

E46949

DEPOSITION OF TITANIUM ALUMINIUM NITRIDE THIN FILM BY
REACTIVE UNBALANCED MAGNETRON SPUTTERING METHOD

MR. ADISORN BURANAWONG

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY (PHYSICS)

FACULTY OF SCIENCE

KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

2010

Deposition of Titanium Aluminium Nitride Thin Film by Reactive Unbalanced Magnetron Sputtering Method

Mr. Adisorn Buranawong M.Sc. (Physics)

A Dissertation Submitted in Partial Fulfillment of the Requirements for
The Degree of Doctor of Philosophy (Physics)
Faculty of Science
King Mongkut's University of Technology Thonburi
2010

Dissertation Committee

Somyod Denchitcharoen Chairman of Dissertation Committee
(Somyod Denchitcharoen, Ph.D.)

Pichet Limsuwan Member and Dissertation Advisor
(Prof. Pichet Limsuwan, Ph.D.)

Panita Chinvetkitvanich Member
(Panita Chinvetkitvanich, Ph.D.)

Surasing Member
(Assoc. Prof. Surasing Chaiyakun, Ph.D.)

Copyright reserved

หัวข้อวิทยานิพนธ์	การเคลือบฟิล์มบาง ไททาเนียม อลูมิเนียม ในไตรค์ด้วยวิธีรีแอคตีฟ อันนาลานซ์ แมกนีตอ่อน สปัตเตอริ่ง
หน่วยกิต	48
ผู้เขียน	นายอดิศร บูรณวงศ์
อาจารย์ที่ปรึกษา	ศ.ดร.พิเชญชุ ลิ่มสุวรรณ
หลักสูตร	ปรัชญาดุษฎีบัณฑิต
สาขาวิชา	ฟิสิกส์
ภาควิชา	ฟิสิกส์
คณะ	วิทยาศาสตร์
พ.ศ.	2553

บทคัดย่อ

E 46949

ฟิล์มบาง ไททาเนียม อลูมิเนียม ในไตรค์ ที่มีโครงสร้างระดับนาโน จะถูกเคลือบลงบนวัสดุรองรับที่ไม่ถูกให้ความร้อนต่างชนิดกัน เช่น ซิลิโคน กระจก และ Cu-grid ด้วยวิธีรีแอคตีฟ อันนาลานซ์ แมกนีตอ่อน สปัตเตอริ่ง โดยใช้ไททาเนียมและอลูมิเนียมเป็นเป้าสารเคลือบแบบโคลสปัตเตอริ่ง ทำการเคลือบฟิล์มบาง โดยกำหนดให้กระแสสปัตเตอริ่งของเป้าอลูมิเนียมคงที่เท่ากับ 0.6 A กระแสสปัตเตอริ่งของเป้าไททาเนียมเป็น 0.6, 0.7, 0.8, 1.0 และ 1.2 A แต่ละกระแสสปัตเตอริ่งจะใช้เวลาในการเคลือบเป็น 15, 30, 45 และ 60 นาที ตามลำดับ ฟิล์มบางที่เคลือบได้จะนำไปศึกษาและวิเคราะห์ โครงสร้างผลลัพธ์ทั้งโครงสร้างจุลภาคด้วย X-ray diffraction (XRD) และ transmission electron microscopy (TEM) ลักษณะพื้นผิวและความหนาศักยภาพด้วย atomic force microscopy (AFM) ภาคตัดขวางวิเคราะห์ด้วย field emission scanning electron microscopy (FE-SEM) ผลการศึกษาพบว่าโครงสร้างผลลัพธ์ ลักษณะพื้นผิวและ โครงสร้างจุลภาคของฟิล์มบางเปลี่ยนแปลงไปตามเงื่อนไขในการเคลือบ จากเทคนิค XRD พบรูปแบบการเลี้ยวเบนแบบ polycrystal ที่ระนาบ (112) (004) และ (153) ตรงกับโครงสร้างผลึกนาโนรูปของอลูมิเนียม ไททาเนียม ในไตรค์ ($AlTi_3N$) crystallite size ที่คำนวณจาก Scherrer's formula ขึ้นอยู่กับเงื่อนไขการเคลือบ เช่นกัน ทั้งนี้เทคนิค TEM ยังยืนยันโครงสร้าง $AlTi_3N$ ที่ได้ โดยแสดงว่ามีปริมาณของอลูมิเนียมสูง ความหมายผิวและความหนาเฉลี่ยจะขึ้นอยู่กับกระแสที่ให้กับเป้าไททาเนียมและเวลาในการเคลือบ สำหรับภาคตัดขวางที่วิเคราะห์ด้วยเทคนิค FE-SEM พบรูปแบบการเลี้ยวเบนแบบ colloid ที่ขัดเรียงตัวแบบแน่น

