บทที่ 4

ผลการจำลองการทำงานและผลการทดลอง

4.1 บทนำ

จากบทที่ 3 ได้กล่าวถึงสาขอากาศแบบต่างๆ ที่ได้มีการวิจัยและพัฒนาสาขอากาศที่นำมา ประยุกด์ใช้ในระบบ MWA (Microwave Ablation) และในส่วนคอนท้ายของบทที่ 3 ทางผู้วิจัยได้ นำเสนอสาขอากาศ 3 รูปแบบ คือ สาขอากาศแบบปลายเปิด (COA) สาขอากาศแบบสล็อต (CSA) และสาขอากาศแบบสล็อตที่มีฉนวนหุ้ม (CSAI) ในบทนี้ได้นำเอาสาขอากาศทั้ง 3 รูปแบบมาใช้ใน ระบบ MWA โดยแสดงผลการจำลองการทำงานในรูปของการกระจายของฟลักซ์ความร้อน (\vec{q}) สนามไฟฟ้า (\vec{E}) SAR และการกระจายของอุณหภูมิที่เกิดขึ้นในเนื้อเยื่อดับของสาขอากาศแต่ละค้น และได้มีการนำแสนอวิธีการเพิ่มขนาดของการทำลายเซลล์มะเร็งในเนื้อเยื่อดับ โดยใช้สาขอากาศ 3 ด้น ที่เป็นแบบเดียวกัน และเป็นแบบผสมกันมาจัดวางในแบบอาร์เรย์ วางแบบทำมุมสามเหลี่ยม และวางแบบรูป "T" และแสดงขนาดของการทำลายเซลล์มะเร็งด้วยไฟในต์เอลิเมนต์แบบ 3 มิติ ใน วิทยานิพนธ์ฉบับนี้ได้ยืนยันความถูกต้องของวิธีการทางไฟในต์เอลิเมนต์ด้วยผลการทดลอง โดย เปรียบเทียบผลการทดลองสาขอากาศแบบปลายเปิด (COA) จัดเรียงแบบอาร์เรย์ แบบทำมุม สามเหลี่ยม และวางแบบรูปดัว "T" โดยการจำลองการทำงาน และการทดลองจริง ใช้ขนาดของ กำลังงานของกลื่นไมโครเวฟ (2.45 GHz) ที่ป้อนให้กับสายอากาศเท่ากับ 50 วัตต์ ระยะเวลาเท่ากับ 1 นาที เพื่อค้องการขนาดการทำลายมะเร็งที่มีขนาดใหญ่ โดยใช้กำลังงานและระยะเวลาน้อยกว่า งานวิจัยที่ผ่านมา

และจากขนาดของการทำลายของเนื้อเยื่อที่เป็นมะเร็งกับเนื้อเยื่อปกติมีความแตกต่างกันน้อย มาก ในบทที่ 2 ที่ได้กล่าวไว้แล้ว ชนิดของเนื้อเยื่อที่ใช้ในการทดลองและการจำลองการทำงานด้วย ไฟไนต์เอลิเมนต์ เป็นเนื้อเยื่อตับแบบปกติ 4.2 ผลการจำลองการกระจายของฟลักซ์ความร้อน (q) และสนามไฟฟ้าของสายอากาศ แบบปลายเปิด สายอากาศแบบสล๊อต และสายอากาศแบบสล๊อตที่มีฉนวนหุ้ม

ร**ูปที่ 4.1** แสดงการกระจายของฟลักซ์ความร้อน (**q**ี) ที่ออกจากสายอากาศแบบปลายเปิด โดยป้อน กำลังงานขนาค 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ที่ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ที่ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

ร**ูปที่ 4.2** แสดงการกระจายของสนามไฟฟ้า (**E**ี) ที่ออกจากสายอากาศแบบปลายเปิด โดยป้อน กำลังงานขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

จากรูปที่ 4.1 เป็นผลที่ได้จากการจำลองการทำงานโดยใช้วิธีไฟในต์เอลิเมนต์ ในรูปที่ 4.1 (ก) แสดงฟลักซ์ความร้อน (q) ที่เกิดขึ้นกับสายอากาศแบบปลายเปิด จะเห็นได้ว่าจะมีการกระจาย ฟลักซ์ความร้อน (q) บริเวณรอยต่อของจุดทิปกับตัวนำนอก ในรูปที่ 4.1 (ข) การกระจายของฟลักซ์ ความร้อน (q) จะมีการกระจายสมมาตรจากจุดกึ่งกลางของสายอากาศออกไปรอบๆ สายอากาศ

ในรูปที่ 4.2 (ก) แสดงการกระจายของสนามไฟฟ้า (**E**) ที่ออกจากสายอากาศแบบปลายเปิด โดยสนามไฟฟ้ามีการกระจายออกรอบๆ รอยต่อจุดทิปกับตัวนำนอก และรอบๆ บริเวณปลายทิปที่ เปิดของสายอากาศ ในรูปที่ 4.2 (ข) แสดงให้เห็นว่าสนามไฟฟ้ามีการกระจายสมมาตรรอบๆ สายอากาศ

ร**ูปที่ 4.3** แสดงการกระจายของฟลักซ์ความร้อน (**q**ี) ที่ออกจากสายอากาศแบบสล๊อต โดยป้อน กำลังงานขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

(ก)

(ข)

ร**ูปที่ 4.4** แสดงการกระจายของสนามไฟฟ้า (**E**ี) ที่ออกจากสายอากาศแบบสล๊อต โดยป้อนกำลัง งานขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

จากรูปที่ 4.3 แสดงผลที่ได้จากการจำลองการทำงานโดยใช้วิธีไฟในต์เอลิเมนต์ ในรูปที่ 4.3 (ก) แสดงฟลักซ์ความร้อน (**q**ี) ที่เกิดขึ้นของสายอากาศแบบสล๊อต จะเห็นได้ว่ามีการกระจายความร้อน ออกรอบๆ บริเวณสล๊อต และการกระจายของฟลักซ์ความร้อน (**q**ี) จะมีการกระจายสมมาตรรอบๆ สายอากาศ ดังในรูปที่ 4.3 (ข)

ในลักษณะเดียวกันรูปที่ 4.4 (ก) แสดงการกระจายของสนามไฟฟ้า (**E**ี) ที่ออกจากสายอากาศ แบบสล๊อต โดยสนามไฟฟ้ามีการกระจายออกรอบๆ บริเวณสล๊อต พิจารณาจากรูปที่ 4.4 (ข) มุมมองที่ระนาบจะเห็นได้ว่า สนามไฟฟ้ามีการกระจายออกรอบๆ สายอากาศทุกๆ ทิศทางแบบ สมมาตร

(ก)

ร**ูปที่ 4.5** แสดงการกระจาขของฟลักซ์ความร้อน (**q**ี) ที่ออกจากสาขอากาศแบบสล๊อตที่มีฉนวนหุ้ม โดยป้อนกำลังงานขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

