
CHAPTER V 

PREDICTING PROTEIN CRYSTALLIZATION USING A SIMPLE SCORING 

CARD METHOD  

 

 

5.1  Introduction 

 Knowledge of three-dimensional protein structures is crucial when investigating 

the functions of proteins. Three-dimensional structural knowledge is considered to be 

important when designing drugs involving protein function [88]. X-ray crystallography 

and nuclear magnetic resonance spectroscopy are commonly used for determining the 

structures of proteins. Approximately 80% of the protein structures in the Protein Data 

Bank (PDB) were obtained using the X-ray crystallography method [89]. In fact, these 

two approaches involve very complex, time-consuming, laborious and expensive 

processes. Because of the difficulties in determining the crystal structures, the current 

protocol has only a 30% success rate [90]. Thus, many researchers take advantage of 

computational approaches for directly predicting protein crystallizability.  

 Canaves et al. [91] and Goh et al. [92] have proposed methods for extracting 

informative features to predict protein crystallization. Many sequence-based 

computational methods, including OB-Score [93], SECRET [94], CRYSTALP [95], 

XtalPred [96], ParCrys [97], CRYSTALP2 [98], SVMCRYS [99], PPCpred [100] and 

RECRYS [101], predict protein crystallization, which are summarized in Table 5.1. 

Both support vector machine (SVM) [94, 99, 100] and the ensemble mechanism 

[100, 101] are well-known techniques to enhance prediction accuracy. Because of the 
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different design aims and benchmarks used, it is not easy to assess which method and 

features are the most effective. From the study in [101] and Table 5.1, we can see that the 

SVM_POLY method (see the work [100]) using SVM has the highest accuracy among 

the non-ensemble methods. This method is one of the four SVM predictors that are 

integrated into PPCpred [100]. The state-of-the-art ensemble methods PPCpred and 

RFCRYS have high prediction accuracies using the SVM and Random Forest classifiers, 

respectively. PPCpred utilizes a comprehensive set of inputs that are based on energy and 

hydrophobicity indices, the composition of certain amino acid types, predicted disorder, 

secondary structure, solvent accessibility, and the content of certain buried and exposed 

residues [100]. RFCRYS predicts the protein crystallization by utilizing the mono-, di- 

and tri-peptide compositions; the frequencies of amino acids in different physicochemical 

groups; the isoelectric point; the molecular weight; and the length of the protein 

sequences [101]. However, the mechanism of these two ensemble classifiers suffers from 

low interpretability for biologists. It is not clear which sequence features provide the 

essential contribution to the high prediction accuracy. 

Rather than increasing both the complexity of prediction methods and the number 

of feature types while pursuing high accuracy, the motivation of this study is to provide a 

simple and highly interpretable method with a comparable accuracy from the viewpoint 

of biologists. The p-collocated AA pairs (p=0 for a dipeptide) are shown to be significant 

in influencing or enhancing protein crystallization because of the impact of folding 

corresponding to the interaction between local AA pairs [8,11]. The p-collocated AA 
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pairs provide the additional information on which the interaction between local AA pairs 

reflects besides the simple AA composition.  

Table 5.1  Some existing methods for predicting protein crystallization from sequences. 

 

Method Classifier Single/ensemble 

OB-Score [93] Single Threshold Single 

SECERT [94] SVM Single 

CRYSTALP [95] NN Single 

XtalPred [96] Logarithm Method Single 

ParCrys [97] Parzen Window Density 

Estimator 

Single 

CRYSTAIP2 [98] Normalized Gaussian radial basis 

function network 

Single 

SVMCRYS [99] SVM Single 

PCCpred [100] SVM Ensemble 

RFCRYS [101] Random Forest Ensemble 

Our work [3] SCM Single 

 

The propensity scores of dipeptides and amino acids to be crystallizable are highly 

correlated with the crystallization ability of sequences and can provide insights into 

protein crystallization. This study also proposes a mutagenesis analysis method for 

illustrating the additional advantage of SCM [3]. The analysis result reveals the 
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hypothesis that the mutagenesis of surface residues Ala and Cys has large and small 

probabilities of enhancing protein crystallizability in applying protein engineering 

approaches [102]. 

