

GASIFICATION OF PELLETIZED BIOMASS IN MULTISTAGE AIR SUPPLY DOWNDRAFT GASIFIER

NIDYA WISUDAWATI HAYADI

56300700502

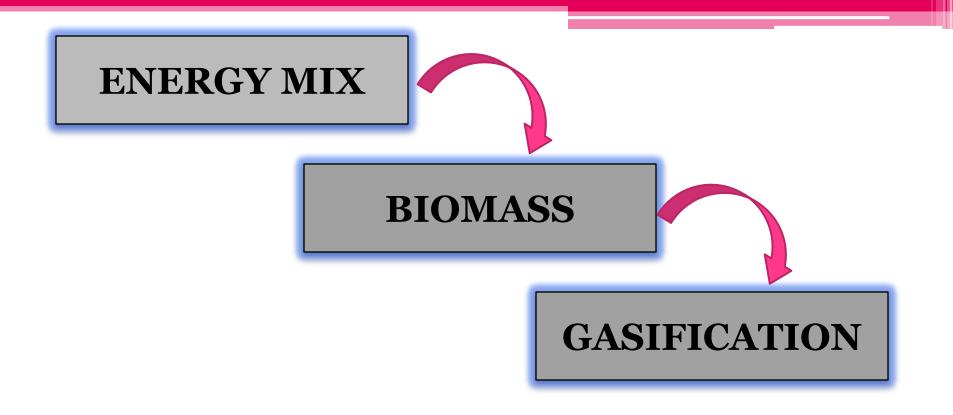
ENERGY TECHNOLOGY & MANAGEMENT JGSEE

ADVISOR: DR. BOONROD SAJJAKULNUKIT

CO-ADVISOR: DR. SRI HARYATI

INTRODUCTION

THEORIES


OUTLINE

METHODOLOGY

RESULTS & DISCUSSION

INTRODUCTION

- ❖Based on Energy Efficiency Action Planning in ASEAN, 10 ASEAN member states would be able to reduce primary energy consumption, Indonesia (25%), Thailand (22%), Malaysia (21%), Brunei (20%), consecutively
- ❖For example, Thailand's government assigned Energy Ministry to establish Renewable and Alternative Energy Plant for 25% in 10 years, so called "AEDP (2012-2021)"

How to improve producer gas quality in terms of higher HHV and lower tar content and conditioning of raw material before being processed in gasifier

Virginie et al /

2012

Biomass Gasification

be done, and that an HC emission below

200 ppm, and a NOx emission below 40

An inexpensive and non-toxic Fe/olivine

reforming and also as an oxygen carrier

can act as catalyst for tar and hydrocarbon

that transfers oxygen from the combustor

ppm, can be achieved.

to the gasifier.

No	Name / Year	Title	Results
	Son et al / 2011	Gasification and power generation	Tar concentration in raw syngas was low, around 3.9-4.4 g/Nm ^{3.} It has been
		characteristics of	confirmed that stable power generation can

woody biomass

gasifier

utilizing a downdraft

Effect of Fe-olivine on

the tar content during

biomass gasification in

a dual fluidized Bed

Bhattacharya, S. C and A. Dutta

Two-stage gasification of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content

Output

Description of wood with preheated air supply: a promising technique for producing gas of low tar content and content

Martínez at al /

Wang et al /

2011

2012

Biomass Gasifier

method can lower tar content sufficiently to

feed the gas directly to internal combustion

engine. The gas efficiency and capacity

respectively.

were also improved around 15% and 40%

The effect of secondary stage air supply

can reduce CH 4 concentration which is

associated with the decreases of the tar

Gas LHVs for the downdraft reactor,

 Nm^{3} , and 14.51–16.49 MJ/Nm³. The

downdraft reactor consumed the least

bubbling reactor, and pyrolysis reactor

were 3.91–4.44 MJ/Nm³, 8.48–9.38 MJ/

content in the producer gas.

energy during operation.

No	Name / Year	Title	Results
	Jaojaruek et al / 2011		The producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. This

improved producer

innovative two stage

air and premixed air

/gas supply Approach

Experimental study on

biomass gasification in

a double air stage

downdraft reactor.

