

REFERENCES

1. Chu, K., Shum, P.W. and Shen, Y.G., 2006, "Substrate Bias Effects on Mechanical and Tribological Properties of Substitutional Solid Solution (Ti, Al)N Films Prepared by Reactive Magnetron Sputtering", **Materials Science and Engineering B**, Vol. 131, pp.62-67.
2. Barshilia, H.C., Yogesh, K. and Rajam, K.S., 2009, "Deposition of TiAlN Coatings Using Reactive Bipolar-pulsed Direct Current Unbalanced Magnetron Sputtering", **Vacuum**, Vol. 83, pp.427-434.
3. Wrehde, S., Quaas, M., Bogdanowicz, R., Steffen, H., Wulff, H. and Hippler, R., 2008 "Optical and Chemical Characterization of Thin TiN_x Films Deposited by DC-magnetron sputtering", **Vacuum**, Vol. 82, pp.1115–1119.
4. Jeyachandran, Y.L., Narayandass, Sa.K., Mangalaraj, D., Areva, S. and Mielczarski, J.A., 2007 "Properties of Titanium Nitride Films Prepared by Direct Current Magnetron Sputtering", **Materials Science and Engineering A**, Vol. 445–446, pp.223–236.
5. Kelly, P.J., Vom Braucke, T., Liu, Z., Arnell, R.D. and Doyle E.D., 2007 "Pulsed DC Titanium Nitride Coatings for Improved Tribological Performance and Tool Life", **Surface & Coatings Technology**, Vol. 202, pp.774–780.
6. Shum, P.W., Tam, W.C., Li, K.Y., Zhou, Z.F. and Shen, Y.G., 2004, "Mechanical and Tribological Properties of Titanium-Aluminium-Nitride Films Deposited by Reactive Close-field Unbalance Magnetron Sputtering", **Wear**, Vol. 257, pp.1030-1040.
7. Singh, K., Limaye, P.K., Soni, N.L., Grover, A.K., Agrawal, R.G. and Suri, A.K. 2005, "Wear Studies of (Ti-Al)N Coatings Deposited by Reactive Magnetron Sputtering", **Wear**, Vol. 258, pp.1813-1824.
8. Shum, P.W., Li, K.Y. and Shen, Y.G., 2005, "Improvement of High-speed Turning Performance of Ti-Al-N Coatings by Using a Pretreatment of High-energy Ion Implantation", **Surface & Coatings Technology**, Vol. 198, pp.414-419.
9. Wuhrer, R. and Yeung, W.Y., 2004, "A Comparative Study of Magnetron Co-sputtered Nanocrystalline Titanium Aluminium and Chromium Aluminium Nitride Coatings", **Scripta Materialia**, Vol. 50, pp.1461-1466.

