Topic: Experimental Testing of Pelletized Biomass in Multi-Air-Stage Gasification
Name of student: Ms. Nidya Wisudawati Hayadi Student ID: 56300700502
Name of Supervisor: Dr. Boonrod Sajjakulnukit, Dr. Ir. Hj. Sri Haryati

ABSTRACT

This study conducted experiments on three different air supply stages of downdraft gasification: single air supply stage, double air supply stage and triple air supply stage. This configuration is considered to be the primary method for improving the quality of the producer gas and reducing the quantity of tar. Eucalyptus wood pellets were used as the raw material. By varying the equivalence ratio (ER), the producer gas composition showed its best result between ER 0.29 and 0.36 with CO, H₂ and CH₄ concentrations of 12.64, 9.35 and 0.92% v respectively. At this ER, the cold gas efficiency was 44.5% and the heating value of the producer gas was 3.1 MJ/m³. On the other hand, the tar mass was significantly reduced by controlling the ER. It achieved 0.31 gr/m³ at the highest ER of 0.39. It also showed that the more air supply stage, the better of tar reduction. The major problem of this multi-air-stage eucalyptus wood pellet gasification was the high of ash content that lead to slag formation when the ash melting at high gasification temperature. This high yield of slag had disadvantages for both the quality and the quantity of the producer gas.

Keywords : Multi-air-stage, Gasification, Downdraft, Tar, Eucalyptus wood pellet.

CONTENTS

CHAPTER	TITLE	PAGE
	ABSTRACT	i
	CONTENTS	ii
	LIST OF TABLES	iv
	LIST OF FIGURES	V
1	INTRODUCTION	1
	1.1. Rational/Problem Statement	1
	1.2. Literature Review	2
	1.2.1. Biomass Gasification	2
	1.2.2. Biomass Gasifier	3
	1.2.3. Gasifying Medium	5
	1.2.4. Gasification of Pelletized Biomass	7
	1.3. Objectives	9
	1.4. Scope of Research Work	10
2	THEORIES	11
	2.1. Gasification	11
	2.2. Downdraft Gasifier	13
	2.3. Multi-Air-Stage Gasifier	15
	2.4. Biomass	16
	2.4.1. Eucalyptus	19
	2.5 Densified Biomass: Pellet	19
3	METHODOLOGY	23
	3.1. Raw Material	23
	3.1.1. Proxymate Analysis	23
	3.1.2. Ultimate Analysis	24
	3.1.3. Calorific Value Analysis	25
	3.2. Gasification Equipment	26
	3.2.1. Triple Air Stage Downdraft Gasifier	26
	3.2.2. Cyclone	28
	3.2.3. Heat Exchanger	28
	3.2.4. Bag House Filter	28

CONTENTS (Cont')

CHAPTER	TITLE	PAGE
	3.2.5. Blower	28
	3.2.6. Air Flow Controller	28
	3.2.7. Temperature Monitoring System	28
	3.2.8. Tar Sampling Equipment	28
	3.3. Operating Conditions	29
	3.4. Experimental Procedure	30
	3.5. Analysis	32
	3.5.1. Producer Gas Analysis	32
	3.5.2. Tar Analysis	32
4	RESULTS AND DISCUSSION	35
	4.1. Eucalyptus Wood Pellet Analysis	35
	4.2. Experimental Results	35
	4.2.1. Temperature Profile	36
	4.2.2. Effect of Equivalence Ratio on Producer Gas	
	Composition	44
	4.2.3. Effect of Equivalence Ratio on Tar Quantity	47
	4.2.4. Effect of Equivalence Ratio on Cold Gas Efficiency	and
	Higher Heating Value	49
	4.2.5. Ash and Slag Analysis	49
5	CONCLUSIONS AND RECOMMENDATION FOR FUTURE	E
	STUDIES	52
	5.1. Conclusions	52
	5.2. Recommendations for Future Studies	53
	REFERENCES	54
	APPENDIXES	58
	A. Fuel Feed Rate	58
	B. Flow Rate of Gasifying Medium	59
	C. Gasification Efficiency	61

LIST OF TABLES

TABLES	TITLE	PAGE
2.1	Summary of the main characteristics of technologies under	
	consideration	18
2.2	Pellet Fuel Institute (PFI) standard specifications for residential/	
	commercial densified fuel	21
3.1	Standard method for biomass compositional analysis	25
3.2	Experimental set up for eucalyptus wood pellet gasification tests	30
4.1	Properties of eucalyptus wood pellet	35
4.2	Experimental conditions during gasification	44
B.1	Proximate and ultimate analysis of eucalyptus wood pellet	59
B.2	Oxygen calculation	59
C.1	Raw material and producer gas composition	61
C.2	Specific Heat of Gases	66
C.3	Enthalpy Calculation	67

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Gasification process in a downdraft gasifier	14
3.1	Eucalyptus wood pellet	23
3.2	Thermal gravimetric analyzer	24
3.3	Organic analysis (Thermo finnigan model flash EA 1112)	24
3.4	Bomb calorimeter (LECO AC-350)	25
3.5	Gasifier details	27
3.6	Tar sampling equipment	29
3.7	Schematic diagram of multi-air-stage downdraft gasification	31
3.8	Micro GC Agilent 490	32
3.9	Rotary evaporator	33
3.10	Multi-air-stage downdraft gasification system	34
4.1	Gasification temperature profile at 179 L/min	36
4.2	Gasification temperature profile at 208 L/min	37
4.3	Gasification temperature profile at 283 L/min	38
4.4	Gasification temperature profile at 354 L/min	38
4.5	Gasification temperature profile at 420 L/min	39
4.6	Gasification temperature profile at 292 L/min	40
4.7	Gasification temperature profile at 401 L/min	40
4.8	Gasification temperature profile at 467 L/min	41
4.9	Gasification temperature profile at 543 L/min	41
4.10	Gasification temperature profile at 580 L/min	42
4.11	Temperature profiles along the height of the gasifier	44
4.12	Effect of ER on producer gas composition of single air supply stage	45
4.13	Effect of ER on producer gas composition of double air supply stage	e 44
4.14	Effect of ER on producer gas composition of triple air supply stage	46
4.15	Effect of equivalence ratio on gravimetric tar	48
4.16	Effect of equivalence ratio on cold gas efficiency and higher	
	heating value	50
4.17	The slag in gasifier	51