คำสำคัญ: ไททาเนียม อลูมิเนียม ในไตรค์/ อันนาลานซ์ แมกนีตอ่อนสปัตเตอริ่ง/ เป้าสารเคลือบแบบโคลสปัตเตอริ่ง

Dissertation Title	Deposition of Titanium Aluminium Nitride Thin Film by Reactive Unbalanced Magnetron Sputtering Method
Dissertation Credits	48
Candidate	Mr. Adisorn Buranawong
Dissertation Advisor	Prof. Dr. Pichet Limsuwan
Program	Doctor of Philosophy
Field of Study	Physics
Department	Physics
Faculty	Science
B.E.	2553

Abstract

E46949

In this research, nanostructure titanium aluminium nitride thin films were deposited on three different unheated substrates, Si, glass, Cu-grid by reactive unbalanced magnetron sputtering. Ti and Al were used as co-sputtering targets. Al sputtering current was kept constant at 0.6 A whereas Ti sputtering current was set at different 0.6, 0.7, 0.8, 1.0, 1.2 A. For each Ti current, the film was deposited at different time of 15, 30 45 and 60 min, respectively. The deposited films were then characterized and analyzed by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The results indicated that the modification of crystal structure, surface morphology and microstructure were depended on deposition parameters. The XRD patterns show polycrystalline structure with preferred orientations in (112), (004) and (153) planes which agree with standard structure of aluminium titanium nitride ($AlTi_3N$) films. The crystal size calculated from Scherrer's formula was depended on deposition parameters. In addition, the structure of $AlTi_3N$ was also confirmed by TEM. These results show that the films compose of high Al content. The root mean square surface roughness and the average thicknesses were strongly influenced by I_{Ti} and deposition times. Cross section analysis by SEM showed dense and compact columnar morphology.

Keywords: Titanium Aluminium Nitride/ Unbalanced Magnetron Sputtering/ Co-sputtering Targets

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Professor Dr. Pichet Limsuwan for his support and vast knowledge of guidance including instrument supports in this thesis work and, throughout the course of this collaborative research. His expertise and insightful advice were essential to the successful completion of this work. My special thanks to Dr.Somyod Denchitcharoen, Dr.Panita Chinvetkitvanich and Associate Professor Dr.Surasing Chaiyakun for corporative encouragements and reviews of the thesis manuscript.

I would like to thank all the colleagues that have made the completion of this thesis work possible. Thanks to Dr.Artorn Pokaipisit for their academic and technical support on analytical methods and many research data. Special thanks to Associate Professor Dr.Surasing Chaiyakun and Assistance Professor Nirun Witit-anun for the fruitful discussions and enthusiastic collaborations during this work, and has been deeply involved in many aspects of this research. My appreciation is to Mr. Panya Saekhow and Mr. Tanapong Chaturapat for their assistance in sputtering machine at Vacuum and Thin film Technology Research Laboratory, Department of Physic, Faculty of Science, Burapha University and many research data.

Grateful appreciation is directed to Assistance Professor Dr. Patama Visuttipitukul, Metallurgical Engineering, Faculty of engineering, Chulalongkorn University, for technical supports in XRD equipments. Thanks to Mr. Sirawat Peanpatanasin and Mr. Boolaer Ngotawornchai, Scientific and Technology Research Equipment Centre, Chulalongkorn University, for their assistance in technical support of AFM and TEM equipments.

