TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (Thai)	v
ABSTRACT (English)	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
ABBREVIATION	xviii
CHAPTER 1 Introduction	. 1
1.1 Statement and significance of the problem	
1.2 Literature review	5
1.3 Objectives of study	10
1.4 Scopes of study	10
CHAPTER 2 Theoretical Principles Concern	11
2.1 Basic knowledge of hydropower plant	11
2.1.1 Run of river hydropower plant	11
2.1.2 Regulating pond hydropower plant	12
2.1.3 Reservoir hydropower plant	12
2.1.4 Pumped storage hydropower plant	12
2.2 The Component of hydropower plant	12
2.2.1 Dam	13
2.2.2 Intake	13
2.2.3 Surge tank	13
2.2.4 Penstock	13
2.2.5 Power house	13
2.2.6 Turbine	13
2.2.6.1 Impulse turbine	13
2.2.6.2 Reaction turbines	14
2.2.7 Generator	15
2.2.8 Transmission line	15
2.3 Concepts of reservoir operation	15
2.4 Classification of reservoirs	17
2.4.1 Classification based on purposes	17
2.4.2 Classification based on size	17
2.4.3 Classifications based on storage	18
2.4.4 Characteristics and requirements of water uses	18
2.4.4.1 Irrigation	18

2.4.4.2 Municipal and industrial water supply	18
2.4.4.3 Hydroelectric power	19
2.4.4.4 Flood control	20
2.4.4.5 Navigation	20
2.4.4.6 Thermal power generation	20
2.4.4.7 Recreation	20
2.4.4.8 Minimum flow maintenance	21
2.5 Operation of a multi-reservoir system	21
2.6 Reservoirs in series	21
2.7 Reservoirs in parallel	23
2.8 Hydropower rules	25
2.9 Rule curve	25
2.9.1 Derivation of rule curves	26
2.9.2 Upper rule curve	27
2.9.3 Lower rule curve	28
2.10 Hydraulic power theory	29
2.11 Efficiency theory	30
2.12 Reservoir water balance	30
2.13 Strategy for improved operation	32
2.14 Reservoir operation models	33
2.14.1 Optimization techniques	34
2.14.2 Simulation techniques	35
CHAPTER 3 Data and Program Calibration	36
3.1 Nam Ngum-1 hydropower plant general data	36
3.2 Hydrological data of nam ngum-1hydropower plant	37
3.3 Physical data of nam ngum-1hydropower plant	40
3.3.1 Reservoir evaporation loss	42
3.3.2 Turbine discharge data of nam ngum-1hydropower plant	43
3.3.3 Tail water data of nam ngum-1hydropower plant	44
3.3.4 Spillway discharge data of nam ngum-1hydropower plant	44
3.4 HEC-DSSVue2.0 software	45
3.5 Create data base in HEC-DSSVue 2.0 software	46
3.6 Steps for create database inHEC-DSSVue2.0 software	47
3.7 Step of input data to model	47
3.8 Step of calibration model	48
3.9 Water data calibration model	48
3.10 Power data calibration model	50
CHAPTER 4Research Design and Method	52
4.1 Methodology	53
4.2 General framework of the study	A 1 53/ A
4.3 HEC-ResSim3.0 model setup	55
4.3.1 Watershed Setup module	57

4.3.2 Reser	voir network module	58
4.3.3 Simul	lation module	58
CHAPTER 5 Re	sults and Discussion	60
5.1 R	esult of drought year case	60
5	.1.1 Step one of drought case	60
5	.1.2 Step two of drought case	62
5	.1.3 Step three of drought case	64
5.2 R	esult of the normal year case	69
5	.2.1 Step one of normal case	69
5	.2.2 Step two of normal case	71
5	.2.3 Step three of normal case	73
5.3 R	esult of the wet year case	78
5	.3.1 Step one of wet case	78
5	.3.2 Step two of wet case	80
5	.3.3 Step three of wet case	82
CHAPTER 6 Co	onclusion and Recommendation	87
6.1	Conclusion	87
6.2	Recommendation	90
REFERENCES		91
APPENDICES		94
Appendix. A	Calibration of HEC-ResSim3.0 model	95
A.1	Water data calibration model	95
	A.1.1 First calibration model	95
	A.1.2 Second calibration model	101
	A.1.3 Third calibration model	106
A.2	Power data calibration model	111
	A.2.1 First calibration model for power	111
	A.2.2 Second calibration model for power	120
	A.2.3 Third calibration model for power	128
Appendix. B	HEC-DSSVue2.0 software and step of input data to model	137
B.1	Create database inHEC-DSSVue2.0 software	138
B.2	Step of input data to model	141
	Step of input data to model	
Appendix. C	HEC-ResSim3.0model setup	144
CODVIIght C.1	Watershed setup module	145
C.2	Reservoir network module	150
C.3	Simulation module	162

