

การเร่ะการเอริญเทิบโดยอยุลสาหร่ายด้วยการเย่สัยหรูน่คาร์นอนโดยอกในด็

underen hinerant

วิทยานิทหยั้นเหล่าหหนึ่งของการศึกษาตามหลักสูตรปั้นผูญวิตากรรมหาสมรมหาบัณฑิต สาขาวิชาวิตากรรมเคมี กาดวิชาวิตากรรมเคมี คณะวิตากรามตาสตร์ อุตาลงกรณ์มหาวิทยาลัย อัการศึกษา 2553 b00256066

การเร่งการเจริญเติบโตของจุลสาหร่ายด้วยการเปลี่ยนรูปคาร์บอนไดออกไซด์

นายยศสรัล พิเชียรสุนทร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2553
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ACCELERATING MICROALGAL GROWTH WITH CO₂ TRANSFORMATION

Mr. Yossaran Pichiansoontorn

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Chemical Engineering

Department of Chemical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2010

Copyright of Chulalongkorn University

Thesis Title	ACCELERATING MICROALGAL GROWTH
	WITH CO ₂ TRANSFORMATION
Ву	Mr. Yossaran Pichainsoontorn
Field of Study	Chemical Engineering
Γhesis Advisor	Associate Professor Prasert Pavasant, Ph.D.
	ccepted by the Faculty of Engineering, Chulalongkorn University in at of the Requirements for the Master's Degree
	Dean of the Faculty of Engineering
	(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)
THESIS COMM	ITTEE
	Chairman
	(Associate Professor Tharathon Mongkhonsi, Ph.D.)
	Thesis Advisor
	(Associate Professor Prasert Pavasant, Ph.D.)
	Examiner
	(Jirdsak Tscheikuna, Ph.D.)
	External Examiner

(Associate Professor Tawan Sooknoi, Ph.D.)

ยศสรัล พิเชียรสุนทร: การเร่งการเจริญเติบโตของจุลสาหร่ายด้วยการเปลี่ยนรูปคาร์บอนไดออกไซด์. (ACCELERATING MICROALGAL GROWTH WITH CO₂ TRANSFORMATION) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ.ดร. ประเสริฐ ภวสันต์, 99 หน้า.

