of all elitist GAs is that the best solution or solutions are placed directly in 
the population of the subsequent generation regardless of the reproduction, crossover 
and mutation operators. In this study, the elitist solution is the best individual 
determined by using the following elitism rule of comparison. 

 

  
 
 

Slab score = 2.5 
Wall constraint = 0.49019 

Slab constraint = 0.5 
Raw fitness = 0.83333 

Augmented fitness = 0.83333-0.99019λ  
 

Fig. 4.9. Examples of fitness and constraint calculations. 
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Consider two layouts, iLayout  and jLayout , that are geometrically valid. iLayout is 
better than jLayout  when 

1. iLayout  is feasible while jLayout  is not. 

2. Both layouts are feasible but iLayout  has larger fitness than jLayout . 

3. Both layouts are feasible and have the same fitness. Nevertheless, iLayout  has a 
shorter total length of beams than jLayout . 

4. Both layouts are feasible and have the same fitness and total length of beams. 
Nevertheless, iLayout  has fewer beams than jLayout . Note that connecting 
beam segments on the same grid line are counted as one beam. Fig. 4.10 shows 
examples of how the number of beams is counted. 

5. Both layouts are infeasible but iLayout  has a smaller total degree of constraint 
violation than jLayout . 

6. Both layouts are infeasible and have the same total degree of constraint violation. 
Nevertheless, iLayout  has larger fitness than jLayout . 

7. Both layouts are infeasible and have the same fitness and total degree of 
constraint violation. Nevertheless, iLayout  has a shorter total length of beams 
than jLayout . 

8. Both layouts are infeasible and have the same fitness and total degree of 
constraint violation. In addition, they also have the same total length of beams. 
Nevertheless, iLayout  has fewer beams than jLayout . 
 
Since all individuals are always interpreted as geometrically valid layouts 

through their derived layouts, they can always be compared using the above elitism rule 
of comparison. Due to the inserted special individual in the initial population and the 
elitism process, there will always be at least one feasible individual in each generation. 
As a result, to obtain the elitist solution, it is actually not necessary to consider the 
comparison between two infeasible individuals. However, the comparison between two 
infeasible individuals is necessary for finding the worst individual to be replaced by the 
elitist solution in the elitism process. In this study, the elitism process is simply done by 

 
 

       
 

Fig. 4.10. The number of beams. 
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finding the best individual of the current population based on the above elitism rule of 
comparison. If this best individual is, based on the same rule of comparison, better than 
the existing elitist solution obtained from all the past generations, then the individual 
becomes the elitist solution. After that, this updated elitist solution is used to replace the 
worst individual of the generation. The worst individual of the generation is obtained 
also by using the above elitism rule of comparison. The elitism rule of comparison is 
used only to compare the superiority of individuals for the elitism process. In the 
reproduction process, the relative superiority of individuals is also considered. 
However, the reproduction process constructs the mating pool of each generation by 
using the scaled fitness values. Nevertheless, it can be seen that the best individual 
obtained by the elitism rule of comparison will also be the best feasible individual that 
has the highest fitness. 
 
 
4.5 Algorithm 
 

The GA operators used in this study include the roulette wheel selection, one-
point crossover, and bitwise mutation. In addition, the elitism and the adaptive penalty 
scheme are employed. The flow chart of the proposed GA is shown in Fig. 4.11. The 
proposed GA for beam-slab layout design also can be summarized as follows: 

 
 
Algorithm GA_for_Beam_Slab_Layout_Design 
Input: An architectural floor plan, the maximum allowable slab length, the required 
number of generations ( )GN , and the population size ( )N  
Output: The best beam-slab layout that is the elitist solution obtained from all 
generations 
• Randomly generate the initial population of 1N −  individuals 
• Add one individual containing all possible beam segments to the initial 

population 
• Create the derived chromosome strings from the original strings by mapping 
• Determine the fitness and degrees of constraint violation of all individuals 
• Find the best individual of the generation based on the elitism rule of 

comparison and set it as the elitist solution 
• Obtain the augmented fitness of all individuals based on the adaptive penalty 

scheme 
• Obtain the scaled fitness 
• Implement the roulette-wheel selection, the crossover operator and the mutation 

operator 
• Replace the old population with the new one 
• for 1j ←  to GN  do 

o Create the derived chromosome strings from the original strings by 
mapping 

o Determine the fitness and degrees of constraint violation of all 
individuals 

o Find the best and worst individuals of the generation based on the elitism 
rule of comparison and update the elitist solution if necessary 
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o Replace the worst individual of the generation with the elitist solution 
o Obtain the augmented fitness of all individuals based on the adaptive 

penalty scheme 
o Obtain the scaled fitness 
o Implement the roulette-wheel selection, the crossover operator and the 

mutation operator 
o Replace the old population with the new one. 
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Fig. 4.11. Flow chart of the proposed GA. 
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Chapter 5 
 

