SIMULATION OF METHANE EMISSION FROM RICE FIELD IMPLEMENTED WITH ALTERNATE WETTING AND DRYING (AWD) BY DNDC MODEL

MISS. KANNIGA TIANKAW ID: 56300700701

A THESIS REPORT SUBMITTED AS A PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEER IN ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT

THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT AT KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

2ND SEMESTER 2014

COPYRIGHT OF THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT

Simulation of Methane Emission from Rice Field Implemented with Alternate Wetting and Drying (AWD) by DNDC model

> Ms. Kanniga Tiankaw ID: 56300700701

A Thesis Submitted as a Part of the Requirements for the Degree of Master of Engineering in Environmental Technology and Management

The Joint Graduate School of Energy and Environment at King Mongkut's University of Technology Thonburi

2nd Semester 2014

)

)

Thesis Committee

Annat cliveth____

(Assoc. Prof. Dr. Amnat Chidthaisong)

Sindp To-

(Assoc. Prof. Dr. Sirintornthep Towprayoon)

C. Buddheboon

Advisor

Member

Member

Shyete Suda

Dr. Chitnucha Buddhaboon

(

(

Dr. Shigeto Sudo

External Examiner

Thesis Title: Simulation of Methane Emission from Rice Field Implemented with Alternate Wetting and Drying (AWD) by DNDC Model

Student's name, organization and telephone/fax numbers/email

Miss Kanniga Tiankaw The Joint Graduate School of Energy and Environment (JGSEE) King Mongkut's University of Technology Thonburi (KMUTT) 126 Pracha Uthit Rd., Bangmod, Tungkru, Bangkok 10140 Thailand Telephone: 0-8641-76146 Email: Kannikak66@gmail.com

Advisor's name, organization and telephone/fax numbers/email

Assoc. Prof. Amnat Chidthaisong The Joint Graduate School of Energy and Environment (JGSEE) King Mongkut's University of Technology Thonburi (KMUTT) 126 Pracha Uthit Rd., Bangmod, Tungkru, Bangkok 10140 Thailand Telephone: 0-8144-04935 Email: amnat_c@jgsee.kmutt.ac.th **Topic:** Simulation of Methane Emission from Rice Field Implemented with Alternate Wetting and Drying (AWD) by DNDC Model **Name of student:** Ms. Kanniga Tiankaw **Student ID:** 56300700701 **Name Supervisor:** Assoc. Prof. Dr. Amnat Chidthaisong

ABSTRACT

Methane (CH_4) emissions from rice fields constitutes the highest proportion of the agricultural total greenhouse gas emissions in Thailand. Recently, alternative wetting and drying (AWD) technique has been introduced as one of the promising mitigation techniques. The objective of this study is to evaluate the potential of denitrificationdecomposition (DNDC) model to simulate CH₄ emission and reduction by AWD. The results indicate that DNDC was able to simulate well the emissions and reduction of CH₄ under both conditions. However, the ability to simulate CH₄ emission varies on the site characteristics. The result of CH₄ emissions from observation six study sites under continuous flooded and AWD conditions were 112.83 and 92.48 kgC/ha/day, respectively. Thus, applying AWD was resulted in CH₄ emission reduction from observation around 57%. The results of simulation CH₄ emission using the DNDC model with the obtained data from six study sites were 100.68 and 81.89 kgC/ha/day, respectively. This is within $\pm 90\%$ of the observed emission. It was concluded that DNDC can reasonably simulate CH₄ emissions and reduction when the field is treated with AWD technique. However, because the simulation outputs are highly sensitive to input parameter, accurate input parameters is required to ensure its applicability. In addition, validation is required for further application of DNDC to estimate mitigation potential under AWD.

Keywords: Methane emission; Rice filed; Denitrification-decomposition (DNDC) model; alternative wetting and drying (AWD)

ACKNOWLEDGEMENTS

This research was completed within the support of many people and I would like to thank them all. Firstly, I would like to thank my advisor Assoc. Prof. Amnat Chidthaisong for the support of my master degree study and research, for motivation, endurance, knowledge in all time of research and writing of this thesis.

Besides my advisor, I would like to thank my thesis committee consisting of Assoc. Prof. Sirintornthep Towprayoon, Dr. Chidnucha Buddhaboon and Dr. Shigeto Sudo, for providing comments and good suggestions for my research. I truly thank for personnels of Rice Department consist: Miss Benjamas Rossopa, Mr. Chairat Channoo, Mr. Chaitonk Harach, Mr. Kritkamol Paothong, Mrs. Waraporn Wongboon, and Mrs. Wannakorn Intarasatid for supports in rice cultivation under continuous flooding and AWD condition data. I am grateful to The Thai Meteorological Department for proving climate data, including temperature and precipitation data for simulation CH₄ emission by DNDC model. Furthermore, I would like to thank The Joint Graduate School of Energy and Environment (JGSEE) at for knowledge and research fund.

I also would like to thank my parents, my friends and JGSEE students for their attention and help for my thesis and my life in general.

CONTENTS

CHAPTER	TITLE	PAGE
	ABSTRACT	i
	ACKNOWLEDGEMENT	ii
	CONTENTS	iii
	LIST OF TABLES	v
	LIST OF FIGURES	vi
1	INTRODUCTION	1
	1.1. Rational/Problem Statement	1
	1.2. Literature Review	3
	1.3. Research Objectives	6
	1.4. Scope of Research Work	6
2	THEORIES	7
	2.1 Greenhouse gases, greenhouse effect and climate change	7
	2.2 Rice field as the most important source of	7
	methane emission in Thailand	
	2.3 Process of methane production in rice field	8
	2.4 The transfer of methane from the soil to the atmosphere	10
	2.5 Factors affecting methane emission from rice fields	11
	2.6 Simulating methane emission in rice field by	18
	the Denitrification - Decomposition (DNDC) model	
3	METHODOLOGY	21
	3.1 Location of study site	21
	3.2 Site Description	22
	3.3 Input data on DNDC model	22
	3.4 Performance of DNDC model	29

CONTENTS (Cont')

CHAPTER	TITLE	PAGE
4	RESULTS AND DISCUSSION	31
	4.1 Methane emissions from continuous flooding and from	31
	AWD conditions	
	4.2 Yields and emission per yields	32
	4.3 Simulation of methane emissions by DNDC model	33
	4.4 Sensitivity analysis of DNDC model	43
5	CONCLUSION AND RECOMMENDATION	46
	5.1 Conclusions	46
	5.2 Recommendation and Limitation	46
	5.3 Future works	47
	REFERENCES	
	APPENDIX	

LIST OF TABLES

PAGE

TITLE

TABLES

1.1	Irrigation water use (M, m ³ /ha) under different irrigation systems	4
1.2	Rice yields (kg/ha) of different irrigation systems	4
2.1	Global warming potentials of major greenhouse gases	7
2.2	The methane emission in Thailand divide by sources	8
2.3	The methane emission from agriculture in Thailand	8
2.4	The oxidation-reduction process and Eh value	8
2.5	Water demand of rice growing period	13
3.1	Common cultivation practices at the six study sites	22
3.2	The physical and chemical characteristics of soil at 6 study sites	28
3.3	The default data for soil properties of rice field	28
3.4	The default data for crop of rice field	29
4.1	Observed methane emission under continuous flooded and	31
	alternate wetting and drying (AWD) condition and methane emission	
	reduction from applying AWD	
4.2	Observed CH ₄ emission under continuous flooded and	33
	AWD condition and CH_4 emission reduction from applying AWD	
4.3	Observed and simulation CH ₄ emission under continuous flooded	34
	and AWD condition at six study sites	
4.4	The Root-mean-square-error values and the relative deviation of	34
	CH ₄ emission between the observed and simulated values from	
	six study sites under continuous flooded and AWD condition	

