,

ภาคผนวก

NEW CLEISTANTHANE DITERPENOIDS AND 3,4-seco-CLEISTANTHANE DITERPENOIDS FROM Croton oblongifolius

UDC 547.596

S. Roengsumran,¹ P. Pata,¹ N. Ruengraweewat,¹ J. Tummatorn,¹ S. Pornpakakul,¹ P. Sangvanich,¹ S. Puthong,² and A. Petsom^{1,2*}

Two new cleistanthane-type diterpenoids, 3-hydroxycleistantha-13(17), 15-diene (1) and 3, 4-seco-cleistantha-4(18), 13(17), 15-trien-3-oic acid (2), were isolated from the stem bark of Croton oblongifolius Roxb. Epoxidation of 2 gave two epoxides 3 and 4. Their structures were established on the basis of spectroscopic data. Compound 1 showed nonspecific strong cytotoxicity against human tumor cell lines, compound 2 showed weak activity, and compounds 3 and 4 were inactive.

Key words: Croton oblongifolius, cleistanthane, diterpenoids, cytotoxicity.

In our previous work, the chemical constituents of *Croton oblongifolius* from various parts of Thailand were investigated and several diterpenoid compounds were reported, for example, cembranes [1, 2], labdane [3], halimane [4], clerodane [5], and kaurane [6]. Most of the compounds are obtained in good yield and possess biological activities such as cytotoxicity and inhibition of Na⁺, K⁺-ATPase activity. Our preliminary study of *C. oblongifolius* from various locations in Thailand suggested that this plant is a very good source of diterpenoid compounds. As part of our continuing search for novel diterpenoids in this plant, we found two new cleistanthane diterpenoids for the first time from *C. oblongifolius*. In this paper, we report the structural determination and cytotoxicity of the new compounds.

Compound 1 was isolated as colorless needle crystals. The molecular formula of $C_{20}H_{32}O$ was established by elemental analysis, ¹H and ¹³C NMR (Table 1 and 2), and MS $[M+H]^+$ (m/z 289) data. The IR spectrum of 1 showed strong absorption bands at 3413 cm⁻¹ (OH stretching) and 1633 cm⁻¹ (C=C stretching). ¹³C NMR spectrum indicated the presence of 20 carbons.

Fig. 1. Key NOESY correlations of 1-4.

1) Research Centre for Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwon, Bangkok 10330, Thailand; 2) Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Pathumwon, Bangkok 10330, Thailand, e-mail: polkit@gmail.com. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 540–543, September–October, 2009. Original article submitted March 14, 2008.

0009-3130/09/4505-0641 ©2009 Springer Science+Business Media, Inc.

Position	1	2	3	4
1α	1.06 (m)	1.65 (m) ^c	1.65 (m) ^c	1.66 (m) ^c
Iβ	1.73 (m)			
2α	1.52 (m)	2.42 (m)	2.28 (m)	2.22 (m)
2β	1.63 (ddd, J = 3.4, 7.3, 14.8)	2,30 (m)	2.43 (m)	2.44 (m)
3	3.22 (dd, J = 11.6, 4.5)		•	
5	0.78 (m)	1.96 (dd, J = 12.8, 2.4)	1.96 (dd, J = 12.4, 2.8)	2.15 (dd, J = 12.4, 2.4)
6α	1.34 (m)	1.44 (m)	1.42 (m)	1.49 (m)
6β	1.62 (m)	1.67 (m)	1.71 (m)	2.02 (m)
7α	1.24 (m)	1.24 (m)	1.19 (m)	1.27 (m)
7β	1.50 (m)	1.46 (m)	1.39 (m)	1.89 (m)
8	1.49 (m)	1.57 (m)	1.86 (m)	
9	1.04 (m)	1.26 (m)	1.25 (m)	1.02 (m)
11 <i>a</i>	1.75 (m)	1.17 (m)	1.16 (m)	$1.22 (m)^{c}$
11 <i>β</i>	1.77 (m)	1.72 (m)	2.02 (m)	(,
12α	2.17 (m)	$2.20 (m)^{c}$	1.46 (m)	1.38 (m) ^c
12 <i>β</i> °	2.17 (m)		1.64 (m)	
	2.81 (dd, J = 9.2, 4.2)	2.83 (dd, $J = 8.8, 4.4$)	1.67 (m)	2.55 (m)
15	6.01 (ddd, J = 9.2, 9.6, 17.0)	6.02 (ddd, J = 17.6, 10.4, 8.8)	5.90 (ddd, J = 17.2, 10.4, 10.0)	5.87 (ddd, J = 17.6, 10.4, 10.0)
16α	5.02 (dd, J = 9.6, 1.6)	5.03 (dd, J = 10.4, 1.6)	5.03 (dd, J = 10.4, 2.0)	5.01 (dd, J = 10.4, 2.0)
16 <i>β</i>	5.03 (dd, J = 17.0, 1.6)	5.04 (dd, J = 17.6, 1.6)	5.11 (dd, J = 17.2, 2.0)	5.04 (dd, J = 17.6, 2.0)
17α	4.57 (s)	4.59 (d, J = 0.9)	2.60 (d, $J = 4.4$)	$1.10 (s)^{d}$
17β	4.65 (s)	4.67 (d, J = 0.9)	2.63 (d, $J = 4.8$)	
18 <i>α</i>	$0.80(s)^{d}$	4.67 (s)	4.68 (s)	4.74 (s)
18 <i>β</i>		4.88 (s)	4.86 (s)	4.90 (s)
19	0.97 (s) ^d	$1.74(s)^{d}$	$1.74 (s)^{d}$	$1.78 (s)^{d}$
20	0.79 (s) ^d	$0.84(s)^{d}$	$0.90 (s)^{d}$	$0.98 (s)^{d}$

