
 
 

Chapter 1 
 

Introduction 
 
In recent years, the remarkable advances in medical imaging instruments have increased 
their use considerably for diagnostics as well as planning and follow-up of treatment. The 
concepts and techniques in medical image processing used to analyze and manipulate 
medical images after they have been generated or digitized. 
 
Medical imaging is the process by which physicians evaluate an area of the subject's body 
that is not normally visible. Medical imaging may be "clinical", seeking to diagnose and 
examine disease in specific human patients. Alternatively, it may be research-motivated, 
attempting to understand processes in humans or animal models. Many of the techniques 
developed for medical imaging also have scientific and industrial applications. 
 
In this thesis, medical image processing is used to identify the shape and the location of 
optic disk (OD) which is the brightest object in the healthy retinal image for helping 
medical doctor to diagnose the retinopathy of prematurity (ROP) disease and prevent the 
patient from blindness. 
 
The developing of application software in digital image processing will help the clinicians 
to analyze the area surrounding the optic nerve which is predictive of the level of ROP. 
With the wide range and type of retinal images present a specific type of problem in the 
analysis of optic disk; many techniques have been purposed including detection of the OD 
regions by clustering the brightest pixels in retinal image and locating potential OD area.  
Other techniques have been recently proposed, based on a model of vascular structure by 
Foracchia et al. (2004). They use a geometrical parametric model locating at the center 
point of OD. Akita and Kuga (1982), trace the parent-child relationship between blood 
vessels segments, tracking back to the center of the optic disk. Lalonde et al. (2001) used 
pyramidal decomposition and Hausdorff-based template matching that is guided by scale 
tracking of large objects using multi-resolution image decomposition. This method is 
effective, but rather complex. In three dimensional reconstructions of conventional stereo 
optic disk image procedures, Kong et al. (2004) presented the resulting 3 dimensional 
contour images that show optic disk structure clearly and intuitively, helping physicians in 
understanding the stereo disk photograph. Cox and Wood (1991) presented a semi-
automated method to indicate external points on the boundary which were automatically 
connected by tracing along the boundary. Morris and Cox (1993) initially presented a 
completely automatic method which traced between points on the boundary identified 
automatically by their grey level gradient properties. Sinthanayothin et al. (1999) used the 
rapid intensity variation between the dark vessels and the bright nerve fibers to locate the 
optic disk. However, they found that this algorithm often failed for fundus images with a 
large number of white lesions. Lee (1991) also applied an active contour model to high 
resolution images centered on the optic nerve head and his problem caused by the 
boundary of the pallor and by very faint or missing edges. Huiqi et al. (2001) used PCA 
and ASM technique to apply in detecting the optic disk centre and approximate the optic 
disk area by using “disk space” but this algorithm failed in unclear shape of optic disk. 
Kavitha (2005) used morphological operations and multilevel thresholding to extract the 
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brighter regions that includes optic disk and exudates. Jelinek et al. (2005) used Canny 
edge detection, template matching and Haar transform to detect optic disk boundary. The 
most effective method, active contour model or snake, was used to detect the optic disk by 
Osareh et al. (2002), Mendels et al. (1999), Chanwimaluang and Fan (2003). Corona et al. 
(2002) used an algorithm, combining power cepstrum and zero-mean-normalized cross 
correlation techniques, which extract depth information using coarse-to-fine disparity 
between corresponding windows in a stereo pair. The gray level encoded sparse disparity 
matrix is subjected to a cubic B-spline operation to generate smooth representations of 
optic disk surface and new three-dimensional (3-D) matrics from isodisparity contours. 
Niemeijer et al. (2007) used a novel method that determines whether a macula centered 
retinal image is from the left or right eye and automatically detects the optic disk, the fovea 
and the vascular arch by inferring the location of a set of landmarks placed on these 
structures. Tobin et al. (2006) presented results for the automatic detection of the optic 
nerve using digital red-free fundus photography. The location of the optic disk is predicted 
by using a two-class, Bayesian classifier. Chrastek et al. (2004) presented methods for 
automated segmentation of the optic disk in the two imaging modalities, namely in images 
of scanning laser tomography in color image. These methods developed for each modality 
separately which link in the registration of two imaging modalities containing partly 
complementary information.  

However, most of techniques mentioned above have been mainly focused on adult retinal 
images where the retina is well developed. In this thesis, we present the algorithms that 
automatically detect optic disk in retinopathy of prematurity(ROP), a disease cause of 
blindness in the infant. If appropriate treatment is given in the early stages of blindness can 
be prevented. The algorithm is evaluated against ROP infant database from Kingston 
University, UK, and Thammasat University, Thailand compared with ground truth image 
marked by ophthalmologist. 

1.1 Motivation  

The coming generation of babies, blinded with ROP, may not forgive the attitude that 
many ophthalmologists adopt to avoid the painstaking effort of ROP screening. The 
financial, social and emotional crisis of having a blind child cannot be avoided without a 
committed team effort, particularly by the ophthalmologist and the neonatologist from the 
very beginning of life. Optic disk segmentation is a necessary step in this structured 
analysis of ROP because the location of optic disk is essential in retinal image analysis to 
measure distance and identify other anatomical parts in retinal images. Pathology on or 
near the optic disk can have a more severe effect in vision. In the previous, identification of 
the optic disk from infant’s retinal image was difficult due to several factors. The disk may 
be located in the different positions and low-contrast in the retinal image. Once the optic 
disk region was found, the intersecting blood vessels that converge in the middle of the 
disk created a heterogeneous section then the identification of OD was determined only by 
an expert human. That is a time-consuming, highly skilled task, susceptible to subjective 
variation and error. There is consequently a pressing need for reliable automated analysis 
of digitized fundus images. Later, most of techniques in optic disk detection were 
implemented but it worked pretty well in adult retinal image, a few techniques was used 
for infant’s retinal image. Then this thesis provides purposed methods to help 
ophthalmologist in ROP screening that will reduce cost and time and prevent the children 
from losing of vision. 
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1.2  Objectives 
 
According to the motivation, this research aims at the following objectives. 
 
1. To detect the variable appearance of ODs in ROP infant’s retinal images (intensity, 
color, contour definition, macula-centered and OD-centered images). 
2. To present the purposed methods in locating the optic disk in low-contrast infant’s 
retinal image 
3. To help a medical doctor to evaluate the ROP disease in the earlier stage, that will help 
the childhood not lose their vision. 
4. Have an efficiency and reliable result to identify and extract the optic disk.  

 
1.3  Overview  
 
This thesis contains six chapters. Chapter 1 gives an introduction of the research. It 
presents a survey on detecting the optic disk. The survey also focuses infant’s retinal 
image. In addition, motivation, research objective and overview of thesis are included in 
this chapter. In Chapter 2, the background related to techniques, the characteristics of optic 
disk, ROP, system, materials and medical importance of optic disk detection are presented. 
Chapter 3 describes our purposed algorithm in Automatic Detection of Optic Disk from 
Fundus Images of ROP Infant Using 2D Circular Hough Transform. In this chapter, the 
method to detect the optic disk by using Circular Hough Transform, experimental 
verification, experimental results, conclusion and discussion are included. Chapter 4, the 
technique in Automatic Optic Disk Detection from Low Contrast Retinal Images of ROP 
Infant Using GVF Snake is presented. In this chapter, the method to extract optic disk by 
using PCA and GVF Snake, the framework, experimental verification, experimental 
results, conclusion and discussions are included. Chapter 5, Automatic Optic Disk 
Detection from Low Contrast Retinal Images of ROP Infant Using Mathematical 
Morphology is included, the method of mathematical morphology, experimental 
verification, experimental results, conclusion and discussion are purposed. A conclusion is 
given in the last chapter, Chapter 6, the last chapter includes the summary and the key 
contributions of the research. The recommendations for future study are also given. 
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Chapter 2 
 

Background 

 
This chapter presents some background, which is related to optic disk detection. The topics 
include characteristics of optic disk, retinopathy of prematurity(ROP), system and 
materials and medical importance of optic disk detection. 
  
2.1 Optic disk characteristic 
   
The optic disk, shown in Figure 2.1(a), is also called the blind spot. It is called this because 
there are no receptors in the part of the retina. The optic disk is the brightest part in the 
normal fundus image that can be seen as a pale, round or oval disk in shape. It is the 
entrance region of blood vessels and optic nerves to the retina and it often works as a 
landmark and reference for the other features in the retinal fundus image. Usually in a 
normal eye, physical diameter of the optic disk is about 1.5 mm to 1.7 mm on average. The 
location of the optic disk is essential in retinal image analysis to measure distance and 
identify other anatomical parts in retinal images. Pathology on or near the optic disk can 
have a more severe effect in vision. 
 
2.1.1 Understanding the optic disk 
 
Colour: Red-yellow; the yellowish color (optic cup)  
Form and size: Round to oval with diameter ranging from 1.5 mm to 1.7 mm 
Margins: Sharply outline. 
Vessels: They originate within the perimeter of the disk and both the arteries and veins 
appear distinct. 
 
2.2 Retinopathy of Prematurity (ROP) 
 
Retinopathy of Prematurity (ROP) is a developmental disease used to describe abnormal 
blood vessels and scar tissue growing inside and over the retina of the eye. The incidence 
of ROP rises with lower gestational age and birth weight. In patients with ROP, the 
premature baby’s blood vessels in his eye are very sensitive to oxygen and light then the 
blood vessels stop growing and new abnormal blood vessels grow instead of normal retinal 
blood vessels. It usually affects babies and leads to blindness or poor vision (McNamara 
and Connolly, 1999; Palmer et al., 1991). 

