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ABSTRACT 

 

This study analyzed the monthly rainfall data of the Global Precipitation Climatology 

Centre (GPCC) over Thailand, covering the period from 1971 to 2010 using the Empirical 

Orthogonal Function (EOF) technique. The most dominant mode accounts for 21.6% of the 

total variance, when interpreting the rainfall from the principal component time series and 

associated eigenvector. The next part was a study of the relationship with ENSO using 

smoothed anomalies with the low-pass filter between the Niño 3.4 index and the principal 

component time series It was found that the Niño 3.4 index leads the rainfall anomalies by 

4 months. But it was of the relationship with Indian Ocean Dipole (IOD) using smoothed 

anomalies with the low-pass filter between Dipole Mode Index (DMI) and the principal 

component time series. It was found that the rainfall variability over Thailand has less 

correlation with IOD. This study used ENSO events divided into weak and strong intensity 

classes. It was based on composites of fourteen weak La Niña events, six strong La Niña 

events, twelve weak El Niño events and six strong El Niño events. It was found that there 

was high rainfall in La Niña events, whereas there was low rainfall in El Niño events. 

Also, we constructed the corresponding wind circulation and the sea level pressure in order 

to better understand the mechanisms associated with this events that have affected rainfall 

variability over Thailand. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Rationale 

Thailand has an area of 513,120 square kilometers (198,120 square miles), and is 

situated at the southeastern part of the Indochinese peninsula, with latitude between 5 N°  

to 20 N°  and longitude between 97 E°  to 105 E° . Thailand is under the influence of 

monsoon winds of seasonal character such as southwest monsoon and northeast monsoon. 

The southwest monsoon started in May and brings a stream of warm moist air from the 

Indian ocean towards Thailand, which causes abundant rain over the country, especially 

the wind ward side of the mountains. Rainfall during this period is not only caused by the 

southwest monsoon but also by the Inter Tropical Convergence Zone (ITCZ) and tropical 

cyclones, which produce a large amount of rainfall. May is the period of first arrival of the 

ITCZ to the southern part of Thailand. It moves northward rapidly and lies across southern 

China around June to early July causing a dry spell over upper Thailand. The ITCZ then 

moves south and lies over the northern and northeastern parts of Thailand in August and 

later over the central and southern part in September and October respectively. The 

northeast monsoon starts in October and brings the cold and dry air from the anticyclone in 

China over major parts of Thailand, especially the northern and northeastern parts. In the 

southern part, this monsoon causes mild weather and abundant rain along the eastern coast. 

Agriculture and related sectors of Thailand are favoured by the Thai tropical 

monsoon climate. But in some abnormal years, different disasters, owing to the weather 

and climate, may be happened to cause the considerable damage and even the loss of life. 

The climate variability has been concerned about various aspects for example the 

characteristic of climate, rainfall and temperature. The impact of climate variability 

involves many problems such as drought and flood. Then in this research, the rainfall 

variability will be studied by using the accumulate of monthly rainfall over Thailand from 

the GPCC data [Schneider, 2011a] version V6 for the period 1901 to 2010 with a spatial 

resolution of 0.5  0.5°× ° latitude by longitude. The Empirical Orthogonal Function (EOF) 

Analysis will be used to analyze large data with linkage to relate in its possible 

teleconnection to the climate mode. 
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The purposes of this research are to study the rainfall variability over Thailand and 

to analyze the rainfall variability and its possible teleconnection to global or regional 

climate mode. 

1.2 Literature Review 

Pribadi et al. (2012) studied diurnal rainfall variations over three sub-domains 

(Java, Sumatra and Cerum islands) with distinct annual rainfall cycles within Indonesia 

using Empirical Orthogonal Function analysis. To use the resolution data is 3 hour of 

temporal and 0.25 0.25°× °of the spatial from the Tropical Rainfall Measuring Mission 

during 2000-2009. It found that the eigenvalues of Boxes A, B and C are selected by mode 

1 and 2 because they are represented a very large proportion of the variance that is 97%, 

93% and 93%. To interpret the diurnal rainfall from the principle component (PCs) time 

series and associated eigenvectors (EOFs) found that box A shows amplitude over land 

duration 1500-1800 LST and over ocean duration 0900-1200 LST, box B shows amplitude 

over land duration 1800-2100 LST and over ocean duration 0600-1200 LST and Box C 

shows amplitude over land 1200-1800 LST and over ocean 0300-1200 LST.  

 Juneng and Tangang (2005) showed that in Southeast Asia, rainfall (SEAR) 

anomalies depend strongly on the phases of El Nino and La Nina using an extended 

empirical orthogonal function analysis. The dominant mode of SEAR anomalies evolves 

northeastward throughout a period from the summer when El Nino develops to spring the 

following year when the event weakens which is consistent with the northeastward 

migration of the ENSO-related anomalous outgoing radiation field.  The evolution of the 

dominant mode of SEAR anomalies is in tandem with the evolution of ENSO related sea 

surface temperature anomalies. The strong ENSO-related anomaly tends to reside in 

regions south of the equator during boreal summer whereas the strong ENSO related 

anomaly tends to reside in regions north of the equator during boreal winter. The 

anomalous low-level circulation associated with ENSO-related SEAR anomaly indicates 

the strengthening and weakening of two off-equatorial anticyclones, one over the Southern 

Indian Ocean and the other over the western North Pacific. 

 Trenberth et al. (2002) studied the origins of delayed increases in global surface 

temperature accompanying El Nino events and explored the implications for the role of 

diabatic processes in ENSO using correlation and regression analysis of global mean 

surface temperatures, zonal means and fields of sea surface temperatures, land surface 
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temperatures, precipitation, outgoing long wave radiation, vertically integrated diabatic 

heating and divergence of atmospheric energy transports, and ocean heat content in the 

Pacific. ENSO linearly accounts for 0.06°C of global surface temperature increase during 

1950–1998. The warming events peak 3 months after SSTs in the Niño 3.4 region, 

somewhat less than is found in previous studies. The warming at the surface progressively 

extends to about ±30° latitude with lags of several months. A major part of the ocean heat 

loss to the atmosphere is through evaporation and thus is realized in the atmosphere as 

latent heating in precipitation, which drives teleconnections. Reduced precipitation and 

increased solar radiation in Australia, Southeast Asia, parts of Africa, and northern South 

America contribute to surface warming that peaks several months after the El Niño event. 

1.3 Research Objectives 

This study aims to: 

1. Analyze the rainfall variability over Thailand, 

2. Identify possible teleconnection between the dominant modes of rainfall 

variability over Thailand and climate modes. 

1.4 Scope of the Research 

The implementation of this work is as follows: 

1. Analyze the dominant modes of rainfall variability over Thailand based on 

monthly data, 

2. Analyze temporal variation in terms of frequency and period, 

3. Identify possible teleconnection between the dominant modes of rainfall 

variability over Thailand and sea surface temperatures (SST) - related climate 

modes such as ENSO and IOD, 

4. Interpretation of possible linking mechanisms between rainfall variability and 

climate modes. 

 

 



CHAPTER 2 

THEORIES 
 

 This chapter presents related theories, such as the statistical techniques and climate 

features.  

2.1 Empirical Orthogonal Function Analysis 
This study used the Empirical Orthogonal Function (EOF) analysis, which is a 

technique of descriptive multivariate statistics. It is a useful technique in the meteorology 

and oceanography. It is also known as Principle Component Analysis (PCA) which based 

on a linear transformation to extract information from the large data sets by decomposing 

to the orthogonal basis function while retaining as much as possible of the variations 

present in the data sets. EOF is considered from the covariance matrix of data and it 

decomposed a space-time data into spatial patterns and associated time indices. Then, it 

received the eigenvalues, eigenvectors and principle component time series. The 

eigenvectors are few data which is extracted from the large data sets and they are 

corresponding the eigenvalues of each mode where the number of EOF modes is equal to 

the number of stations. Because, it is without a certain criteria in selecting the number of 

modes, then it depends mainly on the purpose of the study (Hannachi et al., 2007; 

Compagnucci and Richer, 2008; William and Richard, 2001). 