LIST OF FIGURES

FIGU	RE TITLE	PAGE
1.1	Total greenhouse gas emissions for the year 1994	1
1.2	Total greenhouse gas emissions from sectors in1994	2
1.3	Thailand GHG emission by source in CO ₂ equivalent for 2000	2
2.1	Methane production in rice field by decomposition process	9
2.2	The process of methane (CH ₄) transfer from soil to atmosphere	10
2.3	The comparison between methane emission from various scenario	12
	and pH and texture of soil	
2.4	Graphical description of midseason- drainage	14
2.5	Graphical description of combining shallow water depth with	14
	wetting and drying	
2.6	Graphical description of semi-dry cultivation	15
2.7	Graphical description of alternate wetting and drying	15
2.8	(A) Control AWD system.	16
	(B) The water tube made from PVC and about 40 holes are dilled on all s	sides
	(C) Check equivalention of water level inside and outside water tube	
2.9	(A) The water level dropped around 15cm below the surface of the soil	17
	(B) re-flood into rice field around 5 cm	
2.10	Structure of the DNDC model	19
2.11	The seven windows shows result from the simulation the site under	20
	condition of the DNDC model	
3.1	Location of study site	21
3.2	Daily temperature at six study sites	25
3.3	Daily precipitation at six study sites	27
4.1	Observed methane emission under continuous flooded condition	32
	at six study sites	
4.2	Observed CH ₄ emission under AWD condition from six study sites	32
4.3	Observed and simulation CH ₄ emission under	36
	continuous flooded condition at six study sites	

LIST OF FIGURES

FIGU	TITLE	PAGE
4.4	Observed and simulation CH ₄ emission under	38
	alternate wetting and drying (AWD) condition from six study sites	
4.5	Correlation between observed and simulation CH ₄ emission	40
	under continuous flooded condition at six study sites	
4.6	Correlation between observed and simulation CH ₄ emission under	42
	AWD condition at six study sites	
4.7	Sensitivity of DNDC simulated CH_4 emission with microbial activity	44
4.8	Sensitivity of DNDC simulated CH4 emission with soil organic carbon	44
4.9	Sensitivity of DNDC simulated CH ₄ emission from rice field	45
	with clay fraction	
4.10	Sensitivity of DNDC simulated CH ₄ emission water level	45

CHAPTER 1

INTRODUCTION

1.1 Rationale/Problem statement

Global warming caused by greenhouse gas emissions into the atmosphere is an important problem. Warming the atmosphere can lead to climate changes such as changes in the amount and distribution patterns of rainfall, increased frequency of droughts and floods, and rise in sea level. To enhance cooperation among world community, countries have agreed to reduce greenhouse gas emissions from sources and to increase removal by sinks. This agreement is the basis of United Nations Framework Convention on Climate Change (UNFCCC), implemented since 1990. The objective of the convention is to stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous interferences with the climate system. The main greenhouse gases are carbon dioxide (CO_2), methane (CH_4) and nitrous oxide (N_2O). Currently, the total greenhouse gas emission of the United Nations Framework Convention on Climate Change (UNFCCC) from parties not included in Annex I (1994) is 11,735,437 Gg CO₂ e, including CO₂: 63.07%, CH₄: 25.78% and N₂O: 11.45%. The source of greenhouse gas can devide into 5 sectors including energy, industrial process, agriculture, waste and land use-land use change forest and each sector emitted 63%, 6%, 25%, 4% and 2% respectively (UNFCCC, 2005, Figure 1.1, 1.2).

Total Greenhouse gas (GgCO₂eq)

Figure 1.1 Total greenhouse gas emissions for the year 1994 (UNFCCC, 2005).

Thailand greenhouse gas emissions was 229.08 million tons CO_2e in 2000. The main emission comes from energy, agriculture and livestock, industrial process waste and forestry, respectively (Figure. 1.3).

Emissions from the agricultural sector was second highest after the energy sector. Within the sector, rice field is the most important source of greenhouse gas emission (CH₄). Therefore, greenhouse gas mitigation in rice field may be one of the options that would contribute to the national emission reduction target.

Recently, one of the promising options for mitigating CH₄ emission reduction in rice fields is AWD technique. The main aspect of this technique is keeping water at the level that usually inhibits methanogenesis and at the same time is sufficient for plant growth (usually 15 cm below surface of the soil). Besides reducing CH₄ emission, it also helps save water use. This technology has not been tested under Thai conditions. However, since 2013, the potential of AWD to mitigate CH₄ emission in Thailand has been tested by Rice Department. With these data it is now possible to carry out the investigation through modeling work to enhance our understanding of mitigation potential and the effects of AWD on other aspects of rice field biogeochemistry.

In this study, DNDC model was used to simulate the amount of CH_4 (CH_4 emissions from rice cultivation). This model is one of those being studied in details at JGSEE and it can adapt for planning for cultivation (water management in rice field, fertilization, tillage, etc.). Therefore, this project investigated the application of AWD and DNDC model for mitigation and estimate greenhouse gas emission from rice field in Thailand.

1.2 Literature Review

1.2.1 The potential of water management in mitigation methane emissions

The existence of flooded water is the important factor causing the production and emissions of the greenhouse gas CH_4 . Therefore, water management is the important factor for mitigation CH_4 emission. In the past, there have been various studies demonstrating that water managements are indeed effective in reducing CH_4 emission.

Li *et al.* (2002) studied the CH₄ emission mitigation by water management in China's rice paddies during 1980–2000 under midseason paddy drainage and continuous flooding conditions. It was found that CH₄ was significantly emitted from continuous flooding field more than a midseason drainage field. During 1980-2000, CH₄ emission was mitigated over 5 TgCH₄ yr⁻¹, by this midseason drainage practice.

Zai (2001) studied new irrigation regimes for sustainable water productivity. They found that the main irrigation can be divided into three kinds that have very high efficiency in reducing methane emission. These include the shallow water depth with wetting and drying (SWD), the alternate wetting and drying (AWD) and the semi-dry cultivation. When compare among these three irrigation schemes, the alternate wetting and drying (AWD) has higher irrigation efficiency and rice yields than shallow water depth with wetting and drying (SWD) (Table 1.1, 1.2).

Table 1.1 Irrigation water use (M, m³/ha) under different irrigation systems (Zai, 2001).

Voor	Torm	E	arly rice		Ι	Late rice	e	W	hole yea	r
I Cai	Term	TRI	SWD	AWD	TRI	SWD	AWD	TRI	SWD	AWD
1007	M (m ³ /ha)	2390	2190	1785	8100	7890	7385	10490	10080	9710
1997	Percentage	100	91.6	74.1	100	97.4	91.2	100	96.1	92.6
1008	M (m ³ /ha)	2750	2439	2415	6743	5867	6341	9493	8306	8756
1998	Percentage	100	88.7	87.8	100	87.0	94.0	100	87.5	92.2
Augraga	M (m ³ /ha)	2570	2312	2100	7422	6879	6863	9992	9193	9233
Average	Percentage	100	90.0	81.7	100	92.7	92.5	100	92.0	92.4

** TRI = traditional irrigation regime

SWD = the shallow water depth with wetting and drying

AWD = the alternate wetting and drying

Voor	Yield (kg/ha)			
I Cal	TRI	SWD	AWD	
1997	4335	4424	4380	
1998	5766	5772	5919	
1999	5504	7970	7995	
Average	5201	6055	6098	
Percentage of average	29.97	34.891	35.139	

Table 1.2 Rice yields (kg/ha) of different irrigation systems (Zai, 2001).

** TRI = traditional irrigation regime

SWD = the shallow water depth with wetting and drying

AWD = the alternate wetting and drying

Towprayoon and Smakgahn (2003) observed the mid season drainage and multiple drainage effects in Samutsakorn rice fields Thailand. They found that the water drainage could reduce CH₄ emission, but rice yields was also decreased a little from traditional rice field. Besides, the water drainage has the stimulating effect of N_2O emission.

Li *et al.* (2005) studied water management of rice field in China by integrating between GIS with DNDC model under water management condition in two scenarios: continuous flooding and midseason drainage. They found that water management could reduce CH_4 emission around 40% or 50% Tg CH_4 / yr of total global methane from rice field. In contrast, changing water management from continuous flooding to midseason drainage could increase N₂O from Chinese rice paddies by 0.15 Tg N/yr (around 50% increase).

Chumvong (2008) studied the mitigation potential of CH₄ emissions under three water management conditions; shallow water depth (SWD) (water depth around 10 to 15 cm), alternate wetting and drying (AWD) (water depth around 5 to-15 cm) and traditional irrigation (water depth around 20 to 30 cm) in the Maeklong river basin, Thailand. The best mitigation option for CH₄ emissions was AWD, followed by SWD and traditional irrigation,respectively. In drainage water to public canals, nitrate and phosphate concentration decrease with traditional irrigation. Furthermore, it can be saving water around 40 % - 63 % and maintain yield. Therefore, water management in rice field has potential for mitigation CH₄ emission and improving quality of water.

Nalley (2014) studied the economics of AWD and greenhouse gas emissions (CH₄) in a rice field. They found that AWD can be saving water around 20-70% and mitigate CH₄ emissions around over 50% (when compared with continuous flooding). However, they found that the rice yield had also decreased around 10%.