Examples and Results 
 
 

To show the validity of the proposed GA for beam-slab layout design, the 
algorithm is used to solve nine beam-slab layout problems. The input data of all the 
problems are architectural floor plans with given positions of walls and columns. Since 
it is apparent that there must be beams on the outer boundary of the floor, beam 
segments are placed in advance on all line segments representing the outer boundary. 
Thus, these beam segments are removed from the list of the design variables. In all 
problems, the parameters C and ϕ  in the fitness scaling and adaptive penalty processes 
are set to four and one, respectively. Setting C = 4 means that the individual chance of 
the best feasible members being selected into the mating pool is equal to four times that 
of the average feasible members. Setting 1ϕ =  means that the individual chance of the 
best infeasible members being selected into the mating pool is equal to that of the 
average feasible members. All together, the two parameters indicate that the individual 
chance of the best feasible members being selected into the mating pool is equal to four 
times that of the best infeasible members. In the GA process, the crossover probability 
of 0.85 and the mutation probability of 0.005 are used for all problems. To allow the 
efficiency of the proposed algorithm to be clearly discussed, the problems are solved by 
using various population sizes. In order to examine both the quality and uniformity of 
the obtained results, the algorithm is run for 100 times for each population size. The 
number of generations used for all runs in Problems 1 to 4 is 500 while the number of 
generations used in Problems 5 to 9 is 2,000. The 100 runs for each population size are 
collectively called a calculation set. The best solution of a run is the best layout found in 
that run, which is the elitist solution obtained from all generations. Since there are 100 
runs in a calculation set, there will be 100 best solutions from these 100 runs. Among 
these 100 best solutions, the best one determined by the elitism rule of comparison will 
be the best solution of the calculation set. Note again that all individuals in the 
algorithm are always interpreted as geometrically valid layouts represented by their 
derived strings. As a result, solutions are shown here by using their derived layouts. 
 
 
5.1 Problem 1 
 

The first problem is an architectural floor plan shown in Fig. 5.1a. It can be seen 
from the positions of the walls that the floor consists of three separate areas. Two of 
these areas are of rectangular shapes while the third area is not. A uniform grid with 
spacing of 0.5 m is employed as shown in Fig. 5.1b. Rather small spacing is used here 
to show the validity of the proposed algorithm since smaller spacing results in a larger 
search space. By placing beams on the boundary of the floor in advance, this grid results 
in 418 design variables. The maximum allowable length of a slab is preset to 4 m. For 
this problem, four calculation sets for four different population sizes of 100, 200, 300 



 53

and 400 individuals are analyzed. As aforementioned, each calculation set consists of 
100 runs. 

 
Table 5.1 shows the statistics of the obtained results. For each population size or 

calculation set, the maximum, average, minimum and standard deviation (SD) values of 
the fitness of the 100 best solutions from the 100 runs are found. Note that the 
maximum fitness obtained from each calculation set is the fitness of the best solution 
among the 100 best solutions obtained from the 100 runs. It is found from the results 
that the best solutions of all calculation sets are in fact the same and this best layout is 
shown in Fig. 5.1c. It can be seen that the best layout in Fig. 5.1c is a feasible beam-slab 
layout that satisfies both wall and slab constraints. In addition, the layout is 
unquestionably a good layout that can really be used in the next design process. Three 
large slabs in the layout are suitably supported, through beams, by their corner columns. 
In the area where the presence of the walls necessitates more beams, smaller slabs are 
appropriately created. Note that this study does not intend to claim that this best layout 
from the algorithm is the best possible layout. In fact, the best possible layout can never 
be identified since different designers will have their own opinions of what the best 
layout should be. From Table 5.1, it can also be seen that the SD values for all 
calculation sets are very small. In fact, the maximum coefficient of variation of all 
calculation sets, which is found in the calculation set with the population size of 100, is 
only 0.13. This means that the algorithm provides rather uniform results. The table also 
reports the appearance percentage of the best solution of each calculation set. The 
obtained percentages for all calculation sets are very high, especially for the population 

 
 

   
 (a) (b) 

 

 
(c) 

 
Fig. 5.1. Problem 1. (a) The given floor plan. (b) The grid. (c) The best solution. 
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sizes of 300 and 400. Also in the table, the average numbers of generations required for 
the solution convergence are reported. It can be seen that the algorithm requires, on 
average, less than 140 generations for obtaining its best layout. In fact, for the 
population size of 400, the algorithm requires, on average, less than 100 generations to 
get the best layout. 

 
Fig. 5.2 shows an example evolution of layouts from a run with 100 individuals. 