(ข)

ร**ูปที่ 4.6** แสดงการกระจายของสนามไฟฟ้า (**E**ี) ที่ออกจากสายอากาศแบบสล๊อตที่มีฉนวนหุ้ม โดยป้อนกำลังงานขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ง) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

จากรูปที่ 4.5 แสดงผลที่ได้จากการจำลองการทำงานโดยใช้วิธีไฟในต์เอลิเมนต์รูปที่ 4.5 (ก) แสดงฟลักซ์ความร้อน (**q**) ที่เกิดขึ้นของสายอากาศแบบสลัอตที่มีฉนวนหุ้ม จะเห็นได้ว่าจะมีการ กระจายฟลักซ์ความร้อน (**q**) ออกบริเวณรอบตำแหน่งสลัอต และการกระจายของฟลักซ์ความร้อน (**q**) จะมีการกระจายสมมาตรจากจุดกึ่งกลางของสายอากาศออกไปรอบๆ สายอากาศ ดังรูปที่ 4.5 (ข) ในรูปที่ 4.6 แสดงการกระจายของสนามไฟฟ้า (**E**ี) ของสายอากาศแบบสล๊อตที่มีฉนวนหุ้ม โดยในรูปที่ 4.6 (ก) สนามไฟฟ้ามีการกระจายออกรอบๆ บริเวณสล๊อต และรูปที่ 4.6 (ข) แสดงให้ เห็นว่า สนามไฟฟ้ามีการกระจายออกรอบๆ สายอากาศทุกๆ ทิศทางแบบสมมาตร

4.3 ผลของการกระจาย SAR และอุณหภูมิในเนื้อเยื่อตับของสายอากาศแบบปลายเปิด สายอากาศแบบสล๊อต และสายอากาศแบบสล๊อตที่มีฉนวนหุ้ม

(ก)

(ข)

ร**ูปที่ 4.7** แสดงการกระจายของ SAR ที่ออกจากสายอากาศแบบปลายเปิด โดยป้อนกำลังงาน ขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

ร**ูปที่ 4.8** แสดงการกระจายของอุณหภูมิ ที่ออกจากสายอากาศแบบปลายเปิด โดยป้อนกำลังงาน ขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

รูปที่ 4.7 แสดงการกระจายของปริมาณ SAR ที่เกิดขึ้นในเนื้อเยื่อดับ ปริมาณของ SAR ที่เกิดขึ้น เป็นผลมาจากสนามไฟฟ้าจากสมการที่ (2.1) ในบทที่ 2 ซึ่งผลลัพธ์ที่ได้ยืนยันได้ว่ามีการกระจาย ของ SAR รอบๆ บริเวณปลายสายอากาศรอบๆ ปลายสายอากาศ และการกระจายของ SAR มี ลักษณะแบบสมมาตร เมื่อพิจารณาการกระจายความร้อนที่เกิดขึ้นกับเนื้อเยื่อในรูปที่ 4.8 จะเห็นได้ ว่าในระบบ MWA สายอากาศที่ทำการออกแบบจะมีความร้อนออกมาบริเวณรอบๆ ปลาย สายอากาศ ของสายอากาศแบบปลายเปิด ส่วนในบริเวณอื่นๆ ไม่เกิดความร้อนขึ้น ด้วยเหตุนี้ทำให้ สามารถแทงสายอากาศเข้าไปในเนื้อเยื่อตับได้โดยไม่ทำลายเนื้อเยื่อที่ไม่ต้องการ และมีการกระจาย ของความร้อนรอบๆ สายอากาศแบบสมมาตร

ร**ูปที่ 4.9** แสดงการกระจายของ SAR ที่ออกจากสายอากาศแบบสล๊อต โดยป้อนกำลังงาน ขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

ร**ูปที่ 4.10** แสดงการกระจายของอุณหภูมิ ที่ออกจากสายอากาศแบบสล๊อต โดยป้อนกำลังงาน ขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

(ข)

(ก)

จากรูปที่ 4.9 แสดงการกระจายของปริมาณ SAR ที่เกิดขึ้นในเนื้อเยื่อตับของสายอากาศแบบ สถ็อต ในรูปที่ 4.9 (ก) การกระจายของ SAR ที่รอบๆ บริเวณสถ็อตจะมีการกระจายของ SAR สูง กว่าบริเวณอื่นๆ และในรูปที่ 4.9 (ข) แสดงให้เห็นลักษณะของ SAR ที่มีการกระจายออกรอบๆ สายอากาศแบบสมมาตร รูปที่ 4.10 (ก) พิจารณาการกระจายความร้อนที่เกิดขึ้นกับเนื้อเยื่อตับของสายอากาศแบบสล็อต จะเห็นได้ว่าการกระจายความร้อนจะออกมารอบๆ บริเวณสล็อต ส่วนในบริเวณอื่นๆ ไม่เกิดความ ร้อนขึ้น และเป็นการกระจายความร้อนแบบสมมาตรดังรูปที่ 4.10 (ข) ด้วยเหตุผลเดียวกับกรณีของ สายอากาศแบบปลายเปิด ดังนั้นเมื่อแทงสายอากาศเข้าไปในเนื้อเยื่อตับจะไม่มีการทำลายเนื้อเยื่อที่ ไม่ต้องการ

กำลังงานขนาค 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0

 (ก) (ข)
รูปที่ 4.12 แสดงการกระจายของอุณหภูมิ ที่ออกจากสายอากาศแบบสล๊อตที่มีฉนวนหุ้ม โดยป้อน กำลังงานขนาด 50 วัตต์ ระยะเวลาในการป้อนกำลังงานเท่ากับ 1 นาที (ก) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ข) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0 ในรูปที่ 4.11 เป็นการกระจายของปริมาณ SAR ของสายอากาศแบบสล๊อตที่มีฉนวนหุ้ม จะมี การกระจายของ SAR รอบๆ บริเวณคำแหน่งสล็อตเช่นเดียวกับสายอากาศแบบสล็อต แต่ขนาดของ การกระจาย SAR จะมีขนาดที่ใหญ่กว่าพิจารณาจากรูปที่ 4.11 (ก) เทียบกับรูปที่ 4.9 (ก) และในรูป ที่ 4.11 (ข) เป็นการกระจายของ SAR แบบสมมาตรรอบๆ สายอากาศแบบสล็อตที่มีฉนวนหุ้ม

พ.ศ. (๑) เป็นการกระจายของอุณหภูมิในเนื้อเชื่อตับของสายอากาศแบบสลัอตที่มีฉนวนหุ้มแสดงใน รูป
ที่ 4.12 ลักษณะการกระจายของอุณหภูมิที่เกิดขึ้นเป็นแบบวงรี โดยที่รอบๆ บริเวณตำแหน่งสลัอตจะ
มีค่าการกระจายสูงสุดเมื่อเทียบกับบริเวณอื่นๆ ดังรูปที่ 4.12 (ก) และในรูปที่ 4.12 (ง) เป็นลักษณะ
ของการกระจายของอุณหภูมิรอบๆ สายอากาศแบบสลัอตที่มีฉนวนหุ้มซึ่งเป็นแบบสมมาตร

