

CHAPTER 2

BACKGROUND

2.1 Biological Background

 In this section, we give a description of three protein functions of interest. The

three protein functions are analyzing by using different computational-based methods.

In general, proteins sequence is an ordered of amino acids. Each protein function has

different characteristics.

2.1.1 Human Leukocyte Antigen gene

 The human leukocyte antigen system or human lymphocyte antigen (HLA) is

the molecular name of a group of molecules in the human major histocompatibility

complex (MHC) region on human chromosome 6 which encode the cell-surface

antigen-presenting proteins [4] (shown in Figure 2.1). The HLA are a class of proteins

found on the surface membranes of cells which serve the purpose of presenting

possible antigens to T and B cells.

The MHC contains a group of molecules that play a crucial role in immune

recognition and for the tolerance of tissue grafting. In mice and humans, the MHC

molecules have also been found to influence body odors, body odor preferences, and

mate choice [5,6]. These sequences are also some of the most polymorphic regions of

the genome and are known to play a central role in controlling immunological self and

non-self recognition [7]. There are different types of HLA, e.g. HLA-I and HLA-II.

These two gene types are important in the matching of tissues and organs for donation

7

and organ transplantation under outdated immunesuppression protocols. In addition,

the major HLA antigens are essential elements for immune function. The two

different classes have different functions. The principle function of HLA-I, is to

present virally induced peptides on the surface of the cell by linking to the T-Cell

receptor of a Cytotoxic (CD8) T Cell. This allows the identification of viruses. The

role of HLA-II, by initiating a molecular immune response, is the reason they are only

present on “immunologically active” cells (B lymphocytes, macrophages, etc.) and

not on all tissues [8].

Figure 2.1 - The HLA region of Chromosome 6 [4]

8

2.1.2 Human Immunodeficiency Virus type 1

The Human Immunodeficiency Virus type 1 (HIV-1) enters target cells using

interaction between envelope glycoprotein (gp120) with the cellular CD4 receptor and

two main coreceptors, CC-chemokine receptor 5 (CCR5) and/or CXC-chemokine

receptor 4 (CXCR4) [9]. Based on the ability of the coreceptor usage, HIV-1 variants

can be classified as CCR5 tropic (R5), CXCR4 tropic (X4), or dual-mixed tropic

(R5X4) [10]. R5 variants are generally established in early stage infections, while X4

variants generally emerge in later stages and have been associated with a faster CD4

decline and progression to AIDS [11, 12]. Therefore, predicting the emergence of X4

variants has potential value for understanding pathogenesis, monitoring disease

progression and making treatment decisions.

Figure 2.2 - The V3 loop region [9]

2.1.3 Protein crystallization

The ability to obtain experimentally measured 3D folding structures using X-

ray crystallography is dependent on the availability of high quality protein crystals.

9

Since it is expensive and time consuming to produce such crystals, being able to

computationally determine whether or not a protein will be able to crystallize has

become a key step in determining protein folding structure. Furthermore, determining

a proteins structure provides understanding of the proteins properties and function

which can be utilized in the field of drug design [13]. Although X-ray crystallography

is generally considered to be the most reliable and accurate approach to produce 3D

structures, it is a very complex, time-consuming, laborious and expensive process. In

addition, for this method to work a crystallized form of the protein is required which

can be difficult to produce. At present, approximately 87 % of the protein structures

deposited in the Protein Data Bank (PDB) was characterized using the X-ray

crystallography method [14]. In addition, since many proteins have complex

structures, the current experimental protocol to produce 3D structures has only a 30%

success rate [15].

2.2 Sequence Classification

 Sequence classification has a broad range of applications such as genomic

analysis, protein functions etc [16]. Generally, a sequence is an ordered list of an

alphabet of symbols {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛}, a simple symbolic sequence is an ordered list

of the symbols from the alphabet, such as DNA or protein sequences.

Generally, sequence classification methods can be divided into three large

categories.

