
 

CHAPTER 2 

BACKGROUND 

 

2.1 Biological Background 

 In this section, we give a description of three protein functions of interest. The 

three protein functions are analyzing by using different computational-based methods. 

In general, proteins sequence is an ordered of amino acids. Each protein function has 

different characteristics. 

2.1.1 Human Leukocyte Antigen gene 

 The human leukocyte antigen system or human lymphocyte antigen (HLA) is 

the molecular name of a group of molecules in the human major histocompatibility 

complex (MHC) region on human chromosome 6 which encode the cell-surface 

antigen-presenting proteins [4] (shown in Figure 2.1). The HLA are a class of proteins 

found on the surface membranes of cells which serve the purpose of presenting 

possible antigens to T and B cells. 

The MHC contains a group of molecules that play a crucial role in immune 

recognition and for the tolerance of tissue grafting. In mice and humans, the MHC 

molecules have also been found to influence body odors, body odor preferences, and 

mate choice [5,6]. These sequences are also some of the most polymorphic regions of 

the genome and are known to play a central role in controlling immunological self and 

non-self recognition [7]. There are different types of HLA, e.g. HLA-I and HLA-II. 

These two gene types are important in the matching of tissues and organs for donation 
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and organ transplantation under outdated immunesuppression protocols. In addition, 

the major HLA antigens are essential elements for immune function. The two 

different classes have different functions. The principle function of HLA-I, is to 

present virally induced peptides on the surface of the cell by linking to the T-Cell 

receptor of a Cytotoxic (CD8) T Cell. This allows the identification of viruses. The 

role of HLA-II, by initiating a molecular immune response, is the reason they are only 

present on “immunologically active” cells (B lymphocytes, macrophages, etc.) and 

not on all tissues [8]. 

 

Figure 2.1  - The HLA region of Chromosome 6 [4] 
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2.1.2 Human Immunodeficiency Virus type 1 

The Human Immunodeficiency Virus type 1 (HIV-1) enters target cells using 

interaction between envelope glycoprotein (gp120) with the cellular CD4 receptor and 

two main coreceptors, CC-chemokine receptor 5 (CCR5) and/or CXC-chemokine 

receptor 4 (CXCR4) [9]. Based on the ability of the coreceptor usage, HIV-1 variants 

can be classified as CCR5 tropic (R5), CXCR4 tropic (X4), or dual-mixed tropic 

(R5X4) [10]. R5 variants are generally established in early stage infections, while X4 

variants generally emerge in later stages and have been associated with a faster CD4 

decline and progression to AIDS [11, 12]. Therefore, predicting the emergence of X4 

variants has potential value for understanding pathogenesis, monitoring disease 

progression and making treatment decisions. 

 

Figure 2.2  - The V3 loop region [9] 

2.1.3 Protein crystallization 

The ability to obtain experimentally measured 3D folding structures using X-

ray crystallography is dependent on the availability of high quality protein crystals. 
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Since it is expensive and time consuming to produce such crystals, being able to 

computationally determine whether or not a protein will be able to crystallize has 

become a key step in determining protein folding structure. Furthermore, determining 

a proteins structure provides understanding of the proteins properties and function 

which can be utilized in the field of drug design [13]. Although X-ray crystallography 

is generally considered to be the most reliable and accurate approach to produce 3D 

structures, it is a very complex, time-consuming, laborious and expensive process. In 

addition, for this method to work a crystallized form of the protein is required which 

can be difficult to produce. At present, approximately 87 % of the protein structures 

deposited in the Protein Data Bank (PDB) was characterized using the X-ray 

crystallography method [14]. In addition, since many proteins have complex 

structures, the current experimental protocol to produce 3D structures has only a 30% 

success rate [15]. 

2.2 Sequence Classification 

 Sequence classification has a broad range of applications such as genomic 

analysis, protein functions etc [16]. Generally, a sequence is an ordered list of an 

alphabet of symbols {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛}, a simple symbolic sequence is an ordered list 

of the symbols from the alphabet, such as DNA or protein sequences. 

Generally, sequence classification methods can be divided into three large 

categories. 