My gratitude is dedicated to all my family for giving me love and inspiration, especially my mother and my father. I am also very pleased to thank all my friends in KMUTT Laser Lab and many others, who have accompanied me along the journey.

Finally, I am greatly appreciate all the authors of research papers that this work referenced and deficient to reference and my gratitude is dedicated to all my teachers for this thesis.

CONTENTS

	Page
THAI ABSTRACT	i
ENGLISH ABSTRACT	ii
ACKNOWLEDGMENTS	iii
CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF SYMBOLS	xi
ABBREVIATIONS	xiii
CHAPTER	
1. INTRODUCTION AND REVIEW	1
1.1 Motivation	1
1.2 Research Objectives	2
1.3 Research Boundaries	2
1.4 Advantages and Applications	3
1.5 Literatures Review	4
2. THEORY	10
2.1 TiAlN Crystal Structures	10
2.2 Sputtering Mechanisms	12
2.3 Conventional DC Sputtering System	14
2.4 DC Glow Discharge for Sputtering	15
2.5 DC Magnetron Sputtering Deposition System	17
2.6 Thin Film Deposition by Reactive Sputtering Method	18
2.7 The Structure of Thin Film	19
2.8 Characterization of Thin Film	21
2.8.1 The Study of Crystal Structure by X-Ray Diffractrometer (XRD)	21
2.8.2 Crystallite Size	22
2.8.3 Lattice Constant	23
2.8.4 Atomic Force Microscopy (AFM)	24
2.8.5 Electron Microscopy	29
3. EXPERIMENT AND METHODOLOGY	33
3.1 Equipments and Materials	33
3.1.1 Coating System and Materials for Aluminium Titanium Nitride Thin Film	33
3.1.2 Preparing of Aluminium Titanium Nitride Thin Film	33
3.1.3 Characterization of Aluminium Titanium Nitride Thin Film	34

	Page
3.2 Reactive DC Sputtering Coater System	34
3.2.1 Vacuum Preparation	36
3.3 Substrate Preparation Process for Thin Films Deposition	38
3.4 Preparing of Aluminium Titanium Nitride Thin Film	39
3.4.1 Deposition of Aluminium Titanium Nitride at Different Ti Sputtering Current and Deposition Time	40
3.5 The Study of Aluminium Titanium Nitride Thin Film Properties	42
3.5.1 Characterization of Aluminium Titanium Nitride Thin Film	42
3.5.2 The Study of Surface Morphology of Aluminium Titanium Nitride Thin Film	43
3.5.3 The Study of Crystalline Structure and Orientation of Aluminium Titanium Nitride Thin Film	44
3.5.4 The Study of Cross-Section Images of Aluminium Titanium Nitride Thin Film	45
4. RESULTS AND DISCUSSIONS	46
4.1 Characteristic of Aluminium Titanium Nitride Thin Films	46
4.2 Characterization of Aluminium Titanium Nitride Thin Films	51
4.2.1 Effects of Ti Sputtering Current and Deposition Time on Crystal Structure, Surface Morphology, Thickness and Microstructure of AlTi ₃ N Thin Films	51
4.2.1.1 Analysis of the Crystallinity and Structure of AlTi ₃ N Thin Films by XRD	51
4.2.1.2 Crystal Size Calculation of AlTi ₃ N Thin Films by XRD	55
4.2.1.3 Analysis of the Crystallinity and Structure of AlTi ₃ N Thin Films by TEM	56
4.2.1.4 Analysis of the Surface Morphology of AlTi ₃ N Thin Films by AFM	63
4.2.1.5 Analysis of the Microstructure and Thickness of AlTi ₃ N Thin Films by FE-SEM	82
4.4.2 Effects of Al Sputtering Current on Crystallinity and Structure of AlTi ₃ N Thin Films	84
4.2.1.1 Analysis of the Crystallinity and Structure of AlTi ₃ N Thin Films by XRD	84
5. CONCLUSION	85
5.1 Summary	85
5.2 Future Works	87
REFERENCES	88
CURRICULUM VITAE	93