 The first category is feature based classification, which transforms a sequence

into a feature vector and then applies computational-based methods. Feature

selection plays an important role in these kinds of methods.

10

 The second category is sequence distance based classification. The distance

function measuring the similarity between two sequences determines the

quality of the classification. The method of choosing the similarity measure is

the important step.

 The last category is model based classification, such as using Hidden Markov

Model (HMM) and other statistical models to classify sequences.

In this chapter, we mainly focus on the representative methods in the three

categories. Some methods may be related to more than one category. For example, the

SVM method can be interpreted as either category 1 or category 2. Thus, the character

of SVM method can be classified as category 4.

 2.2.1 Feature based classification

Many conventional classification methods, such as decision trees and neural

networks, are designed for classifying feature vectors. Practically, we can solve such

problem by transforming a sequence into a suitable vector of features through feature

selections.

In this case, the simplest way is to assign each element as a feature. For

example, a sequence CACG can be transformed as a vector {𝐴, 𝐶, 𝐶, 𝐺}. In fact, the

sequential data cannot be captured by such transformation. To keep the order of the

elements in a sequence, a short sequence segment of k consecutive symbols, called a

k-gram, is usually selected to be the representation of sequential data. This particular

method is known as a spectrum kernel. By using k-grams as features, sequences can

be classified by computational-based method, such as the SVM method [18,19] or

decision trees [20]. More detail about k-gram based feature selection methods for

11

sequence classifications can be referred in [21] and in the next section. In the case of

protein sequences, the amino acid and dipeptide compositions are well-known

features which correlate to physicochemical properties (PCP).

 2.2.2 Sequence distance based classification

Sequence distance based methods define a distance function to measure the

similarity between a pair of sequences. Generally, we first choose the suitable

distance function; we then apply some existing methods, such as k-NN classifier or

SVM method. The k-NN classifier is a popular and lazy learning method [23]. This

method is very effective for a variety of problem domains. However, the k-NN

classifier cannot classify some datasets which are highly complex or overlap. More

detail about this drawback and how to solve for it can be found in Chapter 3. Given a

labeled sequence data set D, a positive integer k, and a new sequence s to be

classified, the k-NN classifier finds the k nearest neighbors of s in D, kNN(s), and

returns the dominating class label in kNN(s) as the label of s.

In the k-NN classifier, choosing a distance measure is the crucial process,

since it determines the k-NN classifier’s performance. One well-known distance

measure is the Euclidean distance. For two vectors x and y, the Euclidean distance is

defined by:

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = √∑(𝑥[𝑖] − 𝑦[𝑖])2

𝐿

𝑖=1

(2.1)

12

In our work, we examined the k-NN classifier based the string kernel. More detail

about such methods and how to use them in protein function prediction can be found

in Chapter 3.

 2.2.3 Model based classification

This category of sequence classification methods is based on generative

models, which assume sequences in a class are generated by an underlying model M.

Generally, given a class of sequences, M is used to assign the probability distribution

of the sequences in the class. Usually, some assumption is used to define M, and the

probability distributions are described by a set of parameters. In a supervised learning

setup, the learning process tries to learn all of the parameters. In the testing process,

an unknown sequence is assigned to the probable class with the highest likelihood by

using the best parameter from the learning process. This particular process is called

the probabilistic graphical model. There are two main types, i.e. generative and

discriminative model [24-27]. The graphical model can be apply in many problems,

including biological sequence classification [28,29].

 2.2.4 Support vector machine

Using machine learning, there are techniques called kernel methods which are

used to construct a maximum-margin separating hyperplane between two separated

classes. This particular kernel method is known as a Support Vector Machine

(SVMs). The SVM is one of the best-known and most frequently used kernel methods

[30], since the kernel method offers applicable tools to process, analyze, and compare

many types of data, and outperforms other methods in many cases [31-33]. Vapnik

13

introduced the kernel method with the principle of structure risk minimization in

statistical learning theory [34, 35]. In general, a data set is formally represented as

𝐷 = { (𝑥𝑖, 𝑦𝑖) | 𝑥𝑖 𝜖 ℝ𝑛, 𝑦𝑖 𝜖 {1, −1} } ; 𝑖 = 1, 2, … , 𝑛 (2.2)

where 𝑥𝑖 is the i-th input vector and 𝑦𝑖 is the class of 𝑥𝑖. Each 𝑥𝑖 is an n-dimensional

vector. Principally, the idea of the kernel method is to construct a maximum-margin

hyperplane separating the classes of x.