1.2.2 Simulating the methane emissions by the Denitrification – Decomposition (DNDC) model

Recently, researchers have developed various models for estimating greenhouse gas emissions from rice fields. The DNDC model is well known in Asia such as China, India, Japan, etc.

Towprayoon and Smakgahn (2003) studied and simulated the CH_4 emission in paddy field using process-based model and empirical model in Smutsakorn, Thailand under the drainage condition. They found that the accuracy of the DNDC model and empirical model were about 50 to 153% and -30 to 30%, respectively. Therefore, they suggested that both models should be improved for higher efficiency.

Cai *et al.* (2003) studied the trace gas emissions (CH₄, N_2O and NO) from cropping systems in Japan, China and Thailand using the DNDC model. They found that

the seasonal patterns of CH_4 and N_2O emission simulated by the DNDC model and that from the observation are different. They suggested to improve the model simulation by using local soil properties and management. However, the DNDC model satisfies the simulations of variation of greenhouse gas emission from cropping system.

Babu *et al.* (2005) studied CH_4 emissions in India by simulating and using the DNDC model and by observation using manual chamber flux measurements. They reported that the sensitive parameters to CH_4 emission are soil texture, pH, organic C content and the quantity of aboveground biomass. They concluded that the DNDC model has potential for estimating greenhouse gas emission and application for investigating the impacts of climate change.

Fumoto *et al.* (2008) revised a process-based biogeochemistry model (DNDC) to simulate CH_4 emissions from rice paddy fields under various residual management and fertilizer regimes in Japan and China. They reported that the revised DNDC indicate the effects of soil electron donors and acceptors and it can be quantitatively estimated CH_4 emissions from rice fields under a range of conditions.

Qi *et al.* (2009) studied C sequestration strategies affecting N_2O and CH_4 emissions by using the DNDC model under climate, soil and crop condition from the six agricultural sites across China. They found that firstly, the increases in sequestration rate increase may affect to N_2O and CH_4 emission. Secondly, they found that fertilization has effect to N_2O production. They concluded that the DNDC model could help investigation and developmental management at large regional scales.

1.3 Objectives

To simulate the emissions and mitigation of methane by denitrification – decomposition (DNDC) model under AWD conditions.

1.4 Scope of Research Work

This work simulates the emissions and the mitigation potential with AWD techniques for rice field CH_4 . Input data for simulation of the emission and mitigation of CH_4 from AWD field were obtained from 6 locations of the Rice Department Research Stations during December 2013 until April 2014, covering one crop cycle (dry season). Other auxiliary data were also available from the same source.

CHAPTER 2 THEORIES

2.1 Greenhouse gases, the greenhouse effect and climate change

The energy from sun, solar radiation, reaches to Earth's surface and reflects back to space in infrared radiation form, but greenhouse gases in the Earth's atmosphere can trap infrared radiation (heat energy). The effects of this heat energy trapping is the atmospheric temperature will be increased. This primarily phenomenon is termed "greenhouse effect". The excess presence of greenhouse gases in the atmosphere when compared to its natural levels will lead to "excessive heat" trapped in the atmosphere and this is known generally as "global warming". There are concerned that the global warming will bring about various aspects of climate change that adversely affect to the Earth and human well-being. These are, for example, natural disaster (flooding, drought, earthquake) changes in pattern of rain, temperature, moisture, seasonal patterns. The main sources of greenhouse gase are CO_2 , CH_4 , N_2O and CFC. Each gas has the different global warming potential as shown in Table 2.1.

Table 2.1 Global	warming potentials	of major greenhouse	gases (IPCC, 2014).
------------------	--------------------	---------------------	---------------------

Species	Lifetime (years)	Global warming potential
Carbon dioxide (CO ₂)	200-400	1
Methane (CH ₄)	9-15	28
Nitrous oxide (N ₂ O)	120	265
chlorofluorocarbon (CFC)	100	10,200

2.2 Rice field as the most important source of methane emission in Thailand

In terms of global warming potential CH_4 is the second after CO_2 . Out of the total emissions, it is the second emitted gas in Thailand with the emission amount in 2000 of 1,977 Gg. Of the total emissions, more than 70% came from agriculture (Table 2.2,2.3), with rice cultivation accounting for a major proportion (ONEP, 2000).

Source	Methane (CH ₄) (Gg.)
Energy	413.9
Industrial process	6.4
Agriculture	1,977
Land-use change and forestry	10.4
Waste	393.8

Table 2.2 The methane emissions in Thailand divide by sources (ONEP, 2000).

Table 2.3 The methane emissions from agriculture in Thailand (ONEP, 2000).

Agriculture	Methane (CH ₄) (Gg)
Enteric fermentation	393.3
Manure management	122
Rice cultivation	1,425.7
Field burning of agricultural residues	35.9

2.3 Process of methane production in rice fields

CH₄ is produced under anaerobic decomposition of organic matter by methanogenic bacteria (Fumoto *et al.*, 2008). The anaerobic conditions generated in wetland rice fields prevents oxygen diffusion from the atmosphere into the soil. In soil, many microorganisms use electron acceptor in the oxidation - reduction process, so that oxygen is also depleted very rapidly. Therefore the redox potential (Eh) which indicate the oxidation-reduction conditions in the soil gradually drops. The redox potential that initiates the production of CH₄ is usually below -150 mV (1996 IPCC Guidelines, 1996) (shown in Table 2.4 and Figure 2.1).

Table 2.4 The oxidation-reduction process and Eh value (Chidthaisong, 2000).

Oxidation-reduction process	Eh value (pH 7,25 C°) (mV)
$O_2 + 4H^+ + 4e^- => 2H_2O$	816
$NO_3 + 2H + 2e^- => N_2O - + H_2O$	412
$MnO_2 + 4H^+ + 2e^- \implies Mn_2 + + 2H_2O$	396
$Fe(OH)^3 + 3H^+ + e^- => Fe^{2+} + 3H_2O$	-182
$SO_4^{2-} + 10H^+ + 8e^- => H_2S + 4H_2O$	-215
$CO_2 + 8H^+ + 8e^- \implies CH_4 + 2H_2O$	-244

Figure 2.1 Methane production in rice fields by decomposition process (Le Mer *et al.*, 2001).

The first stage is called Hydrolysis process. During this stage, bacteria convert the particulate organic matter (polymer) into liquefied monomers such as protein, carbohydrate transform to amino acid monosaccharides respectively.

In the second stage, Acidogenesis, bacteria utilize the products from the first stage and convert to short chain volatile acids, ketones and alcohols. The acidogenesis stage products are for example propionic acid (CH₃CH₂COOH), and butyric acid (CH₃CH₂CH₂COOH).

In the third stage, Acetogenesis bacteria convert the remaining products from the acidogenesis stage into the hydrogen, carbon dioxide and acetic acid (CH₃COOH). The acetic acid (CH₃COOH) is an important substrate for producing CH₄ because 70% of CH₄ produced is converted from the acetic acid (CH₃COOH) (as shown Equation 1).

The fourth and last stage, Methanogenesis process, methanogenic bacteria convert the hydrogen, carbon dioxide and acetic acid (CH₃COOH) into CH₄ and CO₂. It is common to find that in natural habitats about 70% of CH₄ produced comes from acetic acid conversion (Eq. 1), and the rest comes from CO₂ reduction (Eq. 2).

$$CH_{3}COOH \rightarrow CO_{2} + CH_{4}$$
(Eq. 1)
$$CO_{2} + 4H_{2} \rightarrow CH_{4} + 2H_{2}O$$
(Eq. 2)

2.4 The transfer of methane from the soil to the atmosphere

 CH_4 from soil can be transfered by three processes to the atmosphere: vascular transport process, ebullition process and diffusion process. Each process has different pathways and factors to controlling the transfer CH_4 (Figure 2.2).

Figure 2.2 The process of CH₄ transfer from soil to the atmosphere (Brevik, 2012).