TABLE 1. ¹H NMR (CDCl₃, 400 MHz) Data of Compounds 1-4^{a,b}

^aChemical shifts in ppm, J values in Hz are in parentheses; ^bthe assignments were based on ¹H-¹H COSY, HSQC, and HMBC experiments.

^cIntensity of two protons; ^dintensity of three protons.

The ¹³C NMR spectrum showed a signal of oxygenated methine carbon (δ 79.1 ppm), the signals of exocyclic methylene (106.4, CH₂; 152.4, C), and a vinyl group (137.7, CH; 115.9, CH₂). ¹H NMR spectrum indicated two olefinic protons of terminal methylene at δ 4.57 (s) and 4.65 (s), vinyl protons at δ 6.01 (1H, ddd, J = 17.0, 9.6 and 9.2 Hz), 5.02 (1H, dd, J = 9.6 and 1.6 Hz), and 5.03 (1H, dd, J = 17.0 and 1.6 Hz), and three signals of methyl groups at δ 0.80 (3H, s), δ 0.97 (3H, s), and δ 0.79 (3H, s). The DEPT NMR spectra indicated the presence of three methyl carbons, six methylene carbons, and four methine carbons. The molecular formula of C₂₀H₃₂O indicated five double-bond equivalents. The ¹H and ¹³C NMR spectra indicated an exocyclic double-bond and a vinyl double-bond; therefore, 1 must consist of three rings. The 1D and 2D NMR, including COSY, NOESY, HMQC, and HMBC spectral data, showed that compound 1 has a cleistanthane-type diterpenoid structure. The stereochemistry of 1 was established by the coupling constants in the ¹H NMR spectrum and NOESY spectra. The coupling constant of H-3 (dd, J = 11.6 and 4.5 Hz) indicated that the hydroxyl group was equatorially oriented. The observed NOEs between H-3 and H-5 and between H-5 and H-9 and the absence of NOEs between H-5 and the methyl of C-20 in the NOESY experiment suggested that H-5, H-9, and C-20 was axially oriented. The coupling constant of H-14 with H-15 (J_{14,15} = 9.2 Hz) and with H-8 (J_{14,8} = 4.2 Hz) and the observed NOEs between H-14 and H-17, between H-14 and H-8, between H-15 and H_{ax}-7, and between H-15 and H_{ax}-12 in the NOESY experiment suggested that the vinyl group and H-8 were axially oriented. Thus, compound 1 was assigned the (5 α ,8 β ,9 α ,10 β ,14 α)-cleistantha-13(17),15-dien-3 β -ol structure.