E 46216

การเพิ่มประสิทธิภาพในการดักจับแก็สคาร์บอนไดออกไซด์ในน้ำเพื่อเป็นแหล่งคาร์บอนอนินทรีย์สำหรับการเร่งการ เจริญเติบโตของจุลสาหร่ายได้ถูกศึกษาโดยผลของค่าพีเอช, พื้นที่สัมผัสสำหรับแก็สและของเหลว, ความสูง, อัตราการไหลของแก็ส และ ความเค็มของน้ำทะเล ที่มีผลต่อความเข้มข้นของคาร์บอนอนินทรีย์โดยรวมที่ละลายน้ำได้นำมาศึกษา การทดลองได้ถูกกระทำขึ้นที่หอ ป้อนอากาศและหอที่มีวัสดุแพคที่มีความสูง 1-3 เมตร ค่าพีเอชของน้ำที่ทำการกำจัดแร่ธาตุออกได้ถูกปรับโดยใช้สารละลายโซเดียมไฮ ดรอกไซด์ความเข้มข้น 0.5 โมล่าร์ และกรดไฮโดรคลอริก 0.5 โมล่าร์ ค่า%ประสิทธิภาพในการละลายของคาร์บอนไดออกไซด์ (ปริมาณ คาร์บอนไดออกไซด์ที่ละลายน้ำ (กรัม) / ปริมาณคาร์บอนไดออกไซด์ที่ป้อนเข้าไป (กรัม)) ได้ถูกคำนวณขึ้น จากการทดลองพบว่า การ เพิ่มค่าพีเอชสามารถทำให้เกิดการละลายของคาร์บอนไดออกไซด์ในน้ำได้มากขึ้นและมีประสิทธิภาพมากขึ้น การเพิ่มพื้นที่สัมผัสระหว่าง แก็สและของเหลวและการกักแก็สในน้ำทำให้การละลายของคาร์บอนไดออกไซด์ดีขึ้นเล็กน้อย การเพิ่มความสูงสามเท่าของหอป้อน อากาศเท่าจาก 1 เมตรเป็น 3 เมตรให้%ประสิทธิภาพโดยรวมดีขึ้นแต่ไม่เป็นสัดส่วนโดยตรงกับความสง นอกเหนือจากนี้ ปริมาณของ คาร์บอนไดออกไซด์ในรูปแก็สมีค่าลดลงตามระดับความสูงทำให้มีปริมาณของคาร์บอนไดออกไซด์ลดลงที่ระดับความสูงที่เพิ่มขึ้น ที่ อัตราการใหลของคาร์บอนไดออกไซด์ที่สูงขึ้น ก๊าซคาร์บอนไดออกไซด์มีระยะเวลาในการสัมผัสกับสารละลายไม่เพียงพอและถูกปล่อยสู่ บรรยากาศอย่างไม่ได้ใช้ประโยชน์ส่งผลให้เกิด%ประสิทธิภาพต่ำ ระบบ "Circulating Counterflow Contactor –C.C.C." ได้ถูก ออกแบบให้มีการใหลของแก็สและของเหลวใหลสวนทางกันเพื่อเพิ่มระยะเวลาในการสัมผัสและการผสมที่ดีขึ้น C.C.C. ให้% ประสิทธิภาพที่สงอย่างคงที่ในช่วง 34-56% ในกรณีอัตราการใหลวนที่เหมาะสมที่สุดที่ 2 ลิตรต่อนาที ที่ระดับความเค็มของน้ำทะเลมาก ขึ้นพบว่าการละลายของคาร์บอนอนินทรีย์โดยรวมลดลง นอกเหนือจากนี้ผลของไบคาร์บอเนตที่ผลต่อการเจริญเติบโตของจลสาหร่ายได้ ถูกศึกษาโดยปรับค่าพีเอชเริ่มต้นในช่วง 6-9 โซเดียมไบคาร์บอเนตที่ความเข้มข้น 30 พีพีเอ็มได้ถูกป้อนเข้าสู่ระบบการเลี้ยงโดยค่าพีเอช ที่ 6 และ 7 แสดงให้เห็นถึงค่าพีเอชเริ่มต้นที่เหมาะสมที่สุดในการเลี้ยงโดยความเข้มข้นของเซลล์ที่มากที่สุดและอัตราการเจริญเติบโต จำเพาะแตกต่างกันเล็กน้อย การเพิ่มความเข้มข้นของโซเดียมไบคาร์บอเนตจาก 30 พีพีเอ็มเป็น 80 และ 200 พีพีเอ็มไม่ได้ส่งผลต่อการ เจริญเติบโตอย่างเห็นได้ชัด น้ำจากการละลายของคาร์บอนไดออกไซด์จากระบบ C.C.C. ได้ถูกป้อนเข้าสู่ระบบการเลี้ยงจุลสาหร่าย C. vulgaris และผลแสดงให้เห็นชัดเจนว่าได้ความเข้มข้นเซลล์ที่สูงที่สุดและอัตราการเจริญเติบโตจำเพาะมากกว่าการใช้โซเดียมไบ คาร์บอเนตที่ละลายน้ำ

ภาควิชา วิศวก	ารรมเคมี
สาขาวิชา <u>วิศว</u> เ	ารรมเคมี
ปีการศึกษา	2553

 ## 5270459521: MAJOR CHEMICAL ENGINEERING

E46216

KEYWORDS: CARBON DIOXIDE / CO₂ / GAS DISSOLUTION / CAPTURE AND STORAGE / INORGANIC CARBON / BICARBONATE / CARBONATE / MICROALGAL CULTIVATION / CHLORELLA VULGARIS YOSSARAN PICHIANSOONTORN: ACCELERATING MICROALGAL GROWTH WITH CO₂ TRANSFORMATION. THESIS ADVISOR: ASSOC. PROF. PRASERT PAVASANT, Ph.D., 99 pp.