The best layout of the run is obtained at the 128th generation. The best layout obtained 
is also the problem's best layout, which is shown in Fig. 5.1c. In addition, Fig. 5.3 
shows the convergences of the fitness and the total beam length of the elitist solution 
from the same run shown in Fig. 5.2. It can be seen that the fitness rises quickly during 
the first 120 generations and reaches its convergence at the 128th generation. 
Concurrently, the total beam length decreases rapidly during the first 120 generations 
and reaches the lowest value of 51 m at the 128th generation. The decrease of the total 
beam length during the evolutionary process is expected even though the total beam 
length is not directly included in the objective function. As aforementioned, this is 
because, with all other conditions being the same, the employed fitness function 
encourages layouts that have fewer slabs and layouts with fewer slabs have fewer 
beams. 

 
 

 
 
 

Table 5.1. Problem 1: statistics of the results. 
 
 Calculation set of 100 runs 

Population Size 
100 200 300 400 

Maximum fitness 0.667 0.667 0.667 0.667 
Average fitness 0.636 0.652 0.665 0.664 
Minimum fitness 0.214 0.389 0.500 0.428 
SD of fitness 0.080 0.055 0.016 0.024 
Appearance percentage of the best 
solution of the calculation set (%) 

86 93 99 99 

Average required number of 
generations for the solution 
convergence 

130.1 113.8 110.8 94.2 
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Fig. 5.2. Problem 1: a typical evolution of solution. 
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Fig. 5.3. Problem 1: a typical development of the fitness and the total beam length. 
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5.2 Problem 2 
 

The second problem is an architectural floor plan shown in Fig. 5.4a. For this 
problem, a uniform grid with spacing of 0.5 m is employed as shown in Fig. 5.4b. By 
placing beams on the boundary of the floor in advance, this grid results in 480 design 
variables. Similar to the previous problem, the maximum allowable length of a slab is 
preset to 4 m. In addition, four calculation sets for four different population sizes of 
100, 200, 300 and 400 individuals are also analyzed and each calculation set also 
consists of 100 runs. 

 
Table 5.2 shows the statistics of the obtained results. Similar to the previous 

problem, the best solutions of all calculation sets are the same as shown in Fig. 5.4c and 
is found to be a good layout. From Table 5.2, the SD values for all calculation sets are 
very small. In fact, the maximum coefficient of variation of all calculation sets, which is 
found in the calculation set with the population size of 100, is only 0.06. Actually, for 
the population sizes of 300 and 400, the SD values are zero. This is because all 100 best 
solutions of all 100 runs within each of these two calculation sets are the same. These 
results further confirm that the proposed algorithm provides uniform results. It can be 
observed also from Table 5.2 that, for the population sizes of 200 and greater, the 
algorithm requires, on average, less than 100 generations to reach the convergence. 
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Fig. 5.4. Problem 2. (a) The given floor plan. (b) The grid. (c) The best solution. 
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Fig. 5.5 shows a typical evolution of layouts from a run with 100 individuals. 
The best layout of the run is obtained at the 124th generation. The best layout obtained 
is also the problem's best layout, which is illustrated in Fig. 5.4c. In addition, Fig. 5.6 
depicts the convergences of the fitness and the total beam length of the same run shown 
in Fig. 5.5. The fitness rises quickly after the 75th generation and reaches its 
convergence at the 124th generation. The total beam length decreases rapidly also after 
the 75th generation and reaches the lowest value of 59 m at the 124th generation. 
 
 

 
 

Table 5.2. Problem 2: statistics of the results. 
 
 Calculation set of 100 runs 

Population Size 
100 200 300 400 

Maximum fitness 0.500 0.500 0.500 0.500 
Average fitness 0.490 0.498 0.500 0.500 
Minimum fitness 0.375 0.375 0.500 0.500 
SD of fitness 0.030 0.014 0 0 
Appearance percentage of the best 
solution of the calculation set (%) 

89 97 100 100 

Average required number of 
generations for the solution 
convergence 

124.6 99.2 98.1 76.6 
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Fig. 5.5. Problem 2: a typical evolution of solution. 
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Fig. 5.6. Problem 2: a typical development of the fitness and the total beam length. 
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5.3 Problem 3 
 

The third problem is an architectural floor plan shown in Fig. 5.7a. This floor is 
larger and more complicated than the previous two examples. The floor has one interior 
column that is out of alignment with the other columns. This irregularity is often 
encountered by engineers in practice and is intentionally adjusted herein to increase the 
difficulty of the problem. Similar to the previous problems, a uniform grid with spacing 
of 0.5 m is employed for this problem as shown in Fig. 5.7b. With the outer boundary 
beams placed in advance, this grid yields 666 design variables. The maximum allowable 
length of a slab is preset to 4 m. For this problem, four calculation sets for four different 
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Fig. 5.7. Problem 3. (a) The given floor plan. (b) The grid. (c) The best solution. 
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population sizes of 500, 600, 700 and 800 individuals are analyzed. Similar to the 
previous problems, each calculation set consists of 100 runs. 