In general, when training data sets are nonlinearly separable vectors, the basic

idea is to retain the simplicity of linear methods by using mapping functions to map

the original data set into a higher dimensional space, called feature space, where

linear methods can classify them. The mapping function Φ(𝑥) is performed by

defining the inner product between each pair of data points in the data set of the

feature space through the kernel function. Thus, if Φ(𝑥) denotes the mapping

function, the kernel function can be expressed as a similarity measurement between

the training data set, which is defined as:

𝐾(𝑥, 𝑥 ′) = 〈Φ(𝑥), Φ(𝑥 ′)〉 = Φ(𝑥)ΤΦ(𝑥 ′) (2.3)

One of the most widely used kernels for sequence classification is a spectrum

kernel or string kernel (or k-gram [21]), which transforms a sequence into a feature

vector [37]. The kernel function of strings was first proposed by Watkins [38]. In

2002, Lodhi et al. introduced a powerful string subsequence kernel [39] for text

classification. Moreover, Leslie et al [40] showed that the spectrum kernel can

effectively be applied to protein classification. Saunders et al. also reported on the

computational advantages of the spectrum kernel for its fast and simple calculation. If

14

a suitable data structure is used, the prediction can be done in linear time [41]. We

will discuss the spectrum kernel in Section 2.4.

One disadvantage of kernel based methods is that they are hard to be

interpreted and hard for users to gain knowledge besides a classification result. We

used the string kernel to transform HLA genes, and then applied a k-NN classifier to

predict its class [1]. More detail of this work can be found in next part.

2.3 Feature Selection Methods

 The objectives of feature selection are manifold, the most important ones

being: (a) to avoid overfitting and improve model performance, i.e. prediction

performance in the case of supervised classification and better cluster detection in the

case of clustering, (b) to provide faster and more cost-effective models and (c) to gain

a deeper insight into the underlying processes that generated the data.

 The feature selection methods perform a search through the space of feature

subsets, in general, and must be addressed with four processes: 1) Selecting a starting

point in the space of feature subsets for beginning the search affecting the direction,

2) Searching the space of feature subsets. There are two main procedures, i.e. forward

and backward algorithms, 3) Evaluating strategy. This is concerned with how many

feature subsets are evaluated (more details of the category of evaluating strategy can

be seen below), and 4) the stopping criterion. A feature selector must decide when to

stop searching through the space of feature subsets. Depending on the evaluation

strategy, a feature selector might stop adding or removing features when none of the

alternatives improves the merit of a current feature subset.

15

Table 2.1 A taxonomy of feature selection techniques [44].

Model search Advantage Disadvantage Examples

Filter -Independent of the

classifier

-Better computational

complexity than

wrapper methods

-Ignores interaction

with the classifier

Information gain,

gain ration, Euclidean

distance [45]

Wrapper -Interacts with the

classifier

-Model feature

dependencies

-Risk of overfitting

-Classifier dependent

selection

Genetic algorithm [46],

Sequencial forward

selection [47],

Sequencial backward

selection [47]

Embedded -Better computational

complexity than

wrapper methods

-Interacts with the

classifier

-Model feature

dependencies

-Classifier dependent

selection

Decision tree [48],

Logistic model tree

[49],

Random forests [50]

In the context of classification, feature selection techniques or evaluating strategy can

be organized into three categories which depend on how they combine the feature

selection search with the construction of the classification model: filter methods,

wrapper methods and embedded methods. Table 2.1 and 2.2 provide a common

taxonomy and characteristics of feature selection methods (some existing methods),

showing for each technique the most prominent advantages and disadvantages, as well

as some examples of the most influential techniques [44].

