

รหัสงานวิจัย:	RSA 16/2545
ชื่องานวิจัย :	พฤติกรรมบวนตัวเชิงรัศมีของพอลิเมอร์หลอมเหลวในเครื่องค้าปั๊รร์โอมิเตอร์
ผู้วิจัยหลัก:	รองศาสตราจารย์ ดร. ณรงค์ฤทธิ์ สมบัติสมภพ
ทีมผู้วิจัย:	narongrit.som@kmutt.ac.th
ระยะเวลาดำเนินงาน :	ตั้งแต่ 1 พฤษภาคม 2544 ถึง 31 พฤษภาคม 2547

วัตถุประสงค์ :

- เพื่อออกแบบและพัฒนาเทคนิคการอัดรีดร่วมแบบบวน (parallel co-extrusion) ในเครื่องค้าปั๊รร์โอมิเตอร์ สำหรับการวัดการบวนตัวเชิงรัศมี (radial extrudate swell profiles) และความเร็วในการไหล (velocity profiles) ของพอลิเมอร์หลอมเหลวขณะไหล
- เพื่อศึกษาพฤติกรรมการบวนตัวและความเร็วในการไหลเชิงรัศมีของพอลิเมอร์หลอมเหลวขณะอัดรีดในสภาวะต่าง ๆ เช่น ชนิดของพอลิเมอร์ ขนาดและรูปร่างของ die อุณหภูมิ อัตราเฉือน และสนามแม่เหล็กไฟฟ้า
- เพื่อสร้างและเชื่อมโยงความสัมพันธ์ของพฤติกรรมการไหล รูปแบบการไหล และพฤติกรรมการบวนตัวเชิงรัศมี ของพอลิเมอร์หลอมเหลวในเครื่องค้าปั๊รร์โอมิเตอร์

วิธีการทดลอง ผลการทดลองและอภิปัลยาผลการทดลอง

งานวิจัยในโครงการพัฒนาภัณฑ์นี้ เริ่มต้นจากการศึกษาอิทธิพลของการออกแบบหัวขึ้นรูปให้มีขนาดและรูปร่างต่าง ๆ เช่น หัวขึ้นรูปหน้าตัดกลมและหน้าตัดสี่เหลี่ยมผืนผ้า ระบบ die 2 ช่องการไหลทั้งที่หน้าตัดเหมือนกัน (เรียกว่า dual die) และหน้าตัดรูปร่างต่างกัน (เรียกว่า mixed cross-section die) และทำการวัดปริมาณการบวนตัวและสมบัติของพอลิเมอร์หลอมเหลว จากนั้น ได้ดำเนินการศึกษาเพื่อหาตัวจัดปริมาณการบวนตัวเชิงรัศมี (radial die swell profiles) และรูปแบบความเร็วการไหลเชิงรัศมี (velocity profiles) ของพอลิสไตรีนในเครื่องทดสอบ capillary rheometer โดยได้มีการพัฒนาระบบการวัดแบบใหม่ที่เรียกว่า การอัดรีดร่วมแบบบวน (Parallel Co-extrusion Technique; PCT) ซึ่งเทคนิคนี้สามารถตรวจสอบปริมาณการบวนตัวและความเร็วในการไหลของพอลิเมอร์หลอมเหลวได้ตลอดพื้นที่หน้าตัดของหัวขึ้นรูป (die) ผลการวิจัย radial die swell profiles ที่เกิดขึ้นในโครงการพัฒนาภัณฑ์นี้ ได้ถูกอธิบายโดยใช้ผลการวัดค่า radial velocity profiles ที่ได้ทำการวัดพร้อม ๆ กันภายใต้สภาวะการทดสอบต่าง ๆ เช่น การปรับเปลี่ยนอัตราเฉือน ขนาดและอุณหภูมิของ die ขนาดของห้องหลอมเหลว (barrel) และเป็นครั้งแรกที่ได้มีการใช้หัวขึ้นรูป (die) ที่มีความเป็นสนามแม่เหล็กไฟฟ้าในระบบการอัดรีดพอลิเมอร์ เป็นต้น ผลการวิจัยโดยสรุปพบว่า