A comparison of

corn stalk pellets.

biomass gasification

and pyrolysis in three

kinds of reactors using

gas quality through an

combustible gas components including H2,

CO, CH4, and lighter hydrocarbons.

and moisture contents

Oxygen and steam gasification is most

effective for feedstock with low nitrogen

pilot-scale biomass

enriched air and

steam

gasifier using oxygen-

Gasification of Pelletized Biomass

No	o Name / Year Title		Results	
	Erlich , C and T. H. Fransson /		Gasification of wood pellets resulted in a richer producer gas while EFB pellets gave	

made of wood, palm

Gasification and

power generation

husk and rice husk

characteristics of rice

oil residues respective

bagasse: Experimental

2011

Yoon et al / 2012

2

pellet using a downdraft fixed-bed gasifier

Garg, A and M.
P. Sharma / 2013

Performance evaluation of gasifier engine system using different feed stocks

study

It was found that cold gas and overall efficiency of the system were in the acceptable range. It is concluded that

gasifier engine system supplied by the

manufacturer has performed

satisfactorily.

a poorer one with higher contents of non-

combustible compounds. Higher air-fuel

The heating value of synthetic gas and cold

gasification showed higher value than that

ratio resulted in better efficiency.

gas efficiency from rice husk pellet

of rice husk gasification.

OBJECTIVES

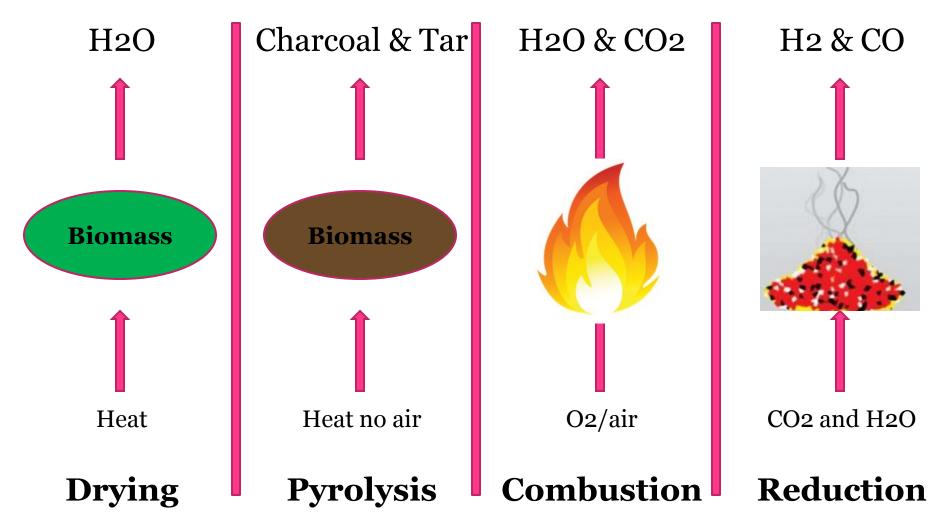
- To find the optimum equivalence ratio (ER) of eucalyptus wood pellet gasification
- To find the optimum operating condition in term of tar and HHV producer gas.
- To examine the producer gas composition, tar quantity and heating value of producer gas from eucalyptus wood pellet.

SCOPE OF RESEARCH WORK

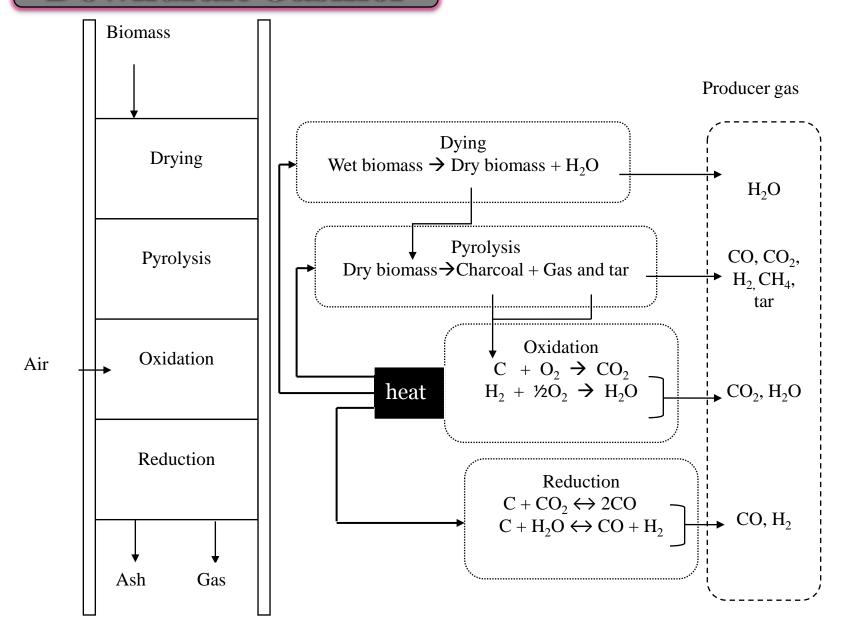
Raw Material:

