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Abstract

Now, the simulation of extrusion process is studied widely in order to increase
products and improve quality so the problems of wire coating are considered generously. The
annular tube-tooling extrusion was set up by a model that is called Navier-Stokes equation
addition with a rheological model in the differential form based on single-mode exponential
Phan-Thien/Tanner (PTT) constitutive equation in a two-dimensional cylindrical coordinate
system in order to predict the contraction point of the polymer melt beyond the die. The
solutions of this problem are solved by a numerical method which is called semi-implicit
Taylor-Galerkin pressure-correction finite element scheme. The investigation was focused on
incompressible creeping flow with long relaxation time in term of Weissenberg number (We)
up to 200. The isothermal case was considered with surface tension effect on free surface in



extrudate flow and no slip at die wall. The Stream line Upwind Petrov-Galerkin (SUPG) has
been proposed to stabilize solution and the structure of mesh after die exit was adjusted after
predicted both top and bottom free surfaces so the location of contraction point is around one
unit length that is close to experimental estimation.

Keywords: wire coating, PTT model, extrusion, tube-tooling,
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The Contraction Point for Phan-Thien/Tanner Model of
- Tube-Tooling Wire-Coating Flow
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ABSTRACT

The simulation of extrusion process is studied widely in order to both increase products
and improve quality, with broad application in wire coating. ‘The annular tube-tooling
extrusion was set up by a model that is termed as Navier-Stokes equation in addition to a
rheological model of differential form based on single-mode exponential Phan-
Thien/Tanner constitutive equation in a two-dimensional cylindrical coordinate system for
predicting the contraction point of the polymer melt beyond the die. Numerical solutions
are sought through semi-implicit Taylor-Galerkin pressure-correction finite element
scheme. The investigation was focused on incompressible creeping flow with long
relaxation time in terms of Weissenberg numbers up to 200. The isothermal case was
considered with surface tension effect on free surface in extrudate flow and no slip at die
wall. The Stream Line Upwind Petrov-Galerkin has been proposed to stabilize solution.
The structure of mesh after die exit. was adjusted following prediction of both top and
bottom free surfaces so as to keep the location of contraction point around one unit length
which is close to experimental resflts.

Keywords: wire coating, free surface, tube-tooling, extrudate swell, surface tension, finite element
method

1. Introductio»n

Simulation of wire coating problem is a way to deal with real problems especially for
difficulties that might be encountered experimentally in extrusion processes of polymeric
solutions. The technique can have vast applications in the industry of wires, cables, fiber
optics and numerous types and sizes of containers that are widely used in houses, factories
and vehicles around the world.

In general, wire coating process modeling consists of two particular dies: pressure
. tooling within which the wire coating process begins coating the die cast, and tube tooling
i in which wire is coated by polymer melt outside the die. For the second die, the location
E‘:. where the polymer melt flows to contact the wire at the beginning of coating is called the
“:,‘ contraction point. The factors influential to the contraction point are pressure, velocity,
i viscosity, surface tension of polymer melt, and wire speed. These are considered under the
L;_following assumptions: incompressible, laminar, isothermal flow and no gravity. In

L
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addition, surface tension has been considered in extrudate swell with no slip condition at
die wall. - '

Computational studies for wire coating flows are abound in literature with industry-
related concerns. For two dimensional axisymmetric incompressible fluid employing finite
element method (FEM) under isothermal condition, Caswell and Tanner{1] have designed
wire coating die for low speed non-Newtonian fluid through power law mode!. Han and
Rao[2] studied wire coating extrusion in theory and experiment for pressure-tooling die
using the materials of low density polyethylene (LDPE) and high density polyethylene
(HDPE) via applying the same model. In 1986, Mitsoulis[3] simulated the creeping flow of
Newtonian and Power law fluid for wire coating problem in axisymmetric system. Binding
et al.[4] studied high speed wire coating process for inelastic constitutive model. They
varied viscosity models and commented on the limitation of modeling approach. Then,
Mutlu et al.[5] employed tube-tooling die for coating problem. In their work, viscoelastic
coating flows were simulated and solved by FEM technique for the PTT model due to the
past work of Ngamaramaramvaranggul and Webster [6,7] made us know that PTT model
can be fit well for viscoelastic fluid better than other models because it can be predict the
properties of high elastics for comparison curve shown in Tanner’s book [§]. Stability was
attained by mean of coupled and decoupled schemes for single mode. Recently, Matallah
et al.[9] considered with tube-tooling wire coating flow for HDPE applying FEM
technique for the multi-mode Phan-Thien/Tanner (PTT) constitutive model. In another
research, Ngamaramvaranggul and Webster[7] have focused on wire coating problem for
LDPE. They publish a paper of two dimensional annular pressure-tooling wire coating
flow using FEM to solve an isothermal and free surface flow for single-mode PTT model.