 The first category is feature based classification, which transforms a sequence 

into a feature vector and then applies computational-based methods. Feature 

selection plays an important role in these kinds of methods. 
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 The second category is sequence distance based classification. The distance 

function measuring the similarity between two sequences determines the 

quality of the classification. The method of choosing the similarity measure is 

the important step. 

 The last category is model based classification, such as using Hidden Markov 

Model (HMM) and other statistical models to classify sequences. 

In this chapter, we mainly focus on the representative methods in the three 

categories. Some methods may be related to more than one category. For example, the 

SVM method can be interpreted as either category 1 or category 2. Thus, the character 

of SVM method can be classified as category 4. 

 2.2.1 Feature based classification 

Many conventional classification methods, such as decision trees and neural 

networks, are designed for classifying feature vectors. Practically, we can solve such 

problem by transforming a sequence into a suitable vector of features through feature 

selections. 

In this case, the simplest way is to assign each element as a feature. For 

example, a sequence CACG can be transformed as a vector {𝐴, 𝐶, 𝐶, 𝐺}. In fact, the 

sequential data cannot be captured by such transformation. To keep the order of the 

elements in a sequence, a short sequence segment of k consecutive symbols, called a 

k-gram, is usually selected to be the representation of sequential data. This particular 

method is known as a spectrum kernel. By using k-grams as features, sequences can 

be classified by computational-based method, such as the SVM method [18,19] or 

decision trees [20]. More detail about k-gram based feature selection methods for 
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sequence classifications can be referred in [21] and in the next section. In the case of 

protein sequences, the amino acid and dipeptide compositions are well-known 

features which correlate to physicochemical properties (PCP). 

 2.2.2 Sequence distance based classification 

Sequence distance based methods define a distance function to measure the 

similarity between a pair of sequences. Generally, we first choose the suitable 

distance function; we then apply some existing methods, such as k-NN classifier or 

SVM method. The k-NN classifier is a popular and lazy learning method [23]. This 

method is very effective for a variety of problem domains. However, the k-NN 

classifier cannot classify some datasets which are highly complex or overlap. More 

detail about this drawback and how to solve for it can be found in Chapter 3. Given a 

labeled sequence data set D, a positive integer k, and a new sequence s to be 

classified, the k-NN classifier finds the k nearest neighbors of s in D, kNN(s), and 

returns the dominating class label in kNN(s) as the label of s. 

In the k-NN classifier, choosing a distance measure is the crucial process, 

since it determines the k-NN classifier’s performance. One well-known distance 

measure is the Euclidean distance. For two vectors x and y, the Euclidean distance is 

defined by: 

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = √∑(𝑥[𝑖] − 𝑦[𝑖])2

𝐿

𝑖=1

 

(2.1) 
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In our work, we examined the k-NN classifier based the string kernel. More detail 

about such methods and how to use them in protein function prediction can be found 

in Chapter 3. 

 2.2.3 Model based classification 

This category of sequence classification methods is based on generative 

models, which assume sequences in a class are generated by an underlying model M. 

Generally, given a class of sequences, M is used to assign the probability distribution 

of the sequences in the class. Usually, some assumption is used to define M, and the 

probability distributions are described by a set of parameters. In a supervised learning 

setup, the learning process tries to learn all of the parameters. In the testing process, 

an unknown sequence is assigned to the probable class with the highest likelihood by 

using the best parameter from the learning process. This particular process is called 

the probabilistic graphical model. There are two main types, i.e. generative and 

discriminative model [24-27]. The graphical model can be apply in many problems, 

including biological sequence classification [28,29]. 

 2.2.4 Support vector machine 

Using machine learning, there are techniques called kernel methods which are 

used to construct a maximum-margin separating hyperplane between two separated 

classes. This particular kernel method is known as a Support Vector Machine 

(SVMs). The SVM is one of the best-known and most frequently used kernel methods 

[30], since the kernel method offers applicable tools to process, analyze, and compare 

many types of data, and outperforms other methods in many cases [31-33]. Vapnik 
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introduced the kernel method with the principle of structure risk minimization in 

statistical learning theory [34, 35]. In general, a data set is formally represented as 

𝐷 = { (𝑥𝑖, 𝑦𝑖) | 𝑥𝑖 𝜖 ℝ𝑛, 𝑦𝑖  𝜖 {1, −1} } ; 𝑖 = 1, 2, … , 𝑛 (2.2) 

where 𝑥𝑖 is the i-th input vector and 𝑦𝑖 is the class of 𝑥𝑖. Each 𝑥𝑖 is an n-dimensional 

vector. Principally, the idea of the kernel method is to construct a maximum-margin 

hyperplane separating the classes of x. 

