บทที่ 4

ผลการทดลอง

4.1 การวิเคราะห์คุณลักษณะของตัวเร่งปฏิกิริยา

4.1.1 การวิเคราะห์ความแรงของเบส (Basic Strength)

จากการวิเคราะห์หาความแรงของเบสด้วยวิธี Hammett indicator method กับอินดิเคเตอร์ชนิด ต่าง ๆ ดังตารางที่ 5 พบว่าตัวเร่งปฏิกิริยา สามารถเปลี่ยนสีของอินดิเคเตอร์ทั้งหมด โดยเฉพาะเมื่อ ทดสอบกับฟีนอล์ฟทาลีน ซึ่งมีค่า pKa สูงสุด ตัวเร่งปฏิกิริยาที่เตรียมได้สามารถเปลี่ยนสีของฟีนอล์ฟ ทาลีนได้ ดังนั้นตัวเร่งปฏิกิริยา KI/SiO₂AI₂O₃ นั้นมีค่า pKa มากกว่า 9.7 ซึ่งแสดงว่าตัวเร่งปฏิกิริยาที่ เตรียมได้เป็นเบสที่แรง

ลิมลิเลเตอร์	ค่า pKa	ช่วง pH	สีของ10%	สีของ15%	สีของ20%
			$KI/SiO_2AI_2O_3$	$KI/SiO_2AI_2O_3$	$KI/SiO_2AI_2O_3$
เมทิลเรด	51	19 60	198009	198009	19800.9
(แดง – เหลือง)	5.1	4.0 - 0.0	61161	6 M WEIN	PN84.IN
นิวทรอลเรด	68	6.8 – 8.0	เหลือง	เหลือง	เหลือง
(แดง – เหลือง)	0.0				
บรอมไทมอลบลู	7.0	6.0 – 7.6	ฟ้าน้ำเงิน	น้ำเงิน	น้ำเงิน
(เหลือง – น้ำเงิน)	1.0				
ไทมอลบลู	89	80-96	ฟ้าน้ำเงิน	ข้าเงิน	ข้าเงิน
(เหลือง – น้ำเงิน)	0.0	0.0 - 9.0	N 16 16 16	16116	16116
ฟีนอล์ฟทาลีน	9.7	83-10	สาเพอ่อาเ	ମ । । ୩୬।	<u></u> ମ୍ମ । ୩୬
(ไม่มีสี –ชมพู)	5.1	0.0 - 10	101 NU LU LU K	л м И 10 11	п ел М И

ตารางที่ 5 ผลการวิเคราะห์หาความแรงของเบสด้วยอินดิเคเตอร์ชนิดต่าง ๆ

4.1.2 การวิเคราะห์ลักษณะกายภาพโดยการดูดซับด้วยแก๊สไนโตรเจน

จากการวิเคราะห์การดูดซับทางกายภาพด้วยไนโตรเจนของตัวเร่งปฏิกิริยา KI/SiO₂AI₂O₃ พบว่า พื้นที่ผิว ปริมาตรรูพรุน และขนาดรูพรุน ไม่สัมพันธ์โดยตรงกับการเพิ่มปริมาณสารประกอบโพแทสเซียม ไอโอไดด์บนตัวรองรับ ดังตารางที่ 6 โดยตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ จะมีพื้นที่ผิวมากที่สุดคือ 552.4 m²/g และใกล้เคียงกับพื้นที่ผิวของตัวรองรับ SiO₂AI₂O₃ในขณะที่ตัวเร่งปฏิกิริยา KI/SiO₂AI₂O₃ ที่ ความเข้มข้นอื่น พื้นที่ผิวลดลงอย่างเด่นซัด เนื่องจากการเตรียมตัวเร่งปฏิกิริยาเป็นการเตรียมตัวเร่ง ปฏิกิริยาแบบวิธีอิมเพรกเนซัน ซึ่งไม่สามารถควบคุมการกระจายของโลหะได้ ทำให้โลหะนั้นมีการรวมตัว กันส่งผลให้พื้นที่ผิวลดลง