In the present article, tube-tooling wire coating flow has been studied under the
influence of surface tension to adjust free surface shape according to the study of

‘Anastasiadis{10] about effect of surface tension on polymer melts so in 1998 he used the

sessile drop method to predict a free surface curve. Later on a numerical method how to
solve his work has been shown by Neumann and Spelt [11]. An exponential PTT
constitutive and momentum equations have been solved by semi-implicit Taylor-Galerkin
scheme under treatment of streamline upwind Petrov-Galerkin (SUPG), which was used by
Hughes and Brooks [12] for its strong consistent stabilization nature.

2. Governing Equations

For incompressible isothermal fluid with no gravity, the continuity equation is obtained
from the conservation of mass in terms of velocity gradient. The Navier-Stokes equations
from the conservation of momentum contain viscous term, convective acceleration and

‘pressure gradient. Both non-dimensional equations are expressed in the forms:

V.U=0 0
Re(U/Bt) =V -T —~ReU -VU ~Vp @)

Here, U is fluid velocity vector, T is stress tensor, p is isofx‘opic fluid pressure, V' is
differential operator and Re is non-dimensional Reynolds number

Re =228 UR
Ho

In this problem, p is fluid density, U is characteristic velocity in term of wire speed, R is
characteristic length in term of die radius and y, is the zero-shear viscosity which



combines a polymeric solute viscosity g, and a solvent w, as g, =y, + u, . Further
information regarding non-dimensionalization is available in Ngamaramaramvaranggul
and Webster [6].

The equation of viscoelastic fluid for exponentlal Phan-Thien/Tanner (EPTT)
model [7] has considered below.

Wet, =2, D -7+ Wel{t -VU +(WVU)' T-U -V +&£D-Ve+(D-7)! ]} 3)

. . . . AU
Where a nondimensional Weissenberg number is We = —— |

a derivative of extra stress tensor with respect to time is 7,

the deformation rate tensor D is defined as D =1 (VU +VU",

a constant value &,

v
the extra stress tensor 7 isthendefinedby fr+A4,7=24D,

) . A
the exponential Phan-Thien/Tanner functionis f = exp{i—l— trace(r)} .
: H

v
where: 7 =00 +U -Vt —7-VU ~(r-VU)!
and I=7+2u,D

3. Numerical Discretization and Problem Specification

<

Numerical method is used to solve differential forms of equations (1), (2) and (3) by

transformlng the continuous fofm of differential equations to discrete set of linear
equations as following scheme.

3.1 Fractional step

In this paper, the fractional step is used to solve non-linear partial differential
equations (2) and (3) with semi-implicit time step Taylor expansion termed as Taylor-
Galerkin algorithm[7]. The discretization stages are as follows,

Sfage la:
This stage is related to updating both stress and non-solenoidal velocity fields. The half
time step of velocities and stresses can be derived from the equations below:
2Re
At

u - U")=[V-Qu,D+7)-ReU-VU-Vp]" +V- ,uz(D"*% -D")

2We
At

(t™ =" )={2u,D - fr—WelU -Vt -VU -1~ (VU -1)']}"

This stage is used for solving half time step of velocity and stress by a method of Jacobi
iterative solver. Solutions of this stage are the input for stage 1b as below.

Stage 1b:
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The transient stage of intermediate velocities and a full time step of stresses are updated as
in the following equations:

%E(U' —U")=[V-Qu,D=Vp]"+[V:7 —_ReU-VU]”*% +V-pu,(D"-D")
! .

We

. 1
- (e —2" )= (2u,D~ fr—We[U Ve -VU -z — (VU -7)'|}""?
t

Having obtained the results from previous stage, the intermediate velocities and a full time
step of stresses are calculated by the same method of stage 1a; namely, Jacobi iteration.
When stresses have converged at this stage the velocities yet have not; therefore, velocity
quantities at this stage are applied to compute pressure in stage 2 and then fuli time step of
velocities at the final stage.

Stage 2:

Full time step of pressure is related to velocity according to the equation:

Al 2 1 *
2 pp™ - p)y=V.U
2Re (p £

Pressure is computed through Cholesky decomposition after intermediate velocity values

from stage 1b are computed. Hence, the full time step pressure is conducted to correct the
full time step velocity in next stage.

Stage 3:
' 2Re
At

(U"+'1 2 U') LB _V(pn+] / pn)

-~

Solve full time step velocities by Jacobi iterative method.

After time expansion by finite difference method, the weight residual of Galerkin method
has been used to discretise space in order to set up the equations of stages 1-3 as the system

of algebraic linear equations therefore the complex non-linear differential equations
become to simple linear equations.