Vascular transport is a particularly important process in the transportation of CH_4 through rice plants, from the soil into the atmosphere. Rice plants transfer CH_4 from the rhizosphere to the atmosphere through aerenchyma. Aerenchyma has a function like a conductive tube. Aerenchyma of rice plants transfers O_2 , CO_2 , CH_4 and other gases in rice plants. CH_4 is emitted into the root cortex through aerenchyma and released into the

atmosphere through the leaves. Basically, the CH₄ transportation capacity of rice plants depends on height of rice plants, aerenchyma size and leaves type. These differ among rice cultivars. Therefore, the selection of rice plant cultivars which are less efficient in transporting CH₄ could be an option for reducing CH₄ emissions. The other process, "ebullition", is the release of CH₄ through bubbling into the atmosphere. These bubbles are the results of CH₄ build up over time in the soil, which occurs during the transportation of CH₄ directly to the atmosphere. The amount of emitted CH₄ through the ebullition process depends on many factors, such as, depth of floodwater, speed and direction of wind, atmospheric pressure, solar radiation and water temperature.

Generally, the total CH_4 emissions from ebullition is not more than five percent of the amount of CH_4 emitted by rice fields. However, during the beginning period of rice plantation when aerenchyma size and leaves are small, the CH_4 emission from ebullition is important because CH_4 cannot be transferred by the vascular transport process. Finally, there is the diffusion process, which is the movement of CH_4 through soil and water into the atmosphere (Figure. 2.2). However, the diffusion of gases in water is not as easily as in air. Therefore, the diffusion of CH_4 from rice fields depends on the CH_4 concentration in the floodwater, as well as the speed and direction of wind.

2.5 Factors affecting methane emission from rice fields

2.5.1 Soil properties

Soil chemical and physical properties can influence the emissions of CH_4 from rice fields in various ways. The redox potential (Eh) that indicates the oxidation – reduction conditions suitable for CH_4 production by methanogen bacteria is approximately -150 to -160 mV, and this is in part related to soil property. Higher Eh has usually higher oxidative conditions that are not suitable for CH_4 production and thus only small amounts of CH_4 emissions could be expected. Others, such as pH and soil texture have also reported to affect the production and emissions of CH_4 in rice fields, by affecting to Eh and the amount of electron acceptors (Chomvong, 2008) (Figure. 2.3).

2.5.2 Temperature

Temperature is the important factor that affects to production, consumption and transfer of CH₄, especially for the activity of microorganisms. The optimal temperature for methonogens is around 30 °C. At high temperature, particularly more than 30 °C, CH₄ production, mineralization and availability of carbon substrate is reduced. CH₄ transport and emission also depends on temperature. The Daily CH₄ emission varies with the difference of daily temperature (Jain *et al.*, 2004).

2.5.3 Fertilizer

Fertilizer is one of the factors that affects to pH of the soil, amount of microorganisms, and the activity of methanogens. CH_4 production is decreased from the competition for electron acceptors with nitrate and sulfate reducers. Thus, some fertilization type such as nitrogen, sulfate which are applied to soil will reduce CH_4 production and emission.

2.5.4. Rice varieties

Rice has different varieties types such as lowland rice, floating rice, upland rice, red rice, khao'yipun and etc. (BRRD, 2009). Variety characteristics such as growth duration, height, shape of the leaf and aerenchyma size vary among varieties. Since these

characteristics are related to the gas transport of rice plant, CH₄ emissions have been reported to be different among rice varieties (Punkeaw, 2003).

2.5.5 Water Management

Water is important for rice growing (Table 2.5). For water management, the irrigation method of traditional rice cultivation is continuous flooding which consumes a lot of water and is the main cause that stimulates CH_4 production. Oxygen cannot diffusion or difficult to diffuse from atmosphere to soil with the existence of flooding water. CH_4 emission, thus, usually increase with the period of flooding in rice field and rice growing. Therefore, if the duration of flooding can be reduced, the emissions of CH_4 are also reduced (Yoyrurob, 2000).

Rice growing period	Water & Demand of rice	Comment	
	plant		
Start Planting	Very much	More submerged water	
Tillering	Not too much	Only moisture of rice field,	
		soil rust not submerge	
Maturing	Very much	Irrigation or submerged	
		water	
Flowering	Litter	Only moisture of rice field,	
e		soil must not be submerged	
Young flowering	Not too much	Only moisture of rice field,	
		soil must not be submerged	
Old flowering/Harvesting	Less	Stop flowing/drainage	

 Table 2.5 Water demand of rice growing period (Wanichpongpan, 1993).

Various researchers have started to search for new technology for water saving irrigation (WSI) and mitigation of CH_4 emissions by irrigation in rice field. WSI includes various techniques such as, midseason-drainage, combining shallow water depth with wetting and drying (SWD), alternate wetting and drying (AWD) and semi-dry cultivation (SDC), and etc.

2.5.5.1 Midseason-drainage

Midseason-drainage is a water draining activity during maturity stages. During period oxygen from atmosphere can be transferred into the soil. Therefore, it could reduce CH_4 emission around 10-80 %, while maintaining a reasonable rice yield, but there are cause an increase in N₂O rice field (Li, 2005).

Figure 2.4 Graphical description of midseason- drainage (Zai, 2001).

2.5.5.2 Combining shallow water depth with wetting and drying (SWD)

SWD is a water depth control strategy in rice field. Firstly, during transplanting, seedling, booting and heading & flowering stage the water depth is controlled to be around 10-60 mm. with saturated moisture content (SMC) around 60 - 80%. Secondly, during the early & mid stages of tillering, milk ripening stage, shallow water depth 10-30 mm is maintained with SMC around 80%. During the rest of growing season the field is kept dry (Zai, 2001). SWD can reduce CH₄ emission around 20.2 % (chomvong, 2008).

- (1) Transplanting, (2) Seedling, (3) Early & mid stages of tillering
- (4) Late stage of tillering, (5) booting, (6) Heading & Flowering,
- (7) Milk ripening, (8) Yellow repening
- **Figure 2.5** Graphical description of combining shallow water depth with wetting and drying (Zai, 2001).

2.5.5.3 Semi-dry cultivation

Figure 2.6 Graphical description of semi-dry cultivation (Zai, 2001).

2.5.5.4 Alternate wetting and drying (AWD)

From the beginning of the rice planting, the water level is allowed to gradually decrease until the water level dropps around 15 cm below the surface the field will be reflooded to the water depth of around 5 cm at period of flowering from 1 week before to 1 week after the maximum flowering because prevent water stress that affect to rice grain yield. After flowering, grain filling and mature rice plant, the water level can be dropped again around 15 cm below the surface of the soil (IRRI, 2004) (Figure 2.8,2.9).

Figure 2.7 Graphical description of alternate wetting and drying (Zai, 2001).

(A)

Figure 2.8 (A) Control AWD system. (B) The water tube made is from PVC and about 40 holes are dilled on all sides. (C) Check equivalention of water level inside and outside water tube.

(A)

AWD can mitigate greenhouse gases from rice fields, because there is alternate anaerobic and aerobic that reduces CH_4 production. AWD also help save water and prevent chemical contamination drains to public water source and may reduce the need of diesel for water pumps. In many cases, AWD helps added yields because during the period of drying root of rice plant has been growing more than during the continuous flooding. However, sometime AWD technology reduces yield because moisture stress condition. AWD technology also improves soil stability that is easy for mechanical harvesting.

2.6 Simulating methane emission in rice field by the Denitrification - Decomposition (DNDC) model

The Denitrification-Decomposition (DNDC) model, is a computer model for predict crop yield, carbon sequestration and trace gas emission in agoecosystem, developed by Li Changsheng (Li *et al.*, 1992). The sub – structure of DNDC model have 2 components. First, it was about ecological aspect, including soil climate, crop growth and decomposition. The second component includes the nitrification, denitrification and fermentation processes. The results from simulation of two components are soil temperature, moisture, pH, redox-potential (Eh), substrate concentration profiles, emissions of CO₂, CH₄, ammonia (NH₃), nitric oxide (NO), nitrous oxide (N₂O) and dinitrogen (N₂) from the plant-soil systems.

Ecological process includes environmental factors such as moisture, temperature, and O_2 concentration in the soil by using soil properties, climate and rainfall data for simulation. Also, crop growth is simulated by the accumulative temperature, N uptake, and water stress at a daily time step under principle of photosynthesis, respiration, C allocation. The crop growth parameters for simulation are maximum yield, biomass portioning, C/N ratio, season accumulative temperature, water demand, and N fixation capacity. Furthermore, the decomposition simulation is based on the input parameters including the pool size, the specific decomposition rate, soil clay content, N availability, soil temperature, and soil moisture. Soil organic matter decomposition produces dissolve organic carbon (DOC) and microbes can immediately consume DOC. Organic nitrogen decomposition was transformed to ammonia phases (NH₄⁺) lead to nitrification and denitrification process, respectively (Fumoto *et al.*, 2008) (Figure 2.10).