The maximising carbon dioxide capture in the water as inorganic carbon source for accelerating microalgal growth was carried out where the effects of pH, gas-liquid contacting area, height, gas flowrate and salinity on dissolved Total Inorganic Carbon (TIC) concentration were observed. The experiments were conducted in 1-3 m high bubble column and packed column. The pH of the demineralised water was adjusted as required using NaOH 0.5 M and HCl 0.5 M. %Efficiency of CO2 dissolution (Dissolved CO2 (g)/ Input CO2 (g)) was then computed. From the findings, an increase in pH could lead to a greater dissolution of CO2 resulting in a greater effluent TIC concentration and high %CO2 dissolution efficiency. Adding gas-liquid contact area and gas hold up (ε_g) caused a slightly greater dissolution of CO₂. A triple increase in height from 1 m to 3 m in packed column gave the better overall %efficiency but not in a direct proportional to the height. Furthermore, the gas phase CO₂ decreased along the axial position resulting in a lesser quantity of CO2 at higher position in the column. At high CO2 flowrate, CO2 did not have enough contact time with the solution and wastefully released to the atmosphere causing low %efficiency. The design of the -"Circulating Counterflow Contactor -C.C.C." system was employed where the liquid and gas were counter-flowed to enhance the contact time and better mixing. The C.C.C. offered the steadily high %efficiency not only in early stage but also later stage in the range of 34-56% at the liquid flowrate of 2 LPM was employed. Higher degree of salinity was found to lower the dissolution of TIC in the solution. Additionally, the effect of bicarbonate on microalgal growth was examined by initially manipulating pH in range 6-9. NaHCO3 at 30 ppm was fed into the cultivation system where pH 6 and 7 exhibited most suitable initial pH the in which maximum cell concentration and specific growth rate were slightly different. An increase in NaHCO3 concentration from 30 to 80 and 200 ppm did not seem to have significant effect on the growth. CO₂ dissolution from C.C.C. system was also employed to cultivate C. vulgaris and obviously the results illustrated a higher growth where the maximum cell concentration and specific growth rate were higher than using dissolved NaHCO₃.

Department: Chemic	cal Engineering	
Academic Year:	2010	

Student's Signature.

Advisor's Signature.

Day out

ACKNOWLEDGEMENTS

I am deeply indebted to my thesis advisor, Associate Professor Dr. Prasert Pavasant, Department of Chemical Engineering, Chulalongkorn University. This thesis would not be accomplished without him and his excellent supervision. He always motivates me to actualize the goal I have set. I would like to say that thank you very much for everything given to support me and also a lot of chances provided to me. I wish I might study a Ph.D. with him after I fulfilled my dream as a field engineer and I would like to be an active researcher like him.

I would like to express my gratitude to my thesis chairman, Associate Professor Dr. Tharathon Mongkhonsi, thesis committee, Dr. Jirdsak Tscheikuna, Department of Chemical Engineering, Chulalongkorn University and external examiner Associate Professor Dr. Tawan Sooknoi, Department of Chemistry, King Mongkut's Institute of Technology Ladkrabang for their worthy time on my thesis.

I would like to deeply thank Supersert's team (P'Tik for a lot of motivation and advice, P' Big for great support and reactor set-up, P' Max for his skillful techniques, P' Toey for her great tutorial in microalgal cultivation, P' Term for electronical devices, P' Note for inspiration, P' Mod Chattip for her support, P'Mod Mode, P' Aim, P' Dump and P' Aom for their useful advices. I'm grateful for your supports.

This work cannot be succeeded if it was without research grants from PTT and "Chula Cluster". I am deeply appreciated for very baht that I spent on my research.

I would like to sincerely thank the National Nanotechnology Center (NANOTEC) for permission of using TOC Analyser for Total Inorganic Carbon concentrations analyse. I would like to especially thank P' Porn for instrument training and her support. NANOTEC members: P' Toey, P' Beer, P' Job, and etc., I'm appreciated with your warm welcome.

I am appreciated of my friends' support: my OSK 123 friends (Keaw, Guard, F, Oak and Tu), my ChemTech friends (Elf, Fye, Tie, Ake, Poy, Pahn, Phai, Pla and Ed) and my ChemEn friends (Nhu, Bo, Preaw and Best).

I could not accomplish without the loves from my family. I would like to express my deep sense of appreciation to my parent and sister for their strong supports, encouragements and inspiration. Finally, I would like to thank Jane. You always stand by my side and give me wonderful times.

CONTENTS .