3.2 Surface tension

In 1998, Anastasiadis[10] has studied the effect of surface tension on two types of
polymer melts, linear low-density polyethylene (LLDPE) and high-density polyethylene
(HDPE) by applying the sessile drop method to find a free surface curve as shown in figure
1. Further details have been provided by Neumann and Spelt {11].

Figure 1. Schema of the sessile drop
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The relationship between coordinates x and z in dimensionless form is given by the
Bashforth-Adams in 1882 [13]. The free surface shape of a pendant/sessile drop as shown
in figure 1 can be constructed based on the following equations: :

dg _ 2 Z_sin¢

ds B @

dg =Ccos¢ (5)

dz .

E—smqﬁ (6)
X(0)=2(0)=¢(0)=0

Bog |8

Yiv

where the dimensionless variables, X, Z, and S are defined as X = xx/g ,
¢ is angle between the tangent and the profile at point (x,z)

(x,z) is a coordinate of point in drop profile
S is distance from the drop apex to coordinate (x,z)
a is radius of curvature at the drop apex

g is gravitational acceleration constant (m/s*)(LT?)
p 1s polymer density (kg.m'3)(ML°3)
7, 1s the interfacial tension between the liquid and its vapor

Anastasiadis[10] has calculated «all parameters and used them to predict the shape of
pendant/sessile drop for polymer melt at temperatures up to 300°C. Free surface shape has
been calculated by varying B values at B ={ -2.429, -1.5539, -0.989, -0.779, -0.680, -0.649,
-0.570, -0.440} and an optimum B value for HDPE of -0.680 has been used to modify
streamline path for free surface location, which has already been explained by
Ngamaramvaranggul and Webster {14.15]. After the calculation of free surface path
without surface tension, the approximation of first position is a bit higher so we have
obtained condition of surface tension to adjust the free surface path. The coordinate (x,z)
for free surface shape of sessile drop that appearing in equations (4)-(6) has been solved by
predictor-corrector method of Runge-Kutta up to four order [16]. The approximation of
second free surface curve for coordinate (x,z) is a bit lower than the first curve at the
beginning and grew up to near the position of first curve for a while then dropped
immediately so the second position has been determined from the beginning position until
the highest position and cut the last part when it dropped. The average path from beth
locations has been calculated to be proper position.

3.3 Flowchart

The easy way to depict the schema for solving a numerical finite element method
through 3 fractional steps explained above can be outlined schematically in figure 2. The
basis algorithm shows the simulation of isothermal flow for single-mode with couple
scheme as following explanation.
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First, generate finite mesh for input file that is used for setting up shape functions and
matrices in order to formulate the system of linear equations then solve the equations by

fractional steps at the same time of applying the stream line upwind Petrov-Galerkin to
maintain the stability and accuracy.

Afler solution is computed, calculate free surface location and adding surface tension for
die swell. Adjusting mesh according to new location and modify solution that is belong to
new position. Check the final solution whether it is going to converge. Repeat the
beginning step if the solution is too far from the acceptable result until it'is less than the

small amount that we set to 107, At the end of the process, save the converge solution in
file and analyse the result.

| Begin time loop

Seap shape funcions |

« Test convergence =
& check time step__>

-and matri

Adjust mesh |— @

Figure 2. Flowchart for wire coating flow program




4. Problem Specification

A schema of {ube-todling die is shown in figure 3 and the considered domain is displayed
as simple finite element mesh in figure 4. For this problem, the fine mesh has been
generated with 4,714 elements; 9,755 nodes and 61,015 degrees of freedom (DOF).

Figure 3: Schema of tube-tooling die

fif

Figure 4. Simple Mesh pattern

s

’ <
Schema of boundary domain is shown in figure 5. At inlet boundary (AA"),
U, =7, =7g9=0,v,=f(), 7, =h() and 7,, =g(r). Atdie walls (ABCD, A'B’
CD)), there isno slip so u, =v, :>0 . For top and bottom free surfaces (D' E¥, DE), p=0

5=0 (Q =0 v=0 "
vx _ f(’-) e R T e
7,=0

T, =g

T, =4(r) Ja

7,=0 309

085, 0 D

— p =0

= v=1

Wire  @%7 E%~0%=lp =0
a0 ey =0

Figure 5. Schema of boundary domain

5. Results and Discussion

As shown in Figure 6, the velocity vector is in annular flow at the inlet and plug flow at the
outlet. The color contours are exhibited for Weissenberg number equals 200 (We=200) in
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Figure 7a-g with the highest value of radial velocity at the die exit (Figure 7a) due to swell
but no considerable change in the velocity value. Axial velocity almost vanishes at the inlet

“whilst it is maximized in section C'D'DC as indicated in Figure 7b according to

conservation of flow rate the entrance has larger area and smaller velocity when compared
against section C'D'DC .