2.6.1 Input parameters

The DNDC model can be divided into two modes including site mode and region mode. Input parameters for site mode are climate, soil properties and farm management information which the farm management has a sub-parameter that consists of crop type and rotation, tillage, fertilization, manure amendment, irrigation, flooding, plastic film use and grazing and grass cutting.

2.6.2 Output parameters

The main outputs are soil carbon and nitrogen profiles for 0 -50 cm, daily air temperature, precipitation, snow pack, evaporation, transpiration, crop biomass, N uptake, water stress and daily fluxes of NH₃, CH₄, N₂O, NO, and N₂ (Figure 2.11).

Figure 2.10 Structure of the DNDC model.

Figure 2.11 The seven windows shows results from the simulation the site under condition of the DNDC model.

The soil climate profiles are first calculated based on the daily weather data, soil physical properties and vegetation status. Therefore DNDC simulates plant growth by quantifying the growth stage based on accumulative temperature, water demand and uptake, N demand and uptake. DNDC partitions the crop biomass production increase to leaves, stems, roots and grain based on plant growth stage at a daily time step.

Decomposition is calculated based on quantity and quality of the existing SOC pools, soil climate profiles and soil N availability at a daily time step. Nitrification and denitrification are then predicted driven by dynamics of the soil Eh and relevant substrates (e.g., DOC, NH4+, NO3-, NO, N₂O). If a flooding event occurs, DNDC will track the soil Eh decrease driven by the sequential reductions of nitrate, nitrite, Mn4+, Fe3+ and sulfate. At certain low Eh conditions, the fermentation sub-model will be activated to calculate methane (CH₄) production. DNDC records modeled daily results of crop growth, soil temperature and moisture profiles, soil C pools/fluxes, soil N pools/fluxes, nitrate leaching losses, and gas fluxes at the end of each of the simulated days. DNDC continuously runs day-by-day until the last day of the year. DNDC will automatically shift to the first day of the next simulated year. The simulation will continue year-by-year until reaching the last year.

CHAPTER 3

METHODOLOGY

3.1 Location of study site

This work studies the simulation of CH_4 emission from rice field implemented with AWD by DNDC model and using the input data from the measurements of 6 sites, including Prachinburi, Ubon Ratchathani, Nakhon phathom, Chai Nat, Lop Buri and Phitsanulok rice fields (Figure 3.1).

Figure 3.1 Location of study sites.

3.2. Site Description

Four out of six study sites were located in the central part of Thailand, one in east and another in the northeastern Thailand. The central sites were at Nakhon phathom (13.98 N, 99.99 E), Chai Nat (15.18 N, 100.12 E), Lop Buri (15.06 N, 100.72 E) and Phitsanulok (16.82 N, 100.42 E). The east and northeast sites were in Phachinburi (14.01 N, 101.22 E) and Ubon Ratchathani (15.25 N, 100.72 E), respectively. All sites were subject to the same agricultural practices (Table 3.1 and Table 3.2) under two water managements; AWD (10/-15cm) and continuous flooding (10 cm). CH₄ emission were weekly measured by the Rice Department, using static chamber method. Fertilizer was applied with diammonium phosphate at 20 Kg N/ha and Urea at 25 Kg N/ha, respectively. Tillage was carried out by ploughing with moldboard, depth 20 cm.

Sites	Rice variety	Planting Date	Harvest date	Tillage date (Day/month)	Fertilization
	-	(Day/month)	(Day/month)		
Nakhon pathom	RD41	19/6	15/9	30/4	22/1, 10/2,
					24/2
Chai Nat	RD41	24/1	20/5	17/1	12/2, 3/3,
					20/3
Lop Buri	RD41	24/7	14/10	10/7	13/8, 28/8,
					19/9
Phitsanulok	RD41	15/1	14/5	7/1	4/2, 19/2,
					11/3
Phachinburi	RD41	19/6	15/9	30/4	10/6, 31/7,
					20/8
Ubon	RD41	31/7	28/11	24/7	20/8, 4/9,
Ratchathani					24/8

Table 3.1 Common cultivation practices at the six study sites.

3.3. Input data for DNDC model

There are several input types needed to run DNDC model. These are site and climate, soil, farming management, crop type and rotation, tillage, fertilization, manure amendment, irrigation, flooding, plastic film use, grazing and grass cutting.

3.3.1 Site and climate data

The data required are daily temperature, daily precipitation, concentrations of ammonia, concentrations of carbon dioxide, N concentration in rainfall and annual increase rate of atmospheric CO_2 concentration. These were obtained from the Thai Meteorological Department (shown in Figures 3.2 and 3.3).

Figure 3.2 Daily temperature at six study sites.

Figure 3.3 Daily precipitation at six study sites.

3.2.2 Soil

The soil data are the physical and chemical characteristics of soil. These were obtained from each sits as shown in Table 3.3. Due to some data not being available, the model default data for soil properties of rice fields were also used (Table 3.4).

Sites	Soil Characteristics							
	Soil te	exture	pł	I	Bulk densi	ty (g/cm^3)	Total organic C	
							(%	Ď)
	AWD	CF	AWD	CF	AWD	CF	AWD	CF
Prachinburi	Heavy	Heavy	4.93	4.93	1.34	1.34	1.93	1.93
	clay	clay						
Lop buri	Sandy	Sandy	5.96	5.98	1.40	1.40	0.75	0.78
	loam	loam						
Phitsanulok	Clay	Clay	4.73	4.79	1.87	1.87	1.83	1.93
Chai Nat	Sandy	Loam	7.52	7.2	1.32	1.31	1.2	1.15
	loam							
Ubon	Sandy	Loam	4.95	4.94	1.21	1.24	1.77	1.56
Ratchathani	loam							
Nakhon	Clay	Clay	7.38	7.76	1.41	1.34	0.72	1.07
pathom								

Table 3.2 The physical and chemical characteristics of the soil at 6 study sites.

*AWD = Alternate wetting and drying, CF = continuous flooding

 Table 3.3 The default data for soil properties of rice field.

Parameter	Default value	Unit
Hydro-conductivity	0.75	m/hr
By-pass flow rate	0	-
Depth of water retention layer	0.1	m
Highest groundwater table depth	0.1	m
Depth of top soil with uniform SOC content	0	m
SOC decrease rate below top soil (0.5 – 5.0)	0	m
Initial NO ₃ (-) concentration at surface soil	0.5	mg N/kg
Initial NO ₄ (+) concentration at surface soil	0.05	mg N/kg

Parameter		V.l. litter	Labile litter	Resistant litter	Humads	Humus	(IOC)
Default Fi	raction	0	0	0.001	0.0139	0.9762	0
value C	/N	5	25	100	10	10	500

** IOC = Inorganic carbon pool

3.3.3 Cropping data

The data inputs for cropping are number of year and amount of cropping system that include total years, number of cropping systems applied during the total simulated years, duration of this cropping system (yrs), duration of a cycle in this cropping system (yrs), cropping system and year in the cycle in this cropping system. These were also obtained from the sites.

3.3.4 Farming management

Farming management has a sub-parameter including crop type and rotation, tillage, fertilization, manure amendment, irrigation, flooding, plastic film use and grazing and grass cutting. The default values on rice field data of DNDC model (Table 3.4) and rice field management from 6 study sites shown in Table 3.1 were used. Tillage and fertilization were used as shown in Table 3.1 and 3.2, respectively. No manure was applied at these sites.

Table 3.4 The default data for crop of rice field.