	Page
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	\mathbf{v}
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
CHAPTER I Introduction	1
1.1 Motivation	1
1.2 Objectives	2
1.3 Scopes of research	2
CHAPTER II Theoretical Background and Literature Review	3
2.1 Global warming and CO ₂ as greenhouse gas	3
2.1.1 Global warming and greenhouse gases	3
2.2.2 CO ₂ as greenhouse gas	3
2.2 CO ₂ removal methods	4
2.2.1 CO ₂ removal via absorption processes	4
2.2.2 CO ₂ removal via carbonation processes	6
2.2.3 CO ₂ removal via adsorption processes	8
2.2.4 CO ₂ removal via membrane contactors	9
2.2.5 CO ₂ removal via algal cultivation	11
2.3 CO ₂ Removal via algal cultivation (CO ₂ Bio-mitigation)	12
2.4 CO ₂ and bicarbonate as inorganic carbon source for microalgal uptake	15
2.5 CO ₂ solubility in the water	17

	Page
2.6 Literature Review	21
CHAPTER III Materials and Methods	. 26
3.1 Experimental setup	27
3.1.1 Combined effect of system design for CO ₂ dissolution	. 27
3.1.2 Effect of bicarbonate as inorganic carbon source for fresh water	
microalgae	30
3.2 Experimental Procedure	30
3.2.1 Maximising CO ₂ dissolution in bubble column	. 30
3.2.1.1 Study of pH effect	. 32
3.2.1.2 Study of salinity effect	. 32
3.2.1.3 Study of gas-liquid contact area	. 33
3.2.1.4 Study of optimal gas flowrate effect	. 33
3.2.1.5 Study of height and gas-liquid contact area effect	34
3.2.1.6 Study of combined effect of optimal conditions	. 34
3.2.2 Effect of bicarbonate on microalgal growth	. 35
3.2.2.1 Cultivation of Chlorella vulgaris without NaHCO ₃ added	d
and pH adjustment	. 36
3.2.2.2 Effect of bicarbonate and pH on microalgal growth	. 36
3.2.2.3 Effect of 200 ppm of NaHCO ₃ on microalgal growth	37
3.2.2.4 Effect of CO2 dissolution water from optimal combined	
effect bubble column	37
3.3 Analyses	38
3.3.1 Determination of Total Inorganic Carbon	38
3.3.2 Determination of %CO ₂ dissolution efficiency	39
3.3.3 Determination of cell concentration	40
3.3.4 Determination of specific growth rate	41

	Page
CHAPTER IV Results and Discussion	42
4.1 Maximising CO ₂ dissolution in bubble column	42
4.1.1 Effect of pH on total inorganic carbon dissolved in the water	42
4.1.2 Effect of gas-liquid contacting area on total inorganic carbon	
dissolved in the water	45
4.1.3 Effect of gas-liquid contacting area on total inorganic carbon at	
pH 10 in 3 m high packed column	51
4.1.4 Effect of gas flowrate on CO ₂ dissolution from 10-40 cc/min fed	
into the 1 and 2m high bubble column	53
4.1.5 Effect of salinity on CO ₂ dissolution	59
4.1.6 CO ₂ dissolution using Circulating Counterflow Contactor	
(C.C.C.)	61
4.2 Accelerating microalgal growth with bicarbonate as inorganic carbon	
source	63
4.2.1 Cultivation of C. vulgaris with NaHCO ₃ at various pH range	63
4.2.2Cultivation of <i>C. vulgaris</i> with high concentration of NaHCO ₃	
and CO ₂ dissolved water from C.C.C. as inorganic carbon at pH 7	65
CHAPTER V Conclusion	68
5.1 Conclusions	68
5.2 Contributions	69
5.3 Recommendations / Future works	70
REFERENCES	71
APPENDICES	78
APPENDIX A: TOTAL INORGANIC CARBON ANALYSE	
EXPERIMENTAL DATA	79

		Page
	APPENDIX B: CULTIVATION OF C. VULGARIS WITH	
	BICARBONATE EXPERIMENTAL DATA	90
	APPENDIX C : SAMPLE CALCULATIONS	95
	APPENDIX D : PUBLICATIONS	98
BIO	GRAPHY	99