The location of ROP, shown in Figure 2.1(b), refers to the location relative to the optic 
nerve. The retinal vessels normally start their growth at the optic nerve and gradually move 
toward the edge of the retina. Vessels that are farther from the optic nerve or closer to the 
edge of the retina are more mature and less concerning. The ophthalmologist can be 
examined the ROP symptoms at four weeks of baby’s age. The following information 
presents pathogenesis, cause and risk factor, staging disease and classification of ROP. 
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(a) (b) 
Figure 2.1 (a) Optic Disk Image (b)Optic Disk with the condition ROP 

 
2.2.1 Pathogenesis 
 
1. At twelve to eighteen weeks of gestation, vascularization of the retina begins. 
2. First the primitive future endothelial cells form cords that canalize into a network of 
evenly spaced capillaries, which further differentiate into primitive and then mature 
arterioles and venules. 
3. Vessels grow outward from the optic disk toward the nasal and temporal periphery of 
the retina. 
4. If an adverse event (see Causes and Risk Factors) occurs to these vessels, the natural 
progress is arrested. 
5. After the initial injury, vessel growth can resume normally or the primitive vessels pile 
up within the retina, growing without forward progress and forming a ridge of tissue that 
can become extremely large. This tissue may then regress, and vessels once again progress 
toward the periphery, or the ROP can worsen through the growth of fibrovascular tissue 
into the vitreous cavity. 
6. The formation of scar tissue and its progression over the retina and into the vitreous 
body may determine the prognosis and visual outcome. 
7. In severe cases these abnormal vessels may grow into the vitreous cavity and cause 
tractionalretinal detachment and subsequent blindness. 
8. The human retina may not be completely vascularized at term. This may account for the 
rare occurrence of ROP in full term neonates. 
 
2.2.2 Causes and risk factors 
 
The exact causes of ROP are not completely understood. The degree of prematurity and 
birth weight of a baby play a big part in the development of ROP. The small and sick baby 
has a high risk to be ROP. The premature baby’s blood vessels in his eye are very sensitive 
to oxygen and light. It usually affects babies less than 1500 grams. There are a number of 
risk factors for the development of ROP (McNamara and Connolly, 1999). 

1. Birth weight and gestational age: These are the two most important risk factors for 
ROP. The younger the gestational age and lesser the birth weight, the greater are the 
chances of developing ROP. More premature neonates are likely to develop a more severe 
from of disease.  

2. Oxygen therapy:  Though not the only aetiological agent, as it was once thought  to  be, 
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excessive use is an important contributory factor. It has been seen that premature neonates 
develop ROP even without being exposed to oxygen and, conversely, others do not 
develop ROP despite being on oxygen. 

3. Other factors: A number of other risk factors in the development of ROP include 
sepsis, multiple blood transfusions, multiple births, hyaline membrane disease, using of 
aminophylline, antibiotics, apnoeic spells, low pH, and ultraviolet light therapy  

2.2.3 Staging of disease 
 
The definition in staging of disease is described below: 
Stage 1: Demarcation line 
This is a flat white line within the plane of the retina that clearly delineates the vascularized 
posterior retina from the vascular anterior portion. Abnormal branching or arcading of 
vessels is recognizable immediately posterior to the demarcation line (Figure 2.2(a)). 
 
Stage 2: Ridge of the demarcation line 
A ridge(R) of scar tissue and new blood vessels place in the demarcation line. The white 
line now has width and height and occupies some volume. Vascular shunting occurs in this 
stage (Figure 2.2(b)). 

 
Stage 3: Ridge with extra-retinal fibrovascular proliferation 
In this step, the vascular ridge was increased the size with growth of fibrovascular tissue on 
the ridge and extending out into the vitreous (Figure 2.2(c)). 
 
Stage 4: Subtotal (Partial) Retinal Detachment 
a. Stage 4A: Macula on - detachment does not include the macula, and the vision may be 
good. 
b. Stage 4B: Macula off - macula is detached, and the visual potential is markedly 
decreased. 
 
Stage 5: Complete retinal detachment 
 
Stage 6: Plus Disease: Vessels are dilated and tortuous.  
It may also include growth and dilation of abnormal blood vessels on the surface of the iris, 
rigidity of the iris and vitreous haze (exudates along the retinal vessels). 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2.2 (a) Demarcation line (b) Ridge of the demarcation line (c) Ridge with 
extra-retinal fibrovascular proliferation 
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2.2.4 Classification of ROP:  
 
The International Classification System of ROP allows the examiner to specify parameters 
of the disease, location, extent of developing vasculature involved and staging.  
 
Location: is expressed as zone I, II, or III, each zone is centered on the optic disk because 
normal retinal vascular growth progresses peripherally from the disk toward the ora serrata 
(Figure 2.3). 
1. Zone I: Posterior pole or inner zone; in all directions from the optic disk to a distance 
twice that between the disk and the macula. 
2. Zone II: From the edge of zone I peripherally to a point tangential to the nasal ora 
serrata and an area near the temporal anatomic equator. 
3. Zone III: The remaining crescent of the fundus temporally anterior to zone II. This zone 
is the last to be vascularized. 

Table 2.1: Area of ROP Involvement Zones 

Zone I A circle is drawn on the posterior pole, with the optic disk as the centre and twice 
the disk-macula distance as the radius, constitutes zone I. Any ROP in this zone 
is usually very severe because of a large peripheral area of avascular retina  

Zone II A circle is drawn with the optic disk as the centre and disk to nasal ora serrata as 
the radius. The area between zone I and this boundary constitutes zone II  

Zone III The temporal arc of retina left beyond the radius of zone II is zone III (Figure 
2.3) 

Extent The extent is denoted by the clock hours of retinal involvement in the particular 
zone 

Rush 
Disease 

This is rapidly progressive ROP in zone I, usually seen in extremely sick babies 

 

 
Figure 2.3 Guideline diagram used in the classification of retinopathy of prematurity 
 
2.3 System and Materials  
 
In this work, the system implemented in MATLAB 7.0.4(R14) on a 3 GHz Pentium 4 
machine, the images obtained from Kingston University, UK and Thammasat hospital, 
Thailand. The example of retinal images in ROP Infant was shown in Figure 2.4. There 
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were a representative sample of a set of normal retinal image and abnormalities. The 
training set was randomly from the screening set of one hundred retinal images. The image 
size was set to 640 x 480 pixels, 72 inch/pixel. All the images were JPEG compressed. In 
order to acquire the pathological test set, all cases of optic disk detection marked as ground 
truth image by the ophthalmologists.  
 

 
Figure 2.4 The example of optic disk data set  
 
 2.4 Medical Importance of Optic Disk Detection 
 
Precise localization of optic disk boundary is an important sub problem of higher level 
problems in ophthalmic image processing. Specifically, in retinopathy of prematurity, 
proliferative diabetic retinopathy, fragile vessels develop in the retina and largely in the 
OD region, in response to circulation problems created during earlier stages of the disease. 
If the optic disk has been identified, the position of areas of clinical importance such as the 
fovea may be determined. Moreover, OD detection is fundamental for establishing a frame 
of reference within the retinal image and is, thus, important for any image analysis 
application. Current methods of detection and assessment in the stage of ROP are manual, 
expensive, potentially inconsistent, and require highly trained personnel to facilitate the 
process by searching large numbers of fundus images. Many of these images from 
screening programmes will be normal, but some will require grading of abnormalities by 
ophthalmologist. When abnormalities do not treatment immediately, the patient may loss 
the vision. In contrast to this, a good, automatic method based on modern digital image 
processing technique will be faster, will need less may be no human intervention, and will 
yield consistent results.  
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Chapter 3 
 

Automatic Detection of Optic disk from Fundus Images of ROP 
Infant Using 2D Circular Hough Transform 

 
In this chapter, a method of automatic detection of an Optic Disk in low-contrast infant’s 

digital fundus images based on circular Hough transform is proposed. Number of 
dimensions of normal circular Hough Transforms histogram is reduced from 3 to 2 
dimensions based on an approximation of OD radius. First few circles are approximated by 
using maximum points from Hough space. A circle with the best fit to OD edge image is 
chosen. The results are validated with ophthalmologists’ hand-drawn ground truth. The 
overview of Circular Hough Transform, methodology, experimental verification, 
experimental results, conclusion and discussion are included in this chapter. 
 
3.1 Overview of Circular Hough Transform 
 
The Hough transform is a technique to identify the locations and orientations of certain 
types of features in a digital image. The transform consists of parameterized description of 
a feature at any given location in the original image space. A multi-dimensional array in 
the space defined by these parameters is then generated. At each point, a value is 
accumulated, indicating probability of an object generated by the parameters defined at that 
point fits the given image. Any points in the array that have relatively higher values are 
used to describe features that may be projected back onto the image. The higher to value, 
the bigger possibility that the features actually present in the image (Gonzalez, 2002).  
 
In essence the Hough Transform produces a set of parameters which describe a boundary 
curve of the expected type that represents the best fit to the set of edge points in the given 
image. This is done by transforming every edge position in the image ‘space’ (as defined 
by x and y axes) into a corresponding curve within a ‘parameter space’, or ‘Hough space’. 
A point in the Hough space where many curves intersect represents a simultaneous solution 
to the parametric equation for all of the edges in the image space whose coordinates gave 
rise to those curves. This indicates a strong likelihood of a boundary shape of the expected 
type having been detected in the image space. The coordinates of the point of the 
intersection in the Hough space correspond to the parameters of the curve detected in the 
image space; the greater the number of intersections, the greater the confidence that the 
detected boundary shape is genuine. It is this ‘voting’ effect that gives the Hough 
Transform its characteristic immunity to noise and discontinuous boundaries. 
 