The process and methods in this study are as follows: 

2.1.1 Formatting and preparing data for analysis: The EOF technique is 

essentially a matrix method by which the data can be analyzed when arranged into 

matrices. Linear transforms a continuous space-time field [ ]tx n p
z

×
=Z  where Z  is matrix 

of rainfall data and the element of txz is the rainfall amount collected at the time t (t ═ 

1,2,3,…,n) and station x (x ═ 1,2,3,…,p). The formatting of data is shown as Figure 2.1. 
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Figure 2.1: The data formatting  

The matrix Z  is arranged in a matrix as follows: 

 

 

          =   Z [ ]

11 12 1

21 22 2

1 2

   

p

p
tx n p

n n np n p

z z z
z z z

z

z z z

×

×

 
 
 =
 
 
  





   



 (2.1) 

 

Preparing data for analysis is used to compute the anomaly, which is different 

from the long-term average (climatology) in order to minimize errors arising from higher 

or lower than the normal data of each station or time (t). The time average mean ( )Z  is 

calculated from the average of column of matrix Z  as follow: 

 

   1 2 pz z z =  Z            (2.2)  

Station 1 2( , ,..., )px x x  

Time 1 2( , ,..., )nt t t  

 

( )1, nt s

 

 

( )1,nt s  
( ),n pt s  

( )1 1,t s

 

time 

station 
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where   
1

1    
n

x tx
t

z
n =

= ∑Z     

The anomalies matrix ( )′Z  is computed from the time average mean, which is defined by  

 

        ′ = −Z Z Z             (2.3) 

 

or, in matrix form is written as: 

 

 [ ]

11 1 12 2 1

21 1 22 2 2

1 1 2 2

   =      

p p

p p
tx n p

n n np p n p

z z z z z z
z z z z z z

z

z z z z z z

×

×

− − − 
 − − − ′ ′ =
 
 − − −  

Z





   



 

 

       = 

11 12 1

21 22 2

1 2

p

p

n n np n p

z z z
z z z

z z z
×

′ ′ ′ 
 ′ ′ ′ 
 
 ′ ′ ′  





   



         (2.4) 

 

where txz′  is the anomalous data of matrix ,′Z which is collected at the time t (t = 1,2,3,…,n) 

and station x (x = 1,2,3,…,p). 

2.1.2 Computation 

       2.1.2.1 To find covariance matrix  

The covariance matrix is determined by  

 

   
1    

1n
′ ′=

−
TR Z Z            (2.5) 

 

where   T′Z  is the transpose matrix of ′Z  and the matrix form is written as: 
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11 21 1

12 22 2

1 2

   

n

nT

p p np p n

z z z
z z z

z z z
×

′ ′ ′ 
 ′ ′ ′ ′ =
 
 ′ ′ ′  

Z





   



 

 

The covariance matrix  can be calculated as: 

  

11 21 1 11 12 1

12 22 2 21 22 2

1 2 1 2

1    
1

n p

n p
p p

p p np n n npp n n p

z z z z z z
z z z z z z

n
z z z z z z

×

× ×

′ ′ ′ ′ ′ ′   
   ′ ′ ′ ′ ′ ′   =
   −
   ′ ′ ′ ′ ′ ′      

R

 

 

       

 

 

 

  

11 12 1

21 22 2

1 2

    

p

p
p p

p p pp p p

r r r
r r r

r r r

×

×

 
 
 =
 
 
  

R





   



           (2.6) 

 

where R  is symmetric matrix and the element ijr of the matrix R  is the value of the 

covariance between the time series of the field at any pair of grid points that 

, 1, 2,3,...,i j p=  

       2.1.2.2 To compute the eigenvalues and their corresponding eigenvectors 

By multiplying matrix R  with some matrix ( )E  is equal to the matrix ( )E  multiplied by a 

scalar ( )λ  as follows: 

 

             RE  = λE  

 

             ( ) ( )λ−RE E  =  0 

 

( ( ))λ−R I E  =  0 

 

     ( )−R L E  =  0          (2.7) 
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where I  is the identity matrix  with dimension p×p. The elements of the matrix I  on the 

diagonal are equal to 1 while other elements are equal to 0. 
 L  is the diagonal matrix containing eigenvalues kλ  (k ═ 1,2,3,…,p) of matrix R , 

in which the other elements are equal to 0. 

 

  

0 0
0 0

      =   

0 0 p p

λ
λ

λ

λ
×

 
 
 =
 
 
 

L I





   



          (2.8) 

 

From Equation (2.7), −R L  is the square matrix of homogeneous equations, which has a 

nontrivial solution 1 2 3, , ,..., pλ λ λ λ , when det( ) 0− =R L , therefore 

     

11 12 1

21 22 2

1 2

  0

p

p

p p pp p p

r r r
r r r

r r r

λ
λ

λ
×

−
−

=

−





   



  

 

It is easy to understand that the eigenvalues ( 1, 2,3,..., )k k pλ =  of the matrix R  can be 

arranged in the form of the proportional to the percentage of the variance as 

1 2 3 ... pλ λ λ λ> > > >  where each eigenvalue ( )kλ  is accounted for mode k and shown as: 

 

   
1

% variance mode     100k
p

ii

k λ
λ

=

= ×
∑    

     (2.9) 

 

Substitute  ( 1, 2,3,..., )k k pλ =  in Equation (2.7), we obtain the eigenvectors 

1 2 3, , ,..., pE E E E ,  

 

where 1 2k p =  E E E E
; k = 1,2,3,…,p 

 

The eigenvectors p p×E  from Equation (2.7) can be written in matrix form as: 
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11 12 1

21 22 2

1 2

    

p

p
p p

p p pp p p

e e e
e e e

e e e

×

×

 
 
 =
 
 
  

E





   



          (2.10) 

             

 

where p p×E  is matrix of eigenvectors corresponding to eigenvalues ( )kλ   

kE  is column vectors which are instead of eigenvector of R . The spatial 

variability of each mode is extracted from the original data sets ( 1, 2,3,..., )k p=   

 Since the elements of the matrix ′Z are real numbers and the elements of 

covariance matrix ( R ) are greater than zero, then every eigenvalue ( )λ  of the matrix 

p p×E  is greater than zero. Therefore, the matrix p p×E  is orthogonal over space as follows: 

 

   ( )     ( )     T T
p p p p p p× × ×= =EE E E I         (2.11) 

      2.1.2.3 To compute the principal component time series (time-dependent 

amplitudes) of each EOF mode. 

It can derive by projecting the original data series ′Z onto the eigenvectors ( )kE  of matrix 

p p×E as follows: 

 

       n p n p p p× × ×′=A Z E           (2.12) 

 

or, it can be written in matrix form as 

 

n p×A  = 

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

p p

p p

n n np p p ppn p p p

z z z e e e
z z z e e e

z z z e e e
× ×

′ ′ ′   
   ′ ′ ′   
   
   ′ ′ ′      

 

 

       

 

 

 

2E  1E  pE  eigenvector (Ek)   
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11 12 1

21 22 2

1 2

p

p

n n np n p

a a a
a a a

a a a
×

 
 
 
 
 
  





   



n p×A  =     

 

 

 

 

where
       1

    
p

tx tj jx
j

z e
=

′= ∑A        

The elements txA  are the principal component time series (PCs) or expansion coefficient 

of EOF at time ( )1,2,...,t n=  and station ( 1,2,3,..., )x p= . They are orthogonal over time, 

which means that the time-averaged covariance of the amplitudes satisfies the expression: 

 

       ti tj i ija a λδ=             (2.14) 

 

where ,   1, 2,3,...,i j p=  and ijδ  is the Kronecker delta function: 

 

   
1,       
0,       ij

j i
j i

δ
=

=  ≠
  

      

The overbar in Equation (2.14) denotes the time-averaged value and the eigenvalues ( )λ  
denotes the variance of each EOF mode calculated by: 

 

   
2

1

1        
n

i ti ti ti
i

a a a
n

λ
=

 = =  ∑            (2.15) 

 

or, it can be written in matrix form as follows: 

 

       T =A A L              (2.16) 

 

1tA 2tA  txA Principal component time series (PCs) 

(2.13) 
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Since the eigenvectors and the principal component time series (PCs) are orthogonal over 

space and time, then the sum of variances in the eigenvalues is equal to the sum of 

variances in the original data as in the expression:   

