
APPENDIX B 

 

AUGMENTED DICKEY-FULLER UNIT ROOT TEST 
 

 Many macroeconomic time series such as money supply, investment, interest 

rate and GDP may be characterized as having stochastic trends. In other words, these 

time series data contain unit-root, or integrated of order one, I (1), process. The non-

stationary process, which contains stochastic trend, means that we have to first-

difference time series data to correct it into a “difference-stationary series” or I(0). For 

convenience, we begin with a very simple stationary univariate model observed over 

the sequence of time t=1, 2,…,T as below: 
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 where L is the lag operator i.e., 1−= tt yLy . The variable  is generated by its 

own past realizations together with a disturbance term

ty

tε .  And tε  represents the 

influence of all other variables excluded from the model, which is presumed to be 

random so that it has zero expected value ( ),0)( =tE ε  constant variance 

( ),)( 22
εσε =tE  and is uncorrelated with its own past value ( ).0)( 1 =−ttE εε  

 Harris (1995) has provided the distinction between stationary and non-

stationary variables as follows: 

“A stationary series tend to return to its mean value and fluctuates around it 

within a more-or-less constant range (i.e., it has a finite variance), while a 

non-stationary series has a difference mean at different points in time and its 

variance increase with the sample size or the time, and goes to infinity as time 

approach to infinity”. 

 In AR(1) process, the difference of  will be stationary, or non-stationary, 

depending on the value of 

ty

ρ : 

 If  ,1<ρ  the variable  is stationary as  ty ,∞→t  
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 If ,1=ρ  the variable  is non-stationary, and exhibits a random walk 

process since the current value of  depends on its previous value and all 

disturbances accruing through time  therefore the variance of  is time dependent,  

ty

ty

;t ty

 If ,1>ρ  the variable  is non-stationary and explosive (i.e., it will tend to 

either ). 

ty

∞±

 To test the presence of a unit root, the Dickey-Fuller (DF) approach. DF test 

tends to be more popular because of its simplicity and it is more general in nature.  

 The simplest form of the DF test is : 
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The series is stationary when  The standard approach to test 

such hypothesis is to construct a t-test; however, under the null hypothesis, the 

computed statistic does not possess the standard t-distribution. We need to use the 

Dickey-Fuller 

.10* << ρρ or

ondistributitau −)(τ which was computed by Monte Carlo simulations 

and report in Fuller (1976). 

Testing for a unit root using (1) is based on the prior assumption that the 

underlying data generating process for is a simple first-order autoregressive process 

with a zero and no trend component. However, if it is not known whether the overall 

mean of the series is zero, then it is better to allow a constant or a drift term 

ty

,,μ  to 

enter the regression model when testing for a unit root (equation b.2). Furthermore, 

when the underlying series is a process around a deterministic trend, then we must 

allow a time trend  to enter the regression model used to test for a unit root as well 

(equation b.3). Then, the forms of the DF test are as follows : 

t
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The appropriate critical values in this case are given by the DF distribution 

relating to ,τμ ττ and  respectively (in absolute value τττ μτ ,, ). 

When a simple AR(1) DF model is used while in fact  follows an AR(ty ρ ) 

process, the error term will be autocorrelated because of the misspecification of the 

dynamic structure of . Autocorrelated errors will invalidate the use of the DF 

distribution which are based on the assumption the 

ty

tε  is ‘white-noise’. Therefore, 

Dickey and Fuller (1981) extend further to allow for moving-average (MA) parts in 

the .tε  The ‘Augmented Dickey-Fuller test’ (ADF) can be written as follows: 
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To investigate for a unit root, we test the null hypothesis of  against the 

alternative hypothesis of . And the critical value for testing student- t ratio of 

 is provided in Dickey-Fuller’s Table. 
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The problem of appropriate lag-length rises since too few lags may result in 

over-rejecting the null when it is true, while too many lags may reduce the power of 

the test. In other wards, the value of k should be relatively small so as to save degrees 

of freedom but large enough to capture the existence of autocorrelation in the error 

term. 

An accepted solution to determine the appropriate lag length is the Akaike 

information criterion (AIC).  
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where   = residual sum of squares ESS

 T  = number of observation 

  = appropriate lag length (s). k

The optimal lag length is chosen in order to minimize the AIC value. The 

basic idea of choosing k involves using a model selection procedure that test, whether 

an additional lag is significant in increasing the value of .
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