Eucalyptus Wood Pellet

Gasifier: designed by Thai Steam Service & Supply Company


Gasifying medium:

This study investigated the effects of equivalence ratio (ER) on the tar quantity and producer gas composition. Also measured temperature profiles along the gasifier height.


THEORIES

GASIFICATION

4 process in gasification

Downdraft Gasifier

- **♣** Tar is a complex mixture of condensable hydrocarbons
- **♣** Tar will condense at Temperature below 250°C
- **♣** Tar is highly **undesirable**
- 1 Tar can be reduced by a options

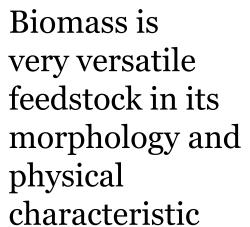
Biomass

Gasifier

Product gas plus tar

Secondary tar removal

+


Dust cleaning

Clean gas

Biomass could be defined as organic materials from various natural source of energy, e.g. agricultural crops and residues, wood and its residues and industrial wastes

BIOMASS

Pelletized fuel will operate best in downdraft gasifier type instead of fine light biomass

Eucalyptus

- ✓ Easy grown
- ✓ Good survival
- ✓ Tolerant to various climates and soil types
- ✓ No proven negative effects on soil, environment, human
- ✓ Wide domestic and industrial use

Densified Biomass: Pellet

The Advantages

- >Low moisture content
- > Uniform size
- ➤ Increase of bulk density
- > Reduce volume storage
- Easier handling

METHODOLOGY

Raw Material

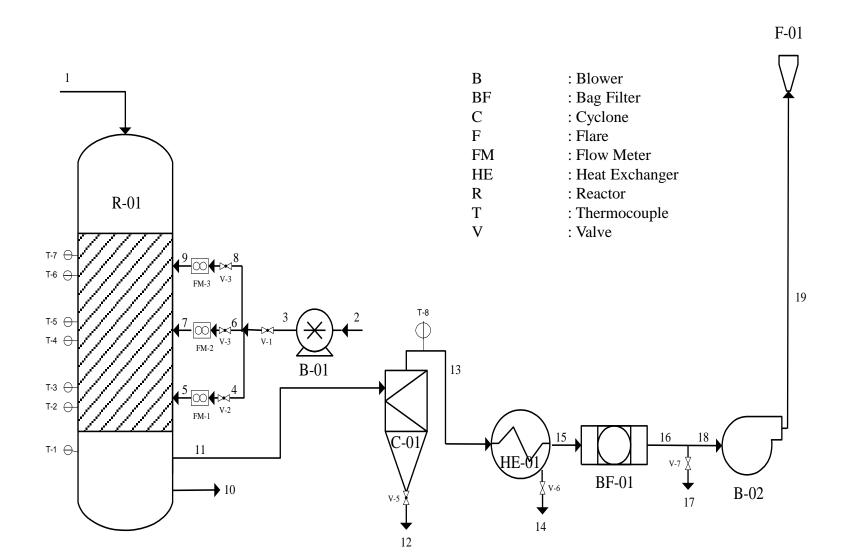
- Sira Intertrade. Co., Ltd.
- Diameter 6-10 mm and length 30-70 mm
- Moisture content 10 % (asreceived)

Oven (Memmert, VO500)