Parameter	Default	Unit
	value	
Total N demand	183.954	kg N/ha
Thermal degree days	3200	°C
Water demand	508	g water/g dry
		matter
N fixation index	1.2	-
Adjusting default specific leaf weight (LAI adjustment	1	-
factor)		
Vascularity	1	-
Optimum temperature	22	°C

3.4 Performance of DNDC model

The DNDC model could be applied in other rice fields in Thailand and it will be helpful to improve the DNDC model. We used the root-mean-square error (RMSE) for performance evaluation of DNDC model, calculated by the following equation:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (P_i - O_i)^2}{n}}$$

Where Pi and Oi are the predicted and observed values, respectively, n is the total number of data. This root-mean-square error (RMSE) examines the correlation between model predictions and field observations and the best model performance had RMSE value equal to 1.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Methane emissions from continuous flooding and from AWD conditions

The results of CH₄ emissions observed at all six study sites under continuous flooded and AWD conditions are given in Table 4.1. It was found that the average CH₄ emissions from continuous flooded and AWD conditions were 112.83 and 92.48 kgC/ha/day, respectively. The highest emission from the continuous flooded condition was around 175.61 kgC/ha/day coming from Phitsanulok and the lowest emission from AWD was around 5.46 kgC/ha/day coming from Phachinburi. At all sites both for continuous flooded and AWD conditions, CH₄ emissions gradually increased from the beginning of planting with the distinct two peaks; sowing to tillering stage (duration varies from 1 to 40 days after planting (DAP)) and reproductive stage during 60 to 70 DAP and 77 to 84 DAP Highest CH₄ emission was found during the reproductive stage, (Figure 4.1,4.2). consisting with previous reports (Smakgahn et al., 2003). The lowest CH₄ emission was found in tillering stage because the field was drained especially, under AWD condition. There is one exception in Phitchanulok sites where the CH₄ emission from continuous flooding condition was less than AWD condition. It is not known what reason makes the emission at this site different from others. Nevertheless, from these results it can be said that, applying AWD was resulted in the average CH₄ emission reduction of -40.37+47.18%

Sites	Methane emission (methane emission reduction from	
	Continuous flooded (CF)	AWD	applying AWD (%)
Nakhonphathom	112.11	73.05	-65.16
Chai Nat	21.83	12.61	-57.76
Lop Buri	174.41	42.35	-24.28
Phitsanulok	175.61	253.81	+44.53
Phachinburi	11.60	5.46	-47.06
Ubon Ratchathani	181.45	167.62	-92.37
Mean			-40.37±47.18

Table 4.1 Observed methane emission under continuous flooded and alternate wetting and drying (AWD) condition and methane emission reduction from applying AWD.

Figure 4.1 Observed CH_4 emissions under continuous flooded condition at six study sites (DAP = Day After Planting)

Figure 4.2 Observed methane emissions under AWD condition at six study sites.

4.2 Yields and emission per yields

Rice yields under continuous flooding conditions ranges from 2.3 to 4.6 ton/ha. Under AWD, this ranges between 2.4 and 4.8 ton/ha. There is no obvious trend for the effects of AWD on rice grain yield from these sites. However, when normalizing these to the amount of CH_4 emissions (CO_2 e) per a unit of grain yield, producing one kg of rice on average emits CH_4 1.05 and 0.80 kg CO2e for continuous and AWD conditions, respectively. Thus, AWD apparently reduce CH_4 emission intensity in rice fields.

Sites	Gain yields (kg/ha)		Emission in (kgCO2e/kg	ntensity g grain)
_	Continuous AWD		Continuous	AWD
	flooded		flooded	
Nakhonphathom	3425	2650	0.92	0.77
Chai Nat	4200	3431	0.15	0.10
Lop Buri	2656	2587	1.84	0.46
Phitsanulok	4600	4800	1.07	1.48
Phachinburi	3975	3393	0.08	0.05
Ubon Ratchathani	2268	2412	2.24	1.95
Mean			1.05	0.80

Table 4.2 Observed CH_4 emissions under continuous flooded and AWD conditions and CH_4 emission reduction from applying AWD.

4.3 Simulation of methane emissions by DNDC model

Although in general the DNDC could simulate quite well the emissions, the capacity to simulate was different among sites and different between continuous flooding and AWD conditions (Table 4.3 and Figures 4.3-4.4). Under continuous flooding condition, high consistency between observed and simulated values were found except during the second peak or during the reproductive phase of rice growth (Figure 4.3). Exception was Prachiburi site where observed and simulation results were not consistent. At this site, the main difference was a heavy clay soil with highly acidity which $pH \sim 4.93$, and from time to time saline water intrusion was observed. High acidifty and salinity may be the reasons of the difference between observed and simulated results. Under such conditions, model adjustment may be needed and be the topic of further research. Thus, DNDC many be not suitable for such condition. On average, the difference between observed and simulated emission was 10.88 \pm 16%.

Under AWD conditions, the results of observed and simulated emission agree quite well. The difference between observed and simulated emission was $8.01\pm19\%$. Again, discrepancy between observed and simulated values were found mainly during rice reproduction stage. Thus, improving simulation during this growth stage will potentially help improve model performance. In general, it is thus concluded that DNDC is working well to simulate CH₄ emission under both continuous flooding and AWD conditions. Improvement in this area may be putting more efforts to find the way to enhance the simulation during the reproduction of rice. Analysis result of the relationship between simulated and observed emission at all sites is shown in Figures 4.5-4.8. In most cases, high correlation between observed and simulated emissions was found, with the R^2 between 0.3-0.8 for both continuous flooding and AWD conditions. Howver, no significant correlation was found for Prachinburi site.

Sites Methane emission (kgC/ha/day) The difference between observed and simulated (%) Simulation from Observation Observation Simulation DNDC model from DNDC model AWD CF AWD CF CF AWD Nakhonphathom 73.05 112.11 86.61 83.57 22.75 -14.40 Chai Nat 12.61 -15.54 21.83 24.06 14.57 -10.2242.35 Lop Buri 174.41 182.51 35.41 -4.64 16.39 Phitsanulok 253.81 233.01 5.03 8.20 175.61 166.77 4.07 27.16 25.46 Phachinburi 11.6 5.46 8.45 181.45 **Ubon Ratchathani** 167.62 135.69 120.72 25.22 27.98 8.01±19 Mean 10.88 ± 16

Table 4.3 Observed and simulation CH_4 emission under continuous flooded and AWD condition at six study sites.

* CF = continuous flooding and AWD = alternate wetting and drying

Table 4.4 The Root-mean-square-error values and the relative deviation of CH_4 emission between the observed and simulated values from six study sites under continuous flooded and AWD condition.

Sites	RMSE values	s(kgC/ha/day)
	CF*	AWD
Nakhonphathom	0.70	0.46
Chai Nat	0.11	0.08
Lop Buri	0.31	0.18
Phitsanulok	0.55	0.83
Phachinburi	0.79	0.05
Ubon Ratchathani	1.02	1.16

* CF = continuous flooding and AWD = alternate wetting and drying

Figure 4.3 Observed and simulation CH₄ emission under continuous flooded condition at six study sites

Figure 4.4 Observed and simulation CH₄ emission under AWD condition at six study sites

Figure 4.5 Correlation between observation and simulation CH₄ emission under continuous flooded condition at six study sites.

Figure 4.6 Correlation between observation and simulation CH₄ emission under AWD condition at six study sites.

4.4 Sensitivity analysis of DNDC model

The sensitivity analysis was carried out to find out the highest sensitive input parameter of the DNDC model that affects CH₄ simulation. It was expected that knowing this could help improve the simulation in the future through careful data collections and research. The input parameters for the DNDC model were obtained from field study sites and model's default value. This analysis focuses on microbial activities, clay fraction, soil organic carbon and water level because of there are high sensitivity. In general, CH₄ emission increases when microbial activity and SOC increase. However, the change in SOC affects more to the emission when compares to that of the microbial activities (Figure 4.7-4.7). On the other hand, CH_4 emission was negatively correlated with the clay fractions (Figure 4.9). In addition, the response in changes of clay fraction were quite different among sites. Emission in Lopburi and Ubonratchathani decreased significantly from about 12-16 kgCH₄/ha to less than 2, while at other sites these were less significant. This sensitivity analysis indicate that there is interactions between clay fraction and other factors specific for each site or group of sites. Thus, attentention should be paid on specific data collection priority and sensitivity analysis should be done for each site. This could lead to improvement in modeling performance.

Another parameter that significantly affects the simulation is the water level. The sensitivity of CH_4 emissions on the water level was tested from level 5 cm submerge soil surface and -15 cm below the soil surface because of the conditioned water of AWD was 5-(-15) cm. The result of CH_4 emission from the simulation was decreased when the water was drained, and increased after flooding (Figure 4.10). The emission was kept low as far draining was practices. This analysis also indicates the data on water level need to be obtained with high accuracy from the field to obtain good model performance.

Figure 4.7 Sensitivity of DNDC simulated CH₄ emission with microbial activity.

Figure 4.8 Sensitivity of DNDC simulated CH₄ emission with soil organic carbon.

Figure 4.9 Sensitivity of DNDC simulated CH₄ emissions from rice fields with clay fraction.