- ระบบ parallel co-extrusion technique (PCT) สามารถใช้วัดปริมาณการบวนตัวและความเร็วในการไหลแบบแยกแจงเชิงรัศมีในเวลาเดียวกัน (simultaneously radial die swell and velocity profiles) ได้อย่างถูกต้องแม่นยำ และให้ค่าความถูกต้องของผลการวัดได้สูงกว่า 93%

- ระยะทางจากทางออกของ die ถึงจุดสมดุลย์ (equilibrium swelling) ของพอลิเมอร์หลอมเหลวลดลงเมื่อเพิ่มปริมาณอัตราเฉือน
- ปริมาณการบวมตัวของพอลิเมอร์หลอมเหลวลดลงพื้นที่หน้าตัดตามแนวรัศมีของ die ไม่เท่ากันโดยพอลิเมอร์บริเวณตรงกลาง die จะมีปริมาณการบวมตัวที่สูงกว่าในตัวแทนนั่นเอง ทั้งนี้เนื่องมาจากการเปลี่ยนแปลงความเร็วในการไหลอย่างทันทีของพอลิเมอร์หลอมเหลวในตัวแทนตรงกลางของ die ทำให้เกิดเป็นการขยายตัวอย่างรวดเร็วของสายอัตโนมัติพอลิเมอร์ (rapid extrudate expansion)
- การเปลี่ยนแปลงปริมาณการบวมตัวของพอลิเมอร์หลอมเหลวโดยรวม (overall die swell) ขึ้นโดยตรงกับอัตราอัตโนมัติที่ใช้ ในขณะที่ ปริมาณการบวมตัวของพอลิเมอร์หลอมเหลวเชิงรัศมีโดยเฉลี่ยในตัวแทนตรงกลาง die (radial die swell at the centre of the die) ให้ผลในทิศทางตรงข้าม แต่สามารถอธิบายอย่างชัดเจนและอธิบายได้เชิงปริมาณ โดยการใช้ผลการวัดการเปลี่ยนแปลงรูปแบบความเร็วในการไหล (velocity profiles) ของพอลิเมอร์หลอมเหลวโดยการเปลี่ยนแปลง radial die swell profiles และ velocity profiles สามารถอธิบายด้วย magnetic torque ที่เกิดขึ้นกับระบบพอลิเมอร์หลอมเหลวขณะไหลตัว นอกจากนี้ ยังพบว่า อิทธิพลของสนามแม่เหล็กไฟฟ้าที่มีต่อปริมาณการบวมตัวของพอลิเมอร์หลอมเหลวนี้ ขึ้นอยู่กับขนาดของห้องหลอมเหลว (barrel) ที่ใช้ โดยพบว่าที่ขนาดของห้องหลอมเหลว (barrel) ที่ 30 มม. ให้ผลของสนามแม่เหล็กไฟฟ้าสูงสุด (ศึกษาขนาดของห้องหลอมเหลว (barrel) ระหว่าง 25 – 40 มม.)
- ผลงานวิจัยในโครงการทุนพัฒนาอัตโนมัตินี้ มีความสำคัญอย่างยิ่งกับกระบวนการผลิตประเภท co-extrusion ตัวอย่าง เช่น หากทราบพฤติกรรมการบวมตัวของพอลิเมอร์เชิงรัศมี (radial extrudate swell profiles) เราสามารถควบคุมตัวแทนและปริมาณของพอลิเมอร์ชั้นต่างๆ ในชั้นงานที่ผลิตจาก co-extrusion process ได้อย่างถูกต้องและแม่นยำ
- จุดเด่นของผลงานวิจัยในโครงการทุนพัฒนาอัตโนมัตินี้ มีด้วยกัน 2 ข้อที่แตกต่างจากงานวิจัยอื่นๆ คือ ข้อแรก เป็นการพัฒนาเทคนิคที่สามารถทำการวัดค่า die swell และ melt velocity ได้พร้อมๆ กันในเชิงรัศมีตลอดพื้นที่หน้าตัดหัวขั้นรูป (radial direction) ในเครื่อง capillary rheometer โดยเทคนิคใหม่ที่พัฒนาขึ้นนี้มีชื่อเรียกว่า Parallel Co-extrusion Technique (PCT) และข้อที่สอง การนำสนามแม่เหล็กไฟฟ้าเข้ามาร่วมใช้ในหัวขั้นรูป (electro-magnetic die) เป็นครั้งแรกในการวัดในเครื่อง capillary rheometer