For example, consider the case where a straight line is to be detected. A point, ( , )i ix y , in 
input space presumed to lie on this line (conventionally defined by the standard linear 
equation, ) produces a locus of points in parameters space for all possible lines 
upon which it could lie (thus defined as 

y mx c= +
c mx y= − + ), as shown in Figure 3.1. A second 

point in input space, ( , )j jx y , similarly produces a locus of points in Hough space. Thus 
when all points of interest in input space (previously detected edges) have been 
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transformed to loci in Hough space, the intersections of these loci give a vote as to the best 
set of parameters for the unique line in the input space which will join all given points. The 
position of maximum intersection yields the parameters  for the best fit solution. bm

Figure 3.1. The Hough Transform used for straight line detection 
 
One problem with this approach is that when implemented in discrete digital form a very 
large array of Hough space ‘accumulators’ is required to store all possible votes since the 
range of values should extend from minus infinity to infinity (e.g. a perfectly vertical line 
in input space has an infinite gradient). One way to overcome this limitation is to utilize 
polar coordinates length, r, and angle, ø, of normal vector connecting it to the origin (see 
Figure 3.2). These parameters are related to the x and y coordinates by the expression 
 

cos sinr x yφ φ= +                          (3.1) 
 

The three points shown in the input image are mapped into the Hough space (now in ( , )r φ  
form). Each point in the input image, a, b or c, transforms to a sinusoidal curve which is 
plotted over the range 0 to 2π radians. The position of maximum intersection can again be 
found and these unique values of  and br bφ  used to define the best straight line detected in 
the input image which joins the given pixel points, of edges. As expected all the curves 
exhibit a symmetrical positive and negative response. Therefore the amount of 
computation can be halved by plotting curves in the Hough space only over the range 0 to 
π radians (Awcock and Thomas, 1996).  
 

Figure 3.2. The Hough Transform-polar representation 
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     In Figure 3.3, the Hough transform can be used for representing objects that can be 
parameterized mathematically. For example, in our case, a circle can be parameterized by 
an Equation. (3.2). 

( ) ( )2 2 2x a y b− + − = r    (3.2) 
where (a,b) is the coordinate of the center of the circle that passes through (x,y) and r is 

its radius. From this equation, it can be seen that three parameters are used to formalize a 
circle which means that Hough space will be a three-dimensional space for this case.  
 

 
(a) 

 
(b) 

 
(c) 

Figure 3.3 a) Binary dataset consisting two circles of radii 10 and 30 units b) result of 
using circular Hough Transform to find circles of radius 30 units c) result of using 
circular Hough transform to find circles of radius 10 units 
 
3.2 Methodology 
 
3.2.1 Edge Detection 
 

Some specific properties of the infant’s fundus images are that they are low contrast and 
very noisy. However, only the edge of the OD’s circular shape is needed to calculate the 
Hough Transform. In order to get rid of noisy and unwanted information, Canny Edge 
operator was experimentally chosen and applied to the image as the first step in this 
process. This technique removes most of the noise due to the fine texture leaving only the 
required edges of the OD. Experimentally, we found that the Canny Operator with the 
following parameters gives the best result: σ = 1 and the window size is 5 x 5.  

 
3.2.2 First approximation of Optic Disk 
 

Normal circular Hough transform requires very high computational power because it is 
needed to form a 3D histogram. We tried to reduce dimensions of the histogram to two 
dimensions, based on an approximation of the first known OD radius. From our test set of 
images, statistically, we found that size of most of the OD radii are between 20 pixels and 
25 pixels. This prior information can be used to reduce dimensionality of the Circular 
Hough histogram from 3D to 2D for better accuracy and faster calculation. During the 
calculation process, the accumulator parameter array are filled according to each of the 
above radii, where each array composed of cells for the (x,y) coordinates of the center of 
the potential circle. The edge image is scanned and all the points in this space are mapped 
to Hough space using an Equation (3.2). A value in particular point in Hough space is 
accumulated if there is a corresponding point in the image space. The process is repeated 
until all the points in the image space are processed. The resulting Hough transform image 
was scaled so all the values lie between 0 and 1. Then it was thresholded to leave only 
those points with high probability of being the centers. Then the different regions were 
matched by different circles. The output image is computed by drawing circle with these 
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points and adding this to the input image as shown in Figure 3.4. In order to reduce the 
chance that there is more than one thresholded points staying closed together. The resulting 
2D histogram will be sent to dilation and erosion functions, so these points will be 
combined as one final point. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3.4 (a) A part of an resulting image after applying 2D circular Hough 
transform (b) Result of matching the circle to the high probability point with 20-pixel 
radius (c) First few approximation of circle 
 
3.2.3 Finding Best Circle 
 

A set of approximated circles from the previous step will be compared in this step. The 
best circles of this set would be the circle that fits most of the OD edges. In this step we 
counted the number of pixel which is in the vicinity of the detected circle’s edge. A mask 
in a shape of a donut is put on the binary edge image on the same location of each of the 
detected circle. From the statistical experiment, the best width of the donut ring is five 
pixels. Number of edge pixels under this mask will be counted and compared for all the 
detected circles.  

The pixel counting is normalized by this formula, X = detected pixels / 2πr, a number of 
detected pixels divided by the total curriculum of an approximated circle as shown in 
Figure 3.5. The value shows the percentage of edge pixel being detected. The highest 
percentage means that the circle is best to use to locate the optic disk.  

 

(a) 
 

(b) 
Figure 3.5 (a) Using a mask shape of donut (b) The best detected circle  

 
3.3 Experimental Verification 
 

The results were clinically validated in this step. All images in our test set are sent to 
ophthalmologist to identify the OD manually. All the OD’s which are automatically 
detected by our system are then compared with clinician’s hand-drawn ground truth. Figure 
3.6 shows an example of both ground truth image and our detection result. The hand-drawn 
and detected optic disk images are represented in white.   Number of pixels of the  detected  
image that intersected with pixels of the hand-drawn image will be summed and  compared 
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with the number of pixels on the hand-drawn ground truth as demonstrated in Table 3.1. 
 
 
Table 3.1 The examples of comparison result of intersected pixels on selected images.  
 

Image ID Image Name Detected 
pixels 

Ground truth 
pixels 

Accuracy (%) 

1 A1 1152 1175 98.5 
2 A2 1215 1332 95.1 
3 A11 1236 1312 94.2 
4 A12 1295 1401 92.4 
5 A13 1261 1416 89.1 
6 A14 1125 1470 76.5 
7 A15 1257 1510 83.2 
8 A16 1205 1549 77.8 
9 A17 1243 1567 79.3 

10 A19 1363 1661 82.1 
11 A20 1315 1809 72.7 
12 A3 1047 1177 89.0 
13 A5 1325 1530 86.6 
14 A7 1291 1470 87.8 
15 A8 1248 1538 81.1 
16 B2 1301 2015 64.6 
17 B3 1109 1281 86.6 
18 B5 1227 1517 80.9 
19 B7 1259 1542 81.6 
20 B8 1240 1497 82.8 
21 B9 1267 1663 76.5 
22 B10 1315 1531 85.9 
23 B11 1224 1558 78.6 
24 C2 1404 1565 89.7 
25 C5 1362 1374 99.6 
26 C7 1286 1582 81.3 
27 D14 1262 2107 59.9 
28 E1 1291 1914 67.5 
29 E3 1184 1836 64.7 
30 D6 1129 1644 68.7 
31 C8 1273 1598 79.7 
32 C10 1207 1536 78.9 
33 C11 1124 1319 85.2 
34 C12 1150 1331 86.4 
35 C13 1199 1380 86.9 
36 C14 980 1137 86.2 
37 C20 1634 2094 78.0 
38 D2 1143 1360 84.0 
39 D4 1188 1495 79.5 
40 D7 1158 1370 85.0 
41 D8 1225 1531 80.0 
42 D10 1545 1792 86.6 
43 D12 2610 3410 76.5 
44 D13 2521 2530 99.6 
45 E7 1158 1354 85.5 
46 G1 1276 1712 74.5 
47 G2 1305 1954 66.8 
48 G3 1235 1532 80.6 
49 E13 1363 1669 82.0 
50 G4 1253 1791 70.0 

Overall 81.7 
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(a) (b) (c) 

Figure 3.6 (a) OD automatically detected by our system (b) Clinician’s hand-drawn 
ground truth (c) Detected pixels 
 
     
All of the processes are concluded with a flow chart in a Figure 3.7. 
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Window size = 5*5 
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Figure 3.7 Showing a flowchart of 2D Circular Hough Transform process 
 

3.4 Experimental Results  
 

The method is tested using a randomly selected set of fifty images. The accuracy result 
is demonstrated by a graph in Figure 3.8. The chart represents the OD performance 
evaluation for each image. We found that the average of the accuracy by this method is 
81.7 % and the total processing time is 12 seconds for each image with 3 GHz Pentium 4 
machine. 
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  Figure 3.8. Showing the accuracy result of 2D Circular Hough Transform technique
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3.5 Conclusion and Discussion 
 

This method is based on canny edge detection and circular Hough transform technique. 
A prototype has been implemented in MATLAB 7.0.4(R14) on a 3GHz PC under 
Windows XP. It was tested using a data set of fifty infant’s fundus images. From this 
experiment, the rate of optic disk detection for each image is 12 seconds. The OD position 
was considered correctly detected if the pixels in the detected image present in the 
clinician’s hand-drawn ground truth. This method was able to locate the position of OD 
with a high 81.7% accuracy. This technique works pretty well even though the input image 
is in a low-contrast condition.  
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Chapter 4 
 

Automatic Optic Disk Detection from Low Contrast Retinal 
Images of ROP Infant Using GVF Snake 

 
This chapter presents an algorithm for segmentation of optic disk boundary in low-

contrast images. The optic disk localization is achieved using segmentation by an active 
contour model (or Snake) with gradient vector flow (GVF) as an external force. The first 
snake is place at a location very close to the center of the optic disk approximated by PCA 
based model. The algorithm is evaluated using fifty retinal images from infants with 
retinopathy of prematurity(ROP) condition. The results from GVF method were compared 
with conventional optic disk detection using 2D Circular Hough Transform and later 
verified with hand-drawn ground truth. The overview of Principal Component 
Analysis(PCA) and active contours, materials and method, experimental verification, 
experimental results, conclusion and discussion are included in the this chapter. 