In general, when training data sets are nonlinearly separable vectors, the basic 

idea is to retain the simplicity of linear methods by using mapping functions to map 

the original data set into a higher dimensional space, called feature space, where 

linear methods can classify them. The mapping function Φ(𝑥) is performed by 

defining the inner product between each pair of data points in the data set of the 

feature space through the kernel function. Thus, if Φ(𝑥) denotes the mapping 

function, the kernel function can be expressed as a similarity measurement between 

the training data set, which is defined as: 

𝐾(𝑥, 𝑥 ′) = 〈Φ(𝑥), Φ(𝑥 ′)〉 = Φ(𝑥)ΤΦ(𝑥 ′) (2.3) 

One of the most widely used kernels for sequence classification is a spectrum 

kernel or string kernel (or k-gram [21]), which transforms a sequence into a feature 

vector [37]. The kernel function of strings was first proposed by Watkins [38]. In 

2002, Lodhi et al. introduced a powerful string subsequence kernel [39] for text 

classification. Moreover, Leslie et al [40] showed that the spectrum kernel can 

effectively be applied to protein classification. Saunders et al. also reported on the 

computational advantages of the spectrum kernel for its fast and simple calculation. If 
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a suitable data structure is used, the prediction can be done in linear time [41]. We 

will discuss the spectrum kernel in Section 2.4. 

One disadvantage of kernel based methods is that they are hard to be 

interpreted and hard for users to gain knowledge besides a classification result. We 

used the string kernel to transform HLA genes, and then applied a k-NN classifier to 

predict its class [1]. More detail of this work can be found in next part. 

2.3 Feature Selection Methods 

 The objectives of feature selection are manifold, the most important ones 

being: (a) to avoid overfitting and improve model performance, i.e. prediction 

performance in the case of supervised classification and better cluster detection in the 

case of clustering, (b) to provide faster and more cost-effective models and (c) to gain 

a deeper insight into the underlying processes that generated the data. 

 The feature selection methods perform a search through the space of feature 

subsets, in general, and must be addressed with four processes: 1) Selecting a starting 

point in the space of feature subsets for beginning the search affecting the direction, 

2) Searching the space of feature subsets. There are two main procedures, i.e. forward 

and backward algorithms, 3) Evaluating strategy. This is concerned with how many 

feature subsets are evaluated (more details of the category of evaluating strategy can 

be seen below), and 4) the stopping criterion. A feature selector must decide when to 

stop searching through the space of feature subsets. Depending on the evaluation 

strategy, a feature selector might stop adding or removing features when none of the 

alternatives improves the merit of a current feature subset. 
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Table 2.1   A taxonomy of feature selection techniques [44]. 

Model search Advantage Disadvantage Examples 

Filter -Independent of the 

classifier 

-Better computational 

complexity than 

wrapper methods 

-Ignores interaction 

with the classifier 

Information gain, 

gain ration, Euclidean 

distance [45] 

Wrapper -Interacts with the 

classifier 

-Model feature 

dependencies 

-Risk of overfitting 

-Classifier dependent 

selection 

Genetic algorithm [46], 

Sequencial forward  

selection [47], 

Sequencial backward  

selection [47] 

Embedded -Better computational 

complexity than 

wrapper methods 

-Interacts with the 

classifier 

-Model feature 

dependencies 

-Classifier dependent 

selection 

Decision tree [48], 

Logistic model tree 

[49], 

Random forests [50] 

 

In the context of classification, feature selection techniques or evaluating strategy can 

be organized into three categories which depend on how they combine the feature 

selection search with the construction of the classification model: filter methods, 

wrapper methods and embedded methods. Table 2.1 and 2.2 provide a common 

taxonomy and characteristics of feature selection methods (some existing methods), 

showing for each technique the most prominent advantages and disadvantages, as well 

as some examples of the most influential techniques [44]. 
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Table 2.2   The characteristics of feature selection techniques. 