Appendix. D	Actual data	168	
D.1	Actual data in wet case	168	
D.2	Actual data in drought case	182	
D.3	Actual data in normal case	195	
Appendix. E	Result data	208	
E.1	Result data in wet case	208	
E.2	Result data in normal case	222	
E.3	Result data in drought case	235	
CURRICULUM VITAE 248			

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
1.1	The principal features of nam ngum-1hydropower plant	4
2.1	General rules for operation of reservoirs in series	22
2.2	General rules operation of reservoirs in parallel	25
3.1	Energy generation data of Nam Ngum-1 HPP from 2003 - 2012	37
3.2	Elevation- storage-area data for nam ngum-1 hydropower reservoir	41
3.3	Mean monthly evaporation data of NamNgum-2 reservoir	42
3.4	Turbine discharge data for Nam Ngum-1 hydropower reservoir	43
3.5	Tail water discharge data for Nam Ngum-1 hydropower reservoir	44
3.6	Spillway discharge data for Nam Ngum-1 hydropower reservoir	44
5.1	Result of simulation model of drought case years	67
5.2	Result for revised the rule curve of drought case years	68
5.3	Result simulation model of normal case years	76
5.4	Result for revised rule curve of normal case years	77
5.5	Result simulation model of wet case years	85
5.6	Result for revised rule curve of wet case years	86
6.1	Result of simulation model	88
6.2	Result of simulation model	89
A.1	Average evaporation of namngum2 hydropower plant (100%)	95
A.2	Evaporation of NamNgum2 hydropower plant (9%)	96
A.3	Views the graph result of model	99
A.4	Comparison result of model and actual data record	100
A.5	Evaporation of NamNgum2 hydropower plant (8%)	101
A.6	Views the graph result of model	104
A.7	Comparison result of model and actual data record	105
A.8	Evaporation of NamNgum2 hydropower plant (7%)	106
A.9	Views the graph result of model	109
A.10	Comparison result of model and actual data record	110
A.11	Station Use, Hydraulic loss (1.0)	112
A.12	Views the graph result of model	118
A.13	Comparison result of model and actual data record	119
A.14	Station Use, Hydraulic loss(1.5)	120
A.15	Views the graph result of model	126
A.16	Comparison result of model and actual data record	127
A.17	Station Use, Hydraulic loss (2.0)	128
A.18	Views the graph result of model	134
A.19	Comparison result of model and actual data record	135
C.1	Map layer formats supported by HEC- ResSim3.0	148
D.1	Actual data in wet case	168
D.2	Actual data in drought case	182

 D.3 Actual data in normal case E.1 Result data in wet case E.2 Result data in normal case E.3 Result data in drought case 	195 208 222 235

