TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
ABBREVIATIONS	xvi
CHAPTER I INTRODUCTION	
1.1 Bioinformatics	7-
1.2 The challenge in protein function prediction	1
1.3 Contributions	2
1.3 Thesis outlines	4
CHAPTER II BACKGROUND	
2.1 Biological background	6
2.1.1 Human Leukocyte Antigen Gene	6
2.1.2 Human Immunodeficiency Virus type 1	8
2.1.3 Protein crystallization	8
2.2 Sequence classification	9
2.2.1 Feature based classification	
2.2.2 Sequence distance based classification	11
2.2.3 Model based classification	12 e
2.2.4 Support vector machine	12

2.3 Feature selection methods	14
2.3.1 Filter techniques	16
2.3.2 Wrapper techniques	17
2.3.3 Embedded techniques	17
2.4 Support Vector Machine	18
3.2.1 Notation	18
3.2.2 Functional and geometric margins	19
3.2.3 The optimal margin classifier	19
3.2.4 Kernel function	20
2.5 Scoring Card Method	21
2.5.1 Creation of dataset	22
2.5.2 Constructing an initial scoring matrix	22
2.5.3 Deriving the propensity score of each	22
amino acid	
2.5.4 Optimizing a scoring matrix	23
2.5.5 Predicting protein crystallization	24
2.6 Logistic Model Tree	25
2.6.1 The model	25
2.6.2 Building logistic model tree	27
2.6.3 Splitting criterion	29
2.6.4 Stopping criterion	30
2.6.5 Pruning the tree	31

CHAPTER III PREDICTION OF HUMAN LEUKOCYTE ANTIGEN GENE USING *k*-NEAREST NEIGHBOR CLASSIFIER BASED ON SPECTRUM KERNEL

	3.1 Introduction	32
	3.2 Dataset	33
	3.3 Sequence classification method based on <i>k</i> -NN classifier	35
	and spectrum kernel	
	3.4 Results and discussion	36
	3.4.1 Description of the experiments	36
	3.4.2 Results and discussion of the combination method	-38
	3.4.3 Comparison of the HLA major class classification	41
	with other classification methods	
	3.4.4 Comparison of the HLA-I/HLA-II subclasses	42
	classification with other classification methods	
	3.4.5 Sequence classification on human genes	43
	3.4.6 Discussion	44
3.5 Conclusion 46		
СНА	PTER IV HIV-1 CRF01_AE CORECEPTOR USAGE PREDICTION	2.
	IG KERNEL METHODS BASED LOGISTIC MODEL TREES	
	4.1 Introduction	48
	4.2 Dataset	50
4.3 Computational methods for HIV-1 CRF01_AE coreceptor 51		
usage prediction		

4.3.1 Implementation using kernel methods based LMT	51
4.4 Description of the experiments	53
4.5 Results and discussion	54
4.5.1 Results and discussion of kernel methods	54
4.5.2 Comparison of the kernel methods based LMT	56
to other genotypic predictors and computational	
classification methods	
4.5.3 Discussion	59
4.6 Conclusion	60
CHAPTER V PREDICTING PROTEIN CRYSTALLIZATION USING A	
SIMPLE SCORING CARD METHOD	
5.1 Introduction	62
5.2 Dataset	65
5.3 Results and discussion	66
5.3.1 Prediction performance of the scoring card method based	66
on collocated dipeptides	
5.3.2 Performance of SVM using amino acid and collocated	69
dipeptide compositions	
5.3.3 Comparison of the scoring card method with existing	71
classifiers	
5.3.4 Analyzing dipeptide compositions	72
5.3.5 Application of propensity score of amino acids for	75 e
the crystallization of protein	