 

   
[ ]2

1 1 1

1     
p pn

tx k
x t k

z
n

λ
= = =

=∑ ∑ ∑            (2.17) 

 

Finally, the original data can be reconstructed by the eigenvectors and the principal 

component time series as:  

 

   
1

    
p

T
tx ti xi

i
a e

=

′ = ∑Z             (2.18) 

 

where  tia  denotes the principal component time series ( 1, 2,3,..., )t n=  

 xi

Te  denotes the transpose matrix of the eigenvectors elements ( 1, 2,3,..., )x p=  

In matrix notation: 

 

       T
n p n p p p× × ×′ =Z A E .            (2.19) 

 

Or, 

 

 

11 12 1 11 21 1

21 22 2 12 22 2

1 2 1 2

    

p p

p p
n p

n n np p p ppn p p p

a a a e e e
a a a e e e

a a a e e e

×

× ×

   
   
   ′ =
   
   
      

Z

 

 

       

 

       (2.20) 

 

2.2 Correlation Analysis 

  The correlation is considered in more detail when the time series analysis methods 

are examined. In statistics, dependence is any statistical relationship between two random 

variables or two sets of data. Correlation refers to any a board class of statistical 

relationships involving dependence (Hinkle et al., 1998; Chen and Popovich, 2002).  
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 The most familiar measure of dependence between two variables is Pearson’s 

correlation coefficient, commonly called simply the correlation coefficient (r) (Pearson, 

1957; O’Brien, 1985; Ware and Benson, 1975). It is sensitive only to a linear relationship 

between two variables. It is obtained by dividing the covariance (COV( , ))x y of two 

variables x and y by the product of their standard deviations (Sx and Sy) (Rodgers and 

Nicewander, 1988; Emery and Thomson, 2001). The correlation coefficient is defined as: 

 

    COV( , )
S Sxy

x y

x yr =              (2.21) 

 

If a series of n measurements of x and y written as xi and yi where i=1,2,…,N, then 

the correlation coefficient can be used to estimate the population Pearson correlation r 

between x and y as follows:   

 

    
1

( )( )1
1 S S

N
i i

xy
i x y

x x y yr
N =

− −
=

− ∑    

Or, 

    1

2 2

1 1

( )( )

( ) ( )

N

i i
i

xy N N

i i
i i

x x y y
r

x x y y

=

= =

− −
=

− −

∑

∑ ∑
 

                   

where x  and y  are means of x and y, and Sx and Sy are the standard deviations of x and y. 

The coefficient value is bounded between -1 to 1. It equals -1 meaning that there is 

a negative correlation. On the contrary, it equals 1 meaning that there is a positive 

correlation. If it equals 0, it means that the variables are independent (Francis et al., 1999). 

The correlation analysis is useful for comparing correlations among variables. For 

example, Juneng and Tangang (2005) presented the correlations between the Southeast 

Asia rainfall anomalies and Niño 3.4 region. Xu et al. (2012) presented the correlations 

between the variations of subsurface ocean temperature, and eastern and central Pacific 

ENSO. Hou and Yan (2011) presented the correlation between the total cloud amount 

anomalies with ENSO over the tropical Pacific.     
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On the other hand, the correlation coefficients are used to indicate the relationships 

of two observed sample time series, which are assumed to be independent of such. 

However, they are rarely independent. Autocorrelation due to observation data sampling 

can be reflected by the first order (lag 1− ) of autocorrelation coefficient, and resulting to 

reduce the number of independent sample size (N). The adjustment of sample size called 

an effective sample size (Nef) is required, and it can affect the confidence interval 

(Trenberth, 1984). The effective sample size for correlation coefficient of two time series 

data can be determined as follows: 

 

   
1 1 2 2(1 ...)ef

x y x y

NN
r r r r

=
+ + +

         (2.22) 

where 1xr  and 1yr  are the first order autocorrelation coefficients for time series data of x 

and y, respectively, and 2xr  and 2 yr  are the coefficients for the second order. 

 

2.3 Lanczos Filtering 

 Lanczos filtering is a Fourier method of filtering digital data (Duchon, 1979). Its 

principal feature is reduction of the amplitudes of Gibbs oscillation. The Fourier 

coefficients for the smoothed response function are determined by multiplying the original 

weight function by a function that Lanczos called the sigma factor. This method can be 

used to predict the main characteristics of the response function, to compare Lanczos 

response functions to those from other types of filters, and to extend the analysis to two 

dimensions.  

 Digital filtering involves transforming an input data sequence xt into an output data 

sequence yt where t is time, using the linear relationship as follows: 

 

t
k=-

y =
∞

−
∞
∑ k t kw x           (2.23) 

 

in which wk are suitably chosen weights, k is an entire number.  

For an ideal filter, it is shown that 

 

     sin 2 c
k

kfw
k
π

π
=          (2.24) 
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where fc is the cut-off frequency, i.e. the frequency at which the response drops from one to 

zero. If there is a total of 2n-1 weights in the weight function, then in order to suppress the 

Gibbs oscillation, Lanczos suggested that the ideal response function is convolved for the 

following rectangular function as follows: 

 

    
/ 2 , /

( )
0, / .

N N

N

n f f f n
h f

f f n
 ≤=  >

        (2.25) 

 

where fN is the Nyquist frequency with value 0.5 cycle per data interval. 

Then, the weight function of relation (2.24) becomes 

 

    sin 2 sin /
/

c
k

kf k nw
k k n
π π

π π
= ⋅          (2.26) 

 

Therefore, it can be seen that the truncated weight function for the smoothed 

response is the product of that for the ideal filter and a sin /X X  term denoted by sigma 

and called the sigma factor by Lanczos. 

 

2.4 Testing of Significance  

 A statistically significant t-test result is one in which a difference between two 

groups is unlikely to have occurred because the sample happened to be atypical. Statistical 

significance is determined by the sizes of the differences between the group averages, the 

sample size, and the standard deviations of the groups. For practical purposes statistical 

significance suggests that two larger populations from which we sample are actually 

different. William Sealy Gosset introduced the t-statistic in 1908. The t-test is any 

statistical hypothesis test in which the test statistic follows a Student’s t distribution if the 

null hypothesis is supported. It can be used to determine if two sets of data are significantly 

different from each other, and is most commonly applied when the test statistic would 

follow a normal distribution if the value of a scaling term in the test statistic were known. 

When the scaling term is unknown and is replaced by an estimate based on the data, the 

test statistic follows a Student’s t distribution (Siegel, 1956). 
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 Most t-test statistics have the form Zt
s

= , where Z and s are functions of the data. 

Typically, Z is designed to be sensitive to the alternative hypothesis. s is a scaling 

parameter that allows the distribution of t to be determined.  

 As an example, in the one-sample t-test,  

 

     
( )

Xt
nσ

=           (2.27) 

 

where X  is the sample mean of the data, n is the sample size, and σ  is the population 

standard deviation of the data, s is the sample standard deviation. 

The assumptions underlying a t-test are that: 

• Z follows a standard normal distribution under the null hypothesis, 

• s2 follows a 2χ distribution with p degrees of freedom under the null hypothesis, 

where p is a positive constant. 

• Z and s are independent. 

In a specific type of t-test, these conditions are consequences of the population 

being studied, and of the way in which the data are sampled. For example, in the t-test 

comparing the means of two independent samples, the following assumptions should be 

met: 

• Each of the two populations being compared should follow a normal distribution. 

This can be tested using a normality test, such as the Shapiro-Wilk or Kolmogorov-

Smirnov test, or it can be assessed graphically using a normal quantile plot. 

• If using Student’s original definition of the t-test, the two populations being 

compared should have the same variance (testable using F-test, Levene’s test, 

Bartlett’s test, or the Brown-Forsythe test; or assessable graphically using a Q-Q 

plot). If the sample sizes in the two groups being compared are equal, Studeny’s 

original t-test is highly robust to the presence of unequal variances (Markowski and 

Markoski, 1990).  

• The data used to carry out the test should be sampled independently from the two 

populations being compared. This is generally not testable from the data, but if the 
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data are known to be dependently sampled, then the classical t-test discussed here 

may give misleading results. 