4.4 ผลการเปรียบเทียบการทำลายเซลล์มะเร็งในเนื้อเยื่อตับของสายอากาศแบบ ปลายเปิด สายอากาศแบบสล๊อต และสายอากาศแบบสล๊อตที่มีฉนวนหุ้ม

ตารางที่ 4.1 สรุปปริมาตรของการทำลายเซลล์มะเร็งในเนื้อเยื่อตับของสายอากาศแบบปลายเปิด สายอากาศแบบสลัอต และสายอากาศแบบสลัอตที่มีฉนวนหุ้ม

ชนิดของสายอากาศต้นเดี่ยว	ปริมาตรการทำลายเซลลั่มะเร็ง (cm³)
สายอากาศแบบปลายเปิด (COA)	9.7
สายอากาศแบบสลัอต (CSA)	6.8
สายอากาศแบบสลัอตที่มีฉนวนหุ้ม (CSAI)	9.2

ในรูปที่ 4.13 แสดงขนาดการกระจายอุณหภูมิของการทำลายเซลล์มะเร็งของสายอากาศแบบ ปลายเปิด สายอากาศแบบสล๊อต และสายอากาศแบบสล๊อตที่มีฉนวนหุ้ม โดยเส้นปะแทนบริเวณ อุณหภูมิ ขนาด 50 องศาเซลเซียส ในรูปที่ 4.14 แสดงรูปทรงของเซลล์มะเร็งที่ถูกทำลายในรูปทรง 3 มิติ โดยเขียนกำสั่งให้โปรแกรมทำการกำนวณปริมาตรการทำลายเซลล์มะเร็งที่เนื้อเยื่อตับที่มี

อุณหภูมิสูงกว่า 50 องศาเซลเซียส ปริมาตรของการทำลายเซลล์มะเร็งแสดงได้ดังตารางที่ 4.1 จากรูปทรง 3 มิติของการทำลายเซลล์มะเร็งในเนื้อเยื่อตับ จะเห็นว่าขนาดของการทำลายของ สายอากาศแบบปลายเปิดมีรูปทรงเป็นทรงกลมรอบๆ ปลายเปิด และสายอากาศแบบปลายเปิดมี ปริมาตรของการทำลายสูงสุด สายอากาศแบบสล๊อตที่มีฉนวนหุ้มมีปริมาตรการทำลายน้อยกว่า สายอากาศแบบปลายเปิดเล็กน้อย ในขณะที่สายอากาศแบบสล๊อตจะมีปริมาตรของการทำลายน้อยกว่า ด้ายอากาศแบบปลายเปิดเล็กน้อย ในขณะที่สายอากาศแบบสล๊อตจะมีปริมาตรของการทำลายน้อย กี่สุดเมื่อเปรียบเทียบกันของสายอากาศทั้งสามแบบ จากผลการจำลองการทำงานของสายอากาศทั้ง สามแบบสามารถทำลายเซลล์มะเร็งในเนื้อเยื่อตับได้ โดยการกระจายความร้อนที่ออกจาก สายอากาศซึ่งจะเกิดขึ้นเฉพาะบริเวณส่วนปลายของสายอากาศแบบปลายเปิด และที่ตำแหน่งสล๊อต ของสายอากาศแบบสล๊อต และสายอากาศแบบสล๊อตที่มีฉนวนหุ้ม

4.5 เปรียบเทียบผลการจำลองการทำงานด้วยไฟในต์เอลิเมนต์ กับการทดลองกับเนื้อเยื่อ แบบ In Vitro ด้วยเทคนิคการทำลายเซลล์มะเร็งแบบใช้สายอากาศหลายต้น

ร**ูปที่ 4.15** ผลการจำลองการกระจาย SAR ในเนื้อเยื่อตับของสายอากาศแบบปลายเปิด 3 ต้น ซึ่งจัดวางแบบอาร์เรย์ ที่ความถี่ 2.45 GHz ป้อนกำลังงาน 50 วัตต์ ระยะเวลา 1 นาที (ก) ที่ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0 (ข) ที่ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0

จากรูปที่ 4.15 แสดงการกระจายของ SAR ในเนื้อเยื่อตับของการทำลายเซลล์มะเร็ง โดยใช้ สายอากาศแบบปลายเปิด 3 ต้น มาจัดวางแบบอาร์เรย์ จะเห็นได้ว่ามีลักษณะการกระจายของ SAR เหมือนกับการกระจายของสายอากาศแบบปลายเปิดต้นเดี่ยว วางซ้อนกัน 3 ต้น ดังแสดงในรูปที่ 4.15 (ก) และการกระจาย SAR ของสายอากาศแบบปลายเปิด 3 ต้น ที่จัดวางแบบอาร์เรย์นี้ยังมี ลักษณะการกระจายแบบสมมาตร แสดงในรูปที่ 4.15 (ข) ในรูปที่ 4.16 แสดงการกระจาขของอุณหภูมิในเนื้อเยื่อดับ โดยใช้สายอากาศแบบปลายเปิด 3 ด้น ซึ่งจัดวางแบบอาร์เรย์ การกระจายของอุณหภูมิมีการกระจายออกรอบๆ บริเวณทิป ของ สายอากาศ เช่นเดียวกับสายอากาศแบบปลายเปิดดันเดี่ยว ผลที่ได้เสมือนกับการเอาสายอากาศแบบ ปลายเปิดดันเดี่ยว 3 ด้น มาวางซ้อนกัน ดังรูปที่ 4.16 (ข) รูปแบบของการกระจายของอุณหภูมิมี ลักษณะการกระจายแบบสมมาตร เมื่อพิจารณาที่บริเวณรอยต่อของปลายสายอากาศที่มีการปอก ดัวนำนอกออก (เป็นตำแหน่งที่มีการกระจายของ SAR และอุณหภูมิสูงสุด) ดังแสดงในรูปที่ 4.16 (ก) และในรูปที่ 4.16 (ก) เป็นการพิจารณาที่ระนาบเดียวกันกับรูปที่ 4.16 (ก) แต่สนใจที่ตำแหน่ง ปลายของสายอากาศแบบเปิดทั้ง 3 ด้น ซึ่งจะเห็นได้ว่าระดับของอุณหภูมิลดต่ำลงมาก ในรูปที่ 4.16 (ง) เป็นผลที่ได้จากการทดลองการทำงาน เมื่อเปรียบเทียบกับการจำลองการทำงานในรูปที่ 4.16 (ง) จะเห็นได้ว่าขนาดของการทำลายเซลล์มะเร็งในเนื้อเยื่อตับมีขนาดใกล้เดียงกัน โดยขนาดการทำลาย เซลล์มะเร็งของการทดลองจริงจะมีพื้นที่การทำลายมะเร็งเลีกกว่าประมาณ 2% เมื่อเทียบกับขนาดที่ ได้จากการจำลองการทำงาน