16

Table 2.2 The characteristics of feature selection techniques.

Model search Criterion Search Assessment

Filter Relevance Top rank Statistical test

Wrapper Usefulness All subset Cross-validation

Embedded Usefulness Guide by learning

process

Cross-validation

 2.3.1 Filter techniques

 Filter techniques assess the relevance of features by looking at only the

intrinsic properties of the data. The ideal of this technique is shown in Figure 2.3. In

most cases a feature relevance score is calculated by using a statistical test, such as a

T-test, and low-scoring features are removed. Afterwards, this subset of features is

presented as input to the classification algorithm. Filter techniques face the problem

of finding a good feature subset (FS) independently of the model selection step.

Figure 2.3 - The system flowchart of filter techniques [44].

17

 2.3.2 Wrapper techniques

 Wrapper methods embed the model hypothesis search within the feature

subset search. In this setup, a search procedure in the space of possible feature subsets

is defined, and various subsets of features are generated and evaluated. The evaluation

of a specific subset of features is obtained by training and testing a specific

classification model, rendering this approach tailored to a specific classification

algorithm. The ideal of this technique is shown in Figure 2.4.

Figure 2.4 - The system flowchart of wrapper techniques [44].

 2.3.3 Embedded techniques

 The search for an optimal subset of features is built into the classifier

construction, and can be seen as a search in the combined space of feature subsets and

hypotheses. Just like wrapper approaches, embedded approaches are thus specific to a

given learning algorithm. Embedded methods have the advantage that they include the

interaction with the classification model, while at the same time being far less

computationally intensive than wrapper methods

18

Figure 2.5 - The system flowchart of embedded techniques [44].

2.4 Support Vector Machine

In a previous section we described the main idea of the SVM method. This

classifier can be categorized as both a sequence distance and a feature based

classification. The SVM classifier is a well-known method in non-linear problems.

The SVM method constructs a separating hyperplane maximizing the margin between

the two data sets which are sets of vectors in an n-dimensional space [30]. Intuitively,

a good separation or classification occurs when the hyperplane has the largest distance

to the neighboring data points of both classes, since the larger margin leads to a lower

generalization error of the classifier and also ensures that it can identify the particular

class of each data point [36,37].

 2.4.1 Notation

 To easily understand SVM, we will be considering a linear classifier for a

binary classification problem given a training data 𝐷. A linear classifier can be

represented as:

ℎ𝑤,𝑏(𝑥) = 𝑔(𝑤𝑇𝑥 + 𝑏) (2.4)

19

This classifier has 𝑤, 𝑏 as its parameters. Here, ℎ(𝑧) = 1 𝑖𝑓 𝑧 ≥ 0, and ℎ(𝑧) =

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 2.4.2 Functional and geometric margins

We first formalize the notions of the functional and geometric margins. Given

a training data set 𝐷, we define the functional margin of (𝑤, 𝑏) with respect to D.

𝛾𝑖 = 𝑦𝑖(𝑤𝑇𝑥 + 𝑏) (2.5)

The goal is to seek the smallest of the function margins of the individual

training examples. Denoted by 𝛾, this can therefore be written:

𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖 𝛾𝑖 (2.6)

 2.4.3 The optimal margin classifier

How can we find the one that achieves the maximum geometric margin? We

can represent the following by defining an optimization problem. In general, we now

have the following optimization problem:

min𝑤,𝑏
1

2
‖𝑤‖2

(2.7)

𝑠. 𝑡. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, … , 𝑚

Note that: in the learning process of SVMs, a hard-margin separation, as

represented above, is usually performed, even though this kind of misclassification is

unavoidable in many practical problems. To deal with this problem, soft-margin

separation is introduced to mitigate these errors by finding a maximum margin

separator which allows misclassifying a training data set [36,37]. Currently, we know

20

that the simplest way to permit errors in the maximum margin linear classifier is to

introduce “slack” variables 𝜀𝑖 for the classification/margin constraints in the

optimization problem.