Independent samples t-test is used when two separate sets of independent and 

identically distributed samples are obtained, one from each of two populations being 

compared. Explicit expressions that can be used to carry out various t-test are given below. 

In each case, the formula for a test statistic that either exactly follows or closely 

approximates a t-distribution under the null hypothesis is given. Also, the appropriate 

degrees of freedom are given in each case. Each of these statistics can be used to carry out 

either a one-tailed test or a two-tailed test. Once a t value is determined, a p-value can be 

found using a table of values from Student’s t-distribution. If the calculated p-value is 

below the threshold chosen for statistical significance (usually the 0.10, 0.05, or 0.01 

level), then the null hypothesis is rejected in favor of the alternative hypothesis (Elliott and 

Woodward, 2007). 

2.4.1 One-sample t-test 

 In testing the null hypothesis that the population mean is equal to a specified value, 

one uses the statistic as follows: 

 

     0xt
s n

µ−
=           (2.28) 

 

where x  is the sample mean, s is the sample standard deviation of the sample and n is the 

sample size. The degrees of freedom used in this test are n-1. Although the parent 

population does not need to be normally distributed, the distribution of the population of 

sample means, x  is assumed to be normal. By the central limit theorem, if the sampling of 

the parent population is random, then the sample means will be approximately normal, The 

degree of approximation will depend on how close the parent population is to a normal 

distribution and the sample size, n. 
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2.4.2 Two-sample test 

      2.4.2.1 Equal sample size, equal variance 

 This test is only used when two sample sizes (that is the number, n, of participants 

of each group) are equal and it can be assumed that two distributions have the same 

variance. The t statistic to test whether the means are different can be calculated as follows: 

 

     

1 2

1 2

2
x x

x xt
S

n

−
=



         (2.29) 

 

where  
1 2 1 2

2 21 ( )
2x x x xS S S= +  . 

 

Here 
1 2x xS is the grand standard deviation (1=group one and 2=group two). 

1

2
xS  and 

2

2
xS  are the unbiased estimators of the variances of the two samples. The denominator of it 

is the standard error of the difference between two means. For significance testing, the 

degrees of freedom for this test is 2 2n − , where n is the number of participants in each 

group.  

      2.4.2.2 Unequal sample sizes, equal variance 

 This test is used only when it can be assumed that the two distributions have the 

same variance. The t statistic to test whether the means are different can be calculated as 

follows: 

 

     

1 2

1 2

1 2

1 1
x x

x xt
S

n n

−
=

+

        (2.30) 

 

where  1 2

1 2

2 2
1 2

1 2

( 1) ( 1)
2

x x
x x

n S n S
S

n n
− + −

=
+ −

 .  

 

 Here 
1 2x xS  is an estimator of the common standard deviation of the two samples. It 

is defined in this way so that its square is an unbiased estimator of the common variance 
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whether or not the population means are the same. In these formulate, n is the number of 

participants (1=group one and 2=group two). 1n −  is the number of degrees of freedom for 

either group, and the total sample size minus two (that is 1 2 2n n+ − ) is the total number of 

degrees of freedom, which is used in significance testing. 

 

      2.4.2.3 Equal or Unequal sample sizes, unequal variances 

 This test, also known as Welch’s t-test, is used only when the two population 

variances are not assumed to be equal and hence must be estimated separately. The t-

statistic to test whether the population means are different is calculated as follows: 

 

     
1 2

1 2

x x

x xt
S −

−
=          (2.31) 

where 
1 2

2 2
1 2

1 2
x x

S SS
n n− = +  . 

 Here 2S  is the unbiased estimator of the variance of the two samples, n is the 

number of participants (1=group one and 2=group two). For use in significance testing, the 

distribution of the test statistic is approximated as an ordinary Student’s t distribution with 

the degrees of freedom calculated using 
2 2 2

1 1 2 2
2 2 2 2

1 1 1 2 2 2

( ). .
( ) ( 1) ( ) ( 1)

S n S nd f
S n n S n n

+
=

− + −
 . This 

is known as the Welch-Satterthwaite Equation. The true distribution of the test statistic 

actually depends on the two unknown population variances.  

 

2.5 El Niño-Southern Oscillation 

The term ‘El Niño’ is related to the weak warm ocean current that flows along the 

coast of Peru and Ecuador about Christmas-time, and associated with the unusually large 

warm pool in the Pacific Ocean that has linkages with anomalous global climate patterns 

(Niño means the boy in Spanish). The term El Niño has been tied with the southern 

oscillation event to be the El Niño-Southern Oscillation (ENSO) which is the interannual 

interaction of ocean-atmosphere in the tropical Pacific. The reverse event, the cooling of 

the eastern Pacific waters, was at first called Anti-El Niño, until it was realized that this 

literally meant the Anti-Christ. To avoid this unfortunate connotation, it was renamed La 

Niña which means the girl in Spanish (Trenberth, 1997).  

http://en.wikipedia.org/wiki/La_Ni%C3%B1a
http://en.wikipedia.org/wiki/La_Ni%C3%B1a
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The ENSO is the result of a cyclic warming and cooling of the surface ocean of the 

central and eastern Pacific. This region of the ocean is normally colder than it is as the 

equatorial location would suggest, mainly due to the influence of northeasterly trade wind, 

a cold ocean current flowing up the coast of Chile, and to the upwelling of cold deep water 

off the coast of Peru. At times, the influence of these cold water sources wane, causing the 

surface of the eastern and central Pacific to warm up under the tropical sun that is El Niño 

event. This results in heavy rainfall in South America, but severe droughts in eastern 

Australia. The more intense the El Niño, the more intense and extensive the Australian 

droughts. At other times, the injection of cold water becomes more intense than usual, 

causing the surface of the eastern Pacific to cool that is La Niña event. This results in 

droughts in South America and heavy rainfall, even floods, in eastern Australia. The timing 

of the cycle is irregular spanning anywhere from 2 years to over 7 years (Rasmusson and 

Carpenter, 1982; Chang et al., 2000). 

The mechanism of El Niño is that the trade winds are weak along the equator, and 

atmospheric pressure increases in the western Pacific, whereas atmospheric pressure 

decreases in the eastern Pacific, which is related to anomalous warming of SST in the 

central and eastern Pacific Ocean with warm water in the western Pacific Ocean moving 

eastward and the resulting upwelling is decreased. Whereas, La Niña shows anomalous 

cooling of SST in the central and eastern Pacific Ocean with opposite characteristic to El 

Niño as shown in Figure 2.2a and Figure 2.2b respectively (McPhaden, 2006; Ashok, 

2009). 
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(a) 

 
 

(b) 

 
 

Figure 2.2: Schematic of (a) El Niño and (b) La Niña events (Ashok, 2009). 
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The temporal variation signals and spatial patterns of ENSO can be captured by the 

leading mode from the analysis of tropical SST anomalies in the Pacific Ocean (Diaz, 

2001; Li, 2010). Singular value decomposition analysis can also detect ENSO (Trenberth, 

2001). Therefore, an index used to characterize El Niño activity would strongly correlate to 

the time series representing the event given by the analysis as much as possible (Li, 2010). 

There are many indices using to indicate the ENSO events. Trenberth (2001) suggested the 

well known indices derived from SST behavior such as Niño 1+2, Niño 3, Niño 4, and 

Niño 3.4, that represent the SST anomalies averages over corresponding areas, as shown in 

Figure 2.3. Among Niño indices, the Niño 3.4 describe well on the variability of the 

leading mode given by the singular value decomposition analysis (Trenberth, 2001), 

whereas Niño 3 and Niño 3.4 show strong correlation (greater than 0.9) with the leading 

mode given by the EOF analysis (Li, 2010). 

 

 
Figure 2.3: Area used for Niño indices.  

(Source: https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php) 

 

2.6 Indian Ocean Dipole   

The name of the Indian Ocean Dipole or IOD was coined by Prof. Yamagata, Dr. 