LIST OF TABLES

Table	Page
2.1 Properties of hard coating thin films	11
3.1 Experimental conditions setting for deposition of titanium aluminium nitride thin films at different the sputtering currents and deposition times	40
3.2 Experimental conditions setting for deposition of titanium aluminium nitride thin films at different the Al sputtering currents	41
4.1 Optical properties of AlTi_3N thin films deposited with different deposition time with I_{Ti} 0.6 A and I_{Al} 0.6 A	46
4.2 Optical properties of AlTi_3N thin films deposited with different deposition time with I_{Ti} 0.7 A and I_{Al} 0.6 A	47
4.3 Optical properties of AlTi_3N thin films deposited with different deposition time with I_{Ti} 0.8 A and I_{Al} 0.6 A	48
4.4 Optical properties of AlTi_3N thin films deposited with different deposition time with I_{Ti} 1.0 A and I_{Al} 0.6 A	49
4.5 Optical properties of AlTi_3N thin films deposited with different deposition time with I_{Ti} 1.2 A and I_{Al} 0.6 A	50
4.6 Variations of the crystal size of AlTi_3N thin films with four different deposition times and three different titanium sputtering currents of 0.6, 0.7, 0.8, 1.0 and 1.2 A	55
4.7 Variation of surface roughness and grain sizes of AlTi_3N thin films deposited with Ti sputtering current of 0.6 A for four deposition times	63
4.8 The thickness of AlTi_3N thin films deposited at Ti sputtering current of 0.6 A and for deposition times of 15, 30, 45 and 60 min	65
4.9 Variation of surface roughness and grain sizes of AlTi_3N thin films deposited with Ti sputtering current of 0.7 A for four deposition times	67
4.10 The thickness of AlTi_3N thin films deposited at Ti sputtering current of 0.7 A and for deposition times of 15, 30, 45 and 60 min	70
4.11 Variation of surface roughness and grain sizes of AlTi_3N thin films deposited with Ti sputtering current of 0.8 A for four deposition times	70
4.12 The thickness of AlTi_3N thin films deposited at Ti sputtering current of 0.8 A and for deposition times of 15, 30, 45 and 60 min	72
4.13 Variation of surface roughness and grain sizes of AlTi_3N thin films deposited with Ti sputtering current of 1.0 A for four deposition times	74
4.14 The thickness of AlTi_3N thin films deposited at Ti sputtering current of 1.0 A and for deposition times of 15, 30, 45 and 60 min	77
4.15 Variation of surface roughness and grain sizes of AlTi_3N thin films deposited with Ti sputtering current of 1.2 A for four deposition times	77
4.16 The thickness of AlTi_3N thin films deposited at Ti sputtering current of 1.2 A and for deposition times of 15, 30, 45 and 60 min	80
4.17 Variation of surface roughness of AlTi_3N thin films deposited for five different deposition times and with sputtering currents of 0.6, 0.7, 0.8, 1.0 and 1.2 A	81
4.18 Variation of grain sizes of AlTi_3N thin films deposited for five deposition times and with sputtering currents of 0.6, 0.7, 0.8, 1.0 and 1.2 A	81

LIST OF TABLES (cont'd)

Table		Page
4.19	The thickness of AlTi ₃ N thin films deposited at three sputtering currents of 0.6, 0.7, 0.8, 1.0 and 1.2 A for deposition times of 15, 30, 45 and 60 min	81
4.20	The thickness of AlTi ₃ N thin films measured by FE-SEM and AFM. The films were deposited with four different deposition time of 15, 30, 45 and 60 min for a Ti sputtering current of 0.8 A	83