จากการจำลองการทำงานด้วยระเบียบวิธีการทางไฟในต์เอลิเมนต์ สามารถจำลองรูปแบบการ ทำลายเซลล์มะเร็งในเนื้อเยื่อตับโดยใช้สายอากาศแบบปลายเปิด 3 ด้น ที่จัดวางแบบอาร์เรย์ ได้อย่าง สอดกล้องกับผลที่ได้จากการทดลองจริงเป็นอย่างมาก

รูปที่ 4.17 ผลการจำลองการกระจาย SAR ในเนื้อเยื่อตับของสายอากาศแบบปลายเปิด 3 ต้น ซึ่งจัดวางแบบสามเหลี่ยม ที่ความถี่ 2.45 GHz ป้อนกำลังงาน 50 วัตต์ ระยะเวลา 1 นาที (ก) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0 (ข) ที่ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0

จากรูปที่ 4.17 แสดงการกระจายของ SAR ในเนื้อเยื่อตับของการทำลายเซลล์มะเร็งโดยใช้ สายอากาศแบบปลายเปิด 3 ต้น ที่จัดวางแบบสามเหลี่ยม ในรูปที่ 4.17 (ก) พิจารณาการกระจายของ SAR ในระนาบที่ตำแหน่งบริเวณปลายเปิดของสายอากาศทั้ง 3 ต้น ลักษณะการกระจาย SAR จะ เกิดขึ้นสูงที่ตำแหน่งกึ่งกลางของสายอากาศ คล้ายกับการจัดวางสายอากาศแบบอาร์เรย์โดยใช้ สายอากาศ 2 ต้น (พิจารณาจากค้านข้างของรูปสามเหลี่ยม) การกระจายของ SAR ในการจัดวาง สายอากาศแบบกู่ที่ตำแหน่งกึ่งกลางของสายอากาศทั้งสองจะมีการกระจายของ SAR ที่สูง สอดคล้องกับงานวิจัยที่ได้กล่าวไว้แล้วใน [1] และการกระจายของ SAR จะเป็นรูปสามเหลี่ยมโดย มุมของสามเหลี่ยมอยู่กึ่งกลางของสายอากาศแต่ละคู่

ในรูปที่ 4.17 (ข) การกระจายของ SAR ในระนาบที่กึ่งกลางรูปทรงสามเหลี่ยมนั้น รายละเอียด ได้อธิบายในรูปการจัดวางสายอากาศในบทที่ 3 โดยการการกระจายของ SAR จะออกมารอบๆ ทิป ที่เป็นส่วนปลายของสายอากาศแบบปลายเปิด และมีขนาดของการกระจายที่ใหญ่ขึ้นเมื่อเทียบกับ การใช้สายอากาศแบบปลายเปิดแบบต้นเดียว

ในรูปที่ 4.18 แสดงการกระจายของอุณหภูมิในเนื้อเยื่อตับ โดยใช้สายอากาศแบบปลายเปิด 3 ต้น ซึ่งจัดวางแบบสามเหลี่ยม โดยรูปที่ 4.18 (ก) (ข) และ (ก) เป็นผลการจำลองการทำงานด้วย วิธีการทางไฟในต์เอลิเมนต์ และผลการทดลองแสดงในรูปที่ 4.18 (ง)

ในรูปที่ 4.18 (ก) และรูปที่ 4.18 (ค) แสดงการกระจายของอุณหภูมิในเนื้อเยื่อตับที่ระนาบ เดียวกัน โดยเป็นการกระจายอุณหภูมิที่ตำแหน่งจุดต่อกับตัวนำนอก และตำแหน่งของปลาย สายอากาศ ตามลำดับ จะเห็นได้ว่าในรูปที่ 4.18 (ก) การกระจายของอุณหภูมิจะมีการกระจายที่สูง กว่าเมื่อเทียบกับรูปที่ 4.18 (ค) ซึ่งทั้งสองตำแหน่งจะมีลักษณะการกระจายเป็นรูปทรงสามเหลี่ยม โดยมีมุมของสามเหลี่ยมอยู่กึ่งกลางของสายอากาศแต่ละคู่เช่นเดียวกับผลที่ได้จากการกระจายของ SAR ในรูปที่ 4.17 (ก)

เมื่อเปรียบเทียบผลการจำลองการทำงานในรูปที่ 4.18 (ข) กับผลการทคลองในรูปที่ 4.18 (ง) จะ เห็นได้ว่ามีลักษณะใกล้เคียงกัน โดยผลการทคลองจะมีพื้นที่การทำลายมะเร็งในเนื้อเยื่อตับเล็กกว่า ผลการจำลองการทำงานอยู่ประมาณ 7% ดังนั้นระเบียบวิธีการทางไฟในต์เอลิเมนต์ สามารถจำลอง รูปแบบการทำลายเซลล์มะเร็งในเนื้อเยื่อตับโดยใช้สายอากาศแบบปลายเปิด 3 ต้น ที่จัดวางแบบ สามเหลี่ยมได้อย่างสอดกล้องกับผลที่ได้จากการทดลองจริง

ร**ูปที่ 4.19** ผลการจำลองการกระจาย SAR ในเนื้อเยื่อตับของสายอากาศแบบปลายเปิด 3 ต้น ซึ่งจัดวางแบบรูปตัวที ที่กวามถี่ 2.45 GHz ป้อนกำลังงาน 50 วัตต์ ระยะเวลา 1 นาที (ก) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0 (ข) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0

ร**ูปที่ 4.20** ผลการกระจายอุณหภูมิในเนื้อเยื่อตับของสายอากาศแบบปลายเปิด 3 ต้น ซึ่งจัควางแบบรูปตัวที ด้วยไฟในต์เอลิเมนต์เปรียบเทียบกับการทดลองกับตับหมู ที่ความถิ่ 2.45 GHz ป้อนกำลังงาน 50 วัตต์ ระยะเวลา 1 นาที (ก) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0 (ข) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ก) ระนาบ xy ที่ตำแหน่ง z เท่ากับ -20 (ง) รูปการกระจายของอุณหภูมิจากการทดลอง

ในรูปที่ 4.19 แสดงการกระจายของ SAR ในเนื้อเยื่อตับของการทำลายเซลล์มะเร็ง โดยใช้ สายอากาศแบบปลายเปิด 3 ต้น ที่จัดวางแบบรูปตัวที รูปที่ 4.19 (ก) พิจารณาจากสายอากาศที่วาง ทางแนวตั้ง ที่ตำแหน่งรอยต่อจุดทิป จะเห็นได้ว่าการกระจายของ SAR จะเหมือนกับสายอากาศ แบบปลายเปิดต้นเดี่ยว และมีความสมมาตรรอบๆ สายอากาศ เมื่อพิจารณารูปที่ 4.19 (ข) การ กระจายของ SAR จะเหมือนกับผลที่ได้จากสายอากาศต้นเดี่ยว 3 ต้น มาวางซ้อนกัน โดยตำแหน่ง ที่มีการรวมกันของ SAR จะมีขนาดของการกระจาย SAR ที่เพิ่มสูงขึ้น (โดยมุมที่จัดวางสายอากาศ ตั้งฉากกัน) ทั้งสายอากาศที่วางตามแนวนอนทั้ง 2 ต้น ดังรูป