 
Table 5.3 shows the statistics of the obtained results. The best solutions of all 

calculation sets are the same. The best layout from the algorithm is shown in Fig. 5.7c. 
The algorithm efficiently provides simple beam-slab patterns in the area with simple 
wall lines and beam-slab patterns that are more involved in the area with complex wall 
lines. In addition, the algorithm handles the area around the column that is out of 
alignment quite well. As presented in Table 5.3, the SD values for all calculation sets 
are very small. The maximum coefficient of variation of all calculation sets, found in 
the calculation set with the population size of 500, is only 0.02. For this problem, the 
algorithm requires, on average, less than 190 generations to obtain the convergence. 

 
Fig. 5.8 shows a typical evolution of layouts from a run with 500 individuals. 

The best layout of the run, which is also the best layout found for this problem shown in 
Fig. 5.7c, is obtained at the 187th generation. In Fig. 5.8, there is the change of pattern 
from Gen-150 to Gen-187 because the bottom left slab of Gen-187 has more corner 
columns than that of Gen-150. Fig. 5.9 shows the convergences of the fitness and the 
total beam length of the same run shown in Fig. 5.8. The fitness rises quickly during the 
first 75 generations before reaching its convergence at the 187th generation. Similarly, 
the total beam length decreases rapidly during the first 75 generations and reaches the 
lowest value of 80.5 m at the 187th generation. 

 
 

 
 

Table 5.3. Problem 3: statistics of the results. 
 
 Calculation set of 100 runs 

Population Size 
500 600 700 800 

Maximum fitness 0.500 0.500 0.500 0.500 
Average fitness 0.496 0.497 0.497 0.497 
Minimum fitness 0.454 0.417 0.458 0.458 
SD of fitness 0.012 0.012 0.010 0.009 
Appearance percentage of the best 
solution of the calculation set (%) 

92 94 94 95 

Average required number of 
generations for the solution 
convergence 

187.4 177.6 163.2 175.6 
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Fig. 5.8. Problem 3: a typical evolution of solution. 
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Fig. 5.9. Problem 3: a typical development of the fitness and the total beam length. 
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5.4 Problem 4 
 

The fourth problem is an architectural floor plan shown in Fig. 5.10a. The floor 
has several rooms and the columns are not in perfect alignment. In this problem, two 
uniform grids with spacing of 0.5 m and 1 m are employed as shown in Fig. 5.10b and 
c. The larger grid spacing of 1 m is also used in this problem in order to show that, in 
real practice, larger values of spacing can be used as long as the values still allow the 
slab constraint to be satisfied. The maximum allowable length of a slab is again preset 
to 4 m. With the outer-boundary beams placed in advance, the 0.5-m grid requires 634 
design variables while the 1-m grid involves 149 design variables. Four calculation sets 
for four different population sizes of 500, 600, 700 and 800 individuals are analyzed for 
the 0.5-m grid. For the 1-m grid, four different population sizes of 100, 200, 300 and 
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Fig. 5.10. Problem 4. (a) The given floor plan. (b) The 0.5-m grid. (c) The 1-m gird. (d)
The best solution. 
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400 individuals are used for the latter. Each calculation set consists of 100 runs. The 
smaller population sizes are adopted for the 1-m grid because the search space of the 1-
m grid is smaller than that of the 0.5-m grid. 

 
Table 5.4 shows the statistics of the obtained results for the 0.5-m grid. Similar 

to all previous problems, it is found from the results that the best solutions of all 
calculation sets are the same. The best layout is shown in Fig. 5.10d. It can be seen that 
the obtained best layout is reasonably good. All irregular wall and column locations are 
well taken care of by the algorithm. The layout can positively be used in the next design 
process. In addition, the SD values for all calculation sets shown in Table 5.4 are very 
small. The maximum coefficient of variation of all calculation sets, found in the 
calculation set with the population size of 500, is only 0.04. In addition, the algorithm 
requires, on average, less than 175 generations to obtain the convergence. Table 5.5 
shows the statistics of the obtained results for the 1-m grid. The best solutions of all 
calculation sets with the 1-m grid are the same as the best layout obtained from the 0.5-

 
Table 5.4. Problem 4: statistics of the results for the 0.5-m grid. 
 
 Calculation set of 100 runs 

Population Size 
500 600 700 800 

Maximum fitness 0.550 0.550 0.550 0.550 
Average fitness 0.541 0.543 0.543 0.543 
Minimum fitness 0.500 0.500 0.500 0.500 
SD of fitness 0.019 0.017 0.017 0.019 
Appearance percentage of the best 
solution of the calculation set (%) 

82 86 85 88 

Average required number of 
generations for the solution 
convergence 

167.3 171.7 165.9 157.1 

 
 
Table 5.5. Problem 4: statistics of the results for the 1-m grid. 
 