5.2 Dataset 

 We obtained training and testing sets containing 3587 and 3585 protein 

sequences, respectively, which were provided by Mizianty and Kurgan [100]. Two 

sequences with lengths of 9 and 11 were removed to make the dataset suitable for p-

collocated AA pair analysis (p=0 to 9). We also removed several protein sequences 

containing special characters, such as X and U, to facilitate the computation using the 

SCM method. In our experiment, we considered both the training set (CRYS3575) and 

the testing set (CRYS3572) with both positive (crystallizable) and negative (non-

crystallizable) classes, as summarized in Table 5.2. 

Table 5.2  - Summary of the dataset for evaluating the performance of protein 

crystallizability predictors.  

 

Data Total Positive Negative 

CRYS3575 3575 1197 2378 

CRYS3572 3572 1198 2374 

5.3 Results and Discussion 

We first describe the data set developed by Mizianty and Kurgan [100] and the 

most frequently used SVM for predicting protein crystallization [99,100] is briefly 
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introduced. The amino acid and dipeptide compositions which are informative features 

for predicting protein crystallization are described. The implemented SCM with dipeptide 

composition is presented. Finally, the SCM method using the collocated dipeptides is 

given. 

5.3.1 Prediction performance of the scoring card method based on collocated 

dipeptides 

 The scoring card method based on dipeptide composition was performed to predict 

protein crystallization on the TEST3572 data set. Additional detail of the SCM method 

can be found in Chapter 2 and [51]. For this work, the CSM was utilized in three ways: the 

initial, optimized, and combined CSMs. One important characteristic of the scoring card 

method is to optimize the dipeptide propensity scores to conserve the AAC information 

encoded in the protein sequence by considering R values between the initial and optimized 

CSMs. Many studies have been developed using this kind of dipeptide composition [98]. 

 Due to the non-deterministic characteristics of the GA, we needed to perform 10 

independent runs to obtain the optimized CSM. For using IGA to optimize the parameters, 

we obtained a small variance as low as 0.00, shown in Table 5.4. Our approach is able to 

predict the protein crystallization using only the S(P) based on a threshold cutoff. Table 

5.3 shows the values for the full training, MCC, accuracy, sensitivity, and specificity of 

the initial CSM which are 72.14%, 0.30, 71.47%, 0.33, and 0.91, respectively. Using the 

optimized CSM yielded average results of 77.95±0.20%, 0.38±0.02, 73.9±0.57%, 

0.45±0.03, and 0.88±0.01 for the full train, MCC, accuracy, sensitivity and specificity 
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respectively, shown in Table 5.4. It can be noted that the highest score of the fitness 

function was 0.84, which was found in the optimized CSM of the 10th experiment. 

Therefore, in this work, the 10th experiment was used as the best case for the optimized 

CSM. Finally, using the combined CSM, we obtained values of the full train, MCC, 

accuracy, sensitivity, and specificity of 78.99%, 0.39, 73.66%, 0.55, and 0.83, 

respectively, as is shown in Table 5.5. The combined CSM was calculated by averaging 

the 10 optimized CSMs. 

 Tables 5.3-5.4 show the results for the full train, MCC, accuracy, sensitivity, and 

specificity performed with a zero gap. Using the optimized CSM gave higher results, 

especially for specificity as compared to the initial CSM. Using the combined CSM we 

obtained higher sensitivity compared with the optimized (from 0.39 to 0.55) shown in 

Table 5.5. 

Table 5.3  Performances of the scoring card method based on initail CSM with various 

gaps. 

 

#GAP(p) 

Full Train 

(%) MCC Accu(%) Sens Spec Correlation 

0 72.14 0.30 71.47 0.33 0.91 1.00 

1 71.69 0.30 71.72 0.32 0.92 1.00 

2 71.78 0.29 71.05 0.32 0.91 1.00 

3 71.55 0.30 71.42 0.37 0.89 1.00 

4 71.30 0.29 71.02 0.33 0.90 1.00 

 
 

  Moreover, we further examined the data for between one to four gaps which are 

represented by using the ROC curve, shown in Figure 5.1. This figure shows that using the 
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zero gap yields higher results, especially for the value of the AUC, as compared to the 

other gap sizes. 