LIST OF FIGURES

Figure	Page
2.1 Hardness and crystal structure of titanium aluminium nitride and titanium nitride	11
2.2 Ternary phase diagram of Ti-Al-N at 1273 K	12
2.3 The interactions of ions with surfaces	13
2.4 Vacuum coating by sputtering method	15
2.5 Schematic of the main parts of a glowing discharge (above) and the potential distribution in a normal glow discharge (below)	16
2.6 Schematic of a magnetron system	17
2.7 Schematic of planar magnetrons: (a) rectangular and (b) a circular	18
2.8 Generic hysteresis curve for voltage vs. reactive gas flow rate	19
2.9 Characteristics of the four basic structure zones and of whiskers, in cross section. The ratio of substrate T_s to film melting T_m (T_s/T_m) increases in the direction $Z1 \rightarrow ZT \rightarrow Z2 \rightarrow Z3$	20
2.10 Conclusion of Thornton's structure-zone diagram	20
2.11 An illustration of the Rigaku Rint 2000 X-ray diffractrometer	22
2.12 Reflection of (112) plane by XRD for typical $AlTi_3N$ thin films	23
2.13 Reflection of X-rays from a crystal	23
2.14 Peak intensities which present the crystal planes of material at different reflection ray angles	24
2.15 Diagram of imaging mode of AFM	25
2.16 The interactive force between atoms at different material distances	26
2.17 AFM: (a) Non-contact (b) Beam deflection system, using a laser and photodetector to measure the beam position	28
2.18 Schematic diagram of: (a) Transmission Electron Microscope (TEM) and (b) Scanning Electron Microscope (SEM)	30
2.19 Interaction between incident electron beam and solid takes place in a pear-shaped volume	32
3.1 Diagram showing main parts of coater system: (a) top view (b) side view	35
3.2 Vacuum coater at Burapha University which has been used in this work	36
3.3 Pumping system diagram of sputtering coating system	37
3.4 Substrate cleaning process	38
3.5 The X-Ray diffractrometer (XRD)	42
3.6 The Atomic Force Microscope (AFM) in a tapping mode, by Digital Instruments, Nanoscope III (a) AFM and display part (b) AFM	43
3.7 Transmission Electron Microscopy (TEM) working at 160 kV, by Jeol, JEM-2100	44
3.8 The Field Emission Scanning Electron Microscopy (FE-SEM), by Hitachi, S-4700	45

LIST OF FIGURES (cont'd)

Figure	Page
4.1 The color of AlTi ₃ N thin film deposited with I _{Ti} 0.6 A and I _{Al} 0.6 A for different deposition times for 15 min (left) to 60 min (right)	46
4.2 The color of AlTi ₃ N thin film deposited with I _{Ti} 0.7 A and I _{Al} 0.6 A for different deposition times for 15 min (left) to 60 min (right)	47
4.3 The color of AlTi ₃ N thin film deposited with I _{Ti} 0.8 A and I _{Al} 0.6 A for different deposition times for 15 min (left) to 60 min (right)	48
4.4 The color of AlTi ₃ N thin film deposited with I _{Ti} 1.0 A and I _{Al} 0.6 A for different deposition times for 15 min (left) to 60 min (right)	49
4.5 The color of AlTi ₃ N thin film deposited with I _{Ti} 1.2 A and I _{Al} 0.6 A for different deposition times for 15 min (left) to 60 min (right)	50
4.6 The XRD patterns of AlTi ₃ N thin film deposited with I _{Ti} 0.6 A and I _{Al} 0.6 A for different deposition times	52
4.7 The XRD patterns of AlTi ₃ N thin film deposited with I _{Ti} 0.7 A and I _{Al} 0.6 A for different deposition times	52
4.8 The XRD patterns of AlTi ₃ N thin film deposited with I _{Ti} 0.8 A and I _{Al} 0.6 A for different deposition times	53
4.9 The XRD patterns of AlTi ₃ N thin film deposited with I _{Ti} 1.0 A and I _{Al} 0.6 A for different deposition times	53
4.10 The XRD patterns of AlTi ₃ N thin film deposited with I _{Ti} 1.2 A and I _{Al} 0.6 A for different deposition times	54
4.11 The XRD pattern of AlTi ₃ N thin film deposited at different sputtering current for 60 min.	54
4.12 a) HRTEM images and (b) SAED images of AlTi ₃ N thin films deposited with a constant Ti sputtering current of 0.6 A and for four different deposition times of 15, 30, 45 and 60 min	59
4.13 a) HRTEM images and (b) SAED images of AlTi ₃ N thin films deposited with a constant Ti sputtering current of 0.6 A and for four different deposition times of 15, 30, 45 and 60 min	60
4.14 a) HRTEM images and (b) SAED images of AlTi ₃ N thin films deposited with a constant Ti sputtering current of 0.6 A and for four different deposition times of 15, 30, 45 and 60 min	61
4.15 (a) HRTEM images and (b) SAED images of AlTi ₃ N thin films deposited with a constant deposition time of 60 min and for three different Ti sputtering current of 0.6, 0.7 and 0.8 A	62
4.16 The AFM images of AlTi ₃ N thin films (2D images, left, and 3D images, right) deposited at various deposition time : (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min for sputtering current of I _{Ti} = 0.6 A and I _{Al} = 0.6 A.	64
4.17 Section analysis of AlTi ₃ N thin films deposited at a constant Ti sputtering current of 0.6 A and for four different deposition times of: (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min for sputtering current of I _{Ti} = 0.7 A and I _{Al} = 0.6 A.	66
4.18 The AFM images of AlTi ₃ N thin films (2D images, left, and 3D images, right) deposited at various deposition time : (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min	68