Saji and other researchers of the Climate Variations Research Program (CVRP) of Frontier 

Research Center for Global Change (FRCGC) to represent the zonal dipole structure of the 

various coupled ocean-atmosphere parameters, such as SST, Outgoing Longwave 

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php
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Radiation (OLR) and Sea Surface Height (SSH) anomalies. It is similar to ENSO, the 

change in temperature gradients across the Indian Ocean results in changes in the preferred 

regions of rising and descending moisture and air (Behera et al., 1999). Saji et al. (1999) 

studied the internal modes of variability of the Indian Ocean using EOF analysis on SSTA 

in the tropical Indian Ocean basin. It found that the first mode is monopole, known as an 

Indian Ocean Basin (IOB) mode which accounted for 30% of the total variance and had a 

high correlation with the Niño 3 index. The dipole is apparent for the second mode which 

accounted for 12% of the total variance. So, this pattern is called the IOD. Furthermore, 

many researches studied some relation between IOD and ENSO events but the conclusion 

is still controversial. Some studies found that 30% of IOD event occurred with ENSO (Rao 

at al., 2002; Yamagata et al., 2004). Some studies have found that the IOD event is an 

individual event that is unrelated with ENSO (Hastenrath, 2002; Baquero-Bernal et al., 

2002; Dommenget and Latif, 2002; Ashok et al., 2003; Tozuka et al., 2006; Behera et al., 

2006).    

It is normally characterized by negative SST anomalies in the southeastern 

equatorial Indian Ocean (10°S-0°S, 90°E-110°E) and positive SST in the western 

equatorial Indian Ocean (10°S-10°N, 50°E-70°E). These conditions are indicated by the 

Dipole Mode Index (DMI) (Saji et al., 1999; Behera et al., 2006). A positive phase of IOD 

is characterised by cooler than normal water in the tropical eastern Indian Ocean and 

warmer than normal water in the tropical western Indian Ocean as shown in Figure 2.4a. 

Conversely, a negative phase of IOD is characterised by warmer than normal water in the 

tropical eastern Indian Ocean and cooler than normal water in the tropical western Indian 

Ocean as shown in Figure 2.4b which SST anomalies are shaded (red color is for warm 

anomalies and blue is for cold), white patches indicate increased convective activities and 

arrows indicate anomalous wind directions during IOD events. The direct impact of IOD 

events is rainfall variability in the tropical countries which are located around the Indian 

Ocean including eastern of Africa, South of Asia and the northern of Indochina peninsula 

(Ashok et al., 2001). 
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Figure 2.4: Schematic of (a) positive and (b) negative IOD events 

(Source: http://www.jamstec.go.jp/frcgc/research/d1/iod/e/iod/about_iod.html). 



CHAPTER 3 

ANALYSIS OF RAINFALL VARIABILITY OVER THAILAND 

 
In this study, the rainfall data was selected and the quality of rainfall data was 

controlled before analysis the variability by using the Empirical Orthogonal Function 

(EOF) method.  

3.1 Data and Quality Control 

The monthly gridded rainfall of the Global Precipitation Climatology Centre 

(GPCC) data was set with 0.5°×0.5° horizontal resolution (Schneider et al., 2011a) for the 

period of 1971 to 2010. The rainfall data were extracted for Thailand (5.5°N - 21°N, 

97.5°E - 106°E) to analyze the dominant spatio-temporal modes by the EOF method. 

  3.1.1 GPCC Data 

GPCC was established at Deutcher Wetterdienst (DWD, German Weather Service) 

in 1989 by invitation from the World Meteorology Organization (WMO) as a German 

contribution to the World Climate Research Programme (WCRP). It is the global analysis 

of monthly precipitation for the earth’s land surface based on in situ rain gauge data. Since 

its start, the centre is the in situ component of the WCRP Global Precipitation Climatology 

Project (GPCP) (WMO, 1990). In 1994, the long-term operation of the GPCC has been 

requested by WMO in order to contribute to the climate monitoring activities of the Global 

Climate Observing System (GCOS). Since 1999, GPCC is one of the two global GCOS 

Surface Network Monitoring Centers (GSNMC) with special emphasis on precipitation. In 

mid December 2006, GPCC started its newest function as the WMO Commission for Basic 

Systems (CBS) Lead Center for GCOS data for Europe. The aim of GPCC is to serve user 

requirements regarding accuracy of the gridded precipitation analyses and timeliness of the 

product availability. The WCRP Global Energy and Water Experiment (GEWEX) for 

instance requests high spatial resolution and accuracy for the last two decades, while the 

priority of GCOS and IPCC is focused on long-term homogeneous time-series. Timeliness 

of products is ensured by cut-off dates for data processing and analysis. All GPCC analysis 

products result from the same quasi-operational data management and analysis system. 

However, depending on the required timeliness they differ with regard to the number of 

stations included and the level of data quality control being performed.  
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GPCC’s database contains precipitation data on a mainly monthly basis from a 

variety of sources. The data distributed by the national meteorological and/or hydrological 

services  (NMHSs) via the WMO Global Telecommunication System (GTS) to fulfil the 

needs of near real-time weather analysis and prediction and climate monitoring are 

available near real-time such as synoptic weather reports (SYNOP), from which monthly 

precipitation totals can be accumulated (Schneider et al, 1992) and monthly climate reports 

(CLIMAT). In addition to the GTS data, GPCC has required precipitation data from 

NMHSs from 190 countries which the spatial distribution of stations is shown as Figure 

3.1 that meanwhile form the backbone of its data base but become available only with a 

larger delay (non real-time data). The near real-time products of the GPCC based on the 

GTS data are the First Guess Product (Ziese et al., 2011) which is based on synoptic 

weather reports received at DWD interpolated precipitation anomalies from more than 

6,000 stations whereby an automatic-only QC is applied, and the Monitoring Product 

Schneider et al., 2011a) which is based on SYNOP and monthly CLIMAT reports received 

via GTS from 7,000-8,000 stations (after automatic and manual quality control). The non 

real-time products is Full Data Reanalysis which is based on all stations in GPCC data base 

supplying data for the individual month, near real-time, and non real-time. The full Data 

Reanalysis Product Version 6 covering the period from 1901 to 2010. The grid resolutions 

are 0.5°×0.5°, 1.0°×1.0° and 2.5°×2.5° geographical longitude by latitude (Schneider et al., 

2011a, b, c). The data coverage per month varies from 10,800 stations at the beginning to 

more than 47,000 stations in 1986/1987 this jump is almost leveled, and the 

aforementioned increase during the past decade also gives an indication of how long it 

takes for worldwide collected rain gauge data to arrive at GPCC and to pass the rigorous 

QC before entering the GPCC data base, which is causing the decrease to 37,500 stations 

in 2000 and less thereafter as shown in Figure 3.2. It is being updated at irregular times 

subsequent to significant database enlargements and improvements.    
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Figure 3.1: Spatial distribution of stations with normal climatology precipitation 

(Schneider et al., 2013) 

 

 
Figure 3.2: Total number of stations used for the GPCC products (near real-time First-

Guess Product FG, Monitoring Product; non-real-time Full Data Reanalysis Product 

(Versions 3 to 6)) (Schneider et al., 2013) 
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 3.1.2 Quality Control 

The gridded products are generated by an operational analysis system with 

components for (a) integration of data from different sources, (b) quality-control, and (c) 

calculation of area-averaged precipitation on the grid cells.   

The processing of observational precipitation data sets at the GPCC indicates that 

almost any larger input data set contains more or less all kinds of errors in the row station 

data. Raw data itself, as well as station meta information, can be affected by typing or 

coding errors and other modifications occurring on the way from the measurement at the 

station to the data archive. Therefore, a through quality control (QC) is necessary to detect 

and correct/eliminate such errors which otherwise would have a significant impact on the 

analysis results. 

Toward the large variability of precipitation and the skewness of its frequency 

distribution, a fully automatic quality control would eliminate all data being classified as 

outliers including real extremes. However, these are very important to describe the 

variability of precipitation. 

Therefore, QC processing at GPCC is semi-automatic in the way that the data 

classified as questionable by the automatic QC procedures undergo additional visual 

checks. The QC system of successive automatic and visual checks has been optimized with 

respect to the features of the different data sources and the specific meta information being 

available. Figure 3.3 shows a simplified scheme for the main steps of processing, quality 

control, archival, and analysis of precipitation data at the GPCC and distribution of its 

gridded precipitation products for the near real-time as well as non-real-time data. 