บทสรุปและข้อเสนอแนะและงานวิจัยในอนาคต

งานวิจัยนี้มีข้อสรุปที่ชัดเจนว่า ระบบ parallel co-extrusion technique (PCT) สามารถใช้วัดปริมาณการบวมตัวและความเร็วในการไหลแบบแยกแจงเชิงรัศมีในเวลาเดียวกันได้อย่างถูกต้องแม่นยำและให้ค่าความถูกต้องของผลการวัดได้สูงกว่า 93% ระยะทางจากทางออกของ die ถึงจุดสมดุลย์ (equilibrium swelling) ของพอลิเมอร์หลอมเหลวลดลงเมื่อเพิ่มปริมาณอัตราเฉือน ปริมาณการบวม

ตัวของพอลิเมอร์หลอมเหลวตลอดพื้นที่หน้าตัดตามแนวรัศมีของ die ไม่เท่ากัน โดยพอลิเมอร์บริเวณตรงกลาง die จะมีปริมาณการบวมตัวที่สูงกว่าในตัวแทน่งอื่น ๆ และสามารถอธิบายโดยการใช้ผลการวัดการเปลี่ยนแปลงรูปแบบความเร็วในการหลี (velocity profiles) ของพอลิเมอร์หลอมเหลว และพบว่าปริมาณการบวมตัวของพอลิเมอร์หลอมเหลวเพิ่มสูงขึ้นมากกว่า 25% เมื่อใช้หัวขึ้นรูป die ที่มีค่าความหนาแน่นของสนามแม่เหล็กไฟฟ้าถึงจุดหนึ่ง จากนั้น ปริมาณการบวมตัวเริ่มลดลง โดยสามารถอธิบายด้วย magnetic torque ที่เกิดขึ้น นอกจากนี้ ยังพบว่า อิทธิพลของสนามแม่เหล็กไฟฟ้าที่มีต่อปริมาณการบวมตัวของพอลิเมอร์หลอมเหลวนี้ ขึ้นอยู่กับขนาดของห้องหลอมเหลว (barrel) ที่ใช้ โดยพบว่าที่ขนาดของห้องหลอมเหลว (barrel) ที่ 30 มม. ให้ผลของสนามแม่เหล็กไฟฟ้าสูงสุด

งานในอนาคต คือการใช้และพัฒนาเทคนิค Parallel Co-extrusion Technique (PCT) ซึ่งเป็นเทคนิคใหม่ ในการวัดค่า die swell และ melt velocity ในเครื่องมือผลิตผลิตภัณฑ์พอลิเมอร์ประเภท single screw extruder ซึ่งนับเป็นครั้งแรกที่ในวงการการผลิตและขึ้นรูปพอลิเมอร์ในการใช้หัวขึ้นรูปที่มีความเป็นสนามแม่เหล็กระหว่างทำการอัดรีดในกระบวนการอัดรีดแบบเกลียวหนอน และเป็นการศึกษาอิทธิพลของสนามแม่เหล็กที่มีต่อพอลิเมอร์ขณะหลอมเหลวและขณะหลี นอกจากนี้ ควรมีการใช้หัวขึ้นรูป (die) ที่มีความเป็นสนามแม่เหล็กไฟฟ้าที่สามารถปรับค่าความหนาแน่นสนามแม่เหล็ก (magnetic flux density) และทิศทางของสนามแม่เหล็ก (magnetic flux lines) ได้ และวัดค่า normal stress ที่เกิดขึ้นภายใน die ที่มีความเป็นสนามแม่เหล็กไฟฟ้า เพื่อใช้อธิบายผลการวัดค่า die swell และ melt velocity ซึ่งจากการค้นคว้าผลงานวิจัยในอดีต ยังไม่พบหลักฐานการปรากฏการวัดค่า normal stress ภายใต้สนามแม่เหล็กไฟฟ้านี้

