มหาวิทยาลัยศิลปากร ปี 2551 ขอขอบคุณ คณะสัตวศาสตร์และเทคโนโลยีการเกษตร มหาวิทยาลัยศิลปากร วิทยาสารสนเทศเพชรบุรี ที่ให้ความอนุเคราะห์สถานที่และอุปกรณ์ในการทำวิจัย ขอขอบคุณศูนย์วิจัยและ พัฒนาอาหารสัตว์ จ.เพชรบุรี ที่เอื้อเฟื้อสถานที่ปลูกสร้างแปลงหญ้าเพื่อการวิจัย

อิทธิพลของปุ๋ยในโตรเจนต่อการให้ผลผลิต คุณภาพ และประสิทธิภาพการใช้ในโตรเจนของหญ้าอาหาร สัตว์เขตร้อนบางชนิด

อุไรวรรณ ไอยสุวรรณ์  $^{1/}$ สมเกียรติ ประสานพานิช $^{2/}$ พิรวิทย์ เชื้อวงษ์บุญ $^{1/}$ สมศักดิ์ เภาทอง $^{3/}$ และจีระศักดิ์ ชอบแต่ง $^{3/}$ 

## บทคัดย่อ

การทดลองนี้มีวัตถุประสงค์เพื่อศึกษาการให้ผลผลิต คุณภาพและประสิทธิภาพการใช้ปุ๋ยในโตรเจน ของหญ้าเขตร้อนเมื่อได้รับปุ๋ยในโตรเจนอัตราต่างๆ วางแผนการทดลองแบบสุ่มสมบูรณ์ภายในบล็อก มี 4 ซ้ำ สิ่งทดลอง ได้แก่ การใส่ปุ๋ยในโตรเจน (nitrogen, N) ในอัตราแตกต่างกัน 5 ระดับ ประกอบด้วย 0 (กลุ่ม ควบคุม), 8, 16,32 และ 64 กิโลกรัม N/ไร่ วัดผลผลิตน้ำหนักแห้งและองค์ประกอบทางเคมีของหญ้า 60 วัน หลังจากปลูก และหลังจากนั้น (regrowth) ทุกๆ 30 วัน หญ้าเนเปียร์แคระมีผลผลิตวัตถุแห้งรวมและผลผลิต โปรตีนหยาบรวมสูงสุด (p<0.05) เมื่อใส่ปุ๋ยอัตรา 64 กิโลกรัม N/ไร่ และ การใส่ปุ๋ยอัตรา 64 กิโลกรัม N/ไร่ มี ผลทำให้หญ้าเนเปียร์แคระที่ตัดทุกๆ 30 วัน มีเปอร์เซ็นต์โปรตีนหยาบสูงกว่า (p<0.05) กลุ่มอื่นๆ การใส่ปุ๋ย ไนโตรเจนให้กับหญ้าเนเปียร์แคระไม่มีผล (p>0.05) ต่อเปอร์เซ็นต์เยื่อใย และประสิทธิภาพการใช้ประโยชน์ จากปุ๋ย หญ้ารูซี่ที่ใส่ปุ๋ย 32 และ 64 กิโลกรัม N/ไร่ มีผลผลิตวัตถุแห้งไม่แตกต่างกัน (p>0.05) แต่สูงกว่า (p<0.05) การใส่ปุ๋ยในระดับที่ต่ำกว่า การใส่ปุ๋ยในโตรเจนทำให้หญ้ารูชี่มีเปอร์เซ็นต์โปรตีนและผลผลิตโปรตีน เพิ่มขึ้น (p<0.05) แต่ไม่มีผลกับเปอร์เซ็นต์เยื่อใย การใส่ปุ๋ยมากขึ้นทำให้ประสิทธิภาพการผลิตของหญ้ารูซึ่ ลดลง (p<0.05) หญ้ากินนี้สีม่วงมีผลผลิตวัตถุแห้งและผลผลิตโปรตีนหยาบสูงสุด (p<0.05) เมื่อใส่ปุ๋ยอัตรา 64 กิโลกรัม N/ไร่ ประสิทธิภาพการผลิตของหญ้ากินนี้สีม่วงกลุ่มที่ได้รับปุ๋ยระดับ 8 และ16 กิโลกรัม N/ไร่ ไม่ แตกต่างกัน (p>0.05) แต่สูงกว่า (p<0.001) กลุ่มที่ได้รับปุ๋ยระดับ 32 และ 64 กิโลกรัม N/ไร่ ประสิทธิภาพ การใช้ปุ๋ยในโตรเจนของหญ้ากินนี้สีม่วงมีค่าสูงสุดเมื่อใส่ปุ๋ยอัตรา 8 กิโลกรัม N/ไร่ ส่วนประสิทธิภาพเชิงสรีระ ของหญ้ากินนี้สีม่วงในทุกระดับปุ๋ยไม่มีความแตกต่างกัน (p>0.05) ในหญ้าแพงโกล่า พบว่า การใส่ปุ๋ยอัตรา 64 กิโลกรัม N/ไร่ ทำให้ผลผลิตวัตถุแห้งเฉลี่ยสูงที่สุด (p<0.05) การใส่ปุ๋ยไนโตรเจนทำให้หญ้าแพงโกล่ามี เปอร์เซ็นต์โปรตีนและผลผลิตโปรตีนเพิ่มขึ้น การใส่ปุ๋ยที่ระดับ 8 กิโลกรัม N/ไร่ ทำให้หญ้าแพงโกล่ามี ประสิทธิภาพการใช้ปุ๋ยไม่แตกต่างกับการใส่ปุ๋ยที่ระดับ 16 กิโลกรัม N/ไร่ แต่สูงกว่า (p<0.05) กลุ่มที่ได้รับปุ๋ย ในระดับสูงกว่า (32 และ 64 กิโลกรัม N/ไร่) สำหรับผลการทดลองในหญ้าเนเปียร์ พบว่า การใส่ปุ๋ยไนโตรเจน อัตรา 32 และ 64 กิโลกรัม N/ไร่ มีผลผลิตวัตถุแห้งไม่แตกต่างกัน (p>0.05) แต่สูงกว่าการใส่ปุ๋ยในอัตราที่ต่ำ กว่า ประสิทธิภาพการใช้ปุ๋ยของหญ้าเนเปียร์ที่ได้รับปุ๋ยอัตรา 16 กิโลกรัม N/ไร่ มีค่าสูงกว่า (p<0.05) การใส่ ปุ๋ยอัตราอื่นๆ สรุปได้ว่า การให้ผลผลิตน้ำหนักแห้งของหญ้าเขตร้อนทั้ง 5 ชนิดมีการตอบสนองต่อการ ใส่ปุ๋ยไนโตรเจน โดยหญ้าจะมีผลผลิตวัตถุแห้งสูงเมื่อได้รับปุ๋ยไนโตรเจนในช่วง 32 – 64 กิโลกรัม N/ไร่ การใส่ปุ๋ยอัตรา 64 กิโลกรัม N/ไร่ ทำให้หญ้ามีผลผลิตโปรตีนสูงสุด อย่างไรก็ตาม อัตราการใส่ปุ๋ยที่สูงเกินไป ทำให้ประสิทธิภาพการใช้ปุ๋ยของหญ้าเขตร้อนทั้ง 5 ชนิด มีค่าลดลง