 

Table 5.4  Performances of the scoring card method based on optimized CSM with zero 

gaps. 

 
 

#Expe Fitness 

Full 

Train(%) MCC Acc(%) Sens Spec 

1 0.83 78.07 0.36 73.43 0.44 0.88 

2 0.82 77.96 0.38 74.13 0.42 0.90 

3 0.83 78.24 0.35 72.84 0.44 0.88 

4 0.83 77.54 0.37 73.54 0.43 0.89 

5 0.83 77.90 0.40 74.52 0.48 0.88 

6 0.83 77.96 0.40 74.50 0.48 0.88 

7 0.83 77.76 0.38 74.22 0.44 0.90 

8 0.83 77.82 0.40 74.55 0.48 0.88 

9 0.83 78.10 0.37 73.60 0.42 0.90 

10 0.84 78.13 0.38 73.66 0.50 0.86 

Avg 0.83±0.00 77.95±0.20 0.38±0.02 73.9±0.57 0.45±0.03 0.88±0.01 
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Table 5.5  Performances of the scoring card method based on combined CSM with 

various gaps. 

 

#GAP(p) 

Full Train 

(%) MCC Acc(%) Sens Spec Correlation 

0 78.99 0.39 73.66 0.55 0.83 0.98 

1 78.60 0.37 73.88 0.43 0.90 0.97 

2 78.46 0.34 71.36 0.50 0.82 0.97 

3 78.07 0.38 72.65 0.56 0.81 0.98 

4 78.66 0.38 73.88 0.48 0.87 0.97 

 

 
Figure 5.1. The ROC curve of the scoring card method by using various gaps [3] 

 

5.3.2 Performance of SVM using amino acid and collocated dipeptide compositions 

 In this study, the SVMs with a radial basis function [103] were used to predict the 

protein crystallization using only the AAC and collocated dipeptide with zero to four 

gaps. The simplest feature (AAC) obtained full train, MCC, accuracy, sensitivity, and 
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specificity of 75.64%, 0.35, 73.12%, 0.38, and 0.91, respectively. Table 5.6 shows the 

results for the SVM of the full train, MCC, accuracy, sensitivity, and specificity as 

92.56%, 0.46, 77.02%, 0.49, and 0.91, respectively, using one gap. Using the zero gap, 

the SVM yielded higher specificity than using other gaps. It should be noted that using 

the basic dipeptide composition had the strongest ability to predict protein crystallization. 

 Although Tables 5.4 and 5.6 show that the SVM classifier obtains higher 

accuracies than the scoring card method, the results of the training and test sets are not 

fully comparable, for example in the evaluation results, the training set has accurate 

results ranging in [88.14%, 93.31%] whereas the test set has the range [75.08, 77.02%]. 

This result could be a case of overfitting the training data. Moreover, SVM suffers from 

gaining insight into the mechanisms affecting protein crystallization. More detail about 

this application can be seen in the analysis section. 

Table 5.6  Performances SVM using various compositions. 

 

Types of 

feature 

Full 

Train(%) MCC Acc(%) Sens Spec Cost Gamma 

AAC 75.64 0.35 73.12 0.38 0.91 64.00 0.06 

p=0 88.14 0.45 76.93 0.41 0.95 1.00 0.03 

p=1 92.56 0.46 77.02 0.49 0.91 2.00 0.03 

p=2 93.20 0.42 75.08 0.55 0.85 2.00 0.03 

p=3 93.26 0.41 75.22 0.47 0.89 1.00 0.06 

p=4 93.31 0.41 75.42 0.41 0.93 1.00 0.06 
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5.3.3 Comparison of the scoring card method with existing classifiers 

 Using the optimized CSM (CSM_best fit) from the 10th experiment and combined 

CSM (CSM_com), our experimental results show that using dipeptide composition had 

better results than other collocated dipeptides. Table 5.7 shows the comparison of the 

scoring card method, i.e. CSM_best fit and CSM_com, with existing methods for 

predicting crystallizable proteins in the TEST3572 data set. Previously, the SVM-based 

classifier was successfully used in many predictions of protein functions [104,105]. 