Abstract

182289

Project Code:

RSA 16/2545

Project Title:

Radial Extrudate Swell Profiles of Flowing Polymer Melts in Capillary Rheometers

Main Researcher:

Assoc. Prof. Dr Narongrit Sombatsompop

Email address:

narongrit.som@kmutt.ac.th

Project Period:

1st November 2001 – 31st May 2004

Objectives:

1. To design and develop a parallel co-extrusion technique for simultaneous measurements of radial extrudate swell and velocity profiles of polymer melts flowing in a capillary Rheometer.
2. To investigate the effects of test conditions such as polymer type, die configurations and designs, die temperature, shear rate and electromagnetic flux density on radial extrudate swell and velocity profiles of polymer melts flowing in the capillary Rheometer.
3. To relate the flow behaviour, radial extrudate swell and velocity profiles of polymer melts in the capillary rheometer

Methodology, Results and Discussion

This research project determined the radial extrudate swell and velocity profiles of polystyrene melt flowing in a capillary Rheometer using a novel technique, so called “parallel co-extrusion technique (PCT)”. The PCT technique allowed simultaneous measurements of extrudate swell and melt velocity across the die diameter. The test variables included shear rate, die designs and configurations, die temperature and use of electro-magnetized die.

Paper# 1: *Journal of Applied Polymer Science*, 87(10): 1713-1722 (2003)

Two capillary dies with different design configurations were used, one being single flow channel and the other being dual flow channel. It was found in this work that the power law index (n value) was the main parameter to determine the output rate ratio and the extrudate swell between the large and small holes for dual flow channel die, the greater the n value the lower the output rate ratio and thus decreased extrudate swell ratio. The differences in the extrudate swell ratio and flow properties for PS and LLDPE melts resulted from the output rate ratio and the molecular chain structure respectively. The extrudate swell was observed to increase with

wall shear rate. The discrepancies in the extrudate swell results from single and dual dies for a given shear rate were caused by differences in the flow patterns in the barrel and die, and the change in the melt velocities flowing from the barrel and in the die to the die exit.

Paper#2: *Polymers for Advanced Technologies*, 14 (10): 699–710 (2003)

A dual channel die with mixed circular/slit flow channels in a constant shear rate rheometer were used. In single channel die, the extrudate swell of both PS and LLDPE melts in circular flow channel die was greater than that in slit flow channel, whereas, in dual channel die the slit channel exhibited a higher extrudate swell ratio, the results being explained by revealing the flow patterns of the melt in the barrel and die of the rheometer. The dimensionless size of the vortex flows near the entrance, and the extent of dis-entanglement of molecular chains on entering the die were the important factors for the differences in the extrudate swell ratios of the melts at the die exit influenced by the die designs used.

Paper#3: *Polymers for Advanced Technologies* (accepted)

The magnetic flux density, barrel diameter, extrusion rate and die temperature were varied to examine the extrudate swell behaviour and flow properties of a polystyrene melt. The results suggest that the maximum swelling of the polystyrene melt with application of the electro-magnetic field could be enhanced up to 2.6 times whereas that without the electro-magnetic field was 1.9 times. The barrel diameter of 30mm was found to be a critical value in case that the die swell ratio and flow properties of the PS melt were significantly affected by the magnetic flux density. The die swell at wall shear rates less than 11.2s^{-1} was caused by the magnetic torque, whereas at higher wall shear rates it was dependent on the shearing force. For a given magnetic flux density, the maximum increase in the die swell ratio as a result of the magnetic torque was calculated to be approximately 20%. Increasing the die temperature from 180 to 200°C reduced the overall die swell ratio and suppressed the effect of the magnetic flux density.