คำสำคัญ: หญ้าอาหารสัตว์ ประสิทธิภาพการใช้ปุ๋ย ผลผลิตวัตถุแห้ง องค์ประกอบทางเคมีในโตรเจน

Influence of nitrogen fertilizer on yield, quality and efficiency of nitrogen use of selected tropical grass

Auraiwan Isuwan <sup>1/</sup> Phirawit Chuawongboon <sup>1/</sup>Somkiat Prasarnphanich <sup>2/</sup>
Somsak Paothong <sup>3/</sup>Jeerasak Chobtang <sup>3/</sup>

## **Abstract**

The objective of this experiment was to study dry matter yield, quality and nitrogen (N) use efficiency (NUE) of selected tropical grass species [Dwarf Napier (*Pennisetum purpureum* cv Mott), Ruzi (*Brachiaria ruziziensis*), Purple Guinea (*Panicum maximum*), Pangola (*Digitaria eriantha*) and Napier (*Pennisetum purpureum*)] received different rates of nitrogen fertilizer. A randomized complete block design with 4 replications was used. Treatments for each grass were different rates of nitrogen application [none (control), 8, 16, 32 and 64 kg N / rai]. Grasses were cut to determine dry matter yield (DMY) and chemical composition at 60 days after planting and consequently every 30 days of regrowth. DMY and crude protein yield (CPY) of Dwarf Napier was highest (p<0.05) at 64 kg N /rai. At this level of fertilization, it was found that crude protein (CP) content of the grass cut at 30 days interval was higher (p<0.05) than that of other rates. Fiber components and NUE of this grass were not affected (p>0.05) by different rates of fertilizer. DMY of Ruzi did not differ (p>0/05)

between 64 and 32 kg N / rai, but both were higher (p<0.05) than other rates. CP content and CPY of Ruzi were increased (p<0.05), but NUE was decreased (p<0.05), when rates of nitrogen fertilizer were increased. DMY and CPY of Purple Guinea were highest (p<0.05) at 64 kg N / rai. Agronomic efficiency of Purple Guinea did not differ (p>0.05) between 16 and 8 kg N /rai, but higher (p<0.05) than other rates. NUE of this grass was highest (p<0.05) at 8 kg N /rai however, no effect of nitrogen fertilizer on physiological efficiency was observed (p>0.05). Highest DMY of Pangola was observed (p<0.05) when received 64 kg N / rai. CP content and CPY of this grass were increased (p<0.05) according to increase levels of nitrogen fertilizer. NUE of this grass at 16 and 8 kg N /rai did not differ (p>0.05) but higher (p<0.05) than that of 64 and 32 kg N /rai. Total DMY of Napier grass received 32 and 64 kg N/rai did not significantly differ (p>0.05) but higher (p<0.05) the other rates of nitrogen fertilizer. NUE was highest in the rate of 16 kg N/rai (p<0.05). In conclusion, 5 selected tropical grass species were positively responded to increasing rates of nitrogen fertilizer. Between 32 and 64 kg N/rai was likely to be the appropriate rate for growing these grasses. CPY was highest when 64 kg N/rai was applied. However, NUE of all grasses were likely to be negatively affected as the rates of nitrogen fertilizer were increased.

Keywords: Tropical forage, nitrogen use efficiency, yield, chemical composition, nitrogen

<sup>&</sup>lt;sup>1/</sup> Faculty of Animal Science and Agricultural Technology, Silpakorn University Petchaburi IT Campus, Cha-Am, Petchaburi

<sup>้</sup>ภาควิชาสัตวบาล คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ บางเขน กรุงเทพมหานคร <sup>2/</sup> Bureau of Animal Nutrition Development

<sup>&</sup>lt;sup>3/</sup> กองอาหารสัตว์ กรมปศุสัตว์ ราชเทวี กรุงเทพฯ

<sup>&</sup>lt;sup>3/</sup> Animal Nutrition Division, Department of Livestock Development, Ratchathewi, Bangkok