 
4.1 Overview of Principal Component Analysis (PCA) 
 
Karhaunen-Loeve Transform or Principal Component Analysis (PCA) has been a popular 
technique for many image processing and pattern recognition applications. This transform 
which is also known as Hotelling Transform is based on the concepts of statistical 
properties of image pixels or pattern feature. Principal component analysis (PCA) forms 
the basis of the Karhunen-Loeve(KL) transform for compact representation of data. The 
KL transform and the theory behind the principal component analysis are the fundamental 
importance in signal and image processing. The principal has also found its place in data 
mining for reduction of large dimensional datasets. It has been successfully applied to text 
analysis and face recognition as well. One of the major problems in pattern recognition and 
image processing is the dimensionality reduction. In practical pattern recognition 
problems, quite often the features that we choose are correlated with each other and a 
number of them are useless so far as their discriminability is concerned. If we can reduce 
the number of features, i.e., reduce the dimensionality of the feature space, then we will 
achieve better accuracy with lesser storage and computational complexities (Acharya and 
Ray, 2005). 

 
Figure 4.1 Dimensionality Reduction 
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Figure 4.1 shows a number of two-dimensional pattern points, belonging to two different 
pattern classes (shown by X and O symbols), where each pattern is described by only two 
features X and Y. It may be observed that the projection of the pattern points both on X 
and Y axes are overlapping. As a result, the two features X and Y do not exhibit good 
discriminability. It is possible to find a reduced set of features that may result in better 
discrimination between the two classes. This is shown by the non-overlapping projections 
of the patterns belonging to two classes on the new feature axis(X’) as shown in Figure 4.1 
PCA is one such tool which yields an extremely powerful technique for dimensionality 
reduction and many image processing applications such as compression, classification, 
feature selection, etc. Before describing the PCA, we would briefly present the concepts 
the covariance matrix. 

4.1.1 Covariance Matrix 

In practical pattern recognition problems there are usually more than one feature. During 
the process of statistical analysis of these data, we have to find out whether these features 
are independent of one another. Otherwise there exists a relationship between each pair of 
features. For example, while extracting the features of human face, one may choose two 
feature such as (1) X to denote the distance between  the centers of the two irises, and (2) Y 
to denote the distance between the centers of the left and right eyebrows. From a large set 
of human faces, we can determine the mean and the standard deviation of the above two 
features. The standard deviation for each of the above two dimensions of the face data set 
may be computed independently of each other. To understand whether there exists any 
relationship between these two features, we have to compute how much the mean of the 
second feature Y. This measure, which is computed similar to variance, is always 
measured between two features. The covariance is computed as follows: 

1
( , ) ( )( ),

n

i i
i

Cov X Y X X Y Y
=

= − −∑   (4.1) 

where n is the number of facial patterns, and X and Y are the mean of feature X and Y 
respectively. 

If the covariance value is positive, it implies that when one feature (X) increase, the other 
feature(Y) also increases. If the value of Cov(X,Y) is negative, then as one feature 
increases, the other one decreases. In case where there is no correlation between the two 
features are independent of each other. In the problem of face feature selection then one 
may find that the features have position covariance, meaning that if X increases the other 
feature Y also increases. In case of a multi-dimensional feature vector, the covariance is 
measured between each pair of features. In practical pattern recognition problems, we 
compute a covariance matrix, where each element of the matrix gives a measure of the 
covariance between two features (Acharya and Ray, 2005). 

4.1.2 Eigenvectors and Eigenvalues 

In principal component analysis, the concept of eigenvectors and eigenvalues has to be 
explained. Let us assume that we have a square matrix A of dimension n x n, which when 
multiplied by a vector X of dimension n x 1 yields another vector Y of dimension n x 1, 
which is essentially the same as the original vector X that was chosen initially. Such a 
vector X is called an eigenvector which transforms a square matrix A into a vector, which 
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is either the same vector X or a multiple of X (i.e., a scaled version of the vector X). The 
matrix A is called a transformation matrix, while the vector X is called an eigenvector. As 
is well known, any integer multiplication of the vector results in the same vector pointing 
to the same direction, with only its magnitude being scaled up (i.e., the vector is only 
elongated). 

It is interesting to note here that eigenvectors can be determined only from the square 
matrices, while every square matrix does not necessarily yield an eigenvector. Also an n x 
n square transformation matrix may have only n number of eigenvectors. All these 
eigenvectors are perpendicular or orthogonal to each other. Every eigenvector is associated 
with a corresponding eigenvalue. The concept of an eigenvalue is that of a scale which 
when multiplied by the eigenvector yields the same vector in the same direction (Acharya 
and Ray, 2005). 

 
4.2 Overview of Active Contours(or Snakes) 
 

Active contour, known as Snake, is the segmentation technique to detect the boundary 
of interest in an image. Snakes are widely used in detection object boundary shape as well 
as for tracking a moving object in an image sequence. It is an elastic contour which is fitted 
to features detected in an image. The nature of its elastic energy draws it more of less 
strongly to certain preferred configurations, representing prior information about shape 
which is to be balanced with evidence from an image. Thus Snake is an energy-minimizing 
spline guided by external constraint forces and influenced by image forces that pull it 
towards features such as lines and edges. Snakes lock onto nearby edges, localizing them 
accurately (Kass et al, 1987; William and Shah, 1992).  

Snakes have been used for edge and curve detection, segmentation, shape modeling 
and visual tracking. It is parametric curve and its properties are specified through a 
function called energy functional. A partial differential equation controlling the snake 
causes it to evolve so as to reduce its energy. The motion of the snake is caused by 
simulated forces acting upon it. The snake is a curve defined by 

( , ) [ ( , ), ( , )]s t x s t y s tν =  in the x-y image plane, where  is a parameter corresponding 
on the curve, , and t  as time. 

s
[0,1]s∈

In order to find the position of snake, the energy functional snakeE is represented as a sum of 
internal energy and external energy 

1

int
0

[ ( ( , )) ( ( , ))]snake extE E s t E s t dsν ν= +∫    (4.2) 

where int ( )E ν represents the internal energy of the contour, and ( )extE ν  represents the 
external energy.  
 
Gradient vector flow or GVF forces were then chosen because they derived from a 
diffusion operation and they tend to extend very far away from the object (Xu and Prince, 
1998). The gradient vector flow (GVF) snake begins with the calculation of a field of 
forces, called the GVF forces, over the image domain. The GVF forces are calculated by 
applying generalized diffusion equations to both components of the gradient of an image 
edge map. The distance potential force is based on the principle that the model point 
should be attracted to the nearest edge points. This principle, however, can cause 
difficulties when deforming a contour or surface in to boundary concavities. Xu and 
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Prince(1998) employed a vector diffusion equation that diffuses the gradient of an edge 
map in regions distant form the boundary, yielding a different force field called gradient 
vector flow (GVF) field. The amount of diffusion adapts according to the strength of edges 
to avoid distorting object boundaries. 
The gradient vector flow (GVF) field  is defined as  ( , )GVF

extF h x= y
( , )

( , )
( , )

GVF
ext

p x y
F h x y

q x y
⎛ ⎞

= = ⎜
⎝ ⎠

⎟    (4.3) 

The GVF field is defined to minimize the following energy functional: ( , )h x y
 

2 22 2
2 2

GVF
x y

p p q qE g h g dxdy
x y x y

λ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟= + + + + ∇ −∇

⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫      (4.4) 

 
where is an edge map of the image and g λ is the parameter governing the tradeoff 
between the first and second terms in integrand. Based on experiment result, λ is 0.5 for 
our case. Conversely, near edges, where g∇  is large, the second term is dominant and can 
be regulated by setting so that the local accuracy is preserved.  h ≈ ∇g
 
GVF is computed as a diffusion of the gradient vectors of a grey-level or binary edge map 
derived from the image. The resultant field has a large capture range, which means that the 
active contour can be initialized far away from the desired boundary. The GVF field also 
tends to force active contours into boundary concavities, where traditional Snakes have 
poor convergence.  

 
4.3 Materials and Methods 

 
4.3.1 Locating a first Snake with Optic Disk Location Approximation by 

Principal Component Analysis(PCA) 
 

In order to place the first Snake on an image, the approximate location needs to be found. 
A Principal Component Analysis (PCA)-based model was chosen to serve this purpose 
because it is very powerful in the detection of a similar shape to the trained shapes. The 
PCA-based model has been widely investigated in the application of face recognition 
(Gong et al., 2000). The problem of optic disk location is similar to face detection in 
certain respects. The approach includes calculating the eigenvectors from the training 
images, projecting the new retinal image to the space specified by the eigenvectors and 
calculating the distance between the retinal image and its projection.  

The first step of the PCA-based model is a training procedure to obtain ‘disk space’. Fifty 
optic disk images are carefully selected as the training set. A square sub-image around the 
optic disk is manually cropped from each fundus image as training data. The sub-images 
are resized to L x L pixels and their intensities are normalized to the same range to form a 
training set. Each training image can be viewed as a vector of L2. L is the set to 90 in our 
application because most of the optic disk diameters from our test set are able to fit well 
into this square. The technique of PCA is applied to the training set to get the modes of 
variation around the average image. The subspace defined by eigenvectors is termed as 
disk space.   The model obtained by PCA statistical analysis is put to use in the localization  
of the optic disk in fundus images and explained in full detail as follows: 
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Step 1:  Acquisition of Training Data Set 
 
1.1) Optic disks were manually cropped, scaled to L x L, and normalized. They were 
converted into a vector  of length L x L. Fifty images were then transformed to a 
training set of where is the vector of L

iΓ

}Γ,...,3Γ,2Γ,1Γ{ M iΓ
2 and M is fifty for our case 

(Figure 4.2).  
  