Development of the annular flow at the inlet to the plug flow at the outlet is shown
in Figure 6 with the maximum set at about 1.62 units. Pressure varies linearly in a
descending manner from maximum to minimum with a gradient equivalent to seventeen
units as shown in Figure 7c¢ at die exit. The flow is deformed when passing a corner
Jeading to a high shear rate as displayed in Figure 7d at every corner when direction
changes especially in the corner of smaller sectionC'D'DC. It has been observed that
extension rate of Figure 7(e) at small part of die geometry is a big value because the flow
has been squeezed.
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Figure 6. Velocity vector



(a) Radial velocity u,. (b) Axial velocity v,

Figure 7.‘ Color contour of We=200 for (a) radial velocity u, . (b) axial velocity v,

.

R T

(e) Shear rate (f) Extension rate

Figure 7. Color contour of We=200 for (c) pressure P, (d) shear stress 7,
(e) shear rate, (f) extension rate

At various Weissenberg numbers, line contours for top surfaces are compared and

nearly the same trend is detected for every We; therefore, every figure is displayed for the
largest We of 200 in Figures 8(a)-(d).
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Figure 8a displays the value of shear rate at top surface, which rises sharply at point
C’ and the die exit to 241.84 units because of sharp corner and swell. The extension rate
is high at-die exit and oscillated beyond die as shown in Figure 8(b). The flow is deformed
at corner C’ and the die exit causing shear stress to increase to 2.29 units as can be séen in
Figure 8c. Normal stress of figure 8d indicates a sharp rise of 3.71 at point C".
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(a) Shear rate at top surface

1.00E+00

8.00E-01

6.00E-01

—We=50

e We=100
We=150

- -~ We=200

4.00EQ1

2.00E01

—sWWe=50

—We=100
- We=150

e We=200

0.00E+00

200601

-1 45 a 05 1

z
(b) Extension rate at top surface



FODEAGT yrmrmrmmin o i s o imsiemss o OR—— — -
8.00E+00
6.006+00
4.00E+00 We=50
~ ~——We=100
- . We=150
2.00E+00 5 i ] We=200
5%
i A . e+ e e e et e
~ 0.00E+00 - ; -y ey —
-+ 15 1 ’& s 'ﬂo 05 1 15
200400 l
-4 BOE40) A e e e SRR
z
(c) Shear stress T, at top surface
P 0] 2} [P ———— £ — Al —_— W -
0.00E+00 . T ¢ .
- 15 1 05 I 05 1 15
g
5.00E+01
—We=50
~ ——We=100
& -1.00E+02 i We=15)
H e We=200
1508402
-
-2.00E+02 >
-
250E+G2

2z
(d) Normal stress 7%, at top surface

Figure 8. Line contour for (a) shear rate, (b) extension rate,
(c) shear stress 7,., (d) normal stress 7. at top surface

~ Line contours for the bottom surfaces reflect similar behavior to their counterparts
for the top surface so the explanation holds for Figures 9(a)-(d). Shear rate of Figure 9(a)
rise suddenly at every corner especially at the die exit at the value around 200 units
consistent with the swell after the die. Figure 9(b) shows extension rate with a high peak

value of 0.6 at the die exit which corroborates Figure 7(e) with an oscillation range from 0
to 0.5.

In Figure 9(c), shear stress Trz demonstrates dual peaks at points z= -1 and z=0.
The curve is oscillated slightly before z = -1 and beyond die. Normal stress 7zz trend is

displayed in Figure 9(d) and the figure bears close resemblance to that of the shear rate
with the value only one third of the shear rate.
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- The flow after die exit is swelled at top and bottom free surface as shown in Figure
10 and it draws down to coat the wire after die as is observable in Figure 7.

0%

025

"0.24

~N 023

022

021

0.2

a

01 02 03 04 05 06 07 08 09 ¢+ 11 12 13 t4 5 16 17 18 1S 2

(a) Top surface




14

018

: ) -
017

816

015 \

e web0
wel00
« 0.1 B
013 o wel50
\\\ —we200
0.12

an

o1

003 AN

003

0 01 02 03 04 05 06 07 08 08 1 11 12 13 14 15 6 17 18 19 2
z

(b) Bottom surface

Figure 10. Swell for (a) top surface and (b) bottom surface

6. Conclusion

In case of large Weissenberg number (We) that presents the high elastic property, the
curves from many figures are very oscillatory and it concerns to the ability of program
computing. In the current work, the contraction point has been calculated for high We via
imposition of surface tension effect on the whole process of computing. After the solution
has converged, the contraction point shifts to the point (0.09, 0.98), which indicates close
agreement to the value disclosed b§ the cable factory. Consideration of surface tension

effect is useful for the die swell, which draws down whilst surface tension is absent for die
swell problem along horizontal case. ‘
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