In order to solve this constrained optimization problem, we introduce

Lagrange multipliers 𝛼𝑖 ≥ 0. When we construct the Lagrangian for our optimization

problem we have:

𝐿(𝑤, 𝑏, 𝛼) =
1

2
‖w‖2 − ∑ 𝛼𝑖(𝑦𝑖(w𝑇𝑥𝑖 + 𝑏) − 1)

𝑚

𝑖=1

(2.8)

Let’s go on the dual form of the problem by setting
𝜕𝐿(𝑤,𝑏,𝛼)

𝜕𝑤
= 0 and

𝜕𝐿(𝑤,𝑏,𝛼)

𝜕𝑏
= 0. In

the classification problem with a training data set D, we can predict the class of

unknown data 𝑥𝑛+1 by using a linear decision function determined by the kernel

function of the inner product between feature vectors. The decision function can then

be expressed as follows:

𝑓(𝑥𝑛+1) = ∑ 𝑦𝑖𝛼𝑖

𝑛

𝑖=1

𝐾(, 𝑥𝑖 , 𝑥𝑛+1) + 𝑏
(2.9)

 2.4.4 Kernel function

 In general, the basis of protein classification is to represent protein sequences

as vectors in a high-dimensional feature space via a string-based feature map. We then

train the SVM, a large-margin linear classifier, on the feature vectors representing our

training sequences. Recall, since SVMs are a kernel-based learning algorithm, so we

intend to introduce a suitable kernel for the protein classification

 In Section 2.2.4, we gave a description of the most widely used kernels for

sequence classification which is a spectrum kernel or string kernel, which transforms

21

a sequence into a feature vector [18-19, 38-40]. The idea behind the spectrum kernel

approach is based on the similarity of two strings containing common subsequences.

The spectrum kernel is a convolution kernel specialized for the string comparison

problem. For a number 𝑠k ≥ 1, the sk-spectrum of a sequence x is all the possible

subsequences of length 𝑠k that it contains. Given the alphabet A, a sequence x is

transformed into a feature space by a transformation function or feature mapping

function

Φsk(𝑥) = (𝜙𝑎(𝑥))𝑎∈𝐴𝑠𝑘
(2.10)

where 𝜙𝑎(𝑥) is the number of times 𝑎 occurs in 𝑥. The kernel function is the inner

product of the features vectors:

𝐾sk(𝑥, 𝑥 ′) = 〈Φsk(𝑥), Φsk(𝑥 ′)〉. (2.11)

For another variant of the kernel, we can assign to the 𝑎-th coordinate a binary value

of 0 if a does not occur in 𝑥, 1 if it does occur.

 In Chapter 3, we were interested in HLA gene prediction by using the string

kernel to transform HLA genes, and then classify them by using the k-NN classifier.

2.5 Scoring Card Method

 The scoring card method SCM is an efficient and generalized method for

creating various kinds of dipeptide scoring cards for predicting protein functions from

whole sequences. The principle hypothesis of the SCM method uses amino acid and

dipeptide compositions which play an important role in serving as significantly

effective features. The description of the SCM is given in a general purpose algorithm

without using heuristics or specific domain knowledge. The SCM method can be

22

applied to other prediction problems without significant modifications. Of course, the

generic score matrix of dipeptides can be further customized and utilized with other

complementary features for improved prediction accuracy [51].

 The system flowchart of the SCM method with propensity analysis is shown in

Figure. 3.1. The description of the SCM consists of the following parts: 1) creation of

data sets for both training and an independent test, 2) establishment of an initial

scoring matrix for the propensity of dipeptides using a statistical approach, 3)

optimized solubility scoring matrix of dipeptides, 4) prediction of protein solubility,

and 5) propensity analysis of amino acids.

The procedure of the SCM method is briefly described below. More details about

the SCM can be found in.

2.5.1: Prepare a training dataset consisting of two subsets for positive and negative

classes.