จากรูปที่ 4.20 (ก) (ข) และ (ก) เป็นผลการจำลองการกระจายของอุณหภูมิในเนื้อเยื่อตับ โดย ใช้สายอากาศแบบปลายเปิด 3 ต้น ซึ่งจัดวางแบบรูปตัวที ด้วยวิธีการทางไฟในต์เอลิเมนต์ และใน รูปที่ 4.20 (ง) เป็นผลที่ได้จากการทดลอง

ในรูปที่ 4.20 (ก) และรูปที่ 4.20 (ค) พิจารณาระนาบที่ตำแหน่งจุดต่อของทิปของสายอากาศที่ วางทางแนวตั้ง และด้านล่างทางแนวนอนของการจัดวางสายอากาศในแบบรูปตัวที โดยการกระจาย ของอุณหภูมิจะเหมือนกับการกระจายอุณหภูมิของสายอากาศแบบปลายเปิดค้นเดี่ยว ซึ่งการ กระจายอุณหภูมิจะสูงรอบๆ ทิป จากรูปที่ 4.20 (ข) และรูปที่ 4.20 (ง) จะเห็นได้ว่าผลการจำลองการ ทำงานกับผลการทดลองมีลักษณะ และขนาดที่ใกล้เคียงกัน โดยผลการทดลองจะมีพื้นที่การทำลาย เซลล์มะเร็งในเนื้อเยื่อตับเล็กกว่าผลการจำลองการทำงานอยู่ประมาณ 2%

จากผลการจำลองการทำงาน และผลการทคลองของการจัควางสายอากาศแบบปลายเปิด 3 ต้น ทั้งที่เป็นแบบอาร์เรย์ แบบสามเหลี่ยม และแบบรูป T-Shape ในหัวข้อที่ 4.5 นี้ สามารถนำเอา ระเบียบวิธีการทางไฟในต์เอลิเมนต์มาจำลองการทำงาน โคยผลการจำลองการทำงานที่ได้มีผล สอคคล้องกับผลที่ได้จากการทคลอง ซึ่งเป็นการยืนยันความถูกต้องของผลที่ได้จากวิธีการทางไฟ ในต์เอลิเมนต์ที่นำมาใช้ได้เป็นอย่างดี

 4.6 ผลการจำลองการทำงาน และผลการทดลองเทคนิคการเพิ่มขนาดของการทำลาย เซลล์มะเร็ง โดยใช้สายอากาศ 3 ต้นแบบผสม (CSAI + COA + CSA)

ร**ูปที่ 4.21** ผลการจำลองการกระจาย SAR ในเนื้อเยื่อตับของสายอากาศ 3 ต้น แบบผสม (CSAI + COA + CSA) จัดวางแบบอาร์เรย์ ที่ความถี่ 2.45 GHz ป้อนกำลังงาน 50 วัตต์ ระยะเวลา 1 นาที (ก) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0 (ข) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0

รูปที่ 4.21 แสดงการกระจายของปริมาณ SAR ในเนื้อเยื่อตับของระบบ MWA ที่ใช้เทคนิคใน การทำลายเซลล์มะเร็งแบบหลายสายอากาศ และจัดวางสายอากาศแบบอาร์เรย์ โดยวางห่างกันเป็น ระยะห่างเท่ากับ 1 เซนติเมตร เมื่อพิจารณาผลการจำลองการทำลายเซลล์มะเร็งที่ใช้สายอากาศแบบ ผสม (CSAI + COA + CSA) จะเห็นได้ว่าการทำลายจะมีรูปแบบที่ไม่สมมาตร ดังรูปที่ 4.21 (ข) ซึ่ง จะแตกต่างกับกรณีที่ใช้สายอากาศแบบเดียวกัน ความหลากหลายของรูปทรงนั้น สอดกล้องกับการ ทำลายเซลล์มะเร็งที่มีความแตกต่างกันทางรูปร่าง และการใช้งานในบริเวณที่อาจเกิดความเสียหาย ได้ง่าย เช่น เส้นเลือดใหญ่ หรือบริเวณที่ใกล้กับอวัยวะที่สำคัญ การจัดวางสายอากาศที่มีความ

68

แตกต่างกันจะแก้ปัญหาในการใช้งานในการทำลายพื้นที่ที่มีขนาดใหญ่ และมีรูปทรงของ เซลล์มะเร็งแบบไม่สมมาตร หรือรูปทรงที่แตกต่างกันออกไป

ในการจำลองการทำงานเลือกสายอากาศแบบปลายเปิดไว้กึ่งกลางของการจัดวางสายอากาศ แบบอาร์เรย์ โดยในผลการจำลองการทำงานด้วยวิธีไฟในต์เอลิเมนต์จะเห็นได้ว่าสายอากาศแบบ ปลายเปิดมีลักษณะการกระจายของความร้อนรอบๆ ปลายเปิดแบบสมมาตร มีลักษณะเป็นทรง กลม ส่วนด้านข้างซ้าย และขวานำเอาสายอากาศแบบสล๊อต และสายอากาศแบบสล๊อตที่มีฉนวน ้หุ้มมาวางในระนาบเดียวกัน มีระยะห่างจากสายอากาศแบบปลายเปิดเท่ากับ 1 เซนติเมตร ้สายอากาศแบบสล๊อต และสายอากาศแบบสล๊อตที่มีฉนวนหุ้มเป็นสายอากาศที่มีโครงสร้าง เหมือนกัน ตำแหน่งของการเกิดความร้อน และการกระจายของ SAR มีลักษณะที่เหมือนกัน แต่ ้สายอากาศทั้งสองจะมีความแตกต่างในส่วนของค่า VSWR โดยสายอากาศแบบสล๊อตที่มีฉนวน ้หุ้มมีค่าของ VSWR ที่ดีกว่าสายอากาศแบบสล๊อต ผลจากการจำลองจะเห็นได้ว่าแนวโน้มของ การกระจายของ SAR และอุณหภูมิมีการกระจายความร้อนจากสายอากาศตรงกลาง (ปลายเปิด) ้ไปยังสายอากาศที่มีค่า VSWR ที่ต่ำกว่าทั้งสองข้าง ผลจากค่า VSWR ที่แตกต่างกันนี้เองทำให้ รูปแบบของการกระจายของ SAR และอุณหภูมิกระจายเป็นแบบไม่สมมาตร ดังนั้นแพทย์ที่ทำ การรักษาเมื่อทราบรูปแบบของเซลล์มะเร็งที่ต้องการทำลายแล้ว ก็จะต้องเลือกวางตำแหน่งของ ้สายอากาศว่าจะให้มีการกระจายของความร้อนไปในทิศทางใด โดยเลือกสายอากาศที่มีค่า VSWR ต่ำ ในพื้นที่ที่ต้องการให้เกิดความร้อนสูง ส่วนบริเวณที่ไม่ต้องการให้เกิดความร้อนสูง ควรเลือกเอาสายอากาศที่มีค่า VSWR ที่สูงกว่า