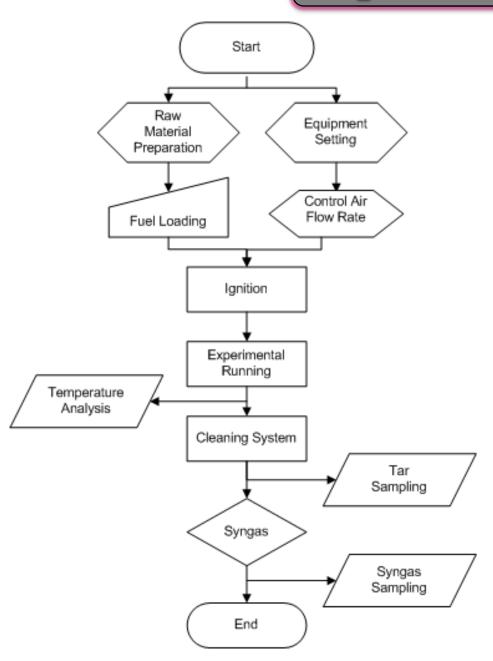
Raw Material

Eucalyptus wood pellet

Proximate Analysis


OEA (ThermoFinnigan, Flash EA)

Ultimate Analysis



TGA (Perkin Elmer, TGA Phyris 1)

Gasification Equipment

Experiment Procedure

Experimental Set Up

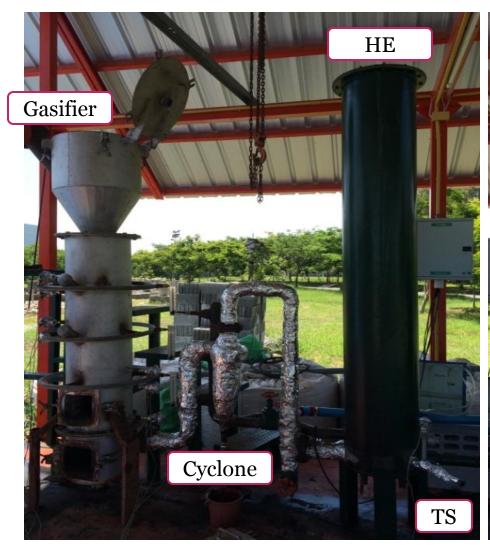
	Total Air Flow (L/min)	Air			
Stage		First	Second	Third	ER
		Stage	Stage	Stage	
1	179	179	-	-	0.11
1	208	208	-	-	0.13
	283	132	151	-	0.18
2	3554	165	189	-	0.23
	420	193	227	-	0.27
	293	85	113	95	0.19
	401	127	142	132	0.26
3	467	151	179	137	0.30
	543	170	194	179	0.35
	580	179	212	189	0.37

Equipments

Temperature Measurment

Product Analysis

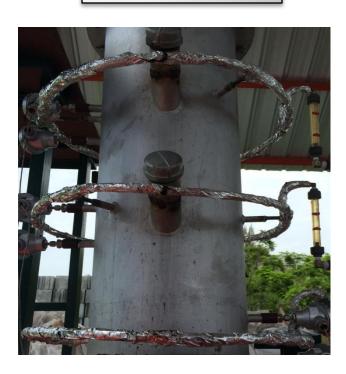
Producer gas analysis



Micro GC, Agilent 490

Tar analysis

Rotary evaporator



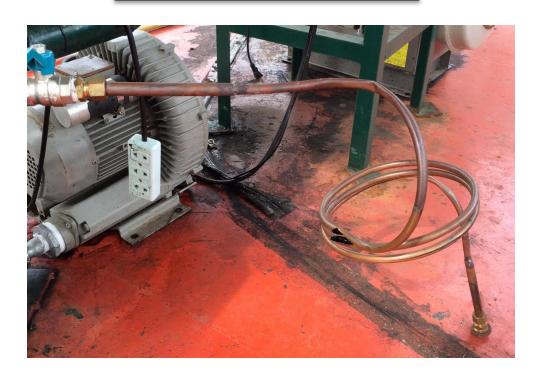
Multistage air supply downdraft gasification system