 
Figure 4.2 The training images of optic disk 
 
Step 2:  Definition of Disk Space 

2.1) The average vector was computed using Equation (4.5), as demonstrated in Figure 
4.3, and the set of deviation from the average vector  

Ψ
],...,,[ 21 MΦΦΦ=Φ  is also defined 

with Equation (4.6) 
 

1

1 M

i
iM =

Ψ = Γ∑      (4.5) 

 
Ψ−Γ=Φ ii      (4.6) 

 
where  Ψ  is the average vector of the training set 

       is the difference between each training vector and the average vector Φ
 

 
      

 
Figure 4.3 The training set of OD image and their average vector 
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2.2) A covariance matrix C which is defined in Equation (4.7) was computed in this step 

1

1 M
T

i i
i

C
M =

= Φ∑ Φ      (4.7) 

 
2.3) In this step, the vector , as shown in Figure 4.4, is an eigenvectors (eigen disk) 
corresponding eigen value 

ku

kλ was calculated using Equation (4.8), 
 

k kCu ukλ=      (4.8) 

where             is the eigen vector (eigen disk) of covariance matrix C u
       λ   is The eigen value   
 

Figure 4.4 The examples of eigen disk 
 
2.4) A test image of original size of 640 x 480 pixels was raster scanned with a united 
block of L x L to form a . It is later transformed into the disk spacenewΓ kω  for k = 1,…,n 
by the Equation. (4.10). The disk space kω  forms a vector [ ]1 2, ,..., nω ω ωΩ =  that 
describes the contribution of each eigen disk for OD image. Therefore, the simplest method 
for determining which OD images are identified with new OD image is to find the 
minimum Euclidian distance by 2

i iε = Ω−Ω  and iΩ  is a disk space of i-th OD image of 
a dataset : 

new newΦ = Γ −Ψ    (4.9) 
T

k k neuω = Φ w     (4.10) 
                                                      
where 1ω , 2ω …, nω  are n new disk spaces (Figure 4.5) and n is a number of selected 
dominant eigenvectors. 
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Figure 4.5  Examples of  image reconstruction using eigen disk   
 
Step 3: Locating the Optic Disk 
 
3.1) A pre-processed image  is reconstructed by using its disk spaces and the eigen disks 
of the training set as shown in Equation. (4.11) 

Φ

1

n

r k
k

uω
=

Φ =∑ k    (4.11) 

where is a reconstructed image and n is the number of dominant eigen disk used in the 
previous step. 

rΦ

3.2) The sub-image will be classified as OD if the Euclidean distance between rΦ  
and , as expressed in Equation. 4.12, is below a threshold value. The threshold value is 

derived from
newΦ

2
newΦ −Ψ . Some example results of optic disk detection are shown in 

Figure 4.6.  

new new rε = Φ −Φ    (4.12) 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 4.6 The detection results of four example OD images 
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A library set of 50 patterns of OD is used in the training process. Fifty retinal images are 
used for classification. To compute, the average vector in Equation. (4.5), each segmented 
OD is registered to same orientation. All the processes in this step are summarized by a 
flowchart in Figure 4.7. The result from this step is quite successful; the algorithm can 
locate the OD with 80% accuracy compared with manual OD location from a test set of 
fifty images. The fail outcomes resulted from poor image quality or very blurred and 
unclassifiable OD. 
   

Figure 4.7 Showing a flowchart of PCA 

Step1: Acquisition of Training Data 
Set

2.4 A test sub-image  is 

transformed into the disk space 
newΓ

kω  

 
4.3.2 Get actual shape of OD by GVF Snakes 
 

The implementation steps of using a GVF Snake to detect the OD boundary is as 
follows.  
Step 1: The first Snake is placed near the image contour of interest as a result from the 
previous step. Figure 4.8(a) demonstrated the result. 
Step 2: Find the Gradient Image. A simple Gaussian filter was applied on the image in 
order to get rid of the unwanted noise. This technique removes most of the noise and leaves 
the edge of OD boundary. Sigma of 2.5 was experimentally chosen. The result from this 
step is displayed in Figure 4.8(b). 
Step 3: Generate GVF Force Field. The edge map was transformed into a gradient vector 
force field in this step. An external force field or gradient vector flow (GVF) field dense 
vector field derived from a gradient image by minimizing energy functional in a variation 
framework (Xu and Prince, 1998). The result from this step is shown in Figure 4.8(c). 
Step 4: Snake Deformation. The shape of the Snake begins to deform in every iteration 
driving by forces applied on them. The iteration is repeated until the Snake is stable, the 
difference between two consecutive Snakes is lower than a threshold. An example of three 
steps is shown in Figure 4.8(d,e,f). 
Step 5: Map the Resulting Snake to the Original Image. The boundary contour of the 
detected OD was mapped to the original image, as shown in Figure 4.8(g,h). This will 
facilitate the clinician’s decision. 

2.1 Compute average matrix Ψ  

2.2 Compute matrix   Φ

1.1 Convert training image of size L x L by 
cropping a square image to fit the OD 

Step2: Definition of Disk space 

2.3 Compute the eigenvalue and 
eigenvector of covariance Matrix C 

Step3:  Locating the Optic Disk 

3.1. Reconstruct a preprocessed image 
Φ

3.2 Classify the OD image by using 
Euclidean distance 
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The whole process is summarized in Figure 4.9 and six more successful results are shown 
in Figure 4.10. 
 

                   (a) 
 

                      (b) 

                    (c) 
 

(d) 

                   (e) 
 

(f) 

                    (g) 
 

 
(h) 

Figure 4.8 (a) The first Snake is placed near OD (b) The  edge map 
2( , )* ( , )G x y I x y with sigma = 2.5 (c) GVF field image  (d), (e), (f) An 

example of GVF Snake in action where (d) Initial position of Snake and 
location of the model after 40 (e) 80 and (f) 200 iterations (g), (h) 
Detected OD is mapped to the original fundus image 
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   Figure 4.9 Showing a flowchart of GVF Snake 
 

Step1: First Snake is placed near 
the image contour of interest 

Step4: Snake deformation 

 
 

 
a) b) c) 

 
d) e) f) 

Figure 4.10 Examples of successful results 
 
4.4 Experimental Verification 
 

The results were clinically validated in this step. All images in our test set were sent 
to an ophthalmologist to identify the OD manually. The expert ophthalmologist hand-
labeled the optic disk on the screen. All optic disk pixels were set to white, and all non-
optic disk pixels were set to black. The new image was saved as a ground truth which will 
be used for comparison. All the OD’s which are automatically detected by our system are 
then compared with the clinician’s hand-drawn ground truth. Figure 4.11 shows an 
example of both the ground truth image and our detection result. The hand-drawn and 
detected optic disk images are represented in white. The number of detected pixels that 
intersect with pixels of the hand-drawn ground truth will be summed and calculated as a 
percentage of pixels on the hand-drawn ground truth, as demonstrated in Table 4.1. 

 

Step2: Find the Gradient image 

Step5: Map the resulting snake to 
the original image 

Step3: Generate GVF force field 
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a) 

 
b) 

 
c) 

Figure 4.11  (a) OD automatically detected by our system (b) Detected pixels (c) 
Clinician’s hand-drawn ground truth  

 
Accuracy Measurement  

To evaluate the performance of the algorithm quantitatively, the measure of accuracy is 
defined as follow: 

Accuracy = ( ) 100
( )

TP TN
TP FN TN FP

+
×

+ + +
  (4.13) 

where TP,TN,FP and FN stand for true positive, true negative, false positive and false 
negative, respectively (Costaridou, 2005). An example of the comparison is demonstrated 
in Figure 4.12. 
 

 
a) b) c) 

Figure 4.12 (a) ground truth image (b) Detected pixels (c) definition of 
segmentation evaluation 

 
 

Table 4.1 The examples of comparison result of intersected pixels on selected images. 
 
Image 

ID 
Image 
Name 

Ground 
truth 
pixels 

Detected 
pixels from 
Snake with 

GVF 

Detected  
pixels 
from  

Hough  
Transform

Snake 
Accuracy 

 (%) 

2D Circular 
Hough 

Transform 
Accuracy 

 (%) 
1 A1 7,891 7,625 7,487 96.6 94.9 
2 A2 7,466 6,257 5,896 83.8 79.0 
3 A3 6,174 5,474 4,783 88.7 77.5 
4 A5 8,628 6,181        0 71.6   0.0 
5 A6 7,453 5,890 5,763 79.0 77.3 
6 A7 8,658 7,624 7,526 88.1 86.9 
7 A9 5,470 5,321 5,240 97.3 95.8 
8 B2 14,481 10,670 8,401 73.7 58.0 
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Image 
ID 

Image 
Name 

Ground 
truth 
pixels 

Detected 
pixels from 
Snake with 

GVF 

Detected  
pixels 
from  

Hough  
Transform

Snake 
Accuracy 

 (%) 