10. Chung, K.H., Liu, G.T., Duh, J.G. and Wang, J.H., 2004, "Biocompatibility of a Titanium–Aluminum Nitride Film Coating on a Dental Alloy", **Surface & Coatings Technology**, Vol. 188-189, pp.745-749.
11. Chen, J.T., Wang, J., Zhang, F., Zhang, G.A., Fan, X.Y., Wu, Z.G. and Yan, P.X. 2008, "Characterization and Temperature Controlling Property of TiAlN Coatings Deposited by Reactive Magnetron Co-sputtering", **Journal of Alloys and Compounds**, Vol. 472, pp. 91–96.
12. Wang, Y., Tam, P.L. and Shen, Y.G., 2008, "Behavior of $Ti_{0.5}Al_{0.5}N$ Thin Film in Nanoscale Deformation with Different Loading Rates", **Thin Solid Films**, Vol. 516, pp.7641-7647.
13. Liu, G.T., Duh, J.G., Chung, K.H. and Wang, J.H., 2005, "Mechanical Characteristics and Corrosion Behavior of (Ti,Al)N Coatings on Dental Alloys", **Surface & Coatings Technology**, Vol. 200, pp.2100-2105.
14. Oliveira, J.C., Manaia, A., Dias, J.P., Cavaleiro, A., Teer, D. and Taylor, S., 2006, "The Structure and Hardness of Magnetron Sputtered Ti-Al-N Thin Films with Low N Contents (<42 at.%)", **Surface & Coatings Technology**, Vol. 200, pp.6583-6587.
15. Manaila, R., Devenyi, A., Biro, D., David, D., Barna, P.B. and Kovacs, A., 2002 "Multilayer TiAlN Coatings with Composition Gradient", **Surface & Coatings Technology**, Vol. 151 –152, pp.21–25.
16. Shum, P.W., Li, K.Y., Zhou, Z.F. and Shen, Y.G., 2004, "Structural and Mechanical Properties of Titanium–aluminium–nitride Films Deposited by Reactive Close-field Unbalanced Magnetron Sputtering", **Surface and Coatings Technology**, Vol. 185, pp.245-253.
17. Wagner, J., Edlmayr, V., Penoy, M., Michotte, C., Mitterer, C. and Kathrein, M., 2008, "Deposition of Ti–Al–N Coatings by Thermal CVD", **International Journal of Refractory Metals & Hard Materials**, Vol. 26, 563–568.
18. PalDey, S. and Deevi, S.C., 2003, "Properties of Single Layer and Gradient (Ti,Al)N Coatings", **Materials Science and Engineering**, Vol. 361, pp.1-8.
19. Liu, Z.-J., Shum, P.W. and Shen, Y.G., 2006, "Surface Growth of (Ti,Al)N Thin Films on Smooth and Rough Substrates", **Thin Solid Films**, Vol. 496, pp.326-332.
20. Singh, K., Limaye, P.K., Soni, N.L., Grover, A.K., Agrawal, R.G. and Suri, A.K. 2005, "Wear Studies of (Ti–Al)N Coatings Deposited by Reactive Magnetron Sputtering", **Wear**, Vol. 258, pp.1813-1824.

21. Ramana, J.V, Kumar, s., David, C. and Saju, V.S. 2004, "Structure, Composition and Microhardness of (Ti,Zr)N and (Ti,Al)N Coatings Prepared by DC magnetron Sputtering", **Materials Letters**, Vol. 58, pp.2553-2558.
22. Cremer, R., Reichert, K. and Neuschütz, D. 2001, "A Composition Spread Approach to the Optimization of (Ti,Al)N Hard Coatings Deposited by DC and Bipolar Pulsed Magnetron Sputtering", **Surface & Coatings Technology**, Vol. 142-144, pp.642-648.
23. Oliveira J.C., Manaia, A. and Cavaleiro, A., 2008, "Hard Amorphous Ti-Al-N Coatings Deposited by Sputtering", **Thin Solid Films**, Vol. 516, pp.5032-5038.
24. Mei, F., Shao, N., Lun, W. and Li, G., 2005, "Effect of N₂ Partial Pressure on the Microstructure and Mechanical Properties of Reactively Sputtered (Ti,Al)N Coating", **Materials Letters**, Vol. 59, pp.2210-2213.
25. Musil, J. and Hruby, H., 2000, "Superhard Nanocomposite Ti_{1-x}Al_xN Films Prepared by Magnetron Sputtering", **Thin Solid Films**, Vol. 365, pp.104-109.
26. Lugscheider, B., Bobzin, K., Papenfug-Janzen, N., Maes, M. and Parkot, D., 2004, "Plasma Diagnostical Comparison of the MSIP Process of (Ti,Al)N with Pulsed and dc Power Supplies Using Energy-resolved Mass Spectroscopy", **Surface & Coatings Technology**, Vol. 188-189, pp.164-167.
27. Kutschej, K., Mayrhofer, P.H., Kathrein, M, Polcik, P., Tessadri, R. and Mitterer, C., 2005, "Structure, Mechanical and Tribological Properties of Sputtered Ti_{1-x}Al_xN Coatings with 0.5≤x≤0.75", **Surface & Coatings Technology**, Vol. 200, pp.2358-2365.
28. Barshilia, H.C., Prakash, K.M., Jain, A. and Rajam, K.S., 2005, "Structure, Hardness and Thermal Stability of TiAlN and Nanolayered TiAlN/CrN Multilayer Films", **Vacuum**, Vol. 77, pp.169-179.
29. B. Subramanian, K. Ashok, P. Kuppusami, C. Sanjeeviraja, M. Jayachandran, "Characterization of Reactive DC magnetron Sputtered TiAlN Thin Films", **Crystal Research and Technology**, Vol. 43 (2008) pp. 1078-1082.
30. Wuhrer, R. and Yeung, W.Y., 2002, "A Study on the Microstructure and Property Development of d.c. Magnetron Cospattered Ternary Titanium Aluminium Nitride CoatingsPart III Effect of Substrate Bias Voltage and Temperature", **Journal of Materials Science**, Vol. 37, pp.1993-2004.