Therefore, we used the SVM classifier to compare with our method. The scoring card 

method based on CSM_com yielded a higher sensitivity value of 0.55 than SVM_POLY 

and RFCRYS. The value of the specificity was not significantly different compared with 

SVM_POLY and PPCpred. In the case of ensemble methods, i.e. PPCpred and RFCRYS, 

these approaches had reasonably high results compared with other classifier methods. 

 In the case of classifier-based conventional methods, the SVM_POLY method is 

generally considered to provide the best results, since this tool uses both an SVM and 

additional features not used in our approach [100]. In contrast, the scoring card method 

used with only the dipeptide composition provides a clear interpretation to the predictive 

results. The experimental results show that our approach is comparable to the other 

methods and significantly simpler from a theoretical standpoint. Our approach uses only 

the S(P) which is a single decision boundary. For the SVM, the kernel uses a mapping 

function which either has a polynomial [100] or radial basis function [99]. Obviously, the 

radial basis function is dependent on the cost and gamma values which lead to a more 

complex decision boundary. 
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Table 5.7  Comparison of the scoring card method with existing methods. 

 
 

Classifier MCC Accuracy(%) Sensitivity Specificity 

CRYSTALP2a 0.19 55.3 0.74 0.46 

SVMCRYSa 0.21 56.3 0.75 0.47 

SVM_POLYa 0.40 74.6 0.48 0.88 

PPCpreda 0.47 76.8 0.61 0.85 

RFCRYSa 0.53 80.0 0.51 0.95 

CSM_best fit 0.38 73.7 0.50 0.86 

CSM_com 0.39 73.7 0.55 0.83 

     aResult reported from Jahandideh and Mahdavi [101]. 

 

5.3.4 Propensity scores of amino acids and dipeptides 

 Previously, we mentioned that there is one advantage of the scoring card method 

which is interpretability which allows us to gain insight into the mechanisms of protein 

crystallization. In this part, we consider the score of the dipeptide compositions derived 

from the scoring card method. Figure 5.2 shows the mean score of the dipeptide 

compositions represented using a 20×20 matrix. The scores of the dipeptides in the CSM 

are highly correlated to the relative contributions of the dipeptides to protein 

crystallizations shown in Figure 5.2 and Tables 5.8-5.9. The 20 propensity scores of amino 

acids to be crystallizable derived from the scores of dipeptides (Figure 5.2) are shown in 

Table 5.8. Glu, Gly, Ala, His and Val are the five top-ranked amino acids to be 
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crystallizable, and Ser, Asn, Cys, Gln and Pro are the five top-ranked amino acids to be 

non-crystallizable.  

 

 
 

Figure 5.2. The propensity scores of dipeptides from averaging results of 10 independent 

runs [3]. 

 

 

 

 

 

 

 

 

 

 

 

 



 74 

Table 5.8  The propensity scores of amino acids to be crystallizable 

 

 

 

 

 

 

Table 5.9  The 10-top of highest and lowest propensity scores of dipeptides to be 

crystallizable 

 

 

Dipeptides Score  Dipeptides Score 

MG 989  CS 37 

HM 970  SR 35 

DK 958  CK 33 

CC 936  WI 25 

GS 934  SP 23 

IW 933  YG 22 

IH 931  NN 20 

EH 922  GH 19 

PC 921  SL 8 

MT 916  NM 6 

 

Amino Name Score  Amino Name Score 

E Glu 486.38  L Leu 395.95 

G Gly 454.90  D Asp 394.53 

A Ala 451.38  F Phe 392.83 

H His 451.23  T Thr 392.45 

V Val 449.23  R Arg 376.90 

I Ile 445.63  P Pro 372.28 

Y Tyr 429.83  Q Gln 364.80 

M Met 423.63  C Cys 357.43 

W Trp 408.88  N Asn 346.48 

K Lys 398.30  S Ser 271.93 



 75 

5.3.5 Application of propensity score of amino acids for the crystallization of 

protein 

 Several approaches have been developed to enhance protein crystallizability. One 

of the most popular approaches is protein engineering used for increasing the success rate 

in crystallization. The substitution of single-site amino acids can dramatically affect the 

crystallization of proteins. However, it is reported that the question of which substituting 

residue would perform better than others is more difficult to answer [106]. Many studies 

further presented advantages of single-site mutations for increasing the solubility of 

proteins and obtained higher quality of crystals [103]. In this part, we are interested of 

surface mutagenesis of Ala, Cys, and Ser for enhancing the crystallizability of protein. 