2D Circular 
Hough 

Transform 
Accuracy 

 (%) 
9 B3 12,649 10,943 7,216 86.5 57.1 
10 B6 7,099 5,230        0 73.7   0.0 
11 B8 9,254 8,728 7,576 94.3 81.9 
12 B10 9,203 7,878         0 85.6   0.0 
13 C2 8,393 7,373 7,236 87.9 86.2 
14 C5 7,776 5,927 7,462 76.2 96.0 
15 C6 8,587 7,441 7,135 86.7 83.1 
16 C7 8,438 6,278         0 74.4   0.0 
17 C8 7,879 6,330         0 80.3   0.0 
18 C9 7,520 6,469         0 86.0   0.0 
19 C10 7,615 6,842 2,544 89.9 33.4 
20 C11 7,551 6,356         0 84.2   0.0 
21 C12 7,509 6,228         0 82.9   0.0 
22 C13 8,155 6,612         0 81.1   0.0 
23 C14 6,494 5,863         0 90.3   0.0 
24 D1 7,029 6,010         0 85.5   0.0 
25 D3 14,175 11,002 7,291 77.6 51.4 
26 D4 8,513 7,113        0 83.6   0.0 
27 D11 8,937 7,213        0 80.7   0.0 
28 D14 10,644 9,854        0 92.6   0.0 
29 E2 7,517 5,270 7,037 70.1 93.6 
30 E3 9,581 7,674 7,268 80.1 75.9 
31 E6 14,075 9,854 7,356 70.0 52.3 
32 E7 8,077 7,298 7,360 90.4 91.1 
33 E9 9,935 7,710 7,267 77.6 73.2 
34 G1 9,096 8,761 7,268 96.3 79.9 
35 G2 9,682 7,747 7,296 80.0 75.4 
36 G3 9,611 9,036 7,221 94.0 75.1 
37 G4 9,484 8,978 3,703 94.7 39.0 
38 G5 8,648 8,497 7,180 98.3 83.0 
39 G6 9,768 7,885 7,147 80.7 73.2 
40 G8 7,004 5,782 5,521 82.6 78.8 
41 G9 7,929 6,864 7,375 86.6 93.0 
42 G10 6,670 5,562 5,320 83.4 79.8 
43 G11 7,147 5,769 5,478 80.7 76.7 
44 G12 7,872 6,704 7,172 85.2 91.1 
45 G14 6,220 5,622 5,312 90.4 85.4 
46 G15 7,685 7,577 7,303 98.6 95.0 
47 G16 7,882 7,108 7,193 90.2 91.3 
48 G17 7,435 7,097 7,113 95.5 95.7 
49 G18 7,622 7,154 7,558 93.9 99.2 
50 G19 8,057 7,182 7,138 89.1 88.6 

Average Percentage 85.3 56.9 
 

4.5 Experimental Results  
 
Fifty images with varying shapes and sizes of optic disk were used in this process. These 
fifty images represent most of the cases of the ROP symptoms and they were sufficiently 
used to prove the concept of this algorithm. If the system is to be used in real situation, a 
bigger number of the images would be required. Apart from segmentation results from the 
GVF Snake, for comparison purposes, we also processed this set of images using a simpler 
2D Circular Hough Transform. (This technique is based on a circular Hough Transform 
and the dimensions of the normal circular Hough Transform histogram are reduced from 3 
to 2 dimensions by assuming that the approximate OD radius is known. Only the first few 
circles are evaluated by using the maximum point from Hough space). The detail of 
percentage of accuracy is shown in Figure 4.13.  
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Figure 4.13 The accuracy result for all images 
 
4.6 Conclusion and Discussion 
 
We have presented a method for optic disk detection based on a PCA and GVF Snake. The 
method was implemented on Pentium 4, 3GHz machine with 1 GB of RAM and the speed 
of transform is approximately 10 seconds/image. Because the algorithm will stop when 
there are no changes in the accuracy, i.e. when the result is converged. From our 
experiment, approximately it will converge after 10 second for each image. The Rate of 
Convergence for each image is 10 seconds with 3 GHz Pentium 4 machine. The PCA was 
used to get a rough location of the OD, and the first GVF Snake was placed closely to the 
center of the optic disk. The GVF Snake then followed the external vector force field until 
it fitted the boundary of the OD. The results were compared with the result from a 2D 
Circular Hough Transform and validated against a clinician’s hand-drawn ground truth. 
The accuracy result is quite successful with accuracy of 85.3% compared to the accuracy 
result of Circular Hough Transform which is 56.9%. One visible advantage of this method 
is that the ODs are detected even though the boundary of the OD is not continuous or 
blurred.  
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Chapter 5 
 

Automatic Optic disk Detection from Low Contrast Retinal 
Images of ROP Infant Using Mathematical Morphology 

 
In this chapter, we present the algorithm that is effectively detected optic disk from the 

infant’s retinal images. The algorithm is based on mathematical morphology technique to 
extract the optic disk from the retinal image. In addition, the overview of mathematical 
morphology, materials and method, result verification, experimental results and conclusion 
and discussion are included in this chapter. 
 
5.1 Overview of Mathematical Morphology 

 
Mathematical morphology has its origins in set theory and concerns the study of form 

and structure. Within image analysis it concerns the shape and properties of objects, or 
regions of an image, and how these may be changed, and useful features extracted.  

While the formal mathematics of set theory utilizes concepts of set inclusion, 
complement, union and intersection, a useful insight into the topic of morphology can be 
achieved using a more intuitive approach based upon plain English descriptions of 
operations performed and the logical expressions OR, AND and NOT. In addition the 
familiar operation of moving a template, or mask, over an image and performing specific 
template-image comparison at each template position will give similar results to the set 
theoretical approach   (Awcock and Thomas, 1996).  
 
5.1.1 Erosion and Dilation 
 

Two operations which are fundamental to morphological analysis of images are 
‘erosion’ and ‘dilation’. Almost all morphological operations can be defined in terms of 
these two basic operations. 

Erosion of set A by structuring element B is denoted tA BΘ  and is formally defined 
mathematically as 

{ }|t
pA B p B AΘ = ⊂    (5.1) 

where tB  is the transposed form of the structuring element set, and  
          pB represents the structuring element centred at poing p 
 
However, since the erosion operation is based on inclusion it is more simply conceived of 
as the output set obtained where the template is completely contained by the image set. 
Thus the eroded image of Figure 5.1 is produced by stepping the structuring element, or 
template, over the input until ALL of the foreground pixels of the template fit over 
foreground pixels in the underlying image. At each position where this is true a pixel is 
written to the output array corresponding to the reference pixel position, p. This is 
equivalent to hit-miss transformation of the image with the structuring element, where 
there are NO background pixels in the latter – i.e. .bgdB =∅  Notice how erosion enlarges 
holes in the object, shrinks its boundary, eliminates ‘islands’ and removes narrow 
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‘peninsulas’ that might exist on the boundary. Also consider the effect of eroding the 
object with a 3x3 grid of foreground pixels, F, and then finding the morphological 
difference between this and the original object. The result is a row of connected single 
pixels corresponding to the outermost extreme of the object foreground – a perfect 
boundary, known as the ‘inner’ boundary of the object. For the record this is expressed 
mathematically as 

Inner boundary = /A A FΘ   (5.2) 
 
Dilation is the ‘dual’ of erosion, that is, the dilation of a set A is equivalent of the erosion 
of the complement set A*. Therefore, dilation, denoted tA B⊕ , may be defined as 

 
*tA B A B⊕ = Θ t    (5.3) 

 
This mathematical notion of duality means that dilation can be performed by eroding the 
complement set by the same structuring element. In practice, this means that a foreground 
object in a binary image can be dilated by eroding the background with the same 
structuring element. Alternatively dilation is formally defined mathematically as 

 
{ }|t

pA B p B A⊕ = ∩ ≠∅   (5.4) 
 
This means that an output pixel will be written at all points where the translated structuring 
element ‘hits’ the image set –i.e. they have a ‘non-empty intersection’. 
 
Stated more intuitively, the mathematical definition of dilation says that a foreground pixel 
will be written to the output set at all positions of the structuring element reference where 
ANY foreground pixel in the structuring element overlays a foreground pixel of the image 
set (i.e. part of an object). The result of this operation is illustrated in Figure 5.1. 

Notice how dilation fills in holes in the object and expands its boundaries, filling in any 
narrow ‘creeks’ that might exist.  

In both Figures 5.1(c) and 5.1(d) the shaded regions indicate the change that is 
produced by the morphological operator. In Figure 5.1(c) the output image is indicated by 
the solid black area and in Figure 5.1(d) it is indicated by the solid black area PLUS the 
shaded area. Notice that these operations significantly modify the size of the objects as 
well as their shape. 
 
5.1.2 Opening and closing 
 

Although dilation and erosion are dual operation it is not possible to reconstruct an 
image set by application of dilation after previously having eroded the image. The dilation 
operation will only be able to reconstitute the essential features of the structure of the 
object as modified by structuring element. However, such a new set can be extremely 
useful in determining size and shape information. A pair (dual) of sequential operations 
may thus be formally defined as  

‘Opening’, denoted : BA ( )tA B BΘ ⊕ ; i.e. erode then dilate 

‘Closing’, denoted : BA ( )tA B B⊕ Θ ;i.e. dilate then erode 
The result of these operations is illustrated in Figure 5.2(b-c). In both cases the original 
input image is that given above in Figure 5.2(a) and the structuring element is that given in 
Figure 5.2(b). 
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Figure 5.1 Erosion and dilation (a) the original image (black = object) (b) the 3x3 
structuring element (c) the erosion of (a) (d) the dilation of (a) 
 
Opening and closing operations form the basis of boundary smoothing and noise 
elimination process whether the noise is manifest as small holes within the object or as 
small protrusions external to it. Continuing with the geographical metaphor which seems 
so appropriate for the effect of morphological operations, opening smoothes object 
‘coastlines’, eliminates small ‘islands’ and cuts narrow ‘isthmuses’. Thus it isolates objects 
which may be just touching one another, and is therefore a suitable precursor to studies of 
the distribution of particles sizes –for example, in analysis of wear particles in engine oil, 
ink particles in recycled paper, or cells in cytology. On the other hand, closing blocks up 
narrow ‘creeks’ and small or thin ‘lakes’ inside the object and links nearby objects. This 
simplifies the process of assessing the separation of particles. 