Position	1	2	3	4
1	37.6 (t)	32.1 (t)	32.1 (t)	32.1 (t)
2	27.5 (t)	28.1 (t)	28.0 (t)	28.0 (t)
3	79.1 (d)	181.0 (s)	180.1 (s)	178.7 (s)
4	38.9 (s)	148.4 (s)	147.4 (s)	146.9 (s)
5	54.3 (d)	50.7 (d)	50.7 (d)	50.6 (d)
6	21.3 (t)	27.6 (t)	27.5 (t)	25.6 (t)
7	32.1 (t)	31.5 (t)	31.1 (t)	34.7 (t)
8	40.5 (d)	40.4 (d)	36.6 (d)	61.4 (d)
9	49.2 (d)	41.0 (d)	40.2 (d)	43.3 (d)
10	36.9 (s)	39.0 (s)	39.0 (s)	40.3 (s)
11	27.0 (t)	27.4 (t)	29.3 (t)	16.4 (s)
12	31.3 (t)	31.3 (t)	23.0 (t)	34.9 (t)
13	152.4 (s)	151.9 (s)	61.5 (s)	35.6 (s)
14	54.6 (d)	54.7 (d)	53.0 (d)	63.7 (d)
15	137.7 (d)	137.3 (d)	135.5 (d)	146.8 (d)
16	115.9 (t)	116.2 (t)	118.3 (t)	112.0 (t)
17 .	106.4 (t)	106.8 (t)	53.9 (t)	22.0 (q)
18	15.8 (q)	113.8 (t)	113.7 (t)	114.0 (t)
19	28.4 (q)	23.9 (q)	23.9 (q)	23.6 (q)
20	14.0 (q)	16.8 (q)	16.8 (q)	18.3 (q)

TABLE 2. ¹³C NMR (CDCl₃, 100 MHz) Data of Compounds 1-4^a

^aThe assignments were based on HSQC and HMBC experiments.

TABLE 3. Cytotoxicity	Data of	Compounds	1-4 ^a
-----------------------	---------	-----------	------------------

Compounds	Cell lines ^b				
Compounds	KATO-3	SW620	BT474	HEP-G2	CHAGO
1	6.0	>10	6.1	0.5	5.5
2	9.6	>10	10	8.6	>10
3 .	>10	>10	>10	>10	>10
4	>10	>10	>10	>10	>10
Doxorubicin hydrochloride	0.5	1.2	2.2	1.7	0.1

^aResults are expressed as IC₅₀ values (µg/mL); ^bKATO-3, human gastric carcinoma ATCC No. HTB 103; SW620, human colon adenocarcinoma ATCC No. CCL 227; BT474, human breast ductal carcinoma ATCC No. HTB20; HEP-G2, human liver hepatoblastoma ATCC No. HB 8056; CHAGO, human undifferentiated lung carcinoma.

Compound 2 was isolated as a colorless oil. The molecular formula of compound 2 was assigned as $C_{20}H_{30}O_2$ based on HRESIMS, ¹H and ¹³C NMR (Table 1 and 2) and MS [M+H]⁺ (*m*/z 303). The IR spectrum showed the presence of a carboxylic acid group (3400–2400 and 1704 cm⁻¹). The ¹³C NMR spectrum and DEPT experiments revealed the presence of 20 carbons consisting of two methyl groups, six methylene sp³-carbons, four methine sp³-carbons, a quaternary sp³-carbon, three methylene sp²-carbons, a methine sp²-carbon, two quaternary sp²-carbons, and a carbonyl carbon of carboxylic group. Since the six degrees of unsaturation were accounted for, it was implied that 2 should contain two rings. The ¹H NMR spectrum revealed the presence of two terminal methylene groups [two olefinic protons at δ 4.59 (1H, d, J = 0.9 Hz) and δ 4.67 (1H, d, J = 0.9 Hz) and two olefinic protons at δ 4.67 (1H, s) and δ 4.88 (1H, s)]. The ¹H NMR also showed the presence of a vinyl group at δ 6.02 (1H, ddd, J = 17.6, 10.4, and 8.8 Hz), δ 5.03 (1H, dd, J = 10.4 and 1.6 Hz) and δ 5.04 (1H, dd, J = 17.6 and 1.6 Hz) and two methyl groups at δ 1.74 (3H, s) and δ 0.84 (3H, s). By comparison of spectral data of 2 with those of 1, including a detailed analysis of 2D NMR spectra, it seems like the structure of 2 was quite similar to of 1, except that the ring A of 2 was broken at C-3 and C-4 and C-3 became a carboxylic group. The HMBC experiment with the assistance of COSY, TOCSY, and NOESY led to the structure of 2 which was assigned as 3,4-*seco*-cleistantha-4(18),13(17),15-trien-3-oic acid.

643

The relative stereochemistry of 2 at positions 5, 8, 9, 10, and 14 was determined on the basis of the coupling constant and NOESY experiments (Fig. 1).

Epoxidation of 2 with mCPBA in CH_2Cl_2 gave epoxide 3 as a major product and epoxide 4 as a minor product without the presence of epoxidation at the isopropylene moiety. The molecular formula of 3 was proposed to be $C_{20}H_{30}O_3$ based on microanalysis and ¹H and ¹³C NMR data (Table 1 and 2). The spectral data of 3 were quite similar to those of compound 2, except that the exocyclic double bond (C-13 and C-17) was replaced by the epoxide moiety. By comparison of the spectral data of 3 with those of 2 and a detailed analysis of 2D NMR spectra, it can be concluded that the structure of 3 was an epoxide of compound 2. NOESY analysis with the assistance of the coupling constants led to the relative structure of 3 (Fig. 1) as 13,17-epoxy-3,4-seco-cleistantha-4(18),15-dien-3-oic acid.