เมื่อพิจารณาปริมาตรรูพรุนของตัวเร่งปฏิกิริยาพบว่าเมื่อเพิ่มปริมาณโพแทสเซียมไอโอไดด์มาก ขึ้น ปริมาตรรูพรุนของตัวเร่งปฏิกิริยาจะมีค่าลดลง ซึ่งเกิดจากการเข้าเกาะตามรูพรุนของตัวรองรับซิลิกา อะลูมินา

สำหรับขนาดรูพรุนนั้นค่าที่คำนวณจากแบบจำลอง BJH นั้นเป็นค่าเฉลี่ย แต่ในตัวเร่งปฏิกิริยา โลหะนั้นได้เข้าไปปิดรูพรุน ทำให้ขนาดรูพรุนมีความแตกต่างกันมากส่งผลต่อค่าเฉลี่ยที่ได้ไม่ถูกต้อง

	พื้นที่ผิว (S _{BET})	ปริมาตรรูพรุน	เส้นผ่านศูนย์กลางเฉลี่ย
N.1724 DIU2.D.1	(m²/g)	(V _P) (cm ³ /g)	(d _{BJH})(nm)
SiO ₂ Al ₂ O ₃	559.00	0.7500	5.30
10% KI/SiO ₂ Al ₂ O ₃	147.20	0.3710	65.32
15% KI/SiO ₂ Al ₂ O ₃	552.40	0.2639	95.00
20% KI/SiO ₂ Al ₂ O ₃	335.70	0.1680	12.16

ตารางที่ 6 ผลการวิเคราะห์การดูดซับทางกายภาพด้วยในโตรเจน

4.1.3 การวิเคราะห์การเลี้ยวเบนรังสีเอ็กซ์ (X-ray Diffraction)

จากการวิเคราะห์การเลี้ยวเบนรังสีเอ็กซ์ของตัวรองรับซิลิกาอะลูมินา ดังภาพที่ 17 พบว่าไม่ ปรากฏพีคการเลี้ยวเบนของรังสีเอ็กซ์ แสดงว่าตัวรองรับซิลิกาอะลูมินามีความเป็นอสัณฐานส่งผลทำให้ ไม่พบพีคการเลี้ยวเบนของรังสีเอ็กซ์

ภาพที่ 17 การเลี้ยวเบนของรังสีเอ็กซ์ของตัวรองรับซิลิกาอะลูมินา

จากการวิเคราะห์การเลี้ยวเบนรังสีเอ็กซ์ของตัวเร่งปฏิกิริยา 10% KI / SiO₂Al₂O₃ ดังภาพที่ 18 พบว่าไม่ปรากฏพีคการเลี้ยวเบนของรังสีเอ็กซ์ แสดงว่าตัวเร่งปฏิกิริยา 10% KI/SiO₂Al₂O₃ มีความเป็น อสัณฐานเนื่องจากปริมาณของ KI ที่บรรจุบนตัวรองรับมีปริมาณน้อยทำให้เกิดปฏิกิริยาเป็นโพแทสเซียม ออกไซด์ได้ยาก ส่งผลทำให้ไม่พบพีคการเลี้ยวเบนของรังสีเอ็กซ์

ภาพที่ 18 การเลี้ยวเบนของรังสีเอ็กซ์ของตัวเร่งปฏิกิริยา 10% KI/SiO₂Al₂O₃

สำหรับการวิเคราะห์การเลี้ยวเบนรังสีเอ็กซ์ของตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ ดังภาพที่ 19 พบว่าไม่ปรากฏพีคเกิดขึ้น แสดงว่าตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ มีความเป็นอลัณฐาน เนื่องจาก ปริมาณของ KI ที่บรรจุบนตัวรองรับมีปริมาณน้อย ทำให้เกิดปฏิกิริยาเป็นออกไซด์ได้ยาก ส่งผลทำให้ไม่ พบพีคการเลี้ยวเบนของรังสีเอ็กซ์

ภาพที่ 19 การเลี้ยวเบนของรังสีเอ็กซ์ของตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃

สำหรับการวิเคราะห์การเลี้ยวเบนรังสีเอ็กซ์ของตัวเร่งปฏิกิริยา 20% KI/SiO₂AI₂O₃ ดังภาพที่ 20 ผลการวิเคราะห์มีพีคเกิดขึ้น แสดงว่าตัวเร่งปฏิกิริยา 20% KI/SiO₂AI₂O₃ มีความเป็นผลึก และเมื่อนำไป เทียบกับพีคมาตรฐาน พบว่าเป็นพีคของสารประกอบโพแทสเซียมไอโอไดด์เท่านั้น ไม่พบพีคของ สารประกอบโพแทสเซียมออกไซด์ จึงอธิบายได้ว่าในขั้นตอนการเตรียมตัวเร่งปฏิกิริยา ด้วยการแคลไซน์ที่ อุณหภูมิ 600 องศาเซลเซียสนั้น ไม่เกิดการสลายตัว (decomposition) ของสารประกอบโพแทสเซียมไอ โอไดด์ จึงทำให้ผลการวิเคราะห์การเลี้ยวเบนรังสีเอ็กซ์พบเฉพาะพีคของสารประกอบโพแทสเซียมไอโอ ไดด์เท่านั้น

ภาพที่ 20 แสดงการเลี้ยวเบนของรังสีเอ็กซ์ของตัวเร่งปฏิกิริยา 20% KI/SiO₂Al₂O₃

4.1.4 การวิเคราะห์พื้นที่ผิวด้วยกล้องจุลทรรศน์อิเลกตรอนแบบส่องกราด (SEM)

จากการวิเคราะห์พื้นผิวด้วยกล้องจุลทรรศน์อิเลกตรอนแบบส่องกราดของตัวเร่งปฏิกิริยา 10% KI/SiO₂AI₂O₃ กำลังขยาย 100 เท่า แสดงดังภาพที่ 21 (a) พบว่าผลึกของตัวเร่งปฏิกิริยามีทั้งขนาดเล็ก และใหญ่ปะปนกัน โดยผลึกของตัวเร่งปฏิกิริยาแต่ละขนาดมีปริมาณใกล้เคียงกัน และลักษณะของผลึก ของตัวเร่งปฏิกิริยา 10% KI/SiO₂AI₂O₃ มีลักษณะทรงกลม ลักษณะพื้นผิวของตัวเร่งปฏิกิริยาที่ กำลังขยาย 10,000 เท่า แสดงดังภาพที่ 21 (b) พบว่าพื้นผิวของตัวเร่งปฏิกิริยาประกอบด้วยอนุภาคของซิ ลิกาอะลูมินาเกาะรวมกันและพบรูพรุนระหว่างอนุภาค และพบอนุภาคของโพแทสเซียมขนาดต่าง ๆ กระจายบนพื้นผิวของซิลิกาอะลูมินา

ภาพที่ 21 ภาพถ่ายตัวเร่งปฏิกิริยา 10% KI/SiO₂AI₂O₃ ด้วยกล้องจุลทรรศน์อิเลกตรอนแบบ ส่องกราด (a) กำลังขยาย 100 เท่า (b) กำลังขยาย 10,000 เท่า

สำหรับการวิเคราะห์พื้นที่ผิวด้วยกล้องจุลทรรศน์อิเลกตรอนแบบส่องกราด ของตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ กำลังขยาย 100 เท่า แสดงดังภาพที่ 22 (a) พบว่าเมื่อเพิ่มปริมาณโพแทสเซียมไอโอ ไดด์บนตัวรองรับซิลิกาอะลูมินาแล้ว อนุภาคของตัวเร่งปฏิกิริยาจะมีทั้งขนาดเล็ก และขนาดใหญ่ ลักษณะของอนุภาคของตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ จะมีลักษณะทรงกลมเช่นเดียวกับอนุภาค ของตัวเร่งปฏิกิริยา 10% KI/SiO₂AI₂O₃ อย่างไรก็ตามอนุภาคขนาดใหญ่นั้นเกิดจากการรวมตัวกันของ อนุภาคขนาดเล็กในขั้นตอนการเตรียมตัวเร่งปฏิกิริยา เมื่อพิจารณาลักษณะพื้นผิวของตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ ดังภาพที่ 22 (b) พบว่าลักษณะพื้นผิวมีความพรุนสูง เนื่องจากการรวมตัวของ อนุภาค มีการรวมกันอย่างหลวมส่งผลทำให้มีรูพรุนเกิดขึ้นมากซึ่งการทดลองนี้สอดคล้องกับข้อมูล คุณสมบัติทางกายภาพที่แสดงพื้นที่ผิวสูง อันเนื่องมาจากปริมาณรูพรุนบนพื้นผิวของตัวเร่งปฏิกิริยามาก