2.5.2: Generate an initial scoring card consisting of 400 propensity scores of

dipeptides by using a coarse-tofine approach. The initial scoring card is created by

using a statistical approach based on the dipeptide composition

I) Calculate the numbers of 400 dipeptides in each class.

II) Normalize the dipeptide composition by dividing the numbers using the total

 numbers of dipeptides in each class.

III) Obtain the propensity scores of individual dipeptide by subtracting the score of

 the negative class from that of the positive class.

IV) Normalize the scores of all dipeptides into the range [0, 1000].

2.5.3: Derive the propensity score of each amino acid A by averaging the 20 scores of

dipeptides AX and XA where X can be any amino acid. If the acid composition (i.e.,

23

percentages) of a certain protein has a high correlation with the CSM (crystallizable

scoring matrix) of amino acids, this protein is easy to predict as a crystallizable protein.

2.5.4: Optimize score card (optimized CSM) by using an intelligent genetic algorithm

(IGA) [52]. In the chromosome representation, the 400 real-valued variables are

encoded in a chromosome of IGA, which is in the range [0, 1000]. The IGA algorithm

for obtaining the optimized score card is described as follows:

 Step 1: (Initialization) Randomly generate Npop individuals including the

initial SSM. In this study, Npop = 40.

 Step 2: (Evaluation) Compute fitness values of all individuals where Ibest is

the best individual in the population.

 Step 3: (Selection) Use a rank-based selection to select Ps*Npop individuals

to establish a mating pool. In this study, Ps = 1.0.

 Step 4: (Crossover) Perform the intelligence crossover operation [15] for each

individual with Ibest to find the best two individuals among two parents and two

children as the new children (the elitist strategy).

 Step 5: (Mutation) Use a real-valued mutation operator to randomly mutate

individuals with a mutation probability Pm (= 0.01). Mutation is not applied to Ibest

to prevent the best fitness value from deteriorating.

 Step 6: (Termination test) If a given termination condition is satisfied, stop

this algorithm, otherwise, go to Step 2.

The fitness function of the IGA is to maximize the prediction accuracy in terms of the

area under the ROC curve (AUC) [53] and maximize the Pearson’s correlation

coefficient (the R value) between the initial and optimized scores of amino acids,

described as follows [51] (𝑊1=0.9 and 𝑊2=0.1 in this study):

24

𝑀𝑎𝑥 𝐹𝑖𝑡(Scard) = 𝑊1 × 𝐴𝑈𝐶 + 𝑊2 × 𝑅.
(2.12)

2.5.5: The prediction of a sequence 𝑃 based on the scoring function 𝑆(𝑃) and a

threshold value determined by maximizing the prediction accuracy of training dataset.

𝑆(𝑃) = ∑ 𝑤𝑖𝑆𝑖,
400

𝑖=1
. (2.13)

Figure 2.6 - The system flowchart of the scoring card method (SCM) [3]

where 𝑤𝑖 is the frequency of the dipeptide composition of P, which is in the range

[0,1], 𝑆𝑖 is the score of the i-th dipeptide, and i= 1,..,400. P is classified as the positive

class when S(P) is greater than the threshold value; otherwise, P is the negative class.

25

2.6 Logistic Model Trees

In this section, the logistic model tree method, or LMT for short, is presented.

It combines logistic regression models with tree induction, and thus is an analogue of

model trees for classification problems. The term of regression sometimes refers to a

particular kind of parametric model which especially refers to a numeric target

variable, and sometimes to the process of estimating a target variable in general (as

opposed to a discrete one). For tree induction, its objective is to find a subdivision of

the instance space into corrected regions.

 2.6.1 The model

A logistic model tree basically consists of a standard decision tree structure

with logistic regression functions at the leaves [49]. As in ordinary decision trees, a

test on one of the attributes is associated with every inner node. For a nominal

attribute with 𝑘 values, the node has 𝑘 child nodes, and instances are sorted down one

of the 𝑘 branches depending on the value of the attribute. For numeric attributes, the

node has two child nodes and the test consists of comparing the attribute value to a

threshold: an instance is sorted down the left branch if its value for that attribute is

smaller than the threshold and sorted down the right branch otherwise.