Model search Criterion Search Assessment 

Filter Relevance Top rank Statistical test 

Wrapper Usefulness All subset Cross-validation 

Embedded Usefulness Guide by learning 

process 

Cross-validation 

 

 2.3.1 Filter techniques 

 Filter techniques assess the relevance of features by looking at only the 

intrinsic properties of the data. The ideal of this technique is shown in Figure 2.3. In 

most cases a feature relevance score is calculated by using a statistical test, such as a 

T-test, and low-scoring features are removed. Afterwards, this subset of features is 

presented as input to the classification algorithm. Filter techniques face the problem 

of finding a good feature subset (FS) independently of the model selection step. 

 

Figure 2.3  - The system flowchart of filter techniques [44]. 
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 2.3.2 Wrapper techniques 

 Wrapper methods embed the model hypothesis search within the feature 

subset search. In this setup, a search procedure in the space of possible feature subsets 

is defined, and various subsets of features are generated and evaluated. The evaluation 

of a specific subset of features is obtained by training and testing a specific 

classification model, rendering this approach tailored to a specific classification 

algorithm. The ideal of this technique is shown in Figure 2.4. 

 

Figure 2.4  - The system flowchart of wrapper techniques [44]. 

 2.3.3 Embedded techniques 

 The search for an optimal subset of features is built into the classifier 

construction, and can be seen as a search in the combined space of feature subsets and 

hypotheses. Just like wrapper approaches, embedded approaches are thus specific to a 

given learning algorithm. Embedded methods have the advantage that they include the 

interaction with the classification model, while at the same time being far less 

computationally intensive than wrapper methods 
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Figure 2.5  - The system flowchart of embedded techniques [44]. 

2.4 Support Vector Machine 

In a previous section we described the main idea of the SVM method. This 

classifier can be categorized as both a sequence distance and a feature based 

classification. The SVM classifier is a well-known method in non-linear problems. 

The SVM method constructs a separating hyperplane maximizing the margin between 

the two data sets which are sets of vectors in an n-dimensional space [30]. Intuitively, 

a good separation or classification occurs when the hyperplane has the largest distance 

to the neighboring data points of both classes, since the larger margin leads to a lower 

generalization error of the classifier and also ensures that it can identify the particular 

class of each data point [36,37]. 

 2.4.1 Notation 

 To easily understand SVM, we will be considering a linear classifier for a 

binary classification problem given a training data 𝐷. A linear classifier can be 

represented as: 

ℎ𝑤,𝑏(𝑥) = 𝑔(𝑤𝑇𝑥 + 𝑏) (2.4) 
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This classifier has 𝑤, 𝑏  as its parameters. Here, ℎ(𝑧) = 1 𝑖𝑓 𝑧 ≥ 0, and ℎ(𝑧) =

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 2.4.2 Functional and geometric margins 

We first formalize the notions of the functional and geometric margins. Given 

a training data set 𝐷, we define the functional margin of (𝑤, 𝑏) with respect to D. 

𝛾𝑖 = 𝑦𝑖(𝑤𝑇𝑥 + 𝑏) (2.5) 

The goal is to seek the smallest of the function margins of the individual 

training examples. Denoted by 𝛾, this can therefore be written: 

𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖 𝛾𝑖 (2.6) 

 2.4.3 The optimal margin classifier 

How can we find the one that achieves the maximum geometric margin? We 

can represent the following by defining an optimization problem. In general, we now 

have the following optimization problem: 

min𝑤,𝑏       
1

2
‖𝑤‖2                                                      

(2.7) 

𝑠. 𝑡.         𝑦𝑖( 𝑤𝑇𝑥𝑖 + 𝑏 ) ≥  1, 𝑖 = 1,2, … , 𝑚 

Note that: in the learning process of SVMs, a hard-margin separation, as 

represented above, is usually performed, even though this kind of misclassification is 

unavoidable in many practical problems. To deal with this problem, soft-margin 

separation is introduced to mitigate these errors by finding a maximum margin 

separator which allows misclassifying a training data set [36,37]. Currently, we know 
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that the simplest way to permit errors in the maximum margin linear classifier is to 

introduce “slack” variables 𝜀𝑖 for the classification/margin constraints in the 

optimization problem. 