 Calculation set of 100 runs 

Population Size 
100 200 300 400 

Maximum fitness 0.550 0.550 0.550 0.550 
Average fitness 0.546 0.548 0.548 0. 550 
Minimum fitness 0.500 0.500 0.500 0. 550 
SD of fitness 0.014 0.010 0.009 0 
Appearance percentage of the best 
solution of the calculation set (%) 

90 95 97 100 

Average required number of 
generations for the solution 
convergence 

130.5 126.1 96.6 104.6 
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m grid. Nevertheless, the SD values for the calculation sets with the 1-m grid are much 
smaller than those from the 0.5-m grid. In addition, the maximum coefficient of 
variation of all calculation sets with the 1-m grid, found in the calculation set with the 
population size of 100, is only 0.03. Moreover, for the 1-m grid, the algorithm requires, 
on average, less than 135 generations to obtain the convergence. 

 
Fig. 5.11 shows a typical evolution of layouts for the 0.5-m grid from a run with 

500 individuals. The best layout of the run is obtained at the 159th generation. This best 
layout is also the best layout found for this problem, which is shown in Fig. 5.10d. 
Moreover, Fig. 5.12 shows the convergences of the fitness and the total beam length of 
the same run shown in Fig. 5.11. It can be seen that the fitness rises quickly after the 
80th generation and reaches its convergence at the 159th generation. The total beam 
length decreases rapidly after the 80th generation before reaching the lowest value of 76 
m at the 159th generation. 
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Fig. 5.11. Problem 4: a typical evolution of solution. 



 69

 

 

0 50 100 150 200 250 300 350 400 450 500
0.0179

0.2839

0.55

Generation

Fitness Value and Total Beam Length

Fi
tn

es
s 

V
al

ue

0 50 100 150 200 250 300 350 400 450 500

76

103.5

131

158.5

186

213.5

241

268.5

296

323.5

351

To
ta

l B
ea

m
 L

en
gt

h

Fitness Value
Total Beam Length

 
 
 

Fig. 5.12. Problem 4: a typical development of the fitness and the total beam length for
the 0.5-m grid. 
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5.5 Problem 5 
 

The fifth problem is taken from a floor plan of an existing public building. Fig. 
5.13a shows the architectural floor plan of the building and Fig. 5.13b shows the real 
structural beam-slab layout. The architectural floor plan is slightly simplified to obtain a 
rectangular floor and the simplified plan is shown in Fig. 5.14a. This simplified plan is 
used as the input of the proposed algorithm. It can be seen from the real structural 
layout in Fig. 5.13b that both precast as well as cast-in-place slabs are used. The 
maximum length of the precast slabs is 4 m. In addition, the precast slabs are placed 
parallel to the x direction. To be able to compare the layout obtained from this study 
with the real structural layout, the maximum allowable slab length in the x direction is 
preset to 4 m in the algorithm. The maximum allowable slab length in the y direction is 
preset to 8 m, which is the maximum column spacing. In this problem, due to the 
complexity of the positions of walls and columns, a non-uniform grid is used. The 
maximum grid spacing is set to 4 m in order that the slab constraint can be satisfied in 

 
 

 
(a) 

 
 

 
(b) 

 
Fig. 5.13. Problem 5: (a) The real architectural floor plan. (b) The real structural floor
plan. 
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both directions. To construct the non-uniform grid, grid lines are first placed on all 
columns and wall lines. After that, the spacing between all grid lines is checked. If any 
spacing is found to be greater than the maximum grid spacing of 4 m, an additional grid 
line will be inserted at the middle of the interval. Since there will be no beam in the stair 
and lift opening areas, the line segments of the grid in these two areas are removed. The 
obtained non-uniform grid is shown in Fig. 5.14b. With the outer-boundary beams 
placed in advance, this grid results in 269 design variables. For this problem, four 
calculation sets for four different population sizes of 20, 40, 60 and 80 individuals are 
analyzed. Each set consists of 100 runs. In the algorithm, the stair and lift openings are 
treated as part of the floor area, not as openings, and the calculation is performed as if 
there is no opening. However, a slab that fits any opening area exactly will not be 
penalized even if it violates the slab constraint. 

 
Table 5.6 shows the statistics of the obtained results. The best solutions of all 

calculation sets are found to be the same. The best layout from the algorithm is shown 
in Fig. 5.14c. This layout is found to be in good agreement with the real structural 
layout shown in Fig. 5.13b. In fact, if the simplified parts are disregarded, the two 
layouts are exactly the same. The SD values in Table 5.6 for all calculation sets are very 
small. The coefficients of variation of all calculation sets are found to be the same and 
equal to 0.01. For this problem, the algorithm requires, on average, less than 1,140 
generations to obtain the convergence. Fig. 5.15 shows a typical evolution of layouts 
from a run with 20 individuals. Fig. 5.16 shows the convergences of the fitness and the 
total beam length of the same run shown in Fig. 5.15. 

 

 
 

Table 5.6. Problem 5: statistics of the results. 
 