      3.1.2.1. Station identification and quality control of station meta 

information 

The data sets received at GPCC are first checked for readability and then 

reformatted as given in Figure 3.3. To avoid a spatial misallocation of climatic data in the 

analysis, for the national/regional data sets supplied to the GPCC, the station locations are 

displayed by a climate data visualization software, and it is checked if all stations are 

located within the boundaries of the country. For stations located outside of the boundary, 

the geographical coordinates are checked with geographical information available via the 

Internet through geographical atlases or regional maps. 
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Subsequently, the uniform information data sets are loaded into GPCC’s relational 

data base management system, whereby the station meta data received from the different 

sources are checked against the meta-information archived in GPCC’s data bank. If the 

station meta information in the data set is identical with that of a station in the data base, 

the data are assigned to the station. If no similar station is existing in the data base, a new 

station is created therein. In case of discrepancies in station meta information between data 

set and GPCC's data base, the data supplier is contacted, if possible in a timely manner. 

Otherwise, the geographical coordinates of the station are checked with other sources of 

geographical information such as Google-Earth, geographical atlases, or regional maps. 

This rechecking of geographical  information during each loading process is resulting in a 

continuous improvement of GPCC’s station data base and has led to a very high degree of 

reliability of its station meta information.  

Observed discrepancies can be attributed in part to different spellings of station 

names, errors in the geographical coordinates or elevations. With regard to the 

geographical coordinates, typical errors on the order of sometimes 1°, 2°, or even up to 10° 

latitude or longitude are detected in many of the input data sets. In the elevator 

information, there are sometimes errors in the conversion of meters and feet, zero instead 

of missing elevator.  
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Figure 3.3: Simplified scheme for the main steps of processing, quality control, archival, 

and analysis of precipitation data at the GPCC and distribution of the gridded precipitation 

products 

 

      3.1.2.2. Quality control of the monthly precipitation data 

In order to avoid mismatched or overall erroneous data sets into the data bank, all 

national and GTS precipitation data sets have already been pre-controlled separately using 

different techniques fitting the respective data sources as shown in Figure 3.3. Storing the 

data from the different data sources in parallel in the data bank together with the quality 

flags indicating the results of data processing is helpful in the QC processing and enables 

detection of errors by cross-checks of the data from the different sources. 

In addition to the previously described QC for GPCC’s Monitoring Products, the 

full data base has repeatedly been checked statistically for outliers over the last years for 
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each new release of the gridded precipitation climatology and the Full Data Reanalysis. 

The statistical check of outliers: The course of the repeated QC processing for the releases 

V.4, V.5 and V.6 of the Full Data Reanalysis, the time series of overall about 10,000 

stations had been checked visually since for each case of a station with suspicious data, 

generally two to four and sometimes even more neighbouring stations have been checked 

foe spatial consistency that can confirm as correct. The missing values which instead of 

“0” are the one of the biggest problems with the raw data. In the QC processing, they 

performed a systematic check for erroneous “0” values that revealed and eliminated 

automatically, after through pre-checks for data subsets. In the case of corrections, the 

original data are kept in GPCC’s data base and the corrections are archived additionally as 

a higher quality level.  

  Visual check of spatial consistency in the following steps: 

• Misplaced stations caused by erroneous geographical information 

• Individual errors causing an erroneous climatological normal or 

maximum/ minimum 

• Quasi-systematic errors such as conversion of units inch, feet, 

millimeters 

• In some specific cases, data for some months/years have been found to be 

shifted by 1, 2, or more months, or even a whole year in some cases. 

 Check of temporal homogeneity: tested by applying a moving t-test which checks 

the homogeneity over time and allows deeper analysis of the data set in this regard, 

revealing significant inhomogeneities ( 6t ≥ ) in some regions. On the basis with the QC of 

the station data from the different sources and statistical evaluation, the GPCC has set up a 

priority scheme according to which data are being selected for its analysis. 

 Since the GPCC data is through the process of testing and checking the quality of 

data, then, this chapter checked the missing values on the gridded points. Quality Control 

(QC) was undertaken  prior to the data analysis. The QC procedure for data is checking the 

missing values of the yearly data which are 40 years. The daily rainfall data is from GPCC 

data over Thailand  (5.5°N - 21°N, 97.5°E - 106°E) with resolution of 0.5°×0.5° latitude 

and longitude for the period from 1971 to 2010. The results of checking missing values of 

data still contain a few missing values as Figure 3.4.  
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Figure 3.4: Checking the missing values of the GPCC data 

 

3.2 Climatology Data 

This study applied the monthly rainfall data of the full data reanalysis product 

version 6 from The Global Precipitation Climatology Centre (GPCC), in a horizontal 

resolution of 0.5 0.5°× °  latitude and longitude, for 1971 to 2010 (Schneider et al., 2011). 

The climatology is the long-term average of rainfall data over Thailand (5.5°N - 21°N, 

97.5°E - 106°E) as shown in Figure 3.5.  
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Figure 3.5: The climatology of rainfall data from GPCC data during 1971 to 2010 

 

The average of total monthly rainfall data (January to December) from GPCC data  

over Thailand for the period  from 1971 to 2010 as shown in Figure 3.6.  
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Figure 3.6: The averaged of total monthly rainfall from GPCC data during 1971 to 2010 
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After having studied the annual variation of rainfall over Thailand between of 

GPCC data averaged from 1971 to 2010, it was found that in January to April had less 

rainfall. Since May is start of the rainy season, there is high rainfall until October. 

November is the start of the dry winter season, so there is low rainfall, as shown in Figure 

3.7. 

 

 

Figure 3.7: The annual variation of rainfall over Thailand 

 

3.3 Rainfall Variability over Thailand 

This section discusses the variability rainfall data and analysis of the spatial and 

temporal pattern by EOF. The EOF analysis is based on a linear transformation to extract 

information from the large data sets by decomposing to the orthogonal basis function while 

retaining as much as possible of the variations present in the data sets. 

 The GPCC data was analyzed by the EOF method for explaining the variance of 

rainfall over Thailand during the period  of 1971 to 2010. Figure 3.8 shows the 

proportional percentage of the variability of rainfall data. The first mode represented the 

variability of the rainfall data over Thailand about 21.6% of the total variance as shown in 

Figure 3.9. The second mode represented the variability of the rainfall over Thailand about 

9.1% of the total variance as shown in Figure 3.8.  
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Figure 3.8: The proportional to the variability of each EOF mode of GPCC data 

 

The result analysis of the eigenvectors and principal component time series in the 

first mode show that the relation or the variance of the eigenvectors is positive over most 

of Thailand as shown in Figure 3.9(a). Figure 3.9(b) shows the values of the standardized 

principal component time series of this mode. Since the values in the spatial pattern are 

strongly positive over most of Thailand, it follows that when the principal component (PC) 

in the time series is positive most of Thailand has higher than normal rainfall rainfall, and 

when the PC is negative most of Thailand has lower than normal rainfall. An exception to 

this result occurs in southern Thailand at latitudes below 9°N where the spatial pattern of 

the most dominant mode is only weakly positive.   

When studying the relation between the eigenvector and the principal components, 

it was found that there was high rainfall (standardized PC greater than 2.0) in June 1975, 

August 1978, October 1983, June 1985, July 1994, September 1996, July 1997, April 

1999, May 2001, July 2006 and October 2010. On the contrary, there was low rainfall 

(standardized PC less than −2.0) in September 1971, September 1974, August 1976, June 

1977, October 1979, July 1983, July 1984, May 1987, August 1988, May 1992, October 

1994, July 1998, August 1998 and October 2004 (see small circles in Figure 3.9(b)). 

The result analysis of the eigenvectors and the principal component time series in 

the second mode shows that the relation or the variance of the eigenvectors is positive over 

the centre, eastern and southern regions of Thailand but it is negative over the northern and 

0

5

10

15

20

25

0 5 10 15 20

Pr
op

or
tio

na
l o

f V
ar

ie
nc

e 
(%

)

Mode

Scree Plot



36 
 

northeastern regions, as shown in Figure 3.10(a). Figure 3.10(b) shows the values of the 

standardized principal component time series, which have positive and negative values. 

 

Figure 3.9: The EOF results of (a) the eigenvector and (b) the principal component time 

series of the first mode of GPCC data over Thailand over 1971 to 2010. 

