งานวิจัยนี้ได้ศึกษาการชะของชิลิกา (SiO₂) และอะลูมิน่า (Al₂O₃) จากเถ้าถ่านหินลิกในด์ ด้วยสารละลายโชเดียมไฮดรอกไซด์ (NaOH) และผลที่มีต่อกำลังอัดของวัสดุจีโอโพลิเมอร์ โดยทำ ตัวอย่างเถ้าถ่านหินให้เป็นสารแขวนลอยด้วยสารละลายโชเดียมไฮดรอกไซด์ที่ความเข้มข้นต่างกัน และนำสารละลายที่ระยะเวลาการชะต่างกันไปวิเคราะห์หาปริมาณซิลิกาและอะลูมิน่า นอกจากนี้ได้ ทำการทดสอบกำลังอัดของวัสดุจีโอโพลิเมอร์ ผลการทดลองแสดงให้เห็นว่าการชะละลายของเถ้า ถ่านหินขึ้นอยู่กับความเข้มข้นของสารละลายโชเดียมไฮดรอกไซด์และระยะเวลาการชะ สารละลาย โชเดียมไฮดรอกไซด์ที่มีความเข้มขันปานกลางคือ 10 โมลาร์ และเวลาในการชะ 10 นาทีให้กำลังอัด ที่สูง สามารถทำวัสดุจีโอโพลิเมอร์ที่ให้ค่ากำลังอัดสูงถึง 65 เมกะปาสกาล ซึ่งเทียบได้กับมอร์ดัาร์ หรือคอนกรีตกำลังสูงที่ผลิตจากปูนซีเมนต์ปอร์ตแลนด์แลนด์ประเภทที่ 1

นอกจากนี้ งานวิจัยนี้ยังศึกษาคุณสมบัติของวัสดุจีโอโพลิเมอร์จากเถ้าถ่านหิน ซึ่งได้มาจาก โรงไฟฟ้าแม่เมาะ จังหวัดลำปาง และเตรียมจีโอโพลิเมอร์เพสต์ได้จากการผสมเถ้าถ่านหินกับ สารละลายโซเดียมชิลิเกต (Na₂SiO₃) และโซเดียมไฮดรอกไซด์ (NaOH) อัตราส่วนของ Na₂SiO₃/NaOH ที่ศึกษาคือ 0.5, 1.0, 1.5 และ 2.0 โดยน้ำหนัก ความเข้มขันของสารละลาย โซเดียมไฮดรอกไซด์ที่ใช้คือ 10 และ 15 โมลาร์ วิธีการผสมเพื่อทำวัสดุจีโอโพลิเมอร์มี 2 วิธี คือ ผสมแบบแยก และผสมแบบธรรมดา บ่มเพสต์ที่ได้ที่อุณหภูมิ 65°C เป็นเวลา 48 ชั่วโมง เพื่อ เปรียบเทียบปริมาณสารประกอบซิลิกา Si-O-Si (stretching) โดยเทคนิค Fourier Transform Infrared Spectrometer (FT-IR) ที่ช่วงความถี่ 1200-950 cm⁻¹ นอกจากนี้ยังศึกษาคุณสมบัติทาง โครงสร้างทางจุลภาคและความร้อนของเพสต์ด้วยเทคนิค Differential Scanning Calorimeter (DSC) และทดสอบกำลังอัดของมอร์ต้าร์ ผลการทดลองได้แสดงว่าปริมาณของสารประกอบซิลิกา และคำกำลังอัดขึ้นกับอัตราส่วนของ Na₂SiO₃/NaOH และวิธีการผสม

A study was conducted on the leaching of the SiO₂ and Al₂O₃ of lignite fly ash in NaOH solution and its effect on the strength of geopolymer. The fly ash samples were suspended in the different NaOH concentration solution. The leachates with different leaching time intervals, were analysed in term of silica and alumina leached. In addition, the strength of the geopolymer was also tested. The results revealed that the solubility of the fly ash depended on the concentration of NaOH and the leaching time. High compressive strength was obtained with a moderate concentration of NaOH (10M) and a selected leaching time of 10 minutes. A geopolymer with relatively high strength of up to 65 MPa is obtained and is comparable to the high strength mortar and concrete made from ordinary Portland cement type I.

In addition, this project was studied on the properties of geopolymeric material from fly ash obtained from Mae Moh power plant in Lumpang. Geopolymer paste was made by mixing the ash with NaOH solution and Na₂SiO₃ solution. The mass ratio of Na₂SiO₃/NaOH was varied at 0.5, 1.0, 1.5 and 2.0 by weight using 10 M and 15 M NaOH. Two mixing methods were investigated; separated mixing (S) and normal mixing (N). Pastes were then cured at 65°C for 48 hours in order to study the quantities of silica compound, Si-O-Si (stretching), by Fourier Transform Infrared Spectrometer (FT-IR) at frequency of 1200-950 cm⁻¹. Microstructure and thermal properties of paste by Differential Scanning Calorimeter (DSC) were additionally carried out. Geopolymer mortar was performed for the compressive strength. The results showed that quantities of reacted silicon compound (Si-O-Si) depended on the Na₂SiO₃/NaOH ratio and mixing method.