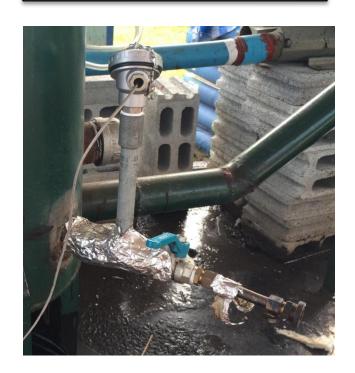
RESULTS & & DISCUSSION

Air inlet pipe

A new bigger air inlet pipe

The old grate

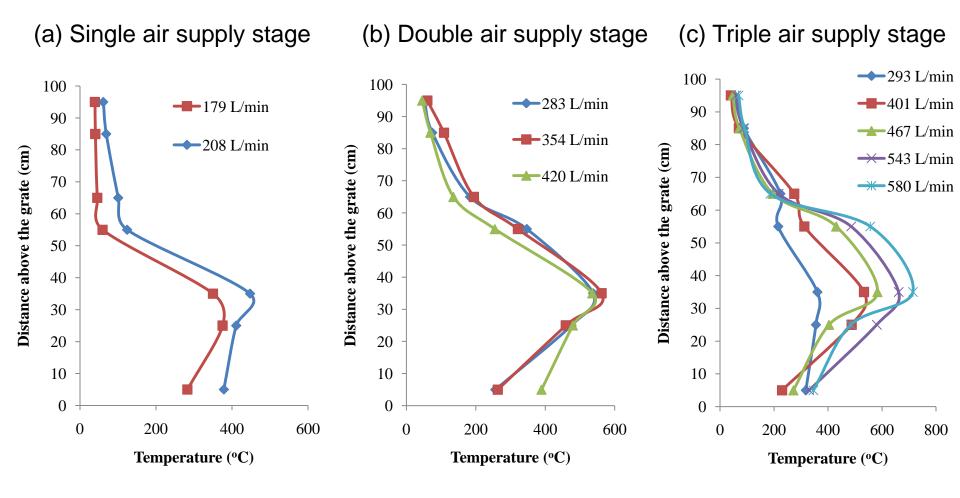

Agitator in grate


New size of grate's hole

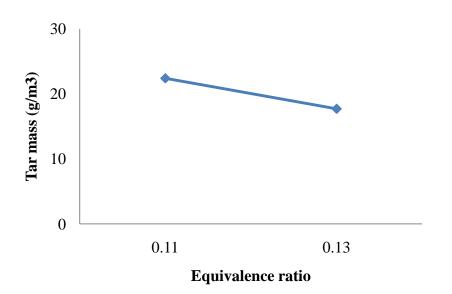
Tar sampling line

A shorter tar sampling line

Air supply line

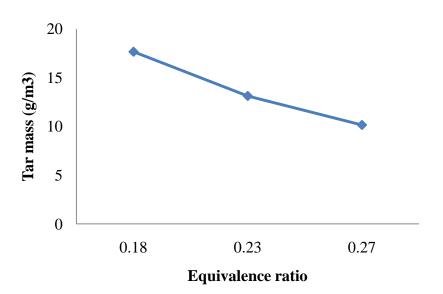

A by-pass air supply line

Eucalyptus pellet properties


Ultimate Analysis (wt. %d.a.f)				
Carbon 48				
Hydrogen	6.02			
Oxygen	45.15			
Nitrogen	0.66			
Proximate Analysis (wt. %dry)				
Volatile matter 66.37				
Fixed carbon	12.07			
Ash	21.56			
Moisture content (wt. % as received)	10.07			
HHV (MJ/kg)	14.42			
LHV (MJ/kg)	13.46			

Temperature profiles along the height of the gasifier

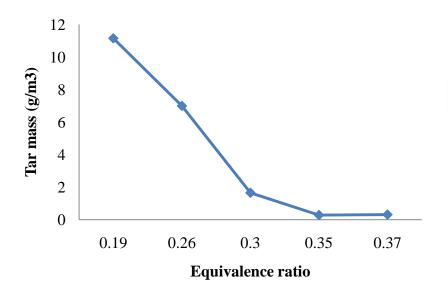
Effect of ER on Tar Quantity



Gravimetric tar in single air supply stage

$$Tar\ content = rac{m_{tar}}{V_{sampling\ gas}}$$

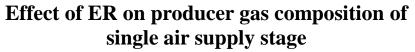
Effect of ER on Tar Quantity

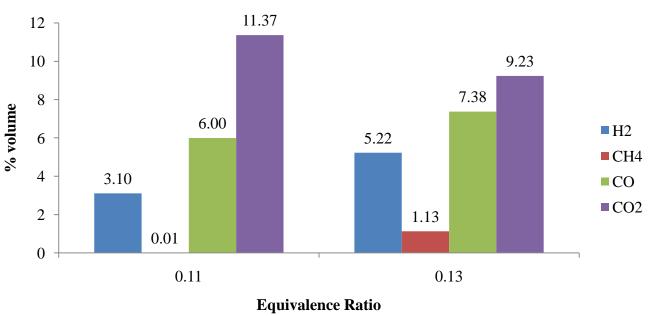


Gravimetric tar in double air supply stage	Gravimetr	lc tar in c	double a	air suppl	ly stage
--	-----------	-------------	----------	-----------	----------