LIST OF FIGURES (cont'd)

Figure	Page
4.19 Section analysis of AlTi_3N thin films deposited at a constant Ti sputtering current of 0.7 A and for four different deposition times of: (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min	69
4.20 The AFM images of AlTi_3N thin films (2D images, left, and 3D images, right) deposited at various deposition time : (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min for sputtering current of $I_{\text{Ti}} = 0.8 \text{ A}$ and $I_{\text{Al}} = 0.6 \text{ A}$.	71
4.21 Section analysis of AlTi_3N thin films deposited at a constant Ti sputtering current of 0.8 A and for four different deposition times of: (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min	73
4.22 The AFM images of AlTi_3N thin films (2D images, left, and 3D images, right) deposited at various deposition time : (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min for sputtering current of $I_{\text{Ti}} = 1.0 \text{ A}$ and $I_{\text{Al}} = 0.6 \text{ A}$.	75
4.23 Section analysis of AlTi_3N thin films deposited at a constant Ti sputtering current of 1.0 A and for four different deposition times of: (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min	76
4.24 The AFM images of AlTi_3N thin films (2D images, left, and 3D images, right) deposited at various deposition time : (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min for sputtering current of $I_{\text{Ti}} = 1.2 \text{ A}$ and $I_{\text{Al}} = 0.6 \text{ A}$.	78
4.25 Section analysis of AlTi_3N thin films deposited at a constant Ti sputtering current of 1.2 A and for four different deposition times of: (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min	79
4.26 The cross-section morphology of AlTi_3N thin films from different deposition times (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min at Ti sputtering current of 0.8 A	82
4.27 The XRD pattern of AlTi_3N thin film deposited at different Al sputtering current from 0.2 to 0.6 A for 60 min	84

LIST OF SYMBOLS

a	lattice constant
B	magnetic field
d_{s-t}	target-substrate distant
D	crystallite size
\bar{e}	electron
E	electric field
E_b	optical band gap energy
hkl	Miller indices
K	Kelvin
mtorr	milli-torr
N	magnetic north pole
R_{rms}	root mean square roughness
S	magnetic south pole
T	transmittance
$AlTi_3N$	aluminium titanium nitride
T/T_m	deposited temperature per melting temperature
z_i	height value of each point
\bar{z}	average height of the scanned area
β	width at the half height of the peak
θ	diffraction angle
α	absorption coefficient wavelength

ABBREVIATIONS

2D	two-dimensional
3D	three-dimensional
AFM	atomic force microscope
CDS	cathode dark space
DC	direct current
RF	radio frequency
FCC	face centered cubic
FWHM	full width at half maximum
JCPDS	joint committee on powder diffraction standard
NG	negative growth
SEM	scanning electron microscopy
TEM	transmission electron microscopy
XRD	X-ray diffraction