Figure 4.10 Sensitivity of DNDC simulated CH₄ emission water level.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

This study investigated the application potential of the DNDC model to simulate CH₄ emissions under different water management system that consists of AWD and continuous flooded. It was found that the average effect of water management as AWD on CH₄ emission from five sites was a reduced emission by 40%. One site (Pitsanulok) shows that CH₄ emission was higher under AWD when compared to continuous flooding conditions. Out of these six sites, DNDC could simulate the emission of CH₄ under both continuous flooding and AWD condition, with the average agreement between observed and simulated emission of 90±18%. However, an exception was for one site (Prachinbori) where no correlation between observed and simulated emission was found. This site is unique that it is an acid sulfate soil with heavy clayey texture and sea salt contamination. The processes and input parameter under such conditions may be not suitable for DNDC model. These results indicate that while AWD could effectively reduce CH₄ emissions and this could be modeled by DNDC, exception is always present. The result of sensitivity test indicate that microbial activities, clay fraction, soil organic carbon and water level have significant effect to simulation outputs. Thus, it is important that site characteristics and input parameters are obtained to test the model and thus more simulation and validation are required for further application of DNDC to estimate mitigation potential under AWD.

5.2 Recommendations and Limitations

From the experiences using the DNDC in this study, the results could be improved if the followings are considered;

1. The user cannot improve or modify the DNDC model by him/herself, while some input parameters are specific sites data, such as the type of fertilization, irrigation method. Thus, the capacity and collaboration for modifying source code may be needed. 2. The effects of specific site characteristics such as salinity and acidity/acid sultfate soil, cannot be evaluated and this could be the source of the low performance of the model at the Prachinburi site.

5.3 Future works

Basic data collections, such as cultivation practices and crop biomass and other necessary data from more sites, are needed to run DNDC and to improve the estimate of the effects of water management on CH_4 emissions in Thailand. Furthermore, the effects of AWD on crop yield and nitrous oxide (NO₂) should also be studied and simulated by the DNDC.

REFERENCES

- Babu, Y. J., Li, C., Frolking, S., Nayak, D. R., Datta, A., Adhya, T. K. (2005). Modelling of methane emissions from rice-based production systems in India with the denitrification and decomposition model: field validation and sensitivity analysis. *Current Science Bangalore*, 89, 1904.
- Bureau of Rice Research and Development. (2009). Rice seed. Available Source: http://www.brrd.in.th/rvdb/ [accessed 24 November 2014].
- Brevik, E. C. (2012). Soils and climate change: Gas fluxes and soil processes. *Soil Horizons*, 53, 12-23.
- Cai, Z., Sawamoto, T., Li, C., Kang, G., Boonjawat, J., Mosier, A., Tsuruta, H. (2003). Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. *Global Biogeochemical Cycles*, 17. 1107.
- Chidthaisong, A., Conrad, R. (2000). Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil. *Soil Biology and Biochemistry*, 32, 977-988.
- Chomvong, A. (2008). Water Management in Paddy Field for Reduction of Environmental Impacts on Methaneand Water Quality. *Research and Development Journal of The Engineering Institute of Thailand*. 19. 52-59.
- Fumoto, T., Kobayashi, K., Li, C., Yagi, K., & Hasegawa, T. (2008). Revising a processbased biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. *Global Change Biology*, 14, 382-402.
- Intergovernmental Panel on Climate Change. (1996). Agriculture. Revised1996 IPCC Guidelines for National Greenhouse Gas Inventories, 4.53 4.75.

- International Rice Research Centers Institute. (2004). Saving Water with Alternate Wetting Drying(AWD). Available Source: http://www.knowledgebank.irri.org/training/fact-sheets/water-management/saving-water-alternate-wetting-drying-awd, [accessed 24 November 2014].
- Jain, N., Pathak, H., Mitra, S., & Bhatia, A. (2004). Emission of methane from rice fields-A review. *Journal of Scientific and Industrial*, 63, 101-115.
- Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. *European Journal of Soil Biology*, 37, 25-50.
- Li, C., Frolking, S., & Frolking, T. A. (1992). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. *Journal Geophysical*. 97, 9759-9776.
- Li, C., Qiu, J., Frolking, S., Xiao, X., Salas, W., Moore, B., Sass, R. (2002). Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980–2000. *Geophysical Research Letters*, 29, 33-1.
- Li, C., Frolking, S., Xiao, X., Moore, B., Boles, S., Qiu, J., Sass, R. (2005). Modeling impacts of farming management alternatives on CO₂, CH₄, and N₂O emissions: A case study for water management of rice agriculture of China. *Global Biogeochemical Cycles*, 19.
- Nalley, L., Anders, M., Kovacs, K., Lindquist, B. (2014). The Economic Viability of Alternative Wet Dry (AWD) Irrigation in Rice Production in the Mid-South. Working Paper Prepared for the Southern Agricultural Economics Association 46th Annual Meeting Program, Dallas, Texas, 2014.
- Office of natural resources and environmental policy and planning ministry of natural resources and environmental.(2000). The Second National Communication of Thailand Report.Bangkok. Thailand.
- Poonkaew S. (2003). Influence of Field Drainage on Methane and Nitrous Oxide Emissions from Rice Field. Master of Science.School of Energy and Materials. King's mongkut university of technology thonburi, Thailand.

- Qiu J., Li C., Wang L., Tang H., Li H., and Ranst E. (2009). Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China., *Global Biogeochemical Cycles*. 23.
- Richards M and Sander B., (2014). Alternate wetting and drying in irrigated rice. Available Source:http://ccafs.cgiar.org/publications/alternate-wetting-and-drying-irrigatedrice#.VHI2KYusVqY, [accessed 24 November 2014].
- Towprayoon S.and Smakgahn K., (2003), Study on models implementation on Methane and Nitrous Oxide Emissions from Thai Rice Fields. The joint graduate school of energy and environment.King's mongkut university of technology thonburi, Thailand.
- Wanichpongpan P., (1993). Emission rate and influential factor of methane from rice Daddy field. Master of Engineering.School of Energy and Materials. King's mongkut university of technology thonburi, Thailand.
- Yoymrob S., (2000), Relationship of Rice Plantation Method and Water Management on Methane Emission from Rice Field. Master of Science.School of Energy and Materials. King's mongkut university of technology thonburi, Thailand.
- Zhi, M., (2001). Water efficient irrigation and environmentally sustainable irrigated rice production in. Wuhan University, China.

APPENDIX

APPENDIX A 1: Daily maximum temperature, minimum temperature and precipitation at Chai Nat in 2014.

APPENDIX A 2: Daily maximum temperature, minimum temperature and precipitation at Phachinburi in 2014

APPENDIX A 3: Daily maximum temperature, minimum temperature and precipitation at Phitsanulok in 2014

APPENDIX A 4: Daily maximum temperature, minimum temperature and precipitation at Ubon Ratchathani in 2014

APPENDIX A 5: Daily maximum temperature, minimum temperature and precipitation at Nakhon phathom in 2014

APPENDIX A 6: Daily maximum temperature, minimum temperature and precipitation at Lop buri in 2014

APPENDIX B 1: Water table depth at Chai Nat in 2014 under continuous flooding.

APPENDIX B 2: Water table depth at Lop buri in 2014 under continuous flooding.

APPENDIX B 3: Water table depth at Nakhon phathom in 2014 under continuous flooding.

APPENDIX B 4: Water table depth at Phachinburi in 2014 under continuous flooding.

APPENDIX B 5: Water table depth at Phitchanulok in 2014 under continuous flooding

APPENDIX B 6: Water table depth at Ubon Ratchathani in 2014 under continuous flooding.

APPENDIX C 1: Water table depth at Chai Nat in 2014 under AWD.

APPENDIX C 2: Water table depth at Lop buri in 2014 under AWD.

APPENDIX C 3: Water table depth at Phachinburi in 2014 under AWD.

APPENDIX C 5: water table depth at Nakhon phathom in 2014 under AWD.

APPENDIX C 4: Water table depth at Phitchanulok in 2014 under AWD.

APPENDIX C 6: Daily water table depth at Ubon Ratchathani in 2014 under AWD.