ER	Tar Content
0.18	17.65
0.23	13.12
0.27	10.15

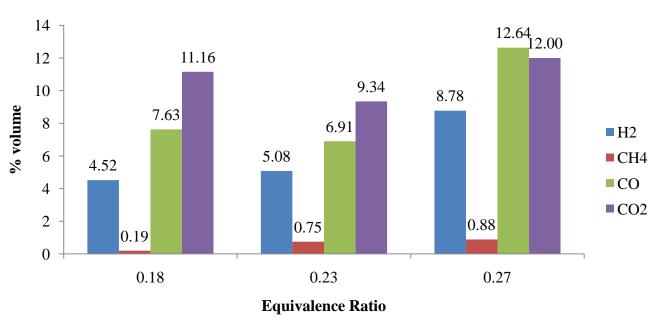
Effect of ER on Tar Quantity




Gravimetric tar in triple air supply stage

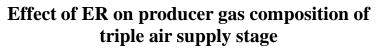
Of all single, double and triple air supply stage presented the decreasing of tar along with the increasing of ER. The tar mass of ER 0.11 was 22.4 gr/m³ and it reduced to 0.31 gr/m³ of ER 0.37.

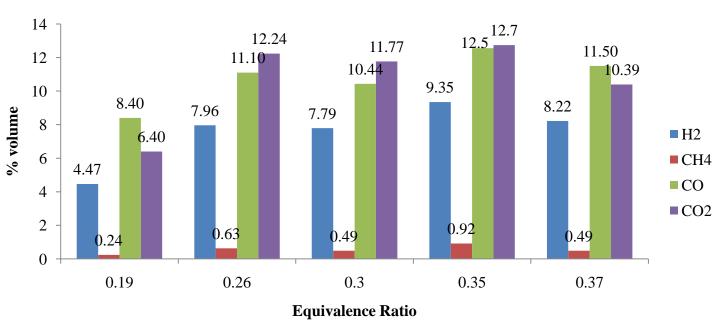
Effect of ER on Producer Gas Composition



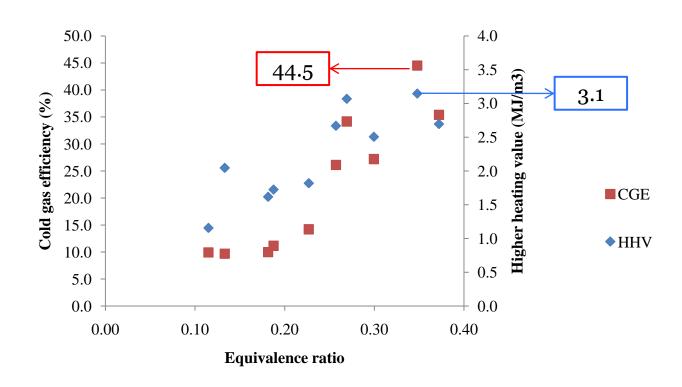
ER 0.11 was not suitable for this gasification system. A low air flow rate along with a low ER, resulted a low gasification temperature that made an amount of pellet un-burnt or even has left a lot of char

ER 0.13 showed a better result than ER 0.11. Higher producer gas quality was achieved, even the oxygen required still insufficient yet


Effect of ER on Producer Gas Composition



The trend of H₂ increased along with the increasing of ER. As the temperature increased, CO and H₂ could have been expected as dominant products and the trend of CO₂ will almost opposite to CO (Erlich, 2011 & Guo, 2014), however this case was not appear here. Nevertheless, changes in ER cannot be the only explanation for changes in this gasification performance.


Effect of ER on Producer Gas Composition

The ER range which worked well was 0.27-0.35 with CO and H₂ of 12.64%, and 9.35%. H2O and CO2 formed during partial oxidation reactions reacted with the charcoal bed, was favored the Shift and Boudard endothermic reaction. C + H₂O \leftrightarrow CO + H₂ and C + CO₂ \leftrightarrow 2CO.