From the propensity scores of amino acids in Table 5.8, Ala is the most 

frequenctly used amino acid for substituting in the mutagenesis of surface residue. The 

most frequently used mutation of X→Ala (replacing amino acid X by Ala) is Glu→Ala 

and Lys→Ala from the literature survey. It is not surprising that the mutation of Ala→X 

in enhancing crystallizability in literature is rare and ineffective. We found one mutation 

of Ala→Cys which is not effective in enhancing crystallizability [109]. This result of 

Ala→Cys can be well recognized from the analysis of Table 5.8.  

We would examine the mutations Cys→X and X→Cys from literature survey 

where Cys has the ranks of crytallizabilitty equal to 18. Hence, Cys is possibly the 

important obstacle for protein crystallization. Most mutations of Cys→X enhanced 

crystallizability according to the reasons of enhancing protein solubility and decreasing 

aggregation and molecular size [120-125]. Ser is a well-known substituted mutant of Cys 
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because Ser can conserve a similar protein function of Cys [120, 122-125]. The mutation 

Cys→Ala could be the perfect mutation of enhancing crystalizability according to our 

hypothesis in this study, which is reported as successful enhancement in the study [121]. 

The mutations of X→Cys are believed to enhance crystallizability for obtaining useful 

heavy-atom derivation [109, 126-128]. However, all mutations of X→Cys in these 

studies [109, 126-128] could not successfully improve crystallizability. All these 

experimental results are reflected in our hypothesis.  

Ser has the lowest crystallizability scores. Therefore, the mutations of Ser→X 

should increase the probability of enhancing protein crystallization for the same reason 

with Cys. We found the mutations of Ser→Cys for obtaining useful heavy-atom 

derivatives to enhance crystallizability [126-128]. However, all these mutations of 

Ser→Cys in the studies [126-128] fail to increase the crystallizability. It might be 

reasonable that the mutation Cys→X demonstrated the high probability of enhancing 

protein crystallization [120-125]. Relatively few mutations of X→Ser were conducted to 

enhance crystallizability. However, some results of the mutations X→Ser demonstrated 

the successful enhancement of protein crystallization [106]. And, the results reported by 

Cooper et al. [106] showed that both Ser and His residues performed less well, but these 

two amino acids were better than the wild type in promoting protein crystallization. 

Further studies are needed to evaluate effectiveness of the mutation X→Ser in increasing 

the probability of enhancing protein crystallization for some specific proteins and 

conditions. More details about the application of the SCM method can be found in [102]. 
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5.4 Conclusion 

 We have applied the scoring card method to predict protein crystallization based 

on dipeptide compositions. Many studies have shown that dipeptide composition provides 

an essential source of information about protein crystallization. Table 5.5 shows the results 

of the scoring card method using a combined CSM to obtain full train, accuracy, 

sensitivity, and specificity of 78.99%, 73.66%, 0.55, and 0.83, respectively. The proposed 

method using the combined CSM performed on a test set obtained higher accuracies than 

the other two CSMs. The scoring card method was then compared to existing methods. 

The experimental results showed that our approach obtained higher MCC, accuracy, and 

specificity than SVMCRYS, and are comparable to SVM_POLY. However, in fact, the 

ensemble-based approach, i.e., PPCpred, and RFCRYS, obtained results slightly better 

than the proposed method which is not an ensemble approach. Unfortunately, it is difficult 

to interpret these methods to further realize what mechanisms could affect protein 

crystallization. In conclusion, the SCM method gives a simple approach which allows a 

direct interpretation of dipeptides in the crystallization prediction based on the propensity 

scores of the dipeptides only. The propensity scores of dipeptides and amino acids to be 

crystallizable are highly correlated with the crystallization ability of sequences and can 

provide insights into protein crystallization. Nevertheless, future studies are needed to 

develop the scoring card method by combining our approach with other techniques such as 

the ensemble approach for improving the accuracy of protein crystallization prediction. 