ภาพที่ 22 ภาพถ่ายตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ ด้วยกล้องจุลทรรศน์อิเลกตรอนแบบ ส่องกราด (a) กำลังขยาย 100 เท่า (b) กำลังขยาย 10,000 เท่า

สำหรับการวิเคราะห์พื้นผิวด้วยกล้องจุลทรรศน์อิเลกตรอนแบบสองกราดของตัวเร่งปฏิกิริยา 20% KI/SiO₂AI₂O₃ กำลังขยาย 100 เท่า แสดงดังภาพที่ 23 (a) พบว่าเมื่อเพิ่มปริมาณโพแทสเซียมไอโอไดด์บน ตัวรองรับซิลิกาอะลูมินาเป็น 20% แล้ว ผลึกของตัวเร่งปฏิกิริยาจะมีขนาดใหญ่ขึ้น และลักษณะของผลึก ของตัวเร่งปฏิกิริยา 20% KI/SiO₂AI₂O₃ ส่วนใหญ่จะมีลักษณะทรงกลมเช่นเดียวกับผลึกของตัวเร่งปฏิกิริยา 10% KI/SiO₂AI₂O₃ และ15% KI/SiO₂AI₂O₃ เมื่อพิจารณาลักษณะพื้นผิวของตัวเร่งปฏิกิริยา

20% KI/SiO₂Al₂O₃ ดังภาพที่ 23 (b) ปริมาณของโพแทสเซียมไอโอไดด์ที่สูงทำให้อนุภาคของซิลิกาอะลูมิ นา มีการเกาะรวมตัวกันน้อย มีรูพรุนขนาดใหญ่ ซึ่งทำให้พื้นที่ผิวของตัวเร่งปฏิกิริยาที่วัดได้มีค่าลดลงดัง ตารางที่ 6

ภาพที่ 23 ภาพถ่ายตัวเร่งปฏิกิริยา 20% KI/SiO₂Al₂O₃ ด้วยกล้องจุลทรรศน์อิเลกตรอนแบบ ส่องกราด (a) กำลังขยาย 100 เท่า (b) กำลังขยาย 10,000 เท่า

จากการวิเคราะห์ตัวเร่งปฏิกิริยาด้วยเทคนิคทางเคมี และทางกายภาพโดยการทดสอบความแรง ของเบสด้วยวิธี Hammett indicator เทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ การดูดซับของก๊าซไนโตรเจน และ กล้องจุลทรรศน์อิเลกตรอนแบบส่องกราด พบว่าตัวเร่งปฏิกิริยา15% KI/SiO₂AI₂O₃ มีความเหมาะสมใน การเร่งปฏิกิริยาทรานส์เอสทอริฟิเคชันมากที่สุด เนื่องจากมีค่าความแรงของเบสที่มากถึง 9.7 และมีพื้นที่ ผิวในการทำปฏิกิริยามากที่สุดเมื่อเทียบกับตัวเร่งปฏิกิริยา 10% KI/SiO₂AI₂O₃ และ 20% KI/SiO₂AI₂O₃

4.2 การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา KI/SiO_2Al_2O_3

สำหรับการวิจัยได้ทำการศึกษาถึงผลกระทบของปัจจัยต่าง ๆ ที่มีผลต่อปริมาณไบโอดีเซลจาก น้ำมันถั่วเหลือง ด้วยตัวเร่งปฏิกิริยาวิวิธพันธุ์ของโพแทสเซียมไอโอไดด์บนตัวรองรับซิลิกาอะลูมินา ซึ่ง ปัจจัยที่นำมาศึกษาเปรียบเทียบประกอบด้วย อุณหภูมิในการทำปฏิกิริยา ปริมาณตัวเร่งปฏิกิริยา และ เวลาในการทำปฏิกิริยา โดยมีการแสดงผลการวิจัยในรูปแนวโน้มของค่าการเปลี่ยน ไปเป็นผลิตภัณฑ์