Effect of ER on Cold Gas Efficiency and HHV

Cold gas efficiency is the energy input over the potential energy output.

$$\eta_{cg} = \frac{Q_g M_g}{LH V_f M_f}$$

Where,

 η_{cg} : Cold-gas Efficiency (%)

Q_g : LHV of product gas (MJ/kg)

M_g : Mass of product gas (kg)

LHV of the solid fuel (MJ/kg)

M_f : Mass of solid fuel (kg)

Higher Heating Value of producer gas is dependent on the percentage quantities of CO, CH₄ and H₂ in producer gas and it can be calculated from the equation:

$$HHVg = Y_{CO} HHV_{CO} + Y_{CH4} HHV_{CH4} + Y_{H2} HHV_{H2}$$

Where, Y = Volume fraction of each gas species that can be obtained from gas analyser

HHV each gas is presented in Table C.2 (Basu, 2010)

Slag & Ash Analysis

Compositions of eucalyptus wood pellet slag

Compositions	% wt
SiO2	60
Fe2O3	22.5
CaO	6.68
Al2O3	5.17
K2O	2.60

The ash content of most biomass is typically much less than that of coals (<3%), but some forms have a high as content (D0gru, 2002). Proximate analysis of eucalyptus wood pellet showed that the amount of ash was quite high (21.56 % dry basis). So, it can be assumed that sand and soil could be added and mixed with the eucalyptus wood in the making of pellet.

CONCLUSIONS & SUGGESTIONS

Conclusions

- The suitable ER which gave a good gas composition result was 0.27 0.35 with CO and H_2 of 12.64%, and 9.35% with higher heating value around 3.1 MJ/m³. The cold gas efficiency was 44.5%.
- The tar mass was significantly reduced by controlling the equivalence ratio. The tar mass of ER 0.11 was 22.4 gr/m³ and it reduced to 0.31 gr/m³ of ER 0.37.
- XRF analysis investigated that slag of eucalyptus wood pellet contents of SiO2, Fe2O3, CaO, Al2O3, etc. it can be assumed that in the making of pellet, sand and soil could be added and mixed with the eucalyptus wood.

Suggestions

- 1. The fact that single air supply stage could not reach flow rate as high as double or triple air supply stage made it cannot be compared. So, an adjustable air supply pipe with different sizes could help to reach the same air flow rate when run only single stage, double stage or even triple air supply stage.
- 2. The air flow in each air supply pipe can be varied in order to study the effect of air distribution along the gasifier.
- 3. Modification of tar sampling equipment such as an additional particle filter can bring down the contamination of solid particles in tar. Tar quality analysis may be required to investigate tar component in each air supply stage.
- 4. New design of grate and ash removal system might help ash problem to all kind of biomass such as type of rotary grate.
- 5. Considering that the lab is in the outdoor, keeping the quality and moisture content of raw material is a must especially in rainy season. Some problems with the gasifier such as ash gate that usually get curved when gasifier reach a very high temperature and possibility of gas leakage along the gasifier must be solved. A routine cleaning after finish the experiment and monthly cleaning of whole gasification system can keep the whole gasification efficiency well.

THANKYOU

Gasification Reaction

 Combustion Reactions : $C + \frac{1}{2}O_2 \rightarrow CO$ $\Delta H = -111 MJ/kmol$ $CO + \frac{1}{2}O_2 \rightarrow CO_2$ $\Delta H = -283 \text{ MJ/kmol} \quad (2)$ $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ $\Delta H = -242 \text{ MJ/kmol} \quad (3)$ • The Boudouard Reaction: $C + CO_2 \rightarrow 2 CO$ $\Delta H = +172 \text{ MJ/kmol} \quad (4)$ The Water Gas Reaction : $C + H_2O \rightarrow CO + H_2$ $\Delta H = +131 \text{ MJ/kmol} \quad (5)$ • The Methanation Reaction: $C + 2 H_2 \rightarrow CH_4$ $\Delta H = -75 \text{ MJ/kmol}$ (6)• Water – gas Shift Reaction: $CO + H_2O \rightarrow CO_2 + H_2$ $\Delta H = -41 \text{ MJ/kmol}$ (7) The Steam Methane Reforming Reaction : $CH_4 + H_2O \rightarrow CO + 3 H_2$ $\Delta H = +206 \text{ MJ/kmol } (8)$

• CO_2 Reforming Reaction : $CH_4 + CO_2 \rightarrow 2 CO + 2 H_2$ $\Delta H = +247 MJ/kmol$ (9)