More formally, a logistic model tree consists of a tree structure that is made up

of a set of inner or non-terminal nodes 𝑁 and a set of leaves or terminal nodes 𝑇. Let

𝐷 = 𝐷1 × … × 𝐷𝑚 denote the whole instance space, spanned by all attributes 𝑉 =

{𝑣1 × … × 𝑣𝑚}. Then the tree structure gives a disjoint subdivision of 𝐷 into regions

𝐷𝑡, and every region is represented by a leaf in the tree:

26

𝐷 = ⋃ 𝐷𝑡

𝑡∈𝑇

, 𝐷𝑡 ∩ 𝐷𝑡′ = ∅, 𝑓𝑜𝑟 𝑡 ≠ 𝑡′ (2.14)

Unlike ordinary decision trees, the leaves 𝑡 ∈ 𝑇 have an associated logistic

regression function 𝑓𝑡 instead of just a class label. The regression function 𝑓𝑡 takes

into account an arbitrary subset 𝑉𝑡 ⊂ 𝑉 of all attributes present in the data, and models

the class membership probabilities.

where

𝐹𝑗(𝑥) = 𝛼0
𝑗

+ ∑ 𝛼𝑣
𝑗

∙ 𝑣

𝑣𝜖𝑉𝑡

 (2.15)

 Or, equivalently,

𝐹𝑗(𝑥) = 𝛼0
𝑖 + ∑ 𝛼𝑣𝑘

𝑖 ∙ 𝑣𝑘

𝑚

𝑘=1

(2.16)

if 𝛼 𝑣𝑘
𝑖 = 0 for 𝑣𝑘 ∉ 𝑉𝑡. The model represented by the whole logistic model

tree is then given by

𝑓(𝑥) = ∑ 𝑓𝑡(𝑥)

𝑡∈𝑇

∙ 𝐼(𝑥 ∈ 𝐷𝑡) (2.17)

where 𝐼(𝑥 ∈ 𝐷𝑡) is indicator function, 𝐼(𝑥 ∈ 𝐷𝑡) = 1 if 𝑥 ∈ 𝐷𝑡 and 𝐼(𝑥 ∈ 𝐷𝑡) = 0

otherwise.

In general, the tree induction works in a divide-and-conquer algorithm: a

classifier for a set of examples is built by performing a split and then building

classifiers for the binary class classification. Building a tree with a very small dataset

is usually not a good idea, so there is a simpler model which is better to solve such

problems, this is the logistic regression model. In general, we can have only a few

datasets, especially if part of our dataset is encountered at lower levels in the tree

27

which is smaller and smaller. For this reason, we prefer to build a linear logistic

model instead of using the tree growing procedure recursively. This is one motivation

for the logistic model tree algorithm.

 2.6.2 Building Logistic Model Tree

There is a straightforward approach for growing logistic model trees following

the standard model tree. This would first involve building a standard classification

tree, i.e. the algorithm selects the attribute which gives the largest decrease in standard

deviation. By binary splitting the tree, nominal attributes are converted to binary ones

(that are treated as numeric) before the tree growing starts. For this, the average value

of the target variable is calculated for every nominal value of the attribute, and the

nominal values are sorted according to these averages. If the nominal attribute has 𝑘

values, it is replaced by 𝑘 − 1 binary attributes; the 𝑖𝑡ℎ being zero if the nominal

value is among the first 𝑖 in the ordering and one otherwise. After that, we build a

logistic regression model at every node. Note we initially need a logistic regression

model at every node of the tree, because every node is a ‘candidate leaf’ during

pruning. In this approach, the logistic regression model would be built in isolation on

the local training examples at a node based on LogitBoost [54] (to obtain the

parameter shown in Figure. 3.2), not taking into account the surrounding tree

structure.