 Calculation set of 100 runs 

Population Size 
20 40 60 80 

Maximum fitness 0.311 0.311 0.311 0.311 
Average fitness 0.310 0.310 0.310 0.310 
Minimum fitness 0.304 0.300 0.300 0.304 
SD of fitness 0.002 0.002 0.002 0.002 
Appearance percentage of the best 
solution of the calculation set (%) 

37 52 42 46 

Average required number of 
generations for the solution 
convergence 

1074.3 942.8 1003.0 1136.6 
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Fig. 5.14. Problem 5: (a) The simplified architectural floor plan. (b) The grid. (c) The
best solution. 
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Fig. 5.15. Problem 5: a typical evolution of solution. 
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Fig. 5.15. (continued) 
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Fig. 5.16. Problem 5: a typical development of the fitness and the total beam length. 
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5.6 Problem 6 
 

The sixth problem is a rectilinear floor plan shown in Fig. 5.17a. The floor has a 
stair opening. A uniform grid with spacing of 0.5 m is employed as shown in Fig. 5.17b. 
By placing beams on the outer boundary of the floor in advance, this grid results in 683 
design variables. The maximum allowable length of a slab is set to 3.5 m. In addition, 
four calculation sets for four different population sizes of 20, 40, 60 and 80 individuals 
are analyzed, and each calculation set also consists of 100 runs. 

 
Table 5.7 shows the statistics of the obtained results. It is found that the best 

solutions of all calculation sets are the same. This best solution is shown in Fig. 5.17c 
and is found to be a good layout. From Table 5.7, it can also be seen that the SD values 
for all calculation sets are small. In fact, the maximum coefficient of variation of all 
calculation sets, which is found in the calculation set with the population size of 20, is 
only 0.09. Table 5.7 shows that, for the population sizes of 40 and greater, the algorithm 
requires, on average, less than 1,000 generations to reach the solution convergence. 

 
Fig. 5.18 shows a typical evolution of layouts from a run with 20 individuals. 

The best layout of the run is obtained at the 962th generation. This best layout is also 
the best layout found for this problem, which is shown in Fig. 5.17c. In addition, Fig. 
5.19 shows the convergences of the fitness and the total beam length of the same run 
shown in Fig. 5.18. The fitness rises quickly after the 50th generation and reaches its 
convergence at the 962th generation. Moreover, the total beam length decreases rapidly 
also after the 50th generation and reaches the lowest value of 101.5 m at the 962th 
generation. 

 

 
 

Table 5.7. Problem 6: statistics of the results. 
 
 Calculation set of 100 runs 

Population Size 
20 40 60 80 

Maximum fitness 0.515 0.515 0.515 0.515 
Average fitness 0.473 0.495 0.506 0.509 
Minimum fitness 0.355 0.382 0.397 0.456 
SD of fitness 0.044 0.031 0.022 0.016 
Appearance percentage of the best 
solution of the calculation set (%) 

38 60 78 88 

Average required number of 
generations for the solution 
convergence 

1078.5 999.1 859.2 918.0 
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Fig. 5.17. Problem 6. (a) The given floor plan. (b) The grid. (c) The best solution. 
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Fig. 5.18. Problem 6: a typical evolution of solutions. 
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Fig. 5.19. Problem 6: a typical development of the fitness and the total beam length. 
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5.7 Problem 7 
 

The seventh problem is taken from a floor plan of a real building. Fig. 5.20a 
shows the architectural floor plan of the building and Fig. 5.20b shows the real 
structural beam-slab layout. The plan in Fig. 5.20a is used as the input of the proposed 
algorithm. It can be seen from the real structural layout in Fig. 5.20b that one-way slabs 
with short spans of 3.9 m are mostly used in the floor. These one-way slabs are placed 
parallel to the x direction. To be able to compare the layout obtained from this study 
with the real structural layout, the maximum allowable slab length in the x direction is 
preset to 3.9 m. In addition, the maximum allowable slab length in the y direction is 
preset to 7.8 m, which is the maximum column spacing. Due to the complexity of the 

 
 

(a) 
 
 

(b) 
 

Fig. 5.20. Problem 7. (a) The real architectural floor plan. (b) The real structural floor
plan. 
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positions of walls and columns, a non-uniform grid is used. The maximum grid spacing 
is set to 3.9 m in order that the slab constraint can be satisfied in both directions. The 
non-uniform grid is constructed using the same procedure as the previous example. 
Since there will be no beam in the stair and lift opening areas, the line segments of the 
grid in these two areas are removed. The obtained non-uniform grid is shown in Fig. 
5.21a. With the outer-boundary beams placed in advance, this grid results in 203 design 
variables. For this problem, four calculation sets for four different population sizes of 
20, 40, 60 and 80 individuals are analyzed. Each calculation set consists of 100 runs. 
The stair and lift openings are treated as part of the floor area, not as openings, and the 
calculation is performed as if there is no opening. However, a slab that fits any opening 
area exactly will not be penalized even if it violates the slab constraint.  
 