Fuel Feed Rate
$$M_f = \frac{Q}{LHV_{bm}\eta_{gef}}$$

$$ER = \frac{(wt \ of \ air/wt \ of \ fuel)_{actual}}{(wt \ of \ air/wt \ of \ fuel)_{stoiciometri}}$$

Syngas flow Rate
$$V_g = \frac{Q}{LHV_g} Nm^3/s$$

 $Tar\ content = m_{tar}\ V_{sampling\ gas}$

 $HHV_g = Y_{CO} \ HHV_{CO} + Y_{CH_4} \ HHV_{CH_4} + Y_{H_2} \ HHV_{H_2}$

Cold gas efficiency is the energy input over the potential energy output.

$$\eta_{cg} = \frac{Q_g M_g}{LH V_f M_f}$$

Where, : Cold-gas Efficiency (%)

Q_g : LHV of product gas (MJ/ M_g : Mass of product gas (kg) : LHV of product gas (MJ/kg)

LHV_g : LHV of the solid fuel (MJ/kg)

: Mass of solid fuel (kg) $M_{\rm f}$

Hot gas efficiency is taking the sensible heat of the hot gas into account.

$$\eta_{hg} = \frac{Q_g M_g + M_g C_p \big(T_f - T_o\big)}{LH V_f M_f}$$

 η_{hg} : Hot-gas Efficiency (%) Where,

: LHV of product gas (MJ/kg)

: Mass of product gas (kg)

: Specific Heat of gas (kJ/kmol.K)

: The gas temperature at the gasifier exit (K)

T_o: The temperature of fuel entering the gasifier (K)

LHV_g : LHV of the solid fuel (MJ/kg)

: Mass of solid fuel (kg) $M_{\rm f}$

Comparison of Tar Production in 3 Gasifications Medium

Medium	Operating Condition	Tar Yield (g/Nm³)	LHV (MJ/ Nm³ dry)		
Steam	S/B = 0.9	30 - 80	12.7 – 13.3		
Steam and Oxygen	GR = 0.9	4-30	12.5 – 13.0		
Air	ER = 0.3	2 - 20	4.5 - 6.5		

	1S 380SC	1S 440SC	2S 600SC	2S 750SC	2S 890SC	3S 620SC	3S 850SC	3S 990SC	3S_1150SC	3S 1230S
					_			FH	FH FH	CFH
Feed of Raw Material (kg)	19	19	19	19	19	19	19	24	. 24	. 2
Air flow rate (SCFH)	380	440	600	750	890	620	850	990	1150	1230
Air flow rate (L/min)	179	208	283	354	420	293	401	. 467	543	580
ER	0.11	0.13	0.18	0.23	0.27	0.19	0.26	0.30	0.35	0.3
H2	3.1042	5.2247	4.5224	5.0791	8.7781	4.4656	7.9645	7.7888	9.3502	8.220
CH4	0.0088	1.125	0.1931	0.75	0.8833	0.2365	0.6298	0.4865	0.9189	0.486
СО	6	7.375	7.6304	6.9063	12.6363	8.4007	11.0992	10.4375	12.5625	11.
CO2	11.3654	9.2340	11.1553	9.3427	12.0032	6.3987	12.2364	11.7663	12.7456	10.391
Tar (gr/m3)	22.4	17.7	17.65	13.12	10.15	11.16	5 7	1.65	0.28	0.3
Char + Ash (kg)	2.05	7.45	3.9	3.3	2.9	3.2	. 3	4.75	1.15	
Slag (kg)	very little	0.65	1	1.6	0.95	1.5	1.9	1.3	4.45	3.3
Unburnt (kg)	10.15	very little	-	-	-		-			
LHV (MJ/m3)	1.0965	1.8990	1.5217	1.6898	2.8610	1.6284	2.4881	2.3342	2.9262	2.5150
HHV	1.1571	2.0456	1.6172	1.8185	3.0669	1.7246	2.6681	2.5050	3.1447	2.6943
Carbon Conversion into gas product (%)	22.2431	12.5517	17.5001	19.8428	42.5424	14.5244	35.1039	36.8638	55.5536	43.985
Cold Gas Efficiency (%)	9.8963	9.6724	9.9622	14.1810	34.1511	11.1293	26.1081	27.1878	44.4988	35.378
Hot Gas Efficiency (%)	27.1114	25.8727	25.6223	30.2787	53.0352	28.6468	44.7070	46.4545	64.6133	55.615