28

Figure 2.7 - LogitBoost algorithm [54]

The LMT would be constructed as follow:

1: Start building a logistic model 𝑓𝑛 at node 𝑛 by running Logitboost based on

five fold cross-validation on 𝐷𝑛, including more variables or features in the model by

adding simple regression 𝑓𝑚𝑗 fit to 𝐹𝑗
𝑛 (linear model for class j at node n), shown in

step 2(b).

2: Split node 𝑛 and build refining the logistic models at child nodes 𝑡 and 𝑡′ by

proceeding the Logitboost on the smaller dataset 𝐷𝑡, and adding more simple

regression to 𝐹𝑗
𝑛 from the 𝐹𝑗

𝑡. The simple linear regression 𝐹𝑗
𝑡 are trained from the

variables of the set of dataset 𝐷𝑡.

29

3: Splitting of the child nodes continues in this fashion until some stop criterion

is met (the stop criterion is described later). Figure 3.3 summarizes this scheme for

building the logistic model tree.

Figure 2.8 - Building logistic models

 2.6.3 Splitting Criterion

 In general, two criterions are used, i.e. entropy and information gain. The

entropy characterizes the impurity of a variable. And the information gain is the

expected reduction in entropy derived by partitioning the dataset. In the case of LMT,

the global impurity overall for the classes is measured. And then selects the split that

gives the largest decrease in the global impurity based on the C4.5 [55] splitting

criterion) The LMT’s splitting would be described in the following way:

30

1: Calculating entropy for each subset of dataset 𝐷𝑖 ⊂ 𝐷 according to the

selected variable. We can calculate the entropy as follows:

𝐸(𝐷𝑖) = ∑ −𝑝(𝐶𝑗)

𝑘

𝑗=1

log2𝑝(𝐶𝑗)
(2.18)

where 𝑝(𝐶𝑗) is the probability the relative frequency of class j in 𝐷𝑖 at the ith case. For

example, in the crystallization protein, 𝐶𝑗 consists of crystallizable and non-

crystallizable proteins.

2: And then calculate information gain of dataset 𝐷𝑣 ⊂ 𝐷𝑖 which is denoted as

follows:

𝐺(𝐷𝑖 , 𝑉) = 𝐸(𝐷𝑖) − ∑
|𝐷𝑣|

|𝐷|
𝑣∈𝑉

𝐸(𝐷𝑣)
(2.19)

𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐷𝑖, 𝑉) = 𝐺(𝐷𝑖 , 𝑉)/𝐸(𝐷𝑖) (2.20)

3: The optimum variable that is used to spilt is selected from the largest decrease

𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐷𝑖 , 𝑉).

 2.6.4 Stopping Criterion

Tree growing stops for one of three reasons:

1: A node is not split if it contains less than 15 examples.

2: A logistic model is only built at a node if it contains at least 5 examples,

because the five fold cross-validation is used to perform training dataset.

3: A particular split is only considered if there are at least 2 subsets that contain 2

examples each. This is a heuristic used by the C4.5 algorithm to avoid overly

fragmented splits. Furthermore, a split is only considered if it achieves a minimum

31

information gain (for C4.5-style splitting) or a minimum decrease in impurity (for

splitting on the response). When no such split exists, we stop growing the tree.

 2.6.5 Pruning the Tree

 In order to generate a sequence of smaller and smaller trees, each of which is a

candidate for the appropriately-fit final tree, the method of “cost-complexity” pruning

is used. The idea of LMT pruning based on CART [56]:

𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼|𝑇̃| (2.21)

The complexity parameter 𝛼 determines the relative penalty when we assign to a

complex model and depends on the domain in question. It means that if 𝛼 = 0, there

is no penalty for large trees, and the initial tree 𝑇𝑚𝑎𝑥 minimizes 𝑅𝛼. On the other

hand, 𝛼 → 1 means the minimizer of 𝑅𝛼 become smaller and smaller, and at 𝛼 = 0 it

will consist of a single leaf.