 

Figure 3.10: The EOF results of (a) the eigenvector and (b) the principal component time 

series of the second mode of GPCC data over Thailand from 1971 to 2010. 

 

(b) (a) 

(a) (b) 
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To ensure the rainfall analysis by using the EOF method, Figure 3.11(a) shows 

there is positive composite of rainfall over Thailand, and Figure 3.11(b) shows negative 

composite of rainfall over Thailand. It was found that there was greater than average 

rainfall almost everywhere in figure 3.11(a) and less than average rainfall almost 

everywhere in figure 3.11(b). Figure 3.11(c) shows the difference between the positive and 

negative composite of the rainfall over Thailand, with the contour interval 20 mm. The 

shaded region, covering most of the study area shows where the difference is significant at 

the 95% confidence level by Student’s t-test. 

 

Figure 3.11: The composite of rainfall anomalies over Thailand between (a) positive values 

and (b) negative values of the first EOF mode, and (c) difference value from 1971 to 2010. 

The contour interval is 20 mm and the shading shows where the difference is significant at 

the 95% level as determined by Student’s t test. 

(a) (b) (c) 



 

 

CHAPTER 4 

RELATIONSHIP AND ASSOCIATION BETWEEN RAINFALL 

VARIABILITY AND CLIMATE MODES 
 

Teleconnection is a natural phenomenon that occurs repeatedly in a period and has 

stability of the variance in several periods, which may be from one day to many centuries. 

The main causes are from the interaction and dynamics of the climate system. The 

teleconnection is a phenomenon on the planetary-scale which has the variability and 

impact across the oceans and continents. The format and style of teleconnection reflect the 

change in the large area of the circulation of atmosphere which influences for temperature, 

rainfall, frequenty and strength of storms (Wang et al, 2000; Diaz et al, 2001).  

 

4.1 Teleconnection to ENSO 

There has been much research analysis of the atmospheric responses to ENSO 

(Feng et al., 2010; Hoerling & Kumar, 2002; Wu et al., 2008). Teleconnections between 

the tropical Pacific and the remainder of the globe have been found in numerous 

observational analyses (Bjerknes, 1969; Mistra, 2004). While the rainfall variability over 

Thailand may be linked to global climate, it is important to understand the variations. 

Because Thailand lies between the equatorial Indo-Pacific basins, the rainfall variability 

over Thailand is linked to ENSO. This section reports our study of this relationship. 

4.1.1 Relationship between Rainfall Variability over Thailand and ENSO 

The ENSO event illustrated Sea Surface Temperature (SST) variability in the 

equatorial Pacific Ocean. There are many indices used to indicate the ENSO events. 

Trenberth (2001) suggested the well known indices derived from SST behavior such as 

Niño 1+2 (0°-10°S, 90°W-80°W), Niño 3 (5°N-5°S, 150°W-90°W), Niño 4 (5°N-5°S, 

160°E-150°W), and Niño 3.4 (5°N-5°S, 170°W-120°W), that represent the SST anomalies 

averages over corresponding areas as shown in Figure 4.1. Among Niño indices, the Niño 

3.4 describe well on the variability of the leading mode given by the singular value 

decomposition analysis (Trenberth, 2001). The El Niño event occurs when SST anomalies 

exceed 0.4°C and the La Nina event occurs when SST anomalies below -0.4°C (Trenberth, 

1997). It used normalized monthly rainfall anomalies (the anomalous monthly rainfall 

divided by the corresponding monthly standard deviations).  
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Figure 4.1: Niño 3.4 regions (5°N - 5°S, 170°W - 120°W) 

(https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php) 

 

This research studied the correlation between Nino 3.4 SST index and the principal 

component of rainfall variability over Thailand. Figure 4.2 shows the time series plots of 

these quantities. The correlation coefficient between them is -0.109876. It is negative, 

because a high SST anomaly gives a low rainfall anomaly, and a low SST anomaly gives a 

high rainfall anomaly. However, they are rarely independent. To study the autocorrelation 

analysis as shown in Table 4.1, the adjustment of sample size (Neff) is 474. It found that the 

sample size decreased, then the correlation between Niño 3.4 Index and principal 

component increased. 

Trenberth (1997) studied El Niño events during the 5-month running means of sea 

surface temperature anomalies in the Niño 3.4 region. Then, it used normalized monthly 

rainfall anomalies (the anomalous monthly rainfall divided by the corresponding monthly 

standard deviations) with the low-pass filter (Duchon, 1979).  

 

 

 

 

 

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php
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Figure 4.2: Time series plots of Niño region 3.4 SST index (solid line) and principal 

component of the first mode (dash line). 

 

Table 4.1: The Autocorrelation of Niño 3.4 SST Index and the principal component. 

 

Lag time Niño 3.4 Index Principal component 

0 1.000000000 1.000000000 

1 0.955358600 -0.027282480 

2 0.868833700 0.092103740 

3 0.765195900 -0.087159510 

4 0.649258600 -0.011118800 

5 0.526664000 0.047957360 

6 0.403817500 -0.005514535 

7 0.284384200 0.023777000 

8 0.174237000 0.015913700 

9 0.077395130 -0.101142400 

10 -0.001963018 0.048489760 

11 -0.063067830 -0.110442100 

 

Figure 4.3 shows the correlation of the smoothed anomalies between Niño 3.4 SST 

index (blue line) and the principal component (red line) is -0.1651. It is a negative 

relationship because Niño 3.4 index indicates the Sea Surface Temperature (SST) 

anomalies and the principal component indicates the rainfall anomalies. Then, the high 

SST has low rainfall whereas the low SST has high rainfall. However, they are rarely 

independent. To study the autocorrelation analysis as shown in Table 4.2, the adjustment of 
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sample size (Neff) is 241. It was found that the sample size decreased, then the correlation 

between Niño 3.4 Index and principal component increased. 

 

 
Figure 4.3: Time series plots of smoothed anomalies with the low-pass filter of Niño 

region 3.4 SST index (blue line) and principal component (red line), using the 5-term filter. 

 

Table 4.2: The Autocorrelation of smoothed anomalies of Niño 3.4 SST Index and the 

principal component. 

 

Lag time Niño 3.4 Index Principal component 

0 1.000000000 1.000000000 

1 0.971341900 0.787497500 

2 0.894113000 0.330450200 

3 0.786233400 -0.028466160 

4 0.664772800 -0.119975800 

5 0.539792900 -0.037906420 

6 0.415972800 0.040788610 

7 0.296881500 0.034320560 

8 0.186797900 -0.028470230 

9 0.089961910 -0.083024840 

10 0.009384785 -0.089387330 

11 -0.053768870 -0.053040520 
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The correlation of the lag time of smoothed anomalies between rainfall anomalies 

and Niño 3.4 SST index is shown in Table 4.3. The zero value of lag time represented the 

rainfall anomalies at Niño 3.4 SST index. The positive value of lag time represented Niño 

3.4 SST index leads the rainfall anomalies by the number of months. Example from Table 

4.3, lag 4 is the highest correlation about -0.3106 which means Niño 3.4 SST index leads 

the rainfall anomalies by 4 months. 

 

Table 4.3: The correlation of lag time between Niño 3.4 SST index and the rainfall 

anomalies. 

 

Lag time                                      Correlation 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

-0.1651 

-0.2037 

-0.2436 

-0.2843 

-0.3106 

-0.3060 

-0.2679 

-0.2102 

-0.1535 

-0.1126 

-0.0888 

-0.0714 

-0.0474 

 

In this study, an index based on the area averaged SST anomaly in the Niño 3.4 

region is employed and refers to it as the Niño 3.4 index as shown  in Figure 4.4 

(Trenberth, 1997). It is characterized by the warming (El Niño) and cooling (La Niña) sea 

surface temperature (SST) anomalies in the eastern and central equatorial Pacific 

(Rasmusson, 1982; Chang et al., 2000).  
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Figure 4.4: Niño 3.4 SST anomaly index for the period 1971-2010. 

 

The Nino 3.4 index can classify ENSO events into the weak and strong intensity, the 

weak ENSO refers to the Niño 3.4 index larger than or equal to 1.0°C to 1.5°C, and the 

strong ENSO refers to the Niño 3.4 index larger than or equal to 1.5°C (Bulic and 

Brankovic, 2007). Then, our analysis is based on composites of fourteen weak La Niña 

events, six strong La Niña events, twelve weak El Niño events and six strong El Niño 

events as shown in Table 4.4.  