Table 5.8 shows the statistics of the obtained results. The best solutions of all 
calculation sets are found to be the same. The best layout from the algorithm is shown 
in Fig. 5.21b. This layout is found to be a good layout although it is not exactly the 
same as the real structural layout shown in Fig. 5.20b. The SD values in Table 5.8 for 
all calculation sets are very small. The maximum coefficient of variation of the 
calculation sets is equal to 0.004. For this problem, the algorithm requires, on average, 
less than 760 generations to obtain the convergence. Fig. 5.22 shows a typical evolution 
of layouts from a run with 20 individuals. Fig. 5.23 shows the convergences of the 
fitness and the total beam length of the same run shown in Fig. 5.22. 

 

 
 

Table 5.8. Problem 7: statistics of the results. 
 
 Calculation set of 100 runs 

Population Size 
20 40 60 80 

Maximum fitness 0.267 0.267 0.267 0.267 
Average fitness 0.266 0.266 0.267 0.267 
Minimum fitness 0.262 0.262 0.267 0.262 
SD of fitness 0.001 0.001 0 0. 
Appearance percentage of the best 
solution of the calculation set (%) 

30 56 71 76 

Average required number of 
generations for the solution 
convergence 

649.8 705.5 731.4 754.9 
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Fig. 5.21. Problem 7. (a) The grid. (b) The best solution. 
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Fig. 5.22. Problem 7: a typical evolution of solutions. 
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Fig. 5.22. (continued) 
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Fig. 5.23. Problem 7: a typical development of the fitness and the total beam length. 
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5.8 Problem 8 
 

The eighth problem is also a real floor plan of an existing building. Fig. 5.24a 
shows the architectural floor plan of the building and Fig. 5.24b shows the real 
structural beam-slab layout. The angles of two floor corners are not right angles. As a 
result, they are changed to be right angles. The simplified floor plan is shown in Fig. 
5.25a. This simplified plan is used as the input of the proposed algorithm. In the real 
structural layout in Fig. 5.24b, precast as well as cast-in-place slabs are used. The 
maximum length of the precast slabs is 3 m while the maximum length of the cast-in-
place slabs is 4 m. In addition, the precast slabs are placed parallel to the x direction. To 
be able to compare the layout obtained from this study with the real structural layout, 
the maximum allowable slab length in the x direction is preset to 3 m. In addition, the 
maximum allowable slab length in the y direction is preset to 8 m, which is the 
maximum column spacing. In this problem, a non-uniform grid is used. The maximum 
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Fig. 5.24. Problem 8: (a) The real architectural floor plan. (b) The real structural floor
plan. 
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grid spacing is set to 3 m in order that the slab constraint can be satisfied in both 
directions. Since there will be no beam in the stair opening areas and some other 
opening areas along the floor boundary, the line segments of the grid in these areas are 
removed. The obtained non-uniform grid is shown in Fig. 5.25b. With the outer-
boundary beams placed in advance, this grid results in 199 design variables. For this 
problem, four calculation sets for four different population sizes of 20, 40, 60 and 80 
individuals are analyzed. Each calculation set consists of 100 runs. In the algorithm, the 
openings are treated as part of the floor area, not as openings, and the calculation is 
performed as if there is no opening. However, a slab that fits any opening area exactly 
will not be penalized even if it violates the slab constraint. 
 

Table 5.9 shows the statistics of the obtained results. The best solutions of all 
calculation sets are found to be the same. The best layout from the algorithm is shown 
in Fig. 5.25c. This layout is found to be in good agreement with the real structural 
layout shown in Fig. 5.24b. The SD values in Table 5.9 for all calculation sets are zero. 
For this problem, the algorithm requires, on average, less than 430 generations to obtain 
the convergence. Fig. 5.26 shows a typical evolution of layouts from a run with 20 
individuals. Fig. 5.27 shows the convergences of the fitness and the total beam length of 
the same run shown in Fig. 5.26. 
 
 

 
 
 
 

Table 5.9. Problem 8: statistics of the results. 
 
 Calculation set of 100 runs 

Population Size 
20 40 60 80 

Maximum fitness 0.287 0.287 0.287 0.287 
Average fitness 0.287 0.287 0.287 0.287 
Minimum fitness 0.287 0.287 0.287 0.287 
SD of fitness 0 0 0 0 
Appearance percentage of the best 
solution of the calculation set (%) 

100 100 100 100 

Average required number of 
generations for the solution 
convergence 

428.7 270.7 254.7 263.7 
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Fig. 5.25. Problem 8: (a) The simplified architectural floor plan. (b) The grid. (c) The
best solution. 
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Fig. 5.26. Problem 8: a typical evolution of solutions. 
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Fig. 5.26. (continued) 
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Fig. 5.27. Problem 8: a typical development of the fitness and the total beam length. 
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5.9 Problem 9 
 

