สารบัญรูป

รูปที่		หน้า
1.1	กระบวนการ RESS-Microencapsulation	3
2.1	สมการของการเกิดวัลคาไนเซชัน	6
2.2	กำมะถันไม่ละลาย (Insoluble Sulphur, IS)	7
2.3	โครงสร้างของอนุภาค Microencapsulation	8
2.4	การเคลือบโดยใช้เทคนิคฟลูอิดไดซ์เบด	8
2.5	กลไกของการอบแห้งแบบแช่แข็ง	9
2.6	กลไกการเกิดอนุภาคของเทคนิคRESS	10
2.7	แผนภูมิวัฏภาคของคาร์บอนไดออกไซด์	12
2.8	อุณหภูมิและความเข้มข้นของพอลิเมอร์ของการละลายของพอลิเมอร์ในตัวทำละลาย	
	เนื่องจากผลของ (ก) มวลโมเลกุล และ (ข) ความดัน	14
2.9	ความสัมพันธ์ระหว่างความดันและค่าการละลายของกำมะถัน	
	ใน scCO₂ อุณหภูมิคงที่ 60 °C	15
2.10	ผลของความเข้มข้นของ EG ในการเตรียมอนุภาคไมโครสเฟียร์แว็กซ์	16
2.11	ภาพถ่ายกำลังขยายสูงของ (ก) กำมะถัน และ (ข) SP-M	16
2.12	ลักษณะสัณฐานวิทยาของอนุภาควิตามินอีเคลือบหุ้มบน PLLA	17
2.13	ภาพถ่ายกำลังขยายสูงของอนุภาค CaCO₃ ที่เคลือบด้วยฟลูออโรพอลิเมอร์	
	เตรียมได้จาก เทคนิค RESS-Microencapsulation	17
3.1	ภาชนะทนความดันสูง ปริมาตร 15 cm³	19
3.2	วาล์วแผงควบคุมความดันเพื่ออัดแก๊ส CO ₂	19
3.3	ปั้มอัดแรงดัน (รุ่น Syringe Pump Isco Model 260D)	19
3.4	โถดูดความชื้นชนิดแก้ว	20
3.5	แผนภาพโครงสร้างจำลองกระบวนการ RESS-Microencapsulation	20
4.1	ภาพถ่ายกำลังขยายสูง (ก) กำมะถัน (ข) พาราฟินแว็กซ์ และ SP-M ที่สัดส่วนน้ำหนักเริ่ม	ต้น
	ของกำมะถัน (ค) 40 w/w% (ง) 60 w/w%	24
4.2	การวิเคราะห์ธาตุองค์ประกอบด้วยเทคนิค EDX (ก) กำมะถัน (ข) พาราฟินแว็กซ์ และ SI	⊃-M
	ที่สัดส่วนน้ำหนักเริ่มต้นของกำมะถัน (ค) 40 w/w% (ง) 60 w/w%	25
4.3	กลไกการเกิดอนุภาค SP-M ในลักษณะการเคลือบหุ้ม	26
4.4	ลักษณะสัณฐานวิทยาของ SP-M หลังผ่านเทคนิค RESS ที่อุณหภูมิก่อนการขยายตัวคงที่	
	90 °C ความดันก่อนการขยายตัว 160 bar (ก) s<1 (ข) s>1	29

สารบัญรูป (ต่อ)

รูปที่		หน้า
4.5	ผลของเวลาต่อสัดส่วนธาตุเชิงปริมาณบนพื้นผิว SP-M	31
4.6	แผนภาพการแพร่ของสารบนพื้นผิวทรงกลม	32
4.7	การแพร่ของกำมะถันและพาราฟินแว็กซ์ใน scCO ₂	32
4.8	ผลของเวลาในการดำเนินการก่อนการฉีดพ่นต่อลักษณะสัณฐานวิทยาของ SP-M	33
4.9	ผลของเวลาในการดำเนินการก่อนการฉีดพ่นต่อขนาดของ SP-M	34
4.10	ผลของความดันก่อนการขยายตัวต่อลักษณะสัณฐานวิทยาของ SP-M	36
4.11	ผลของความดันก่อนการขยายตัวต่อขนาดอนุภาค SP-M ด้วยเทคนิค RESS	37
4.12	ค่าตัวแปรอัตราส่วนการละลายอิ่มตัวยิ่งยวดของพาราฟินแว็กซ์และกำมะถัน	37
4.13	สัดส่วนค่าการละลายของพาราฟินแว็กซ์ต่อกำมะถันในคาร์บอนไดออกไซด์	
	และสัดส่วนโดยน้ำหนักของกำมะถันใน SP-M ที่อุณหภูมิ 90 °C	38
4.14	ผลของสัดส่วนโดยน้ำหนักของกำมะถันในการดำเนินการ	
	ก่อนการฉีดพ่นต่อขนาดของ SP-M	39
4.15	ผลของสัดส่วนเริ่มต้นต่อลักษณะสัณฐานวิทยาของ SP-M	40
4.16	ผลของสัดส่วนเริ่มต้นต่อขนาดอนุภาคของ SP-M	41
ก.1	ความสัมพันธ์ระหว่างความดันและค่าการละลายของพาราฟินแว็กซ์ใน scCO ₂	
	ที่อุณหภูมิคงที่ 70 °C	52
ก.2	ความสัมพันธ์ระหว่างอุณหภูมิและค่าพารามิเตอร์ปรับแก้อันตรกิริยาคู่	52
ข.1	โถดูดความชื้นชนิดแก้ว	53
ข.2	เครื่องเคลือบทอง (CRESSINGTON Sputter Coater 108 auto)	54
ข.3	เครื่อง SEM-EDX (SEM-EDX CAI ZEIS ZEISS EVO MA 10)	54
ข.4	องค์ประกอบของระบบเครื่อง SEM-EDX	55
ข.5	ส่วนของเครื่อง SEM	55
ข.6	ภาพถ่ายลักษณะสัณฐานวิทยาของอนุภาคจากเครื่อง SEM	56
ข.7	แผนผังสเปกโตรมิเตอร์พลังงานและการกระจายอิเล็กตรอนของเครื่อง EDX	57
ข.8	ภาพค่าพลังงานเฉพาะตัวของธาตุวิเคราะห์จากเครื่อง EDX	58
ค.1	การเปิดภาพด้วยโปรแกรม Image – J	59
ค.2	ภาพ SEM	59
ค.3	Scale ของภาพ SEM	60
ค.4	การตั้งค่า Set Scale	60

สารบัญรูป (ต่อ)

รูปที่		หน้า
ค.5	การวัดขนาดเส้นผ่านศูนย์กลางของอนุภาค	61
ค.6	ขนาดเส้นผ่านศูนย์กลางของอนุภาค	61
গ.1	ภาชนะทนความดันสูง	62
۹.2	แผงควบคุมความดัน	63
۹.3	ปั้มอัดแรงดันสูง (Syringe Pump Isco Model 260D)	63
গ.4	ชุดดักเก็บอนุภาค	64
۹.5	โถแก้วดูดความชื้น	65