31. Åstrand, M., Selinder, T.I. and Sjöstrand, M.E., 2005, "Deposition of $Ti_{1-x}Al_xN$ Using Bipolar Pulsed Dual Magnetron Sputtering", **Surface & Coatings Technology**, Vol. 200, pp.625-629.
32. Kim, G.S., Lee, S.Y. and Hahn, J.H., 2005, "Properties of TiAlN Coatings Synthesized by Closed-field Unbalanced Magnetron Sputtering", **Surface & Coatings Technology**, Vol. 193, pp.213-218.
33. Zhou, T., Nie, P., Cai, X. and Chu, P.K, 2009, "Influence of N_2 Partial Pressure on Mechanical Properties of $(Ti,Al)N$ Films Deposited by Reactive Magnetron Sputtering", **Vacuum**, Vol. 83, pp.1057-1059.
34. Liu, Z.-J., Shum, P.W. and Shen, Y.G., 2004, "Hardening Mechanisms of Nanocrystalline Ti-Al-N Solid Solution Films", **Thin Solid Films**, Vol. 468, pp. 161-166.
35. Wührer, R. and Yeung, W.Y., 2003, "Effect of Target-substrate Working Distance on Magnetron Sputter Deposition of Nanostructured Titanium Aluminium nitride Coatings", **Scripta Materialia**, Vol. 49, pp. 199-205.
36. Zhou, M., Makino, Y., Nose, M. and Nogi, K., 1999, "Phase Transition and Properties of Ti-Al-N Thin Films Prepared by R.F.-plasma Assisted Magnetron Sputtering", **Thin Solid Films**, Vol. 339, pp. 203-208.
37. Wikipedia, the free encyclopedia, **Solid solution** [Online], Available : http://en.wikipedia.org/wiki/Solid_solution [2010, December 3]
38. Zeng, X. T., Zhang, S. and Muramatsu, T., 2000, "Comparison of Three Advanced Hard Coatings for Stamping Applications", **Surface & Coating Technology**, Vol.127, pp. 38-42.
39. Surinpong, S., 2002. "PVD Surface Coating for Tooling", **Technique**, Vol. 198 pp. 122-125.
40. Knotek, O., Munz, W.D. and Leyendecker, T., 1987, "Industrial Deposition of Binary, Ternary, and Quaternary Nitrides of Titanium, Zirconium, and Aluminum", **Journal of Vacuum Science and Technology A**, Vol. 5 Issue (4) pp. 2173 - 2179.
41. Knotek, O., Böhmer, M., Leyendecker, T. and Jungblut, F., 1988, "The Structure and Composition of $Ti-Zr-N$, $Ti-Al-Zr-N$ and $Ti-Al-V-N$ Coatings", **Materials Science and Engineering A**, Vol. 105, pp.481-488.
42. **Coating Selection Guidelines** [Online], Available : http://www.northeastcoating.com/Coatings_1.htm [2010, December 3].