ในรูปที่ 4.22 (ข) และรูปที่ 4.22 (ง) เป็นผลที่ได้จากการจำลองการทำงานด้วยวิธีการทางไฟ ในต์เอลิเมนต์ และผลการทดลองการทำงานตามลำดับ จะเห็นได้ว่าขนาดของการทำลายเซลล์มะเร็ง ในเนื้อเยื่อตับของรูปทั้งสองมีขนาด และรูปทรงใกล้เคียงกัน โดยพื้นที่ของการทำลายเซลล์มะเร็ง ของการทดลองจริงมีขนาดเล็กกว่าผลที่ได้จากการจำลองการทำงานอยู่ประมาณ 3.5%

ในรูปที่ 4.23 และ 4.24 แสดงการกระจายของปริมาณ SAR และการกระจายอุณหภูมิในเนื้อเยื่อ ตับของระบบ MWA ที่ใช้เทคนิคในการทำลายแบบหลายสายอากาศ มีการจัดวางสายอากาศแบบ สามเหลี่ยม โดยสายอากาศแต่ละค้นจะวางห่างกัน 1 เซนติเมตร โดยทำการพิจารณาการทำลาย เซลล์มะเร็งที่ใช้สายอากาศแบบผสม (CSAI + COA + CSA) ผลที่ได้จะเห็นได้ว่าการทำลายจะมี รูปแบบที่ไม่สมมาตร ซึ่งแตกต่างกับกรณีที่ใช้สายอากาศแบบเดียวกัน 3 ค้น ความหลากหลายของ รูปทรงของการทำลายนั้น สอดคล้องกับลักษณะรูปทรงของเซลล์มะเร็งที่มีความแตกต่างกัน และ ในการใช้งานในบริเวณที่อาจเกิดความเสียหายได้ง่าย เช่น เส้นเลือดใหญ่ หรือบริเวณที่ใกล้กับ อวัยวะที่สำคัญ เทคนิคการจัดวางสายอากาศแบบสามเหลี่ยมโดยใช้สายอากาศแบบผสมจึงเป็น ทางเลือกหนึ่งในการแก้ปัญหาการทำลายเซลล์มะเร็งที่มีพื้นที่ที่ต้องการทำลายที่มีขนาดใหญ่ และมี รูปทรงของเซลล์มะเร็งแบบไม่สมมาตร เช่นเดียวกับการทำลายเซลล์มะเร็งโดยการจัดวาง สายอากาศแบบอาร์เรย์

ร**ูปที่ 4.25** ผลการจำลองการกระจาย SAR ในเนื้อเยื่อตับของสายอากาศ 3 ต้น แบบผสม (CSAI + COA + CSA) จัควางแบบรูปตัวที ที่ความถี่ 2.45 GHz ป้อนกำลังงาน 50 วัตต์ ระยะเวลา 1 นาที (ก) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0 (ข) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0

รูปที่ 4.26 ผลการจำลองการกระจายอุณหภูมิในเนื้อเยื่อตับของสายอากาศ 3 ต้น แบบผสม (CSAI + COA + CSA) ซึ่งจัดวางแบบรูปตัวที ด้วยไฟในต์เอลิเมนต์เปรียบเทียบกับ การทดลองกับตับหมู ที่ความถี่ 2.45 GHz ป้อนกำลังงาน 50 วัตต์ ระยะเวลา 1 นาที (ก) ระนาบ xy ที่ตำแหน่ง z เท่ากับ 0 (ข) ระนาบ yz ที่ตำแหน่ง x เท่ากับ 0 (ค) ระนาบ xy ที่ตำแหน่ง z เท่ากับ -20 (ง) รูปการกระจายของอุณหภูมิ จากการทดลอง

รูปที่ 4.25 แสดงการกระจายของปริมาณ SAR ในเนื้อเยื่อตับของระบบ MWA ที่ใช้เทคนิคใน การทำถายแบบหลายสายอากาศ และใช้การจัดวางสายอากาศแบบรูปตัวที โดยพิจารณาการทำลาย เซลล์มะเร็งที่ใช้สายอากาศแบบผสม (CSAI + COA + CSA) จากรูปได้วางสายอากาศแบบ ปลายเปิดตั้งขึ้นในแนวตั้ง วางสายอากาศแบบสล๊อต และสายอากาศแบบสล๊อตที่มีฉนวนหุ้มให้ห่าง จากสายอากาศแบบปลายเปิดเท่ากับ 1 เซนติเมตรในแนวนอนทางขวา และซ้ายตามลำคับ จากผล การจำลองจะเห็นได้ว่าการทำลายจะมีรูปแบบที่ไม่สมมาตร เช่นเดียวกับจัดวางสายอากาศแบบ อาร์เรย์ และการจัดวางแบบสามเหลี่ยมที่ใช้สายอากาศแบบผสม เทคนิคการจัดวางสายอากาศแบบ รูปตัวทีโดยใช้สายอากาศแบบผสมก็เป็นทางเลือกหนึ่งในการทำลายเซลล์มะเร็งที่มีขนาดใหญ่ และ มีรูปทรงแบบไม่สมมาตร

จากรูปที่ 4.26 (ก) (ข) และ (ค) เป็นผลการจำลองการกระจายของอุณหภูมิในเนื้อเยื่อตับ โดยใช้ สายอากาศแบบแบบผสม 3 ด้น (CSAI + COA + CSA) ซึ่งจัดวางแบบรูปตัวที ด้วยวิธีการทางไฟ ในต์เอลิเมนต์ และในรูปที่ 4.26 (ง) เป็นผลที่ได้จากการทดลอง