In order to solve this constrained optimization problem, we introduce 

Lagrange multipliers 𝛼𝑖 ≥ 0. When we construct the Lagrangian for our optimization 

problem we have: 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
‖w‖2 − ∑ 𝛼𝑖(𝑦𝑖(w𝑇𝑥𝑖 + 𝑏) − 1)

𝑚

𝑖=1

 
(2.8) 

Let’s go on the dual form of the problem by setting 
𝜕𝐿(𝑤,𝑏,𝛼)

𝜕𝑤
= 0 and 

𝜕𝐿(𝑤,𝑏,𝛼)

𝜕𝑏
= 0. In 

the classification problem with a training data set D, we can predict the class of 

unknown data 𝑥𝑛+1 by using a linear decision function determined by the kernel 

function of the inner product between feature vectors. The decision function can then 

be expressed as follows: 

𝑓(𝑥𝑛+1) = ∑ 𝑦𝑖𝛼𝑖

𝑛

𝑖=1

𝐾(, 𝑥𝑖 , 𝑥𝑛+1) + 𝑏 
(2.9) 

 2.4.4 Kernel function 

 In general, the basis of protein classification is to represent protein sequences 

as vectors in a high-dimensional feature space via a string-based feature map. We then 

train the SVM, a large-margin linear classifier, on the feature vectors representing our 

training sequences. Recall, since SVMs are a kernel-based learning algorithm, so we 

intend to introduce a suitable kernel for the protein classification 

 In Section 2.2.4, we gave a description of the most widely used kernels for 

sequence classification which is a spectrum kernel or string kernel, which transforms 
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a sequence into a feature vector [18-19, 38-40]. The idea behind the spectrum kernel 

approach is based on the similarity of two strings containing common subsequences. 

The spectrum kernel is a convolution kernel specialized for the string comparison 

problem. For a number 𝑠k ≥ 1, the sk-spectrum of a sequence x is all the possible 

subsequences of length 𝑠k that it contains. Given the alphabet A, a sequence x is 

transformed into a feature space by a transformation function or feature mapping 

function 

Φsk(𝑥) = (𝜙𝑎(𝑥))𝑎∈𝐴𝑠𝑘 
(2.10) 

where 𝜙𝑎(𝑥) is the number of times 𝑎 occurs in 𝑥. The kernel function is the inner 

product of the features vectors: 

𝐾sk(𝑥, 𝑥 ′) = 〈Φsk(𝑥), Φsk(𝑥 ′)〉. (2.11) 

For another variant of the kernel, we can assign to the 𝑎-th coordinate a binary value 

of 0 if a does not occur in 𝑥, 1 if it does occur. 

 In Chapter 3, we were interested in HLA gene prediction by using the string 

kernel to transform HLA genes, and then classify them by using the k-NN classifier. 

2.5 Scoring Card Method 

 The scoring card method SCM is an efficient and generalized method for 

creating various kinds of dipeptide scoring cards for predicting protein functions from 

whole sequences. The principle hypothesis of the SCM method uses amino acid and 

dipeptide compositions which play an important role in serving as significantly 

effective features. The description of the SCM is given in a general purpose algorithm 

without using heuristics or specific domain knowledge. The SCM method can be 
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applied to other prediction problems without significant modifications. Of course, the 

generic score matrix of dipeptides can be further customized and utilized with other 

complementary features for improved prediction accuracy [51]. 

 The system flowchart of the SCM method with propensity analysis is shown in 

Figure. 3.1. The description of the SCM consists of the following parts: 1) creation of 

data sets for both training and an independent test, 2) establishment of an initial 

scoring matrix for the propensity of dipeptides using a statistical approach, 3) 

optimized solubility scoring matrix of dipeptides, 4) prediction of protein solubility, 

and 5) propensity analysis of amino acids. 

The procedure of the SCM method is briefly described below. More details about 

the SCM can be found in. 