43. Tijnshoff, K. Mohlfeld, A., Leyendecker, T., FulS, H.G., Erkens, G., Wenke, R., Cselle, T. and Schwenck, M., 1997, "Wear Mechanisms of $(Ti_{1-x}Al_x)N$ Coatings in Dry Drilling", **Surface & Coating Technology**, Vol. 94-95, pp. 603-609.
44. Schuster, J.C. and Baure, J., 1984, "The Ternary System Titanium-Aluminum-Nitrogen", **Journal of Solid State Chemistry**, Vol. 53, pp. 260-265.
45. Chapman, B., 1980, **Glow Discharge Processes**, John Wiley & Sons, New York.
46. Wasa, K., Hayakawa, S., 1992, **Handbook of Sputter Deposition Technology**, Noyes Publications, Park Ridge, New Jersey.
47. Belkind, A., 2007, "How Plasmas are Made", **Vacuum Technology & Coating**, pp80-87. Noyes Publications, Park Ridge, New Jersey.
48. Mattox, D.M., 1998, "Handbook of Physical Vapor Deposition (PVD) Processing", Noyes Publications, Westwood, New Jersey.
49. Smith, D.L., 1995, **Thin-Film Deposition: Principle and Practice**, New York, McGraw-Hill.
50. Rivkerby, D.S. and Matthews, A., 1991, **Advanced Surface Coatings a Handbook of Surface Engineering**, Blackie and Son Limited, London.
51. Pokaipisit, A., 2007, **Study on the Deposition of Indium Tin Oxide Thin Films by Electron Beam Evaporation and Ion Assisted Deposition**, a Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Physics), Faculty of Science, King Mongkut's University of Technology Thonburi.
52. The free encyclopedia, Wikipedia: **Atomic Force Microscope**, [Online], Available: http://en.wikipedia.org/wiki/Atomic_Force_Microscope, [2009, October 26].
53. Nanoscience Instruments, **Atomic Force Microscopy**, [Online], Available: [Http://www.nanoscience.com/education.html](http://www.nanoscience.com/education.html), [2009, October 26].
54. Jenkins, T.E., 1995, **Semiconductor Science, Growth and Characterization Techniques**, Prentice Hall International (UK) Limited, UK.
55. Chaiyakun, S., 2009, **Growth and Characterization of Nanostructure Anatase Phase TiO_2 Thin Films Prepared by DC Reactive Unbalanced Magnetron Sputtering**, a Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Physics), Faculty of Science, King Mongkut's University of Technology Thonburi.

CURRICULUM VITAE

NAME Mr. Adisorn Buranawong

DATE OF BIRTH May 29, 1982

EDUCATIONAL RECORD

HIGH SCHOOL	High School Graduation Assumption College Sriracha(Chonburi)
BACHELOR'S DEGREE	Bachelor of science (Physics) Prince of Songkla University, 2004
MASTER'S DEGREE	Master of science (Physics) Burapha University, 2008
DOCTORAL DEGREE	Doctor of Philosophy (Physics) King Mongkut's University of Technology Thonburi, 2010

INTERNATIONAL PUBLICATIONS

1. Buranawong, A., Witit-anun, N., Chaiyakun, S., Pokaipisit, A. and Limsuwan, P., 2011. "The Effect of Titanium Current on Structure and Hardness of Aluminium Titanium Nitride Deposited by Reactive Unbalance Magnetron Co-sputtering". **Thin Solid Films**, (Accept), Vol.xx-xx, pp xx-xx.
2. Buranawong, A., Chaiyakhun, S. and Limsuwan, P., 2010. "Characterization of Aluminium Titanium Nitride Thin Films Deposited by Reactive Magnetron Co-sputtering". **Advanced Materials Research**, Vol.93-94, pp 340-343.
3. Chaiyakun, S., Buranawong, A., Deelert, T. and Witit-anun, N., 2008, "The Influence of Total and Oxygen Partial Pressures on Structure and Hydrophilic Property of TiO_2 Thin Films Deposited by Reactive DC Magnetron Sputtering", **Advanced Materials Research**, Vol.55-57, pp 465-468.