Compound 4 showed a molecular ion with m/z 318 ($C_{20}H_{30}O_3$). The ¹³C NMR spectrum and HSQC experiments revealed the presence of 20 carbons consisting of three methyl groups, six methylene sp^3 -carbons, two methylene sp^3 -carbons, an oxygenated methine sp^3 -carbon, a quaternary sp^3 -carbon, an oxygenated quaternary sp^3 -carbon, two methylene sp^2 -carbons, a methine sp^2 -carbon, a quaternary sp^2 -carbon, and a carbonyl carbon of carboxylic group. Since the six degrees of unsaturation were accounted for, it was implied that 4 should contain one epoxide ring and two additional rings. The HMBC experiment with the assistance of the coupling constants, COSY, TOCSY, and NOESY led to the structure of 4 (Fig. 1), and it can be concluded that compound 4 was 8,14-epoxypimara-4(18),15-dien-3-oic acid (Fig. 1). Compound 4 was derived from the intermediate 5, which was thought to arise through an acid-catalyzed process during the epoxidation, as shown in Sheme 1.

The cytotoxicity of compounds 1-4 was tested against human tumor cell lines (Table 3). Compound 1 showed high activity for HEP-G2 and moderate activity for KATO-3, BT474, and CHAGO. Compound 2 had moderate activity for KATO-3, BT474, and HEP-G2. Compounds 3 and 4 did not show any strong cytotoxicity. Doxorubicin hydrochloride was used as positive control in all experiments and showed strong cytotoxicity for all cell lines.

EXPERIMENTAL

General Experimental Procedures. All commercial grade solvents were distilled prior to use. Melting points were determined on a Fisher-Johns melting point apparatus. The optical rotation was determined on a Perkin–Elmer 341 polarimeter. Measurements of UV spectra were carried out on a Hewlett Packard 8452A diode array spectrophotometer. IR spectra were recorded on a Nicolet Impact 410 spectrophotometer. Spectra of solid samples were recorded as KBr pellets. ¹H and ¹³C NMR spectra were recorded at 400.00 and 100.00 MHz, respectively, on a Varian Model Mercury 400 MHz instrument. Low-resolution MS were obtained with a MALDI/TOF mass spectrometer (Biflex Bruker, Germany). Microanalyses were determined on a Perkin–Elmer PE 2400 Series II.

Plant Material. The *C. oblongifolius* sample used in this study was collected from Amphur Viengsa, Nan Province, Thailand, in November 2003. Botanical identification was done by comparison with voucher specimen No. 9607 in the Herbarium of the Royal Forest Department of Thailand, Bangkok, Thailand.

Extraction and Isolation. The powdered sun-dried stem bark (0.5 kg) of *C. oblongifolius* was repeatedly extracted with hexane (2×5 L) at room temperature. The hexane extract was filtered and evaporated under reduced pressure to obtain a yellowish green oil (15 g). The plant residue was further re-extracted with EtOAc (2 × 5 L) and MeOH (2 × 5 L) to give the EtOAc (25 g) and MeOH (20 g) crude extracts, respectively. The hexane crude extract (15 g) was fractionated by silica gel column chromatography using Merck Si gel 60 (0.5 kg). The column was eluted with hexane–EtOAc gradient in a stepwise fashion, and 90 × 25 mL fractions were collected. After the solvent was separated by rotary evaporation under reduced pressure, the similar fractions were combined into three fraction: I (2.1 g, 0–20% EtOAc in hexane, F25–F42), II (5.4 g, 25–30% EtOAc in hexane, F43–F57), and III (1.3 g, 50% EtOAc in hexane, F58–F74). Compound 1 (200 mg, 0.04% based on dried plant) was obtained by recrystallization from methanol. Compound 2 (2.2 g, 0.4% based on dried plant) was obtained as a colorless oil by re-column chromatography of 5.4 g of fraction II on SiO₂ (100 g) and eluted with 30% EtOAc in hexane.