2.5.1: Prepare a training dataset consisting of two subsets for positive and negative 

classes. 

2.5.2: Generate an initial scoring card consisting of 400 propensity scores of 

dipeptides by using a coarse-tofine approach. The initial scoring card is created by 

using a statistical approach based on the dipeptide composition 

I)   Calculate the numbers of 400 dipeptides in each class. 

II)   Normalize the dipeptide composition by dividing the numbers using the total    

   numbers of dipeptides in each class. 

III)  Obtain the propensity scores of individual dipeptide by subtracting the score of 

 the negative class from that of the positive class. 

IV)  Normalize the scores of all dipeptides into the range [0, 1000]. 

2.5.3: Derive the propensity score of each amino acid A by averaging the 20 scores of 

dipeptides AX and XA where X can be any amino acid. If the acid composition (i.e., 



 

 

23 

percentages) of a certain protein has a high correlation with the CSM (crystallizable 

scoring matrix) of amino acids, this protein is easy to predict as a crystallizable protein. 

2.5.4: Optimize score card (optimized CSM) by using an intelligent genetic algorithm 

(IGA) [52]. In the chromosome representation, the 400 real-valued variables are 

encoded in a chromosome of IGA, which is in the range [0, 1000]. The IGA algorithm 

for obtaining the optimized score card is described as follows: 

 Step 1: (Initialization) Randomly generate Npop individuals including the 

initial SSM. In this study, Npop = 40. 

 Step 2: (Evaluation) Compute fitness values of all individuals where Ibest is 

the best individual in the population. 

 Step 3: (Selection) Use a rank-based selection to select Ps*Npop individuals 

to establish a mating pool. In this study, Ps = 1.0. 

 Step 4: (Crossover) Perform the intelligence crossover operation [15] for each 

individual with Ibest to find the best two individuals among two parents and two 

children as the new children (the elitist strategy).  

 Step 5: (Mutation) Use a real-valued mutation operator to randomly mutate 

individuals with a mutation probability Pm (= 0.01). Mutation is not applied to Ibest 

to prevent the  best fitness value from deteriorating. 

 Step 6: (Termination test) If a given termination condition is satisfied, stop 

this algorithm, otherwise, go to Step 2.  

The fitness function of the IGA is to maximize the prediction accuracy in terms of the 

area under the ROC curve (AUC) [53] and maximize the Pearson’s correlation 

coefficient (the R value) between the initial and optimized scores of amino acids, 

described as follows [51] (𝑊1=0.9 and 𝑊2=0.1 in this study): 
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𝑀𝑎𝑥 𝐹𝑖𝑡(Scard) = 𝑊1 × 𝐴𝑈𝐶 + 𝑊2 × 𝑅. 
(2.12) 

2.5.5: The prediction of a sequence 𝑃 based on the scoring function 𝑆(𝑃) and a 

threshold value determined by maximizing the prediction accuracy of training dataset. 

𝑆(𝑃) = ∑ 𝑤𝑖𝑆𝑖,
400

𝑖=1
. (2.13) 

 

 

Figure 2.6  - The system flowchart of the scoring card method (SCM) [3] 

where 𝑤𝑖 is the frequency of the dipeptide composition of P, which is in the range 

[0,1], 𝑆𝑖 is the score of the i-th dipeptide, and i= 1,..,400. P is classified as the positive 

class when S(P) is greater than the threshold value; otherwise, P is the negative class. 
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2.6 Logistic Model Trees 

In this section, the logistic model tree method, or LMT for short, is presented. 

It combines logistic regression models with tree induction, and thus is an analogue of 

model trees for classification problems. The term of regression sometimes refers to a 

particular kind of parametric model which especially refers to a numeric target 

variable, and sometimes to the process of estimating a target variable in general (as 

opposed to a discrete one). For tree induction, its objective is to find a subdivision of 

the instance space into corrected regions. 