Paper#4: *Polymer Engineering and Science*, (accepted)

A new experimental technique to simultaneously measure radial die swell and velocity profiles of polystyrene melt flowing in the capillary die of a constant shear rate Rheometer was. The proposed technique was based on parallel co-extrusion of colored melt-layers into uncolored melt-stream from the barrel into and out of the capillary die. The radial velocity profiles of the melt were measured by introducing relatively light and small particles into the melt layers, and the times taken for the particles to travel for a given distance were measured. The proposed

experimental technique was found to be both very simple and useful for the simultaneous and accurate measurement of radial die swell and velocity profiles of highly viscous fluids in an extrusion process. The radial die swell and velocity profiles for PS melt determined experimentally in this work were accurate to 92.2% and 90.8%, respectively. The overall die swell ratio of the melt ranged from 1.25 to 1.38. The overall die swell ratio was found to increase with increasing piston speed (shear rate). The radial extrudate swell profiles could not be reasoned by the shear rate change, but were closely linked with the development of the velocity profiles of the melt in the die. The die swell ratio was high at the center (~1.9) and low (~0.9) near the die wall. The die swell ratio at the center of the die reduced slightly as the piston speed was increased.

Paper#5: *Polymer Engineering and Science*, (submitted)

An electro-magnetized capillary die was used to monitor the changes in the radial die swell profiles of the melt. The magnetic flux density applied to the capillary die was varied in a parallel direction to the melt flow, and all tests were performed under the critical condition at which sharkskin and melt fracture did not occur in the normal die. The experimental results suggest that the overall die swell for all shear rates increased with increasing magnetic flux density to a maximum value and then decreased at higher densities. The maximum swelling peak of the melt appeared to shift to higher magnetic flux density, and the value of the maximum swell decreased with increasing wall shear rate and die temperature. The effect of magnetic torque on the die swell ratio of PS melt was more pronounced when extruding the melt at low shear rates and low die temperatures. For radial die swell and velocity profiles, the radial swell ratio for a given shear rate decreased with increasing r/R position. There were two regions where the changes in the die swell ratio across the die diameter were obvious with changing magnetic torque and shear rate, one around the duct centre and the other around r/R of 0.65–0.85. In summary, the changes in the overall die swell ratio of PS melt in a capillary die were influenced more by the swelling of the melt around the centre of the die.

Conclusion and suggestions to further work

The extrudate swell was observed to increase with wall shear rate. The discrepancies in the extrudate swell results from single and dual dies for a given shear rate were caused by differences in the flow patterns in the barrel and die, the dimensionless size of the vortex and the change in the melt velocities flowing from the barrel and in the die to the die exit. The extrudate swell and velocity profiles of PS melt were affected by the magnetic field to the die. The barrel

diameter of 30mm was found to be a critical value in case that the die swell ratio and flow properties of the PS melt were significantly affected by the magnetic flux density.

The Parallel Co-extrusion Technique (PCT) was found to be both very simple and useful for the simultaneous and accurate measurement of radial die swell and velocity profiles of highly viscous fluids in an extrusion process. The radial die swell and velocity profiles for PS melt determined experimentally in this work were accurate to 92.2% and 90.8%, respectively. The overall die swell for all shear rates increased with increasing magnetic flux density to a maximum value and then decreased at higher densities. The effect of magnetic torque on the die swell ratio of PS melt was more pronounced when extruding the melt at low shear rates and low die temperatures. The changes in the overall die swell ratio of PS melt in a capillary die were influenced more by the swelling of the melt around the centre of the die.

In the next step, the Parallel Co-extrusion Technique (PCT) should be used for measurements of radial extrudate swell and velocity profiles of flowing polymer melts in real processes like single and twin screw extruders, both with and without the application of the electromagnetic fields. The normal stress differences would be of interest under the applied magnetic field to the die used. (This is to perform in Advanced Research Scholar if granted).

Keywords: Capillary rheometer, Die/barrel designs, Polymer melts, Radial extrudate swell, Velocity profiles.