 
Note that, while opening or closing significantly modifies the shape of the object, 

completing these restores the previously eroded or dilated object to their original size.  
 

 
Figure 5.2 Sequential applications of erosion and dilation (a) original image set (b) 
opened version (c) closed version 
 
5.2 Materials and Methodology 
 
Our approach to detect the optic disk is based on mathematical morphology. The details of 
all ten steps used in the algorithm are described as follow: 
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Step 1: Extract Red channel. 
The images that we have were taken in low light condition. We found that the 

strongest color component in these images is the Red component. Furthermore, the color of 
optic disk always primitive in red channel with round or oval shape in disk. So the red 
channel was chosen as our input as shown in Figure 5.3(a). 
 
Step 2: Using Histogram Equalization Enhancement 

In the infant’s retinal image, the image is often blurred. Most of the information is 
packed in the lower order parts of the image histogram. Improvements in the contrast can 
make this algorithm more efficient. The image contrast was enhanced by Histogram 
Equalization to improve the quality of optic disk image.  

The transformation is done as a point processing since the enhancement of any 
pixel is dependent only on red channel at that point. Histogram equalization automatically 
determines a red channel transformation function that produces an output image with a 
uniform histogram and improves retinal image contrast as shown in Figure 5.3(b). 
 
Step 3: Average filter  

The idea of mean filtering is simply to replace each pixel value in an image with 
mean value of its neighbors, including itself. This has the effect of eliminating pixel values 
which are unrepresentative of their surroundings. Average filter is used to remove the 
unwanted noise in the retinal image as shown in Figure 5.3(c). 
 
Step 4: Morphological Closing  

The morphological closing, which is a sliding window operator, was used in this 
step to remove the dark details from the image, while leaving bright features relatively 
undisturbed. The effect of the Closing can be applied at this point to remove vessel in the 
image because the blood vessel will interfere with the result of edge detection in the next 
step.  

 
Morphological closing is a combination of two fundamental operations, namely 

dilation and erosion, which is defined by (5.10). Full details of dilation operation and 
erosion operation are described in step 7 and step 8 respectively. 
 

( )A B A B• = ⊕ ΘB    (5.10) 
 

Result of this step that has smoothes image without blood vessel as shown in Figure 5.3(d). 
 
 

(a) 
 

(b) 
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(c) (d) 

Figure 5.3 (a) The Optic disk in Red Channel (b) Histogram Enhancement (c) 
Averaging filter for smoothing the image (d) Closing Image for removing blood vessel 

 
Step 5: Canny edge detection  

The Canny edge detection applied to Red channel of RGB to find the edge of the 
optic disk. The result of this edge detection is a binary image in which the white pixels 
closely approximate the true edges of the original image as shown in Figure 5.4(a).  
 
Step 6: Thicken the edge 

In order to add pixel into the boundary line, convolution mask was applied to give 
more detail of the edge in optic disk as shown in Figure 5.4(b). The 3 x 3 convolution mask 
is superimposed upon the input image. The process commenced at the origin and each 
input pixel is multiplied by the corresponding window value. These nine results are 
summed and the final value returned to the output image at a position corresponding to the 
centre element of the window. The window was then moved by one pixel to its next 
position and the operation was repeated. The filtering operation adds pixels along the edge 
line in the output image.  
 

(a) (b) 
Figure 5.4 (a) Canny Edge detection (b)  Edge thickener result 

 
Step 7: Using Dilation and filling the hole and gap within the image  
Two basic morphological operators, namely dilation and erosion, are used in this step. 
Dilation causes objects to dilate or grow in size by adding pixels to the boundaries of the 
object in an image, while erosion causes objects to shrink by removing pixels on object 
boundaries. In our case, we dilated the image using disk-shaped structured element that 
defines the neighborhood region around its origin with a radius of 5 to connect the region 
in the image. 
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 The dilation of A by B, denoted by A B⊕ , is defined as (5.11) 
 

ˆ{ | ( ) }xA B x B A⊕ = ∩ ≠∅   (5.11) 
 
Dilation, which expands the boundary of an object in an image, is achieved by assigning 1 
to the origin of the structuring element when it overlaps, even partially, the object. The 
result of this step in is shown in Figure 5.5(a). Next we developed a simple algorithm for 
region filling based on set dilations, complementation, and intersections. The objective is 
to fill the entire optic disk circular region and the other region with 1’s in the hole and gap 
as shown in Figure 5.5(b). 
 

 
(a) (b) (c) 

Figure 5.5 (a) After dilation  (b) Fill the hole (c) after image erosion 
 
Step 8: Image Erosion  
Erosion contracts the boundary of an object in an image and this effect can be used as one 
of the steps to separate the optic disk object from other objects.  Erosion is achieved by 
assigning a value one to the origin of the structuring element when it entirely overlaps the 
object. The result is shown in Figure 5.5(c).  
 
The erosion of A by B, denoted by A BΘ , is defined as(5.12) 
 

{ | ( ) }xA B x B AΘ = ⊆   (5.12) 
 

Step 9: Area labeling  
In this step we need to separate all the unconnected regions. The areas within the image 
were separated by labeling using 4-neighborhood connecting. All connected pixels with the 
same input value are assigned the same identification label. Figure 5.6(a) shows the 
connected component labeling result. 
 
Step 10: Noise removal 
All other comments rather than optic disk are removed in this step. Number of pixels in 
each individual components in the binary image are counted. From our prior experiment, 
we manually selected the optic disk from the training set and found that the average 
number of pixels in the optic disk with the circular shape is in range between 1200 to 1600 
pixels. If the number of pixels in a component is not in this range, the components will be 
removed. The result is as show in Figure 5.6(b). Figure 5.7 presents the example of 
successful result in the different shape and size of optic disk. 
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(a) 
 

(b) 
Figure 5.6 (a) Input image to step 10 (b) After noise removal 

 
 

 
(a) 

 
(b) 

(c) 
 

(d) 
Figure 5.7 The examples of successful result 

 

Figure 5.8 Showing the diagram of methodology 

Retinal Image Step6: Thicken the edge 

Step3: Average filter 

Step7: Dilation and fill the hole Step1: Extract Red channel

Step2: Histogram Equalization 

Step4: Morphological Closing 

Step5: Canny Edge Detection 

Step8: Image Erosion 

Step9: Area labeling 

Step10: Noise Removal 

Finish 
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5.3 Experimental Verification 
 
The results were clinically validated in this step. All images in our test set were sent to 

ophthalmologist to identify the OD manually. Expert ophthalmologist hand-labelled the 
optic disk on the screen. All optic disk pixels were set to white and all non-optic disk 
pixels set to black. The new image was saved as a ground-truth which will be used for 
comparison. All the OD’s which are automatically detected by our system were then 
compared with clinician’s hand-drawn ground truth. The result is evaluated quantitatively 
by comparing the resulting detection with ophthalmologists’ hand-drawn ground-truth 
images pixel by pixel. Figure 5.9 shows an example of both ground truth image and our 
detection result. The hand-drawn and detected optic disk images are represented in white. 
 

(a) 
 

(b) 
Figure 5.9 (a) Clinician’s hand-drawn ground truth (b) Detected pixels from 
mathematical morphology 

 
Four values, namely TP, TN, FP and FN which stand for true positive, true negative, 

false positive and false negative, respectively (Costaridou, 2005) were used as 
measurements. True Positive (TP) is a number of optic disk pixels correctly detected, False 
Positive (FP) is a number of non-optic disk pixels which are detected wrongly as optic disk 
pixels, False Negative (FN) is a number of optic disk pixels that were not detected and 
True Negative (TN) is a number of non-optic disk pixels which were correctly identified as 
non-optic disk pixels as shown in Table 5.1. 

 
Table 5.1 Optic disk verification 
 
 Optic Disk Present Optic Disk absent 
Optic disk detected True Positive(TP) False Positive(FP) 
Optic disk not detected False Negative(FN) True Negative(TN) 
 
In order to evaluate the performance of the algorithm quantitatively, the measure of 
accuracy, sensitivity, specificity, positive predictive value are also defined (Equation 
(5.13),(5.14),(5.15) and Equation (5.16)). The accuracy shows the performance of this 
method, sensitivity shows the proportion of optic disk pixels which positively detected, the 
specificity shows the proportion of non-optic disk pixels which negatively detected the 
positive predictive value shows proportion of optic disk pixels which correctly detected. 
 
 

( ) 100
( )

TP TNAccuracy x
TP FN TN FP

+
=

+ + +
    (5.13)     (%) 100TPSensitivity x

TP FN
=

+
   (5.14) 
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 (%) 100TNSpecificity x
TN FP

=
+

                (5.15)      (%) 100TPPPV x
TP FP

=
+

            (5.16)                 

 
 

After all the sixty retinal images were processed, they were compared with the hand-
drawn ground-truth images marked by ophthalmologist and the result will be discussed in 
the next section. 

 
 

5.4 Experimental Results 
 
Two set of images were used in this experiment. The first set of thirty images was images 
from ROP infants while the second set was a set of images with diabetic retinopathy. The 
result of detection for the fist set is demonstrated in Table 5.2 and 5.3 respectively.  
 