 2.6.1 The model 

A logistic model tree basically consists of a standard decision tree structure 

with logistic regression functions at the leaves [49]. As in ordinary decision trees, a 

test on one of the attributes is associated with every inner node. For a nominal 

attribute with 𝑘 values, the node has 𝑘 child nodes, and instances are sorted down one 

of the 𝑘 branches depending on the value of the attribute. For numeric attributes, the 

node has two child nodes and the test consists of comparing the attribute value to a 

threshold: an instance is sorted down the left branch if its value for that attribute is 

smaller than the threshold and sorted down the right branch otherwise. 

More formally, a logistic model tree consists of a tree structure that is made up 

of a set of inner or non-terminal nodes 𝑁 and a set of leaves or terminal nodes 𝑇. Let 

𝐷 = 𝐷1 × … × 𝐷𝑚 denote the whole instance space, spanned by all attributes 𝑉 =

{𝑣1 × … × 𝑣𝑚}. Then the tree structure gives a disjoint subdivision of 𝐷 into regions 

𝐷𝑡, and every region is represented by a leaf in the tree: 
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𝐷 = ⋃ 𝐷𝑡

𝑡∈𝑇

, 𝐷𝑡 ∩ 𝐷𝑡′ = ∅, 𝑓𝑜𝑟 𝑡 ≠ 𝑡′ (2.14) 

Unlike ordinary decision trees, the leaves 𝑡 ∈ 𝑇 have an associated logistic 

regression function 𝑓𝑡 instead of just a class label. The regression function 𝑓𝑡 takes 

into account an arbitrary subset 𝑉𝑡 ⊂ 𝑉 of all attributes present in the data, and models 

the class membership probabilities. 

where 

𝐹𝑗(𝑥) =  𝛼0
𝑗

+ ∑ 𝛼𝑣
𝑗

∙ 𝑣

𝑣𝜖𝑉𝑡

 (2.15) 

 Or, equivalently, 

𝐹𝑗(𝑥) =  𝛼0
𝑖 + ∑ 𝛼𝑣𝑘

𝑖 ∙ 𝑣𝑘

𝑚

𝑘=1

 
(2.16) 

if 𝛼 𝑣𝑘
𝑖 = 0 for 𝑣𝑘 ∉ 𝑉𝑡. The model represented by the whole logistic model 

tree is then given by 

𝑓(𝑥) =  ∑ 𝑓𝑡(𝑥)

𝑡∈𝑇

∙ 𝐼(𝑥 ∈ 𝐷𝑡) (2.17) 

where 𝐼(𝑥 ∈ 𝐷𝑡) is indicator function, 𝐼(𝑥 ∈ 𝐷𝑡) = 1 if 𝑥 ∈ 𝐷𝑡 and 𝐼(𝑥 ∈ 𝐷𝑡) = 0 

otherwise. 

In general, the tree induction works in a divide-and-conquer algorithm: a 

classifier for a set of examples is built by performing a split and then building 

classifiers for the binary class classification. Building a tree with a very small dataset 

is usually not a good idea, so there is a simpler model which is better to solve such 

problems, this is the logistic regression model. In general, we can have only a few 

datasets, especially if part of our dataset is encountered at lower levels in the tree 



 

 

27 

which is smaller and smaller. For this reason, we prefer to build a linear logistic 

model instead of using the tree growing procedure recursively. This is one motivation 

for the logistic model tree algorithm. 

 2.6.2 Building Logistic Model Tree 

There is a straightforward approach for growing logistic model trees following 

the standard model tree. This would first involve building a standard classification 

tree, i.e. the algorithm selects the attribute which gives the largest decrease in standard 

deviation. By binary splitting the tree, nominal attributes are converted to binary ones 

(that are treated as numeric) before the tree growing starts. For this, the average value 

of the target variable is calculated for every nominal value of the attribute, and the 

nominal values are sorted according to these averages. If the nominal attribute has 𝑘 

values, it is replaced by 𝑘 − 1 binary attributes; the 𝑖𝑡ℎ being zero if the nominal 

value is among the first 𝑖 in the ordering and one otherwise. After that, we build a 

logistic regression model at every node. Note we initially need a logistic regression 

model at every node of the tree, because every node is a ‘candidate leaf’ during 

pruning. In this approach, the logistic regression model would be built in isolation on 

the local training examples at a node based on LogitBoost [54] (to obtain the 

parameter shown in Figure. 3.2), not taking into account the surrounding tree 

structure. 
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Figure 2.7  - LogitBoost algorithm [54] 

The LMT would be constructed as follow: 

1: Start building a logistic model 𝑓𝑛 at node 𝑛 by running Logitboost based on 

five fold cross-validation on 𝐷𝑛, including more variables or features in the model by 

adding simple regression 𝑓𝑚𝑗 fit to 𝐹𝑗
𝑛 (linear model for class j at node n), shown in 

step 2(b). 