4.2.1 ผลของอุณหภูมิต่อปฏิกิริยาทรานส์เอสเทอริฟิเคชัน

จากการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ ปริมาณ ตัวเร่งปฏิกิริยา 5% โดยน้ำหนักของน้ำมันถั่วเหลือง ที่อุณหภูมิ 60 65 และ 70 องศาเซลเซียส เป็นเวลา 8 10 และ 12 ชั่วโมง แสดงดังภาพที่ 24 พบว่าที่อุณหภูมิ 70 องศาเซลเซียส เป็นอุณหภูมิที่เหมาะสมในการ ทำปฏิกิริยาทรานส์เอสเทอริฟิเคชัน และผลของอุณหภูมิในการทำปฏิกิริยาเพิ่มขึ้น ส่งผลให้เปอร์เซ็นต์การ เปลี่ยนไปเป็นผลิตภัณฑ์เพิ่มขึ้น เนื่องจากปฏิกิริยาทรานส์เอสเทอริฟิเคชันเป็นปฏิกิริยาดูดความร้อน เมื่อ ทำการเพิ่มอุณหภูมิส่งผลทำให้ปฏิกิริยาดำเนินไปเป็นผลิตภัณฑ์สูงขึ้น

ภาพที่ 24 ผลการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ ปริมาณตัวเร่งปฏิกิริยา 5% โดยน้ำหนักน้ำมันถั่วเหลือง

การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ ปริมาณตัวเร่ง ปฏิกิริยา 10% โดยน้ำหนักน้ำมันถั่วเหลือง ที่อุณหภูมิ 60 65 และ 70 องศาเซลเซียส เป็นเวลา 8 10 และ 12 ชั่วโมง แสดงดังภาพที่ 25 พบว่าที่อุณหภูมิ 70 องศาเซลเซียส เป็นอุณหภูมิที่แสดงเปอร์เซ็นต์การ เปลี่ยนไปเป็นผลิตภัณฑ์สูงที่สุด และผลของอุณหภูมิที่มีต่อเปอร์เซ็นต์การเปลี่ยนไปเป็นผลิตภัณฑ์พบว่า เมื่ออุณหภูมิเพิ่มขึ้นจาก 60 องศาเซลเซียส เป็น 65 องศาเซลเซียส เปอร์เซ็นต์การเปลี่ยนแปลงไปเป็น ผลิตภัณฑ์เพิ่มขึ้นจาก 60 องศาเซลเซียส เป็น 65 องศาเซลเซียส เปอร์เซ็นต์การเปลี่ยนแปลงไปเป็น ผลิตภัณฑ์เพิ่มขึ้นเพียงเล็กน้อย แต่อย่างไรก็ตามที่อุณหภูมิ 70 องศาเซลเซียส เปอร์เซ็นต์การ เปลี่ยนแปลงไปเป็นผลิตภัณฑ์ลดลง เนื่องจากเมทานอลเกิดการระเหยทำให้สารตั้งต้นในการทำปฏิกิริยา ลดลง

ภาพที่ 25 ผลการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ ปริมาณตัวเร่งปฏิกิริยา 10% โดยน้ำหนักน้ำมันถั่วเหลือง

การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂AI₂O₃ ปริมาณตัวเร่ง ปฏิกิริยา 15% โดยน้ำหนักของน้ำมันถั่วเหลือง ที่อุณหภูมิ 60 65 และ 70 องศาเซลเซียส เป็นเวลา 8 10 และ 12 ชั่วโมง แสดงดังภาพที่ 26 พบว่าที่อุณหภูมิ 70 องศาเซลเซียส เป็นอุณหภูมิที่เหมาะสมในการทำ ปฏิกิริยาทรานส์เอสเทอริฟิเคชัน และเมื่อศึกษาผลของอุณหภูมิในการทำปฏิกิริยา พบว่าเมื่ออุณหภูมิ สูงขึ้นเปอร์เซ็นต์การเปลี่ยนแปลงไปเป็นผลิตภัณฑ์เพิ่มขึ้นเพียงเล็กน้อย เนื่องจากปริมาณตัวเร่งปฏิกิริยา ที่ใช้ 15% โดยน้ำหนักของน้ำมันถั่วเหลืองซึ่งเป็นปริมาณที่มากทำให้ปฏิกิริยาเกิดอย่างรวดเร็วและเข้าสู่ สมดุล

ภาพที่ 26 ผลการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ ปริมาณตัวเร่งปฏิกิริยา 15% โดยน้ำหนักน้ำมันถั่วเหลือง

4.2.2 ผลของปริมาณตัวเร่งปฏิกิริยาต่อปฏิกิริยาทรานส์เอสเทอริฟิเคชัน

การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ อุณหภูมิ 60 องศาเซลเซียส ปริมาณตัวเร่งปฏิกิริยาต่อน้ำหนักน้ำมันถั่วเหลืองเท่ากับ 5% 10% และ 15% เป็นเวลา 8 10 และ 12 ชั่วโมง แสดงดังภาพที่ 27 พบว่าปริมาณตัวเร่งปฏิกิริยาต่อน้ำหนักของน้ำมันถั่วเหลืองเท่ากับ 15% เป็นปริมาณตัวเร่งปฏิกิริยาที่เหมาะสมในการทำปฏิกิริยาทรานส์เอสเทอริฟิเคชัน เนื่องจากเมื่อเพิ่ม ปริมาณตัวเร่งปฏิกิริยา พบว่าปฏิกิริยาเกิดได้เร็วขึ้นส่งผลทำให้เปอร์เซ็นต์การเปลี่ยนแปลงไปเป็น ผลิตภัณฑ์เพิ่มขึ้น

ภาพที่ 27 ผลการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ อุณหภูมิ 60 องศาเซลเซียส

การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ อุณหภูมิ 65 องศาเซลเซียส ปริมาณตัวเร่งปฏิกิริยาต่อน้ำหนักน้ำมันถั่วเหลืองเท่ากับ 5% 10% และ 15% เป็นเวลา 8 10 และ 12 ชั่วโมง แสดงดังภาพที่ 28 พบว่าปริมาณตัวเร่งปฏิกิริยาต่อน้ำหนักของน้ำมันถั่วเหลืองที่ 15% เป็นปริมาณตัวเร่งปฏิกิริยาที่เหมาะสมในการทำปฏิกิริยาทรานส์เอสเทอริฟิเคชัน จากกราฟจะพบว่าที่ ภาวะนี้มีแนวโน้มการดำเนินไปของปฏิกิริยาเช่นเดียวกับที่อุณหภูมิ 60 องศาเซลเซียส อันเนื่องมาจาก ปริมาณตัวเร่งปฏิกิริยาเพิ่มขึ้นทำให้ปฏิกิริยาเกิดเร็วขึ้น เปอร์เซ็นต์การเปลี่ยนแปลงไปเป็นผลิตภัณฑ์จึง เพิ่มขึ้น

ภาพที่ 28 ผลการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ อุณหภูมิ 65 องศาเซลเซียส

การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ อุณหภูมิ 70 องศาเซลเซียส ปริมาณตัวเร่งปฏิกิริยาต่อน้ำหนักน้ำมันถั่วเหลืองเท่ากับ 5% 10% และ 15% เป็นเวลา 8 10 และ 12 ชั่วโมง แสดงดังภาพที่ 29 พบว่าปริมาณตัวเร่งปฏิกิริยาต่อน้ำหนักน้ำมันถั่วเหลืองที่ 15% เป็นปริมาณตัวเร่งปฏิกิริยาที่เหมาะสมในการทำปฏิกิริยาทรานส์เอสเทอริฟิเคชัน เนื่องจากได้ปริมาณการ เปลี่ยนเป็นไบโอดีเซลสูงสุด ซึ่งผลการทดลองนี้สอดคล้องกับการศึกษาที่อุณหภูมิ 60 และ 65 องศา เซลเซียส (ภาพที่ 27 และ 28)