ในรูปที่ 4.26 (ก) พิจารณาระนาบที่ดำแหน่งจุดต่อของตัวนำนอกกับส่วนปลายเปิดของ สาขอากาสแบบปลายเปิดที่วางในแนวตั้ง มีการกระจายอุณหภูมิเช่นเดียวกับสาขอากาสแบบ ปลายเปิดต้นเดี่ยว ซึ่งการกระจายอุณหภูมิจะสูงรอบๆ จุดเชื่อมต่อของตัวนำนอกกับส่วนปลายเปิด และรูปที่ 4.26 (ก) พิจารณาด้านล่างในแนวนอนที่เป็นดำแหน่งของสลัอตของสายอากาสแบบสลัอต ที่มีฉนวนหุ้ม และสายอากาสแบบสลัอต การกระจายของอุณหภูมิจะเหมือนกับการกระจายอุณหภูมิ ของสายอากาสแบบสล้อตที่มีฉนวนหุ้ม และสายอากาสแบบสล้อตด้นเดี่ยว เมื่อพิจารณาในรูปที่ 4.26 (ข) ผลจากการจำลองจะเห็นได้ว่าแนวโน้มของอุณหภูมิมีการกระจายความร้อนจากสายอากาส แบบปลายเปิดในแนวตั้ง ไปยังสายอากาสที่มีก่า VSWR ที่ต่ำกว่าในแนวนอนทั้งสองข้าง ผลจากก่า VSWR ที่แตกต่างกันนี้เองทำให้รูปแบบของการกระจายของ SAR และอุณหภูมิกระจายเป็นแบบไม่ สมมาตร จากรูปที่ 4.26 (ข) และรูปที่ 4.26 (ง) จะเห็นได้ว่าวิธีการทางไฟไนด์เอลิเมนต์ให้ผลการ จำลองการทำลายเซลล์มะเร็งมีขนาดที่ใกล้เกียงกับผลการทดลอง โดยผลการทดลองจะมีพื้นที่การ ทำลายเซลล์มะเร็งในเนื้อเยื่อตับเล็กกว่าผลการจำอองการทำงานอยู่ประมาณ 2.7%

รูปที่ 4.27 แสดงขนาดของการทำลายมะเร็งแสดงในรูป 3 มิติ ของสายอากาศ (ก) สายอากาศทั้งสามเป็นสายอากาศแบบปลายเปิดจัดวางแบบอาร์เรย์ (ข) สายอากาศแบบผสม (CSAI + COA + CSA) จัดวางแบบอาร์เรย์ (ค) สายอากาศทั้งสามเป็นสายอากาศแบบปลายเปิดจัดวางสายอากาศแบบสามเหลี่ยม (ง) สายอากาศแบบผสม (CSAI + COA + CSA) จัดวางสายอากาศแบบสามเหลี่ยม (จ) สายอากาศทั้งสามเป็นสายอากาศแบบปลายเปิดจัดวางสายอากาศแบบสูปตัวที (ฉ) สายอากาศแบบผสม (CSAI + COA + CSA) จัดวางสายอากาศแบบรูปตัวที

ในรูปที่ 4.27 แสดงการจำลองการทำลายเซลล์มะเร็งในรูปทรง 3 มิติ โดยใช้สาขอากาสแบบ ปลายเปิดทั้ง 3 ด้น และใช้สาขอากาสแบบผสม (CSAI + COA + CSA) มาจัควางแบบอาร์เรย์ แบบ สามเหลี่ยม และแบบรูปคัวที พิจารณาในรูปที่ 4.27 (ก) เป็นการจัควางสาขอากาสแบบอาร์เรย์ ของ สาขอากาสแบบปลายเปิดทั้ง 3 ด้น จะเห็นได้ว่าขนาดการทำลายเซลล์มะเร็งมีลักษณะสมมาตร ส่วน ในรูปที่ 4.27 (ข) ซึ่งเป็นการจัควางสาขอากาสแบบอาร์เรย์ เช่นเดียวกับรูปที่4.27 (ก) แต่ใช้ สาขอากาสแบบปลายเปิดทั้ง 3 ด้น จะเห็นได้ว่าขนาดการทำลายเซลล์มะเร็งมีลักษณะสมมาตร ส่วน ในรูปที่ 4.27 (ข) ซึ่งเป็นการจัควางสาขอากาสแบบอาร์เรย์ เช่นเดียวกับรูปที่4.27 (ก) แต่ใช้ สาขอากาสแบบผสม (CSAI + COA + CSA) ลักษณะของขนาดการทำลายเซลล์มะเร็งในรูปทรง 3 มิติ (พิจารณารูปที่ 4.27 (ข) ตรงกลาง) จะเห็นได้ว่าขนาดการทำลายจะไม่สมมาตร โดยรูปทรง ขนาดของการทำลายเซลล์มะเร็งของด้านที่เป็นสาขอากาสแบบสล็อตที่มีฉนวนหุ้ม (CSAI) ซึ่งมีก่า VSWR ต่ำ จะมีขนาดการทำลายที่ใหญ่กว่าด้านที่เป็นสายอากาสแบบสล็อต (CSA) ซึ่งมีก่า VSWR สูงกว่า เช่นเดียวกันกับในรูปที่ 4.27 (ค) (ง) และรูปที่ 4.27 (จ) (ฉ) เป็นการจัควางสายอากาสแบบ สามเหลี่ยม และแบบรูปด้วที ของสายอากาสแบบปลายเปิดทั้ง 3 ต้น และสายอากาสแบบผสม ตามลำดับ โดยลักษณะของขนาดการทำลายเซลล์มะเร็งที่ใช้สายอากาสแบบปลายเปิดทั้ง 3 ต้น จะมี รูปทรงที่สมมาตรทั้งที่เป็นการจัดวางสายอากาสแบบแบบสามเหลี่ยม และแบบรูปตัวที ในขณะที่ใช้ สายอากาสแบบผสมลักษณะของการทำลายจะมีรูปทรงที่ไม่สมมาตร

จากตารางที่ 4.2 แสดงความกว้าง ความขาว ความหนา และปริมาตร ในการจำลองการทำลาข เซลล์มะเร็งที่ได้จากวิธีการทางไฟในต์เอลิเมนต์ จะเห็นได้ว่าสาขอากาศแบบปลาขเปิดที่จัดวางแบบ อาร์เรย์จะมีความหนาของการทำลายเซลล์มะเร็งมากกว่าแบบอื่นๆ และการจัดวางสาขอากาศแบบ รูปดัวทีจะมีความกว้าง และความขาวของการทำลาขมากที่สุด ส่วนการจัดวางแบบสามเหลี่ขมจะมี ความกว้าง ความขาว และความหนาที่ใกล้เคียงกัน ผลที่ออกมาจึงมีลักษณะเป็นทรงกลมมากกว่า การจัดวางแบบอื่นๆ พิจารณาปริมาตรของการทำลาขเซลล์มะเร็งจะเห็นได้ว่าการจัดวางสาขอากาศ แบบรูปตัวทีมีปริมาตรการทำลาขสูงกว่าการจัดวางสาขอากาศแบบอาร์เรย์ และแบบสามเหลี่ขม ทั้ง ที่ใช้สาขอากาศแบบปลายเปิดทั้ง 3 ด้น และใช้สาขอากาศแบบผสม ในขณะที่การจัดวางสาขอากาศ แบบสามเหลี่ขมจะให้ปริมาตรของการทำลาขเซลล์มะเร็งน้อยที่สุดทั้งที่ใช้สาขอากาศแบบปลายเปิด ทั้ง 3 ด้น และใช้สาขอากาศแบบผสม ตารางที่ 4.2 แสดงขนาดของการทำลายเซลล์มะเร็งในเนื้อเยื่อตับ และปริมาตรการทำลายของการ จัดวางสายอากาศ 3 แบบ (แบบอาร์เรย์, แบบสามเหลี่ยม และแบบรูปตัวที) ของสายอากาศแบบปลายเปิดทั้ง 3 ต้น และสายอากาศแบบผสม (CSAI + COA + CSA)