LIST OF FIGURES

Figu	re	Page
1.1	Location of Nam Ngum-1 hydropower plant	2
1.2	Water inflow characteristic into Nam Ngum-1 reservoir	3
2.1	Components of a hydropower plant	12
2.2	Schematic presentation of a reservoir	16
2.3	System of two reservoirs in series	23
2.4	System of two parallel reservoirs	24
2.5	Upper and lower rule curve use for reservoirs general	27
2.6	Flow chart of reservoir operation concept	34
3.1	Average inflow of NamNgum-1 reservoir	38
3.2	Average turbine release of NamNgum-1 reservoir	38
3.3	Average spill release of NamNgum-1 reservoir	39
3.4	Average energy production of NamNgum-1 reservoir	39
3.5	Average head water level of NamNgum-1 reservoir	40
3.6	Elevation-storage-area data for Nam Ngum-1 hydropower reservoir	42
3.7	Main window of HEC-DssVue2.0 software	45
3.8	HEC-DSSVue2.0 software	46
3.9	Step of water data calibration model	50
3.10	Step of power data calibration model	51
4.1	Shape of Nam Ngum basin and reservoir' Nam Ngum-1 HPP	52
4.2	Flow chart designed model for reservoir operation of Nam Ngum-1 HPP	55
4.3	Modeling module concepts	56
4.4	Main windows of watershed setup modules	57
4.5	Main window of reservoir network module	58
4.6	Main window of simulation module	59
5.1	The result of revised upper and lower rule curve for NN-1 HPP	61
5.2	The simulation result for operation of NN-1HPP in step 1	61
5.3	The simulation result for energy production of NN-1HPP in step 1	62
5.4	The result of revised upper and lower rule curve for NN-1 HPP	62
5.5	The simulation result for operation of NN-1 HPP in step 2	63
5.6	The simulation result for energy production of NN-1 HPP in step 2	64
5.7	The result of revised upper and lower rule curve for NN-1HPP	64
5.8	The simulation result for operation of NN-1HPP in step 3	65
5.9	The simulation result for energy production of NN-1HPP in step 3	65
5.10	The result of revised upper and lower rule curve for NN-1 HPP	69
5.11	The simulation result for operation of NN-1HPP in step 1	70
5.12	The simulation result for energy production of NN-1 HPP in step 1	71
5.13	The result of revised upper and lower rule curve for NN-1 HPP	71
5.14	The simulation result for operation of NN-1HPP in step 2	72
5.15	The simulation result for energy production of NN-1HPP step 2	73

5.16	The result of revised upper and lower rule curve for NN-1 HPP	73
5.17	The simulation result for operation of NN-1HPP in step 3	74
5.18	The simulation result for energy production of NN-1HPP in step 3	75
5.19	The result of revised upper and lower rule curve for NN-1 HPP	78
5.20	The simulation result for operation of NN-1HPP in step 1	79
5.21	The simulation result for energy production of NN-1HPP in step 1	80
5.22	The result of revised upper and lower rule curve for NN-1 HPP	80
5.23	The simulation result for operation of NN-1HPP in step 2	81
5.24	The simulation result for energy production of NN-1HPP in step 2	82
5.25	The result of revised upper and lower rule curve for NN-1 HPP	82
5.26	The simulation result for operation of NN-1HPP in step 3	83
5.27	The simulation result for energy production of NN-1HPP in step 3	84
A.1	Showing the input evaporation 9% into model	96
A.2	Showing the input evaporation 9% into model	97
A.3	Views the result of model	98
A.4	Views the graph result of model	98
A.5	Comparison water elevation simulation and actual data	100
A.6	Showing the input evaporation 8% into model	101
A.7	Showing the input evaporation 8% into model	102
A.8	Views the result of model	103
A.9	Views the graph result of model	103
A.10	Comparison water elevation simulation and actual data	105
A.11	Showing the input evaporation 7% into model	106
A.12	Showing the input evaporation 7% into model	107
A.13	Views the result of model	108
A.14	Views the graph result of model	109
A.15	Comparison water elevation simulation and actual data	111
A.16	Show open the model	112
A.17	Show open the model	113
A.18	Step input parameter into model	113
A.19	Step of run simulation model	114
A.20	Run simulation model	115
A.21	To access result of simulation model.	115
A.22	To access result of simulation model	116
A.23	To access result of simulation model	116
A.24	To access result of simulation model	117
A.25	To access result of simulation model	117
A.26	Comparison water elevation simulation and actual data	119
A.27	Show open the model	120
A.28	Show opens the model	121
A.29	Step Input parameter into model	121
A.30	Step of run simulation model	122