ภาพที่ 29 ผลการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ อุณหภูมิ 70 องศาเซลเซียส

4.2.3 ผลของเวลาในการทำปฏิกิริยาทรานส์เอสเทอริฟิเคชัน

การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ ปริมาณตัวเร่ง ปฏิกิริยา 5% โดยน้ำหนักของน้ำมันถั่วเหลือง อุณหภูมิ 60 65 และ 70 องศาเซลเซียส เป็นเวลา 8 10 และ 12 ชั่วโมง แสดงดังภาพที่ 30 พบว่าที่ระยะเวลา 10 ชั่วโมงเป็นระยะเวลาที่เหมาะสมในการทำ ปฏิกิริยาทรานส์เอสเทอริฟิเคชัน เนื่องจากเมื่อเพิ่มระยะเวลามากกว่า 10 ชั่วโมง พบว่าปฏิกิริยาเกิดได้ ลดลง ส่งผลทำให้เปอร์เซ็นต์การเปลี่ยนแปลงไปเป็นผลิตภัณฑ์ลดลง

ภาพที่ 30 ผลการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ ปริมาณตัวเร่งปฏิกิริยา 5% ต่อน้ำหนักของน้ำมันถั่วเหลือง การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ ปริมาณตัวเร่ง ปฏิกิริยา 10% โดยน้ำหนักของน้ำมันถั่วเหลือง อุณหภูมิ 60 65 และ 70 องศาเซลเซียส เป็นเวลา 8 10 และ 12 ชั่วโมง แสดงดังภาพที่ 31 พบว่าที่ระยะเวลา 10 ชั่วโมงเป็นระยะเวลาที่เหมาะสมในการทำ ปฏิกิริยาทรานส์เอสเทอริฟิเคชัน เพราะเปอร์เซ็นต์การเปลี่ยนไปเป็นผลิตภัณฑ์โดยเฉลี่ยที่ระยะเวลา 10 ชั่วโมง ที่อุณหภูมิ 60 65 และ 70 องศาเซลเซียส มีค่าใกล้เคียงกัน ไม่แตกต่างกันมากซึ่งต่างจากที่ ระยะเวลา 12 ชั่วโมง พบว่าปฏิกิริยาที่เกิดขึ้นในแต่ละอุณหภูมิมีแนวโน้มเพิ่มขึ้นแบบก้าวกระโดด ทำให้ เปอร์เซ็นต์การเปลี่ยนแปลงไปเป็นผลิตภัณฑ์เพิ่มขึ้นโดยมีค่าที่ต่างกันมากระหว่างที่อุณหภูมิ 60 และ 70 องศาเซลเซียส

า เพท 3 เ ผสการศกษาบฏกรยาทร เนลเขลเทยรพเศษนตรยตรเรงบฏกรยา 15% Ki/SiO₂Ai ปริมาณตัวเร่งปฏิกิริยา 10% ต่อน้ำหนักของน้ำมันถั่วเหลือง

การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ ปริมาณตัวเร่ง ปฏิกิริยา 15% โดยน้ำหนักของน้ำมันถั่วเหลือง อุณหภูมิ 60 65 และ 70 องศาเซลเซียส เป็นเวลา 8 10 และ 12 ชั่วโมง แสดงดังภาพที่ 32 พบว่าที่ระยะเวลา 10 ชั่วโมงเป็นระยะเวลาที่เหมาะสมในการทำ ปฏิกิริยาทรานส์เอสเทอริฟิเคชัน เนื่องจากเมื่อเพิ่มระยะเวลา พบว่าปฏิกิริยาเกิดได้ลดลง ส่งผลทำให้ เปอร์เซ็นต์การเปลี่ยนแปลงไปเป็นผลิตภัณฑ์ลดลง