LIST OF TABLES

		Page
Table 2.6.1	Summary of CO ₂ removal rate via amine processes	22
Table 2.6.2	Summary of CO ₂ removal rate via algal cultivation	25
Table 4.1.1	%Efficiency of CO ₂ dissolution at various pH levels	45
Table 4.1.2	%Efficiency of CO ₂ dissolution in packed column at various pH levels	
	and positions	50
Table 4.1.3	%Efficiency of CO ₂ dissolution in packed column at pH 10 and every	
	1 meter position	53
Table 4.1.4.1	%Efficiency of CO ₂ dissolution in 1 m high column	55
Table 4.1.4.2(a)	%Efficiency of CO ₂ dissolution in 2 m high column: samples	
	collected at 1 m position	58
Table 4.1.4.2(b)	%Efficiency of CO ₂ dissolution in 2 m high column: samples	
	collected at 2 m position	58
Table 4.1.5	%Efficiency of CO ₂ dissolution at various salinity levels from 0-30	
	ppt	60
Table 4.1.6	%Efficiency of CO ₂ dissolution using recycle flow of 1-3 LPM	62
Table 4.2.1	Maximum cell concentration and specific growth rate (μ) of	
	Chlrollera vulgaris cultivation with 30 ppm NaHCO ₃ as inorganic	
	carbon source at various initial pH conditions	64
Table 4.2.2	Maximum cell concentration and specific growth rate (μ) of	
	Chlrollera vulgaris cultivation with various amount of NaHCO ₃ as	
	inorganic carbon source at initial pH 7 condition	67

LIST OF FIGURES

		Page
Figure 2.1	Process flow diagram for CO ₂ recovery from the flue gas by chemical	
	absorption	6
Figure 2.2	Process flow diagram for CO ₂ recovery from the flue gas by Benfield	
	process or carbonation process	8
Figure 2.3.1	Chlorella sp. open system cultivation ponds	13
Figure 2.3.2	Physcomitrella patens photobioreactor for biophamaseutical	14
Figure 2.5.1	The relationship between solubility of CO_2 in the water (in $g \cdot 10^{-2} \text{ml}^{-1}$) at	
	various temperature (°C) at 1 atm pressure	19
Figure 2.5.2	The various fraction of carbonate species in pH range from 4 to 13	20
Figure 3.1	Experimental diagram: Maximising CO ₂ dissolution in bubble column	26
Figure 3.2	Experimental diagram: Study of bicarbonate as inorganic carbon source	
	for fresh water microalgae cultivation	27
Figure 3.3	Experimental setup for CO ₂ fed bubble column	28
Figure 3.4	One cm diameter packing material	29
Figure 3.5	Experimental setup for Circulating Counterflow Contactor	30
Figure 3.6	Experimental setup for cultivation of Chlorella vulgaris in sharing light	
	source bubble columns	31
Figure 4.1.1	Total Inorganic Carbon time profile at various pH levels	44
Figure 4.1.2.1	Total Inorganic Carbon time profile at various pH levels in bubble	
	column with packing material (a) at top of the column (b) at middle of	
	the column	49
Figure 4.1.2.2	Total Inorganic Carbon time profile at pH 10 level in different colum	50
Figure 4.1.3	Total Inorganic Carbon time profile: samples collected various axial	
	positions in the 3 meter high bubble column	52
Figure 4.1.4.1	Total Inorganic Carbon at different time in 1 m bubble column: Effect	
	of gas flowrate from 10-40 cc·min ⁻¹	54

		Page
Figure 4.1.4.2	Total Inorganic Carbon at different time: effect of gas flowrate from	
	10-40 cc·min ⁻¹ on Total Inorganic Carbon concentration and samples	
	collected (a) at 1m height (b) at 2m height	57
Figure 4.1.5	Total Inorganic Carbon time profile and salinity levels from 0-30 ppt	60
Figure 4.1.6	Total Inorganic Carbon at different time at various recirculating flows in	
	the gas-liquid contacting bubble column, using recycle flow in a range	
	of 1-3 LPM (Litres per minute)	62
Figure 4.2.1	Growth curve of Chlorella vulgaris cultivation with 30 ppm NaHCO ₃ as	
	inorganic carbon at various pH ranges from 6-9	64
Figure 4.2.2	Growth curve of C. vulgaris cultivated with various 0, 30, 80 and 200	
	ppm NaHCO ₃ and water from CO ₂ dissolved water from C.C.C. as	
	inorganic carbon at initial pH 7 condition	66