2: Split node 𝑛 and build refining the logistic models at child nodes 𝑡 and 𝑡′ by 

proceeding the Logitboost on the smaller dataset 𝐷𝑡, and adding more simple 

regression to 𝐹𝑗
𝑛 from the 𝐹𝑗

𝑡. The simple linear regression 𝐹𝑗
𝑡 are trained from the 

variables of the set of dataset 𝐷𝑡. 
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3: Splitting of the child nodes continues in this fashion until some stop criterion 

is met (the stop criterion is described later). Figure 3.3 summarizes this scheme for 

building the logistic model tree. 

 

Figure 2.8  - Building logistic models 

 2.6.3 Splitting Criterion 

 In general, two criterions are used, i.e. entropy and information gain. The 

entropy characterizes the impurity of a variable. And the information gain is the 

expected reduction in entropy derived by partitioning the dataset. In the case of LMT, 

the global impurity overall for the classes is measured. And then selects the split that 

gives the largest decrease in the global impurity based on the C4.5 [55] splitting 

criterion) The LMT’s splitting would be described in the following way: 
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1: Calculating entropy for each subset of dataset 𝐷𝑖 ⊂ 𝐷 according to the 

selected variable. We can calculate the entropy as follows: 

𝐸(𝐷𝑖) = ∑ −𝑝(𝐶𝑗)

𝑘

𝑗=1

log2𝑝(𝐶𝑗) 
(2.18) 

where 𝑝(𝐶𝑗) is the probability the relative frequency of class j in 𝐷𝑖 at the ith case. For 

example, in the crystallization protein, 𝐶𝑗  consists of crystallizable and non-

crystallizable proteins. 

2: And then calculate information gain of dataset 𝐷𝑣 ⊂ 𝐷𝑖 which is denoted as 

follows: 

𝐺(𝐷𝑖 , 𝑉) = 𝐸(𝐷𝑖) − ∑
|𝐷𝑣|

|𝐷|
𝑣∈𝑉

𝐸(𝐷𝑣) 
(2.19) 

𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐷𝑖, 𝑉) = 𝐺(𝐷𝑖 , 𝑉)/𝐸(𝐷𝑖) (2.20) 

3: The optimum variable that is used to spilt is selected from the largest decrease 

𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐷𝑖 , 𝑉).  

 2.6.4 Stopping Criterion 

Tree growing stops for one of three reasons: 

1: A node is not split if it contains less than 15 examples. 

2: A logistic model is only built at a node if it contains at least 5 examples, 

because the five fold cross-validation is used to perform training dataset. 

3: A particular split is only considered if there are at least 2 subsets that contain 2 

examples each. This is a heuristic used by the C4.5 algorithm to avoid overly 

fragmented splits. Furthermore, a split is only considered if it achieves a minimum 
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information gain (for C4.5-style splitting) or a minimum decrease in impurity (for 

splitting on the response). When no such split exists, we stop growing the tree. 

 2.6.5 Pruning the Tree 

 In order to generate a sequence of smaller and smaller trees, each of which is a 

candidate for the appropriately-fit final tree, the method of “cost-complexity” pruning 

is used. The idea of LMT pruning based on CART [56]: 

𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼|𝑇̃| (2.21) 

The complexity parameter 𝛼 determines the relative penalty when we assign to a 

complex model and depends on the domain in question. It means that if 𝛼 = 0, there 

is no penalty for large trees, and the initial tree 𝑇𝑚𝑎𝑥 minimizes 𝑅𝛼. On the other 

hand, 𝛼 → 1 means the minimizer of 𝑅𝛼 become smaller and smaller, and at 𝛼 = 0 it 

will consist of a single leaf. 

 

 