 

Table 4.4: Years in the period 1971-2010 in the SST categories extending from 

strong cold (La Niña) to strong warm (El Niño) of ENSO events. 

 

SST category                No. of year         Years 

Strong La Niña               6                         1973, 1975, 1988, 1999, 2000, 2008 

Weak La Niña                11                       1971, 1974, 1975, 1976, 1983, 1984, 1988,1989, 

                                                                   1998, 2007, 2010 

Weak El Niña                 8                         1983, 1991, 1994, 1997, 1998, 2002, 2006, 2010 

Strong El Niño               6                         1972, 1982, 1987, 1992, 1997, 2009 
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The composite averages of rainfall anomalies over Thailand for weak-ENSO 

periods, strong-ENSO periods and their differences are presented in Figure 4.5. There was 

high rainfall in the cold phase (La Nina) (Limsakul et al., 2007) especially in the southern 

part of Thailand during the weak and strong periods, as shown in Figures 4.5(a) and 4.5(b). 

There was low rainfall in the warm phase (El Nino) (Limsakul et al., 2007) especially in 

the southern part of Thailand during the weak and strong periods, as shown in Figures 

4.5(c) and 4.5(d). The differences between the La Nina and El Nino rainfall anomalies 

during the weak and strong periods are shown in figures 4.5(e) and 4.5(f). These 

differences were higher during the weak-ENSO periods than during the strong-ENSO 

periods. 
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Figure 4.5: The monthly composite of the rainfall anomalies over Thailand for El Niño 

event and La Nina event and their differences during the weak-ENSO period (a, c and e, 
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respectively) and the strong-ENSO period (b, d and f, respectively) over the period from 

1971 to 2010. The shaded interval is 5 mm and the contour interval indicates 95% 

significance level determined by Student’s t test. 

 

4.1.2 The mechanisms associated with ENSO 

To understand the relationship between rainfall and ENSO, corresponding 

composite wind circulation and the sea level pressure maps are constructed. Figure 4.6 

shows the composite maps of the differences between the La Nina and El Nino wind 

anomalies at the 850 hPa level and the differences between the La Nina and El Nino sea 

level pressure anomalies for the weak and strong ENSO periods. The region to the west of 

the Pacific Ocean, including Thailand, Burma, India, Laos, Cambodia, Vietnam and the 

southern part of China had  negative differences between the La Nina and El Nino sea level 

pressure anomalies in both the weak and strong ENSO periods. This indicates lower 

pressures in Southeast Asia during the La Nina events than during the El Nino events. 

These figures also show that the northern Pacific high has a positive anomaly difference, 

so the high is intensified during the La Nina events and weakened during the El Nino 

events. The wind from the east into Southeast Asia (Wang et al., 2000, Juneng and 

Tangang, 2005) is then strengthened during the La Nina and weakened during the El Nino 

events, as shown by the wind anomaly differences in Figure 4.6. The interaction of these 

easterly winds from the Pacific with the south-westerly flow from the Indian Ocean then 

produce stronger than normal convergence and rainfall in Southeast Asia during the La 

Nina events, and reduced rainfall during the El Nino events. Kumar et al. (1999) identified 

the southeastward shift in Walker circulation anomalies which is similar to these patterns. 

The ENSO-related SST shifts and the associated shifts in Walker circulation and 

correlations between Thailand rainfall and Walker circulation all appear to be consistent 

(Singharattana et al., 2005). Clearly, these shifts will have implications to rainfall 

variability in terms of their relationship to ENSO. 
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Figure 4.6: Composite maps of the differences between the La Nina and El Nino wind 

anomalies at the 850 hPa level and the sea level pressure anomalies for the (a) weak-ENSO 

periods and (b) strong-ENSO periods from 1971 to 2010. The contour interval for the sea 

level pressure differences is 2 hPa. Continuous contours are zero and positive; dashed 

contours are negative. The shaded region shows where the sea level pressure anomaly 

differences are significant at the 95% confidence level by the Student’s t-test.    

 

4.2 Teleconnection to IOD 

There are many studied that analyze the atmospheric responses to IOD (Saji et al, 

1999; Webster et al., 1999). The direct impact of IOD events is rainfall variability in the 

tropical countries which are located around the Indian Ocean including eastern of Africa, 

South of Asia and the northern of Indochina peninsula (Ashok et al., 2001). While the 

rainfall variability over Thailand may be linked to global climate, it is important to 

understand the variations. Then, this research studied the relationship with IOD because 

Thailand is close to the equatorial Indo-Pacific basins. 

Relationship between Rainfall Variability over Thailand and IOD 

IOD events can be detected using the Dipole Mode Index (DMI), which is defined 

as the difference in SST anomalies between the tropical western Indian Ocean (10°S-10°N, 

50°E-70°E) and eastern Indian Ocean (10°S-0°S, 90°E-110°E) as shown in Figure 4.7. It 

has been normalized by standard deviations (0.3°C) (Saji et al., 1999). The correlation 

between DMI (solid line) and the principal component (dash line) of the first and the 

second EOF mode showed in Figure 4.8(a) and 4.8(b). It found that the rainfall variability 

over Thailand has less correlation with DMI about -0.00271 in the first mode and -0.00621 
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in the second mode. However, they are rarely independent. To study the autocorrelation 

analysis as shown in Table 4.5, the adjustment of sample size (Neff) is 474. It found that the 

sample size decreased, then the correlation between DMI and principal component 

increased. 

 

 

Figure 4.7: The region of SST anomalies between the tropical western Indian Ocean  

(10°S-10°N, 50°-70°E) and eastern Indian Ocean (10°S-0°, 90°-110°E)  

(Source: http://www.bom.gov.au/climate/IOD/about_IOD.shtml) 

http://www.bom.gov.au/climate/IOD/about_IOD.shtml
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Figure 4.8: Time series plots of DMI (solid line) and principal component (dash line) of  

(a) the first mode and (b) the second mode. 
 

Table 4.5: The Autocorrelation of DMI and the principal component. 
 

Lag time DMI Principal component 

0 1.000000000 1.000000000 

1 0.7782927000 -0.027282480 

2 0.5846329000 0.092103740 

3 0.4097738000 -0.087159510 

4 0.2808003000 -0.011118800 

5 0.1791611000 0.047957360 

6 0.1241788000 -0.005514535 

7 0.0842163900 0.023777000 

8 0.0327468100 0.015913700 

9 -0.0137394100 -0.101142400 

10 -0.0577931400 0.048489760 

11 -0.0879918500 -0.110442100 
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CHAPTER 5 

CONCLUSIONS 
 

The main results found this study are summarized here. In the EOF analysis of the 

rainfall variability over Thailand during the period 1971 to 2010 the most dominant mode, 

accounting for 21.6% of the total variance, had a spatial pattern with the same sign 

(positive) over almost all of Thailand. Consequently, when the PC was positive there was 

more rainfall than normal and when the PC was negative there was less rainfall than 

normal almost everywhere. An exception to this general result occurs in the south at 

latitudes below 9°N. 

The study of the teleconnection between rainfall over Thailand and ENSO, found 

that the differences between the La Niña and El Niño rainfall anomalies were higher during 

the weak-ENSO periods than during the strong-ENSO periods. Niño 3.4 SST index leads 

the rainfall anomalies by 4 months. But in the study of the teleconnection between rainfall 

over Thailand and IOD it was found that the rainfall variability over Thailand has less 

correlation with IOD. 

Furthermore, the maps of the 850 hPa wind and sea level pressure anomalies 

showed that the wind from the east into Southeast Asia is strengthened during the La Nina 

events, producing more than normal rainfall in Southeast Asia, and is weakened during the 

El Nino events, producing less than normal rainfall in Southeast Asia and associated shifts 

in Walker circulation and correlations between Thailand rainfall and Walker circulation. 

The interaction of these easterly winds from the Pacific with the south-westerly flow from 

the Indian Ocean then produce stronger than normal convergence and rainfall in Southeast 

Asia during the La Nina events, and reduced rainfall during the El Nino events. 
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