A.31	Run simulation model	123
A.32	To access result of simulation model	123
A.33	To access result of simulation model	124
A.34	To access result of simulation model	124
A.35	To access result of simulation model	125
A.36	To access result of simulation model	125
A.37	Comparison water elevation simulation and actual data	127
A.38	Show open the model	128
A.39	Show opens the model	129
A.40	Step input parameter into model	129
A.41	Step of run simulation model	130
A.42	Run simulation model	131
A.43	To access result of simulation model	131
A.44	To access result of simulation model	132
A.45	To access result of simulation model	132
A.46	To access result of simulation model	133
A.47	To access result of simulation model	133
A.48	Comparison water elevation simulation and actual data	135
B.1	HEC-DssVue2.0 main window	137
B.2	HEC-DSSVue2.0 programs	138
B.3	Create folders on HEC-DSSVue2.0 programs	139
B.4	Create database on HEC-DSSVue2.0 programs	139
B.5	Data preparation in excel file	140
B.6	Create database on HEC-DSSVue2.0 programs	140
B.7	Input HEC-DSSVue2.0 file into model	141
B.8	Input HEC-DSSVue2.0 file into model	142
B.9	Input HEC-DSSVue2.0 file into model	142
B.10	Input HEC-DSSVue2.0 file into model	143
B.11	Input HEC-DSSVue2.0 file into model	143
C.1	General HEC-ResSim3.0 modules concepts	145
C.2	Watershed setup module	146
C.3	Create new watershed dialog box	146
C.4	Create new watershed dialog box	147
C.5	Layer selector dialog box	148
C.6	Layer selector dialog box	149
C.7	Layer selector dialog box	149
C.8	Layer selector dialog box	150
C.9	Show map of watershed from Arc View GIS file	150
C.10	Show reservoir network module	151
C.11	Show reservoir network module update network	151
C.12	Show new reservoir network	152
C13	New alternative dialog box	152

C 14	New alternative dialog box	153
C.14	Alternative editor operations tab, reservoir	153
	Alternative editor look back tab	154
	Alternative editor-time-series tab	155
C.17		156
	Select model dialog box	156
C.19		150
C.20		157
C.21	1 1 2	157
C.22 C.23	Tail water physical data editor	158
C.24	1	159
	Reservoir editor flood control point	160
	Reservoir editor inactive points	160
	Reservoir editor new rule	161
	Reservoir editor function release	161
C.29		162
C.30		163
C.31	•	163
	Create simulation files	164
C.33	Step for creating simulation files	165
C.34	Simulation control panel shortcut menu compute	165
C.35	Compute window	166
C.36	Reservoir shortcut menu plot simulation results	167
C.37	Sample plot of reservoir results	167

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS

Lao PDR Lao People's Democratic Republic

CMU Chiang Mai University

EGAT Electricity Generating Authority of Thailand

EDL Electricite Du Laos

EDL-Gen Electricite Du Laos Generation Public Company

NN-1HPP Nam Ngum-1 Hydro Power Plant NN-2HPP Nam Ngum-2 Hydro Power Plant NLik-1/2HPP Nam Lik-1/2 Hydro Power Plant NM-3HPP Nam Mang-3 Hydro Power Plant NL HPP Nam Leuk Hydro Power Plant NS-3HPP Nam Song Hydro Power Plant

HEC-ResSim Hydrologic Engineering Center's Reservoir Simulation

HEC-DSSVue Hydrologic Engineering Center's Data Storage System Visual Utility

Engine.

HEC-DSS Hydraulic Engineering Center Data Storage Service

AVG Average
kV Kilovolt
kWh kilowatt hour
MW Megawatt

MWh/y Megawatt hour per year

MWh Mega watt hour **MCM** Million cubic meter million cubic meters Mm3 Mean above sea level m.a.s.l Qt Quantity of water turbine Qin Quantity of water inflow Qs Quantity of water spill **GUI** Graphical User Interface

GIS Geographic Information System

GMT Greenwich Mean Time
GWh/y Gigawatt hour per year

rpm Round Per Minute

cms Cubic Meter per Second Cubic Meter per Second

URC Upper Rule Curve LRC Lower Rule Curve

D Demand