INTERNATIONAL CONFERENCES

1. Buranawong, A., Witit-anun, N., Chaiyakun, S. and Limsuwan, P., 2011. "The Crystal Structure, Surface morphology and Microstructure of Aluminium titanium nitride Thin Film Deposited by Reactive Unbalanced Magnetron Co-Sputtering at Room Temperature". In **The Pure and Applied Chemistry**

International Conference (PACCON), Miracle Grand Hotel, Bangkok, Thailand, Jan 5-7, 2011.

2. Buranawong, A., Witit-anun, N., Chaiyakun, S. and Limsuwan, P., 2010. "The Effect of Titanium Current on Structure and Hardness of Aluminium Titanium Nitride Deposited by Reactive Unbalanced Magnetron Co-Sputtering". **In The 5th International Conference on Technological Advances of Thin Films & Surface Coatings (ThinFilms2010) and The 1st international Conference on Advanced polymer and polymer composites (COMPO2010)**, Harbin Institute of technology, Harbin, People's Republic of China, July 11-14, 2010.
3. Buranawong, A., Witit-anun, N., Chaiyakun, S. and Limsuwan, P., 2009. "Characterization of Aluminium Titanium Nitride Thin Films Deposited by Reactive Magnetron Co-sputtering". **In International conference on Functionalized and Sensing Materials**, Chulabhorn Convention Center, Bangkok, Thailand, December 7-9, 2009.
4. Chaiyakun, S., Buranawong, A., Deelert, T. and Witit-anun, N., 2008, "The Influence of Total and Oxygen Partial Pressures on Structure and Hydrophilic Property of TiO₂ Thin Films Deposited by Reactive DC Magnetron Sputtering", **In International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials**, Imperial Mae Ping Hotel, Chiang Mai, Thailand, April 22-25, 2008.
5. Witit-anun, N., Buranawong, A., Deelert, T. and Chaiyakun, S., 2007, "Structure and Hydrophilic Properties of Titanium Dioxide Thin Films Deposited by Reactive DC Magnetron Sputtering" **In German-Thai Symposium on Nanoscience and Nanotechnology**, The Tide Resort, Bangsaen Beach, Chonburi, Thailand. September 27-28, 2007.
6. Buranawong, A., Witit-anun, N., Deelert, T. and Chaiyakun, S., 2007, "Effect of Annealing Temperature on Hydrophilic Properties of Titanium Dioxide Thin Films Deposited by Reactive DC Magnetron Sputtering", **In German-Thai Symposium on Nanoscience and Nanotechnology**, The Tide Resort, Bangsaen Beach, Chonburi, Thailand. September 27-28, 2007.

NATIONAL CONFERENCES

1. Buranawong, A., Chaiyakun. S. and Limsuwan, P., 2010. "The Effect of Thickness on Structure of Aluminium Titanium Nitride Deposited by Reactive Magnetron Co-sputtering". **In Siam Physics Congress 2010**.
2. Buranawong, A., Witit-anun, N., Chaiyakun, S. and Limsuwan, P., 2009. "The Crystal Structure of Titanium Aluminium Nitride Thin Films Deposited by Reactive Co-Unbalance Magnetron Sputtering". **In 35th Congress on Science and Technology of Thailand 2009**.