5.4 Conclusion	
CHAPTER VI CONCLUSION	
REFERENCES	
APPENDIX	
APPENDIX A PUBLICATIONS BY AUTHOR	
CURRICULUM VITAE	

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

xii

LIST OF TABLES

Tab	le	Page	
2.1	A taxonomy of feature selection techniques	15	
2.2	The characteristics of feature selection techniques	16	
3.1	Existing methods for predicting HLA genes	33	
3.2	Numbers of HLA genes and their subclasses (%)	34	
3.3	Performances of the classification of HLA genes by using	39	
	the combination method with different k lengths and k nearest neighbors.		
3.4	The ten-fold cross validation accuracies for the classification	40	
	of HLA-I and HLA-II into their subclasses using the combined method.		
3.5	The ten-fold cross validation accuracies of the classification of	42	
	HLA major classes using different classification methods.		
3.6	Ten-fold cross validation accuracies of the HLA-I/HLA-II	43	
	subclasses classi-fication using different classification methods.		
3.7	Numbers of removed high sequence identity of HLA genes	45	
3.8	The ten-fold cross validation accuracies of HLA major classes	46	
	classification using different classification methods (using sequence		
	identity < 30%).		
3.9	The ten-fold cross validation accuracies of HLA subclasses	46	
	classification using different classification methods (using sequence		
	identity < 30%).		
4.1	Some existing methods for predicting HIV-1 coreceptor usage	49	

xiii

4.2	Predictive performances of SVM based different features with	55
	various kernel functions	
4.3	Comparison of predictive performances from different features	56
	when using SVM based radial basis function kernel	
4.4	Performances of Kernel method vs. the other genotypic predictors.	58
4.5	Summary of removed high sequence identity of HIV-1 coreceptor usage	59
5.1	Some existing methods for predicting protein crystallization from	59
	sequences.	
5.2	Summary of the dataset for evaluating the performance of protein	64
	crystallizability predictors.	
5.3	Performances of the scoring card method based on initial CSM	65
	with various gaps	
5.4	Performances of the scoring card method based on optimized CSM	68
	with zero gaps.	
5.5	Performances of the scoring card method based on combined CSM	69
	with various gaps.	
5.6	Performances SVM using various compositions.	70
5.7	Comparison of the scoring card method with existing methods.	72
5.8	The propensity scores of amino acids to be crystallizable	74
5.9	The 10-top of highest and lowest propensity scores of diepetides	74
	to be crystallizable	

LIST OF FIGURES

Fig	ure	Page
2.1	The HLA region of Chromosome 6	7
2.2	The V3 loop region	8
2.3	The system flowchart of filter techniques	16
2.4	The system flowchart of wrapper techniques	17
2.5	The system flowchart of embeddble techniques	18
2.6	The system flowchart of the scoring card method (SCM)	24
2.7	LogitBoost algorithm	28
2.8	Building logistic models	29
3.1	The system flowchart of the k-NN classifier based on	39
	spectrum kernel to classify HLA gene.	
4.1	The system flowchart of the SVM classifier based LMT method	52
	to predict HLA-1 CRF_AE coreceptor usage.	
5.1	The ROC curve of the scoring card method by using various gaps	69
5.2	The propensity scores of dipeptides from averaging results of 10	73
	independent runs	

ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS

	k-NN	k-Nearest Neighbor
	SVMs	Support vector machines
	LMT	Logistic model tree
	SCM	Scoring Card Method
306	HLA	Human Leukocyte Antigen
	HIV-1	Human Immunodeficiency Virus type 1
206-	МНС	Human major Histocompatibility Complex
	CCR5	CC-chemokine receptor 5
	CXCR4	CXC-chemokine receptor 4
	PDB	Protein Data Bank
	РСР	Physicochemical properties
	FS	Feature subset
	CSM	Crystallizable scoring matrix
	IGA	Intelligent genetic algorithm
	R value	Pearson's correlation coefficient
ດິມສິກຄົ້	ROC	Receiver operating characteristic
adalid	LDA	Linear discriminant analysis
Convright(KSVMs	Kernel support vector machines
Copyright	V3	Third variable loop
All r		