ลักษณะการจัดวางสายอากาศ	กว้าง	ยาว	หนา	ปริมาตร	เวลาในการ
	(ນນ.)	(มม.)	(ນນ.)	(ลบ.ซม.)	คำนวณ
					(วินาที)
สายอากาศแบบปลายเปิด (COA) จัควาง	34	41	33	26.8	10,189
แบบ Array					
สายอากาศแบบปลายเปิด (COA) จัควาง	29	30	32	19.4	12,189
แบบ Triangular					
สายอากาศแบบปลายเปิด (COA) จัควาง	45	80	31	30.2	19,313
แบบ T-Shape					
สายอากาศแบบผสม (CSAI+COA+CSA)	30	43	34	24.4	15,240
จัดวางแบบ Array					
สายอากาศแบบผสม (CSAI+COA+CSA)	28	33	30	17.2	18,152
จัดวางแบบ Triangular					
สายอากาศแบบผสม (CSAI+COA+CSA)	41	79	29	29.5	22,352
จัดวางแบบ T-Shape					

ลักษณะการจัดวาง		ผลการจํ	าลอง FI	EM	ผลการทดลองในตับหมู			
สายอากาศ		ຄວ້າາ (ມມ.)	ยาว	พื้นที่	กว้าง	ยาว	พื้นที่	
			(ນນ.)	การ	(ນນ.)	(ມນ.)	การ	
				ທຳລາຍ			ທຳລາຍ	
				(cm^2)			(cm^2)	
Array		34	41	13.94	30.1±0.9	39.0±0.8	11.74	
Triangular	Front	21	20	4.2	20.1±0.7	18.2±0.8	3.64	
	Back	29	30	8.7	27.4±0.6	29.4±0.9	8.05	
T-Shape		45	80	21	43.7±0.8	79.1±0.7	20.54	

ตารางที่ 4.3 แสดงการเปรียบเทียบขนาดและพื้นที่การทำลายเซลล์มะเร็งจากผลการจำลองด้วยวิธีการทาง ไฟไนต์เอลิเมนต์ เทียบกับผลจากการทดลองโดยใช้สายอากาศแบบปลายเปิด (COA)

จากตารางที่ 4.3 เป็นการเปรียบเทียบขนาดการทำลายเซลล์มะเร็งจากผลการจำลองการทำงาน ด้วยวิธีทางไฟในต์เอลิเมนต์ และการทดลองจริงในตับหมู จะเห็นได้ว่าพื้นที่ของการทำลายของการ ทดลองจริงจะมีขนาดเล็กกว่าผลที่ได้จากการจำลองประมาณ 2.7% – 11% โดยสายอากาศแบบ ปลายเปิดที่จัดวางแบบอาร์เรย์มีก่ากวามผิดพลาดมากที่สุด และการจัดวางสายอากาศแบบรูปตัวทีมี ขนาดของการทำลายเซลล์มะเร็งจากการจำลองและผลการทดลองแตกต่างกันน้อยที่สุด ตารางที่ 4.4 แสดงการเปรียบเทียบขนาดและพื้นที่การทำลายเซลล์มะเริ่งจากผลการจำลองด้วย วิธีการทางไฟไนต์ เอลิเมนต์ เทียบกับผลจากการทดลองโดยใช้สายอากาศแบบผสม (COA+CSA+CSAI)

ลักษณะการจัดวางสายอากาศ		ผลการ	รจำลอง FE	CM	ผลการทดลองในตับหมู			
		กว้าง	ยาว	พื้นที่	กว้าง	ຍາວ (ມມ.)	พื้นที่	
		(ນນ.)	(ນນ.)	การ	(ມນ.)		การ	
				ທຳລາຍ			ທຳລາຍ	
				(cm^2)			(cm^2)	
Array		30	43	12.94	28.4±0.7	39.0±0.7	11.00	
Triangular	Front	19	19	3.60	18.1±0.8	18.2±0.6	3.27	
	Back	28	33	9.24	26.4±0.8	28.4±0.7	7.50	
T-Shape		41	79	32.39	40.2±0.6	78.3±0.6	31.32	

จากตารางที่ 4.4 เป็นการเปรียบเทียบขนาดการทำลายเซลล์มะเร็ง จากผลการจำลองการทำงาน ด้วยวิธีทางไฟในต์เอลิเมนต์ และการทดลองจริงในตับหมู จะเห็นได้ว่าพื้นที่ของการทำลายมะเร็ง ของการทดลองจริงจะมีขนาดเล็กกว่าผลที่ได้จากการจำลองประมาณ 2% - 9%โดยสายอากาศแบบ ผสมที่จัดวางแบบอาร์เรย์มีก่าความผิดพลาดมากที่สุด เช่นเดียวกับสายอากาศแบบปลายเปิด และ การจัดวางสายอากาศแบบรูปตัวทีมีขนาดของการทำลายเซลล์มะเร็งจากการจำลองและผลการ ทดลองแตกต่างกันน้อยที่สุด

ร**ูปที่ 4.28** กราฟปริมาตรการทำลายมะเร็งที่ตับเทียบกับเวลาของสายอากาศแบบ COA

รูปที่ 4.29 กราฟปริมาตรการทำลายมะเร็งที่ตับเทียบกับเวลาของสายอากาศแบบผสม

รูปที่ 4.28 แสดงการเปลี่ยนแปลงปริมาตรของขนาดของการทำลายมะเร็ง ที่ใช้เทคนิคในการ วางแบบขนานกัน Array ทำมุม 60 องศาเป็นรูปสามเหลี่ยม (Triangular) และวางแบบ T-Shape (ก) สายอากาศทั้ง 3 ชุดเป็นสายอากาศแบบ COA และในรูป 4.29 สายอากาศทั้ง 3 ชุด ประกอบด้วย สายอากาศแบบ COA CSA และ CSAI

ในการจัดวางสายอากาศแบบ T-Shape จะให้ปริมาตรในการทำลายเซลล์มะเร็งสูงที่สุด โดย กวามแตกต่างของปริมาตรของการจัดวางสายอากาศแบบ T-Shape และแบบ Array จะเริ่มแตกต่าง กันอย่างชัดเจนตั้งแต่เวลาประมาณ 100 วินาที เป็นต้นไป ในกรณีสายอากาศแบบ Open-tip และ สายอากาศแบบผสมจะแตกต่างกันที่เวลาประมาณ 140 วินาที เป็นต้นไป ส่วนการจัดวางแบบ Triangular เริ่มมีขนาดของปริมาตรที่แตกต่าง ในเวลาประมาณ 50 วินาที เป็นต้นไป