ภาพที่ 32 ผลการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 15% KI/SiO₂Al₂O₃ ปริมาณตัวเร่งปฏิกิริยา 15% ต่อน้ำหนักของน้ำมันถั่วเหลือง

4.2.4 การศึกษาปริมาณโพแทสเซียมไอโอไดด์บนตัวเร่งปฏิกิริยาต่อปฏิกิริยาทรานส์เอสเทอริฟิเคชัน การศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันด้วยตัวเร่งปฏิกิริยา 10% 15% และ 20%
KI/SiO₂AI₂O₃ อุณหภูมิ 70 องศาเซลเซียส ปริมาณตัวเร่งปฏิกิริยาต่อน้ำหนักน้ำมันถั่วเหลืองเท่ากับ 15% เป็นเวลา 10 ชั่วโมง พบว่าปริมาณตัวเร่งปฏิกิริยาต่อน้ำหนักน้ำมันถั่วเหลืองที่ 15% เป็นปริมาณตัวเร่ง ปฏิกิริยาที่เหมาะสมในการทำปฏิกิริยาทรานส์เอสเทอริฟิเคชัน แสดงดังภาพที่ 33 เนื่องจากได้ปริมาณ การเปลี่ยนเป็นไบโอดีเซลสูงสุด ซึ่งผลการทดลองนี้สอดคล้องกับการศึกษาที่กล่าวมาแล้วข้างต้น

ภาพที่ 33 ผลการศึกษาปฏิกิริยาทรานส์เอสเทอริฟิเคชันเมื่อใช้ปริมาณโพแทสเซียมไอโอไดด์ที่ความ เข้มข้น 10% 15% และ 20%

จากผลการทดลองทั้งหมด ภาวะที่เหมาะสมในการผลิตไบโอดีเซลจากน้ำมันถั่วเหลืองโดยใช้ ตัวเร่งปฏิกิริยา KI/SiO₂AI₂O₃ ได้แก่ การใช้ปริมาณโพแทสเซียมไอโอไดด์ 15% โดยน้ำหนักปริมาณตัวเร่ง ปฏิกิริยา 15% ต่อน้ำหนักของน้ำมันถั่วเหลือง อุณหภูมิ 70 องศาเซลเซียส เป็นเวลา 10 ชั่วโมง และได้ค่า การเปลี่ยนไปเป็นไบโอดีเซลเท่ากับ 96 %

4.3 การทดสอบสมบัติของไบโอดีเซล

น้ำมันไบโอดีเซลจากปฏิกิริยาทรานส์เอสเทอริฟิเคชันที่สภาวะเหมาะสมที่ 70 องศาเซลเซียส ปริมาณโพแทสเซียมไอโอไดด์บนตัวเร่งปฏิกิริยา 15% ปริมาณตัวเร่งปฏิกิริยา 15% ต่อน้ำหนักของน้ำมัน ถั่วเหลือง เป็นเวลา 10 ชั่วโมง พบว่าไบโอดีเซลที่ผลิตจากตัวเร่งปฏิกิริยาแบบวิวิธพันธุ์ของสารประกอบ โพแทสเซียมไอโอไดด์บนตัวรองรับซิลิกาอลูมินานั้นมีสมบัติเป็นไปตามค่ามาตรฐานของน้ำมันไบโอดีเซล ของกรมธุรกิจพลังงานดังผลการทดสอบสมบัติของไบโอดีเซลในตารางที่ 7

สมบัติของเสื้อเหเอิง	มาตรฐ	ผลการวิเคราะห์		
811000010000000	วิธีทดสอบ	ดีเซล	ไบโอดีเซล	ไบโอดีเซลที่ได้
Kinematic viscosity		1.3-4.1	4.0-6.0	5.97
@ 40 °C, cSt	A3110 D443			
Flash point, °C	ASTM D93	60-80	100-170	168
Cloud Point, °C	ASTM D2500	-15-5	-3-12	12
Pour Point, °C	ASTM D97	-35-15	-15-10	-4
Copper corrosion	ASTM D130	1	1	1

ตารางที่ 7 สมบัติของไบโอดีเซลที่ได้จากปฏิกิริยาทรานส์เอสเทอริฟิเคชัน