Table of Contents

Chapter	Title	Page
	Signature Page	i
	Acknowledgement	ii
	Abstract	iii
	Table of Contents	iv
	List of Figures List of Tables	vi viii
		VIII
1.	Introduction	1
	1.1 General	1
	1.2 Automated structural design of buildings	5
	1.3 Optimization methods	7
	1.4 Statement of problems	8
	1.5 Objectives	10 10
	1.6 Scope of this study	10
2.	Literature Reviews	11
	2.1 Conceptual structural design	11
	2.2 Preliminary structural design	16
3.	Genetic Algorithms	22
	3.1 Objective and fitness functions	22
	3.2 Coding and decoding	23
	3.2.1 Binary coding	23
	3.2.2 Decoding and mapping	24
	3.3 Genetic operators	24
	3.3.1 Reproduction	25
	3.3.2 Crossover	25
	3.3.3 Mutation 3.4 Criteria	27 28
	3.5 Elitism	28
	3.6 Penalty functions	28
	3.7 Fitness scaling	29
	3.8 Adaptive penalty functions	33
4.	Layout Design of Beam-Slab Floors using a GA	36
	4.1 Primary representation of beam-slab layouts	36
	4.2 Geometrically invalid layout	36
	4.3 Proposed coding scheme	37
	4.4 Problem formation	44
	4.4.1 Objective function	44
	4.4.2 Design constraints	45
	4.4.3 Elitism	47
	4.5 Algorithm	49

Chapter Title

5. Examples and results 52 5.1 Problem 1 52 5.2 Problem 2 57 5.3 Problem 3 61 5.4 Problem 4 65 5.5 Problem 5 70 5.6 Problem 6 76 5.7 Problem 7 80 5.8 Problem 8 86 5.9 Problem 9 92 98 6. Conclusion

References	99

v

Page

List of Figures

Figure	Title	Page
1.1	Types of slab. (a) Flat-plate floor. (b) Beam-slab floor. (c) Joist- girder floor. (d) Waffle floor or beam-grid floor	2
1.2	An example of square column grid	3
1.3	An example of beam-slab layout	4
3.1	Linear scaling	30
3.2	Difficulty of the linear scaling	32
3.3	Modified linear scaling	32
3.4	Bilinear scaling	33
3.5	Bilinear scaling for the adaptive penalty scheme	35
4.1	A rectilinear floor. (a) An example of a floor plan. (b) A grid. (c) A	37
	beam-slab layout. (d) The corresponding code	
4.2	Examples of all defined invalid beams	38
4.3	(a) An example of geometrically invalid beam-slab layout of a	39
	rectangular floor and the derived geometrically valid beam-slab layout. (b) Steps of deriving the derived geometrically valid beam- slab layout of a rectangular floor	
4.4	(a) An example of geometrically invalid beam-slab layout of a rectilinear floor and the derived geometrically valid beam-slab layout. (b) Steps of deriving the derived geometrically valid beam-slab layout of a rectilinear floor	40
4.5	(a) The grid. (b) The special individual that contains all possible	41
1.0	beam segments	10
4.6	Example illustrating the concept of the proposed coding scheme	42
4.7 4.8	Crossover and mutation processes	43 45
4.0 4.9	Examples of slabs with different scores	43
4.10	Examples of fitness and constraint calculations The number of beams	47
4.10	Flow chart of the proposed GA	48 51
5.1	Problem 1. (a) The given floor plan. (b) The grid. (c) The best solution	53
5.2	Problem 1: a typical evolution of solution	55
5.3	Problem 1: a typical development of the fitness and the total beam length	56
5.4	Problem 2. (a) The given floor plan. (b) The grid. (c) The best solution	57
5.5	Problem 2: a typical evolution of solution	59
5.6	Problem 2: a typical development of the fitness and the total beam	60
	length	
5.7	Problem 3. (a) The given floor plan. (b) The grid. (c) The best solution	61
5.8	Problem 3: a typical evolution of solution	63
5.9	Problem 3: a typical development of the fitness and the total beam length	64

Figure Title

Page

5.10	Problem 4. (a) The given floor plan. (b) The 0.5-m grid. (c) The 1-m gird. (d) The best solution	65
5.11	Problem 4: a typical evolution of solution	68
5.12	Problem 4: a typical development of the fitness and the total beam length for the 0.5-m grid	69
5.13	Problem 5: (a) The real architectural floor plan. (b) The real structural floor plan	70
5.14	Problem 5: (a) The simplified architectural floor plan. (b) The grid. (b) The best solution	72
5.15	Problem 5: a typical evolution of solution	73
5.16	Problem 5: a typical development of the fitness and the total beam length	75
5.17	Problem 6. (a) The given floor plan. (b) The grid. (c) The best solution	77
5.18	Problem 6: a typical evolution of solutions	78
5.19	Problem 6: a typical development of the fitness and the total beam length	79
5.20	Problem 7. (a) The real architectural floor plan. (b) The real structural floor plan	80
5.21	Problem 7. (a) The grid. (c) The best solution	82
5.22	Problem 7: a typical evolution of solutions	83
5.23	Problem 7: a typical development of the fitness and the total beam length	85
5.24	Problem 8: (a) The real architectural floor plan. (b) The real structural floor plan	86
5.25	Problem 8: (a) The simplified architectural floor plan. (b) The grid. (b) The best solution	88
5.26	Problem 8: a typical evolution of solutions	89
5.27	Problem 8: a typical development of the fitness and the total beam length	91
5.28	Problem 9: (a) The real architectural floor plan. (b) The real structural floor plan	92
5.29	Problem 9: (a) The simplified architectural floor plan. (b) The grid. (b) The best solution	94
5.30	Problem 9: a typical evolution of solutions	95
5.31	Problem 9: a typical development of the fitness and the total beam length	97

List of Tables

Table	Title	Page
1.1	Tasks in structural design of buildings	6
1.2	Automated structural design of buildings	6
1.3	Roles of engineers and computers in structural design of buildings	9
5.1	Problem 1: statistics of the results	54
5.2	Problem 2: statistics of the results	58
5.3	Problem 3: statistics of the results	62
5.4	Problem 4: statistics of the results for the 0.5-m grid	66
5.5	Problem 4: statistics of the results for the 1-m grid	66
5.6	Problem 5: statistics of the results	71
5.7	Problem 6: statistics of the results	76
5.8	Problem 7: statistics of the results	81
5.9	Problem 8: statistics of the results	87
5.10	Problem 9: statistics of the results	93