The last problem is the same floor plan as that of the fifth problem. The floor 
plan is slightly adjusted from the actual to a rectilinear one in contrast to a simplified 
rectangular floor plan adopted in the fifth problem. In fact, only the angles of the four 
floor corners are changed to be right angles. Fig. 5.28a shows the architectural floor 
plan of the building and Fig. 5.28b shows the real structural beam-slab layout. The 
simplified floor plan is shown in Fig. 5.29a. Similar to the fifth problem, the maximum 
allowable slab length in the x direction is preset to 4 m. In addition, the maximum 
allowable slab length in the y direction is preset to 8 m. In this problem, a non-uniform 
grid is used. The maximum grid spacing is set to 4 m in order that the slab constraint 
can be satisfied in both directions. The obtained non-uniform grid is shown in Fig. 
5.29b. With the outer-boundary beams placed in advance, this grid results in 272 design 
variables. For this problem, four calculation sets for four different population sizes of 
20, 40, 60 and 80 individuals are analyzed. Each calculation set consists of 100 runs.  

 
 

 
(a) 
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Fig. 5.28. Problem 9: (a) The real architectural floor plan. (b) The real structural floor
plan. 
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Table 5.10 shows the statistics of the obtained results. The best solutions of all 
calculation sets are found to be the same. The best layout from the algorithm is shown 
in Fig. 5.29c. This layout is found to be in good agreement with the real structural 
layout shown in Fig. 5.28b. In fact, if the simplified parts are disregarded, the two 
layouts are exactly the same. The SD values in Table 5.10 for all calculation sets are 
very small. The coefficients of variation of all calculation sets are found to be the same 
and equal to 0.01. For this problem, the algorithm requires, on average, less than 1,380 
generations to obtain the convergence. Fig. 5.30 shows a typical evolution of layouts 
from a run with 20 individuals. Fig. 5.31shows the convergences of the fitness and the 
total beam length of the same run shown in Fig. 5.30. 

 
 

 
 

Table 5.10. Problem 9: statistics of the results. 
 
 Calculation set of 100 runs 

Population Size 
20 40 60 80 

Maximum fitness 0.310 0.310 0.310 0.310 
Average fitness 0.307 0.308 0.308 0.307 
Minimum fitness 0.300 0.294 0.298 0.296 
SD of fitness 0.003 0.003 0.003 0.003 
Appearance percentage of the best 
solution of the calculation set (%) 

40 45 42 38 

Average required number of 
generations for the solution 
convergence 

1147.5 1116.0 1222.1 1371.9 
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Fig. 5.29. Problem 9: (a) The simplified architectural floor plan. (b) The grid. (c) The
best solution. 
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Fig. 5.30. Problem 9: a typical evolution of solutions. 
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Fig. 5.30. (continued) 
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Fig. 5.31. Problem 9: a typical development of the fitness and the total beam length. 
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Chapter 6 
 

Conclusions 
 
 
 In this study, a new genetic algorithm for beam-slab layout design of rectangular 
and rectilinear floors is successfully proposed. The input of the proposed algorithm is an 
architectural floor plan with given positions of columns and walls. Beam segments 
attached to line segments of a grid that is superimposed on the floor plan are used as the 
design variables. By using a newly proposed coding scheme for beam-slab layouts, any 
pattern of beam segments can always be interpreted as a geometrically valid beam-slab 
layout. In this study, the beam-slab layout design problem is written as an optimization 
problem by using an objective function that is written based on how well slabs are 
supported by columns. In addition, constraints based on positions of walls, the 
maximum slab dimensions as well as the total floor area are developed. The GA used in 
this study is derived from the simple GA by adding adaptive penalty and elitism 
processes. 
 
 From the example problems, it can be seen that the proposed GA successfully 
finds good layouts of beams and slabs for the given floor plans. The obtained beam-slab 
layouts in the example problems are found to be practical layouts that can really be used 
in the next structural design step. From Problems 1 to 4, the rectangular floor plans with 
the 0.5-m fine grids are used. The results show that the proposed GA can find good 
results even though the grids are fine. Problems 6 to 9 are rectilinear floors. Problem 6 
is tested with the 0.5-m fine grid. The obtained results are also good. The floor plans of 
Problems 7 to 9 are simplified from some real existing floor plans. These Problems are 
solved by using the coarser grids. The obtained results agree quite well with the real 
structural floor plans. Although it may be argued that the beam-slab layouts of all 
example problems can be designed without much difficulty by humans, this study 
intends to demonstrate that this particular design task, which is highly heuristic, can be 
performed acceptably by computers. Finally, it can be concluded that the proposed GA, 
together with the proposed layout coding technique, can efficiently help automate 
design of beam-slab layouts. 
 

In this study, all positions of columns are prescribed as part of the input data. 
The future study of this research may include those problems where the positions of 
columns are unknown and, as a result, become part of the design variables. Moreover, 
different search algorithms such as the particle swarm optimization may be tried in 
order to possibly increase the efficiency of the computation.  
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