3-Hydroxycleistantha-13(17),15-diene (1), white needle crystal (200 mg, 0.04% based on the dried plant material), mp 102–104°C; $[\alpha]_D^{25}$ +11.06° (*c* 0.32, EtOAc); UV (MeOH, λ_{max}): 213 (log ε 2.89) nm; IR (KBr, ν_{max} , cm⁻¹): 3400–3200 (OH), 1627 (C=C); ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃), see Table 1 and 2; MS *m/z*: 289 [M+H]⁺; anal. C 83.24%, H 11.20%, calcd for C₂₀H₃₂O, C 83.27%, H 11.18%.

3,4-seco-Cleistantha-4(18),13(17),15-trien-3-oic acid (2), colorless oil (2 g, 0.4% based on the dried plant material; $[\alpha]_D^{25}$ +9.36° (c 0.26, EtOAc); UV (MeOH, λ_{max}): 217, (log ε 3.40) nm; IR (ν_{max} , neat, cm⁻¹): 3400–2400 (OH), 1699 (C=O), 1637 (C=C); ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃): Table 1 and 2; HRESIMS *m/z*: 303.2333 [M+H]⁺; calcd for C₂₀H₃₀O₂+H 303.2324.

Epoxidation of Compound 2. mCPBA (70%) (230 mg, 0.93 mmol) was added to a solution of **2** (235 mg, 0.78 mmol) in CH_2Cl_2 (5 mL). After stirring for 5 h at room temperature the reaction mixture was washed with saturated sodium carbonate solution and water, respectively. The organic layer was dried over anhydrous Na_2SO_4 and evaporated to give a colorless residue (145 mg). The residue was separated by silica gel column chromatography eluted with a 1:1 ratio of hexane-EtOAc to yield compound **3** (120 mg, 50%) and then compound **4** (30 mg, 21%).

13,17-Epoxy-3,4-*seco*-cleistantha-4(18),15-dien-3-oic acid (3), colorless oil; $[\alpha]_D^{25}$ +97.17° (*c* 1.83, EtOAc); UV (MeOH, λ_{max}): 211 (log ϵ 6.65) nm; IR (ν_{max} , neat, cm⁻¹): 3130–3000 (OH), 1699 (C=O), 1632 (C=C); ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃): Table 1 and 2; MS *m/z*: 341 [M+Na]⁺; anal. C 75.41%, H 9.56%, calcd for C₂₀H₃₀O₃, C 75.43%, H 9.50%.

Compound (4), colorless oil; $[\alpha]_D^{25} -1.56^\circ$ (c 2.60, EtOAc); UV (MeOH, λ_{max}): 222 (log ε 3.54); IR (v_{max} , neat, cm⁻¹): 3000 (OH), 2926, 2865, 1699 (C=O), 1632 (C=C), 1283 (C-O); ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃): Table 1 and 2; MS m/z: 319 [M+H]⁺.

Cytotoxicity Testing. Bioassay of cytotoxic activity against human tumor cell cultures *in vitro* was performed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetic method [7, 8]. Doxorubicin hydrochloride was used as a positive control substance.

ACKNOWLEDGMENT

We thank the Thailand Research Fund (DBG4880013), the Thai Government (Nan), and the Graduate School and Department of Chemistry, Faculty of Science, Chulalongkorn University for financial support.

REFERENCES

- S. Roengsumran, S. Achayindee, A. Petsom, K. Pudhom, P. Singtothong, C. Surachetapan, T. Vilaivan, J. Nat. Prod., 61, 652 (1998).
- 2. S. Roengsumran, P. Singtothong, K. Pudhom, N. Ngamrochanavanich, A. Petsom, and C. Chaichantipyuth, J. Nat. Prod., 62, 1163 (1999).
- 3. S. Roengsumran, A. Petsom, D. Sommit, and T. Vilaivan, *Phytochemistry*, **50**, 449 (1999).

- 4. S. Roengsumran, K. Musikul, A. Petsom, T. Vilaivan, P. Sangvanich, S. Pornpakakul, S. Puthong, C. Chaichantipyuth, N. Jaiboon, and N. Chaichit, *Planta Med.*, **68**, 274 (2002).
- 5. S. Roengsumran, S. Pornpakakul, N. Muangsin, P. Sangvanich, T. Nhujak, P. Singtothong, N. Chaichit, S. Puthong, and A. Petsom, *Planta Med.*, **70**, 87 (2004).
- 6. N. Ngamrojnavanich, S. Sirimongkon, S. Roengsumran, A. Petsom, and H. Kamimura, *Planta Med.*, 69, 555 (2003).
- 7. P. R. Twentyman and M. Luscombe, Br. J. Cancer, 56, 279 (1987).
- 8. J. Carmichael, W. G. DeGraff, A. F. Gazdar, J. D. Minna, and B. Mitchell, Cancer Res., 47, 936 (1987).

646