 
Table 5.2 The examples of accuracy, sensitivity and specificity result in retinal image 
with ROP condition 
 

Image  TP TN FP FN Accuracy Se(%) Sp(%) PPV(%) 
A11g 1262 305678 246 14 99.9 98.9 99.9 83.7 
A12g 1405 305590 204 1 99.9 99.9 99.9 87.3 
A13g 1344 305627 202 27 99.9 98.0 99.9 86.9 
A17g 1562 305412 132 94 99.9 94.3 100.0 92.2 
A19g 1627 305337 192 44 99.9 97.4 99.9 89.4 
A5g 1400 305484 315 1 99.9 99.9 99.9 81.6 
A6g 1595 305461 115 29 100.0 98.2 100.0 93.3 
A7g 1383 305575 169 73 99.9 95.0 99.9 89.1 
A8g 1461 305554 168 17 99.9 98.8 99.9 89.7 
A9g 1412 305570 165 53 99.9 96.4 99.9 89.5 
B3g 2107 304678 291 124 99.9 94.4 99.9 87.9 
C10g 1371 305531 162 136 99.9 91.0 99.9 89.4 
C11g 1266 305774 156 4 99.9 99.7 99.9 89.0 
C12g 1320 305716 164 0 99.9 100.0 99.9 88.9 
C13g 1398 305617 116 69 99.9 95.3 100.0 92.3 
C2g 1396 305508 270 26 99.9 98.2 99.9 83.8 
C6g 1417 305550 181 52 99.9 96.5 99.9 88.7 
C7g 1351 305685 131 33 99.9 97.6 100.0 91.2 
C8g 1328 305721 142 9 100.0 99.3 100.0 90.3 
C9g 1366 305610 85 139 99.9 90.8 100.0 94.1 
D10g 1685 305311 159 45 99.9 97.4 99.9 91.4 
D11g 1831 305151 114 104 99.9 94.6 100.0 94.1 
D14g 1799 305263 56 82 100.0 95.6 100.0 97.0 
D18g 1752 305115 109 224 99.9 88.7 100.0 94.1 
D19g 1773 305155 82 190 99.9 90.3 100.0 95.6 
D2g 1318 305673 180 29 99.9 97.8 99.9 88.0 
D4g 1421 305536 161 82 99.9 94.5 99.9 89.8 
D6g 1489 305533 133 45 99.9 97.1 100.0 91.8 
D7g 1402 305613 139 46 99.9 96.8 100.0 91.0 
D8g 1479 305569 135 17 100.0 98.9 100.0 91.6 

Over all  99.9 96.4 99.9 90.1 
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Table 5.3 The examples of accuracy, sensitivity and specificity result in retinal images 
with diabetic retinopathy. 
 

Image  TP TN FP FN Accuracy Se(%) Sp(%) PPV(%) 
10E 3252 303446 502 0 99.8 100.0 99.8 86.6 
11CE 3316 303493 381 10 99.9 99.7 99.9 89.7 
12EH 3828 302769 603 0 99.8 100.0 99.8 86.4 
18E 3988 296505 3446 166 98.8 96.0 98.9 53.6 
19E 3357 303250 524 69 99.8 98.0 99.8 86.5 
1ACEH 7070 299588 518 24 99.8 99.7 99.8 93.2 
22CH 4497 302073 628 2 99.8 100.0 99.8 87.7 
23E 4494 302216 451 39 99.8 99.1 99.9 90.9 
25E 3131 303499 539 31 99.8 99.0 99.8 85.3 
26E 3155 302411 1622 12 99.5 99.6 99.5 66.0 
29EH 4466 301838 626 270 99.7 94.3 99.8 87.7 
2ACEH 6369 299944 887 0 99.7 100.0 99.7 87.8 
33E 4448 301891 861 0 99.7 100.0 99.7 83.8 
34E 4554 302173 472 1 99.8 100.0 99.8 90.6 
35AEH 6950 299522 723 5 99.8 99.9 99.8 90.6 
36ACE 6494 299944 762 0 99.8 100.0 99.7 89.5 
38E 4983 301076 1136 5 99.6 99.9 99.6 81.4 
39E 4582 301853 765 0 99.8 100.0 99.7 85.7 
3E 3085 303475 585 55 99.8 98.2 99.8 84.1 
45E 4464 302027 706 3 99.8 99.9 99.8 86.3 
46E 5433 295156 3849 0 98.7 100.0 98.7 58.5 
49E 4123 300366 2708 3 99.1 99.9 99.1 60.4 
53E 4399 301892 907 2 99.7 100.0 99.7 82.9 
59sn 5290 298922 1843 20 99.4 99.6 99.4 74.2 
5EH 4220 302267 696 17 99.8 99.6 99.8 85.8 
67CE 4889 301619 663 29 99.8 99.4 99.8 88.1 
6EH 4279 302420 487 14 99.8 99.7 99.8 89.8 
71E 4765 301839 596 0 99.8 100.0 99.8 88.9 
7E 4154 302401 642 3 99.8 99.9 99.8 86.6 
8H 4234 302085 875 6 99.7 99.9 99.7 82.9 

Over all   99.7 99.4 99.7 83.1 
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                                (b) 

Figure 5.10 (a) The sensitivity and specificity result in retinal image with ROP 
condition (b) The sensitivity and specificity result in retinal images with diabetic 
retinopathy  
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For optic disk in ROP infant, the overall accuracy, sensitivity, specificity and PPV value 
achieved by this method are 99.9%, 96.4%, 99.9% and 90.1% respectively (Figure 
5.10(a)). The overall accuracy, sensitivity, specificity and PPV value for optic disk 
detection in diabetic retinopathy retinal image are 99.7%, 99.4%, 99.7% and 83.1% 
respectively (Figure 5.10(b)). All of sixty optic disks of low-contrast images were 
identified by this proposed algorithm.  
 
5.5. Conclusion and Discussion 
 

We have presented an automatic method for Optic Disk detection based on 
Mathematical Morphology. Histogram enhancement and filtering techniques were used to 
enhance image quality in red channel. Canny edge detection was applied to detect edge line 
in the previous result. Morphological Closing was first applied.  Mathematical morphology 
(Dilation and Erosion) and connected component labeling were then applied to extract the 
optic disk from the retinal image. The detection results were validated against clinicians’ 
hand-drawn ground truth. The result of images with ROP (infant retina) was quite 
successful with accuracy of 99.9% while the accuracy of the result from adult retinal 
images is 99.7%. This method is able to identify correct position of all optic disk in ROP 
Infant as well as in adult’s retinal image with diabetic retinopathy. From this experiment, 
the total processing time of optic disk detection for each image is 15 seconds with 3 GHz 
Pentium 4 machine. Visible advantages of this algorithm are that it works pretty well on 
low-contrast retinal image with ROP with fast computation and quite reliable. This 
algorithm could facilitate clinicians to analyze the area surrounding the optic nerve. 
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Chapter 6 
 

Conclusions 
 

This chapter summarizes all research works in this dissertation. The key contributions are 
listed and some recommendations for future research are also discussed.   

 
6.1 Research Summary 
 
This thesis presented algorithms of automatic detection of optic disk from low-contrast 
fundus images of ROP Infant. All techniques are implemented in 3 GHz Pentium 4 
machine. The first technique is based on Circular Hough Transform and Canny Edge 
Detection to detect the optic disk. The Circular Hough Transform histogram is reduced 
from 3D to 2D then in the calculation process, a value in particular point in Hough space is 
accumulated. After that, it was thresholded to leave only points with high probability of 
being the centers. The OD position was considered correctly detected if the pixels in the 
detected image present in the clinician’s hand-drawn ground truth. In the finally, we find 
the best circle to fit the optic disk. The accuracy result of this method is achieved 81.7% 
from a data set of fifty infant fundus images. The time consuming for 2D Circular Hough 
Transform technique is 12 seconds for each image. The second method is achieved using 
PCA and deformable contour model with gradient vector flow as an external force. The 
first snake is placed at a location very close to the center of the optic disk approximated by 
PCA based model. The accuracy result is quite successful with 85.34% from a data set of 
fifty infant fundus images and the rate of convergence for each image is 10 seconds. One 
visible advantage of this method is that the optic disks are detected even though the 
boundary of the optic disk is not continuous or blurred. The last method, we use 
mathematical morphology to detect the optic disk. This method is based on mathematical 
morphology. We use many techniques to detect the region of optic disk, Histogram 
equalization and average filtering techniques were used to enhance Red band of the 
original low-contrast retinal image. The blood vessel was eliminated from the retinal image 
using the morphology closing. Optic disk localization is then achieved using optimized 
mathematical morphology and connected labeling. The result of thirty infant’s retinal 
images with ROP condition and thirty images from diabetic retinopathy patients were 
validated with experts’ hand-drawn ground truth. The result is quite successful with the 
accuracy of 99.9 % for retinal images with ROP and 99.7% for diabetic retinopathy retinal 
images. The time consuming in morphology technique is 15 seconds for each image.  This 
method is able to identify correct position of all optic disk in ROP Infant as well as in 
adult’s retinal image with diabetic retinopathy. Visible advantages of this algorithm are 
that it works pretty well on low-contrast retinal image with ROP with fast computation and 
quite reliable. This algorithm could facilitate clinicians to analyze the area surrounding the 
optic nerve. For the verification results were compared and validated with experts’ hand-
drawn ground truth. 
 
In all three algorithms, they work pretty well in low-contrast retinal image with ROP. All 
three prototypes have been implemented in MATLAB 7.0.4(R14) on a 3.00 GHz PC under 
Windows XP.  
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6.2 Key Contributions of the Research 
 

1. To find an efficiency algorithm to detect the optic disk in ROP Infant retinal image 
2. Implement an automatic program to detect the optic disk in ROP Infant 
3. To help the clinician to diagnose the ROP in the earlier stage that can prevent the 

infant blindness 
4. To protect Thai infant from blindness with ROP 
  

6.3 Future Study 
 

As the future study of detection of optic disk in ROP Infant, we try develop this demo in 
the package of application software because all of algorithms were implemented in 
MATLAB. That is not convenient for clinician to handle, if we develop in application 
software which easy to use, it will be the efficiency tool for medical doctor to diagnosis the 
ROP disease in the rural area in Thailand. 
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