3. Buranawong, A., Witit-anun, N. and Chaiyakun, S., 2008. "The Effect of O₂ Partial Pressure on Structure and Hydrophilic Property of TiO₂ Films Deposited by Reactive DC Unbalance Magnetron Sputtering". **In 9th National Grad research Conference 2008.**
4. Buranawong, A., Witit-anun, N., Thawornthira, C., Jongjitta, S., Deelert, T. and Chaiyakun, S., 2007. Effect of Oxygen Partial Pressure on Hydrophilic Properties of Titanium Dioxide Thin Films Deposited by Reactive DC Magnetron Sputtering. **In Siam Physics Congress 2007.**
5. Deelert, T., Witit-anun, N., Thawornthira, C., Jongjitta, S., Buranawong, A. and Chaiyakun, S., 2007. Determination of The Optical Constant of Titanium Dioxide Thin Films from Transmission Spectra. **In Siam Physics Congress 2007.**

Agreement on Intellectual Property Rights Transfer for Postgraduate Students

Date.....20/01/54.....

Name.....Adisorn.....Middle Name.....

Surname/Family Name.....Buranawong.....

Student Number...51500406..... who is a student of King's Mongkut's University of

Technology Thonburi (KMUTT) in Graduate Diploma Master Degree

Doctoral Degree

Program.....Doctor of Philosophy.....Field of Study.....Physics.....

Faculty/School.....Science.....

Home Address10/1 Soi 4, Bangsaen Sai 3 Rd., Tumbon Saensuk, Amphur Muang, Chonburi.....

Postal Code.....20130.....Country.....Thailand.....

I, as 'Transferer', hereby transfer the ownership of my thesis copyright to King's Mongkut's University of Technology Thonburi who has appointed (Asst.Prof.Dr.Woranut Koetsinchai) Dean of Faculty of.....Science.....to be 'Transferee' of copyright ownership under the 'Agreement' as follows.

1. I am the author of the thesis entitled

DEPOSITION OF TITANIUM ALUMINUM NITRIDE THIN FILM BY REACTIVE UNBALANCE MAGNETRON SPUTTERING METHOD

under the supervision ofProf.Dr.Pichet Limsuwan.....

who is my supervisor, and/or.....

who is/are my co-supervisor(s), in accordance with the Thai Copyright Act B.E. 2537. The thesis is a part of the curriculum of KMUTT.

2. I hereby transfer the copyright ownership of all my works in the thesis to KMUTT throughout the copyright protection period in accordance with the Thai Copyright Act B.E. 2537, effective on the approval date of thesis proposal consented by KMUTT.

3. To have the thesis distributed in any form of media, I shall in each and every case stipulate the thesis as the work of KMUTT.

4. For my own distribution of thesis or the reproduction, adjustment, or distribution of thesis by the third party in accordance with the Thai Copyright Act B.E. 2537 with remuneration in return, I am subject to obtain a prior written permission from KMUTT.

5. To use any information from my thesis to make an invention or create any intellectual property works within ten (10) years from the date of signing this Agreement, I am subject to obtain prior written permission from KMUTT, and KMUTT is entitled to have intellectual property

obtain prior written permission from KMUTT, and KMUTT is entitled to have intellectual property rights on such inventions or intellectual property works, including entitling to take royalty from licensing together with the distribution of any benefit deriving partly or wholly from the works in the future, conforming with the Regulation of King Mongkut's Institute of Technology Thonburi *Re the Administration of Benefits deriving from Intellectual Property B.E. 2538.*

6. If the benefits arise from my thesis or my intellectual property works owned by KMUTT, I shall be entitled to gain the benefits according to the allocation rate stated in the Regulation of King Mongkut's Institute of Technology Thonburi *Re the Administration of Benefits deriving from Intellectual Property B.E. 2538.*

Signature.....*Adisorn Buranawong* Transferor
(...*Adisorn Buranawong*...)

Student

Signature.....*Waranut Koetsinchai* Transferee
(*Asst. Prof. Waranut Koetsinchai*)

Dean

Signature.....*Pichet Limsuwan* Witness
(*Prof. Pichet Limsuwan*)

Signature.....*Pinpan Visal* Witness
(*Assoc. Prof. Pinpan Visal-athaphand*)