APPENDIX D 1: CH₄ emissions from observation and simulation at Chai Nat under continuous flooding and AWD

APPENDIX D 2: CH₄ emissions from observation and simulation at Nakhon phathom under continuous flooding and AWD

APPENDIX D 3: CH₄ emissions from observation and simulation at Lop Buri under continuous flooding and AWD

APPENDIX D 4: CH₄ emissions from observation and simulation at Phachinburi under continuous flooding and AWD

APPENDIX D 5: CH₄ emissions from observation and simulation at Phitsanulok under continuous flooding and AWD

APPENDIX D 6: CH₄ emissions from observation and simulation at Ubon Ratchathani under continuous flooding and AWD

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
1	28.2	16.5	0	42	31.4	20	0
2	29.8	16.4	0	43	31.2	22	0
3	30.7	16	0	44	32	21.9	0
4	31	18.2	0	45	32.3	21.5	0
5	31.2	19.4	0	46	32.2	24	0
6	31	19.3	0	47	32.5	23	0
7	31.6	20.5	0	48	32	23.2	0
8	32.7	21	0	49	32.5	23.5	0
9	31.6	20.7	0	50	34	23	0
10	30.6	19.7	0	51	27.7	21.2	0
11	31	19.5	0	52	30.3	18.9	0
12	31.7	19.2	0	53	33	20.6	0
13	30.5	19.4	0	54	32.9	23	0
14	28	18	0	55	32.4	23.2	0
15	27.2	16.5	0	56	32.9	22.2	0
16	28.2	13.2	0	57	33.4	22.4	0
17	29.4	14.7	0	58	32.5	22.7	0
18	28.1	16	0	59	33	23	0
19	27.6	15	0	60	33.2	22	0
20	28.5	15	0	61	35.2	23	0
21	27.6	14.5	0	62	35.2	23	0
22	26	15.5	0	63	35.4	23.4	0
23	26.8	11.5	0	64	34	23.4	0
24	27.8	12	0	65	34.1	23.4	0
25	30.2	12.8	0	66	33.9	22.7	0
26	31.2	14.2	0	67	34	23.3	0
27	31.3	16.3	0	68	33.7	23	0
28	31.6	17.5	0	69	33.4	23.7	0
29	31.6	17.6	0	70	34.3	23.5	0
30	31.6	17.7	0	71	34.4	23.2	0
31	30.9	18	0	72	35	24	0
32	31.2	18.6	0	73	36	23.8	0
33	32.2	18.8	0	74	35.7	24.3	0
34	33.6	20.4	0	75	36.6	25.1	0
35	31.5	22	ů 0	76	34	25.4	0 0
36	32.2	23.2	ů 0	77	36.4	23.2	0 0
37	32.1	22	0 0	78	35.3	24.5	0
38	32.1	$\frac{22}{224}$	0	70 79	37	21.5	0
39	31.6	22.5	0	80	35.6	25.0 24 9	64
40	31.7	21.2	Ő	81	32.7	255	0.7
41	32.9	21.2	0	87 87	32.7		
41	54.7	20	0	02	JY344	42.3	0 0

APPENDIX A 1: Daily maximum temperature, minimum temperature and precipitation at Chai Nat in 2014.

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
83	35.9	24.4	0	124	36	25.2	0
84	35.3	25.4	0.11	125	37.2	25.6	0
85	36.5	25	0	126	36.7	25.6	3.02
86	37.3	25.6	0	127	34	24.5	0
87	37.2	24.2	0	128	36.6	24.5	0
88	36.2	24.5	0	129	36.3	26.2	0
89	36.6	25.4	0	130	36.8	25.8	0.02
90	37.7	25.5	0	131	37	25.4	0
91	38	24.5	0	132	37.2	25	0
92	36.8	25.7	0	133	36.9	26.3	0
93	37	26.4	0	134	37.6	25.5	0
94	34	25.9	4.62	135	37.6	26.3	0
95	33.6	23	0.02	136	37.6	27.2	0
96	34.8	23.4	0	137	37.8	26.8	0
97	36.8	25.5	0	138	37	28	2.9
98	37	25.3	0	139	34.2	23.4	0.08
99	37	25	0	140	36	25.2	0
100	37	25	0	141	36.5	27	0
101	36.8	25.8	0	142	36	25.7	0.04
102	36.8	25.4	1.02	143	35.5	25.3	0
103	35.6	24.1	0	144	36.7	26	0
104	36.2	25	0.58	145	38	26.5	0
105	35.2	23.6	0	146	36.7	26.5	0
106	36.5	24.5	4.89	147	37	26.3	1.76
107	36.4	24	0	148	34.2	23.4	0.07
108	37.3	26.2	0	149	35.8	25.5	0.68
109	36.7	25.6	0	150	35.3	24.8	0
110	37.3	27.3	0	151	35.7	25.5	0.12
111	36.7	26.4	0	152	36	25.6	0
112	38.2	25.2	0	153	35.7	25.3	0
113	38.8	27	0	154	37	26.7	0
114	37.6	26.1	0	155	36.6	26	0
115	38	26	0	156	36.7	26.6	0
116	38.5	27	0	157	35	25.8	0.26
117	38.5	26.2	0	158	34.5	25.4	0
118	38.6	25.6	0	159	35	26.8	4.22
119	34.8	23.7	0.04	160	33.8	25.5	0
120	34.3	25.6	0	161	34.5	26.5	0
121	36.5	26.7	0.23	162	34.5	27.5	1.13
122	34.7	24	0	163	32	24.9	0
123	35.7	26	0	164	33.5	26	0

APPENDIX A 1: Daily maximum temperature, minimum temperature and precipitation at Chai Nat in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
165	34	27.5	0.72	206	33.6	26	0
166	33	26.1	0.35	207	32.4	25	0
167	32.6	26.8	0	208	32.5	25.6	1.16
168	33	26.6	0	209	31.5	25.2	0.05
169	34	26.9	0	210	34	26	1.03
170	33.6	27	0	211	33	25.3	3.45
171	34.2	26.8	0	212	33.7	25.4	0
172	35.5	27.2	2.77	213	33.5	25.6	0
173	34.8	25.6	0.02	214	32.9	25.2	0
174	33.4	27	0.1	215	32.2	26	0
175	33	26	0	216	32.2	26.1	0.34
176	32.3	26.5	0.2	217	32.2	25.3	0.02
177	32.8	26	0.9	218	30.8	25.2	0
178	33.7	25.4	0	219	32	24.7	1.1
179	36.7	26	0	220	32.5	24.4	0.02
180	36.8	26	0.12	221	31.8	25.2	0
181	36.7	26.5	0.04	222	32	24.1	0
182	34	26	0	223	34.2	25.5	0
183	35	26.3	0	224	34.6	24.5	0.11
184	36.7	26.4	0	225	34	25.2	0.15
185	35.4	26.4	0	226	33.5	25	0.75
186	36.2	26.3	0	227	32.9	24	1.86
187	35.5	25.3	0	228	32.5	24.5	0.12
188	36	26.7	0	229	34.8	24.4	0
189	34.5	26	0.34	230	35.5	25.7	0.24
190	33.2	25.5	0	231	33.6	24.4	0
191	33.2	25.3	0.1	232	33.7	24.4	0.05
192	33	25.2	0	233	32.4	24.8	2.02
193	34.1	25.6	0	234	33	24	0.05
194	33.7	26.4	3.42	235	32.7	24.3	0.2
195	33.8	24.7	2.35	236	35.1	24.9	0.55
196	33	24.7	0.76	237	35.1	24.4	0
197	32	25.4	1.1	238	30.9	25.2	0
198	33.7	25	0	239	32.5	24.2	0.88
199	33.5	26.5	0	240	32.3	24.4	0
200	30.1	25.7	0	241	31.8	24.8	0.02
201	31.8	25	0	242	30.5	24.9	5.35
202	32.5	26	0	243	31.6	24	1.15
203	34.2	26.5	0	244	32.7	24.4	0.62
204	35.2	25.5	0.12	245	35.9	24.5	0.64
205	33.4	25.5	0	246	32	24	0

APPENDIX A 1: Daily maximum temperature, minimum temperature and precipitation at Chai Nat in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
247	33.9	24.3	0	288	32.5	23.2	0
248	33	24.6	0.06	289	33	22.7	0
249	33.5	24.9	0.33	290	33.3	24.2	0
250	32	24.6	0.12	291	33.5	24.5	0
251	34.5	24.5	0	292	32.5	24.5	0
252	34.4	24.3	0	293	32	24.9	0
253	34.4	25	0	294	32.6	24	0
254	33	25.2	3.42	295	33.2	24.4	0
255	34	24.4	0	296	31.5	24.3	0
256	35	24.7	0	297	31.7	24.5	0.97
257	34	25.4	2.2	298	32.8	24.5	0
258	34	24.2	0.03	299	30.3	25	0
259	33.5	25	0	300	34	24.4	0.39
260	33.5	25	0	301	34.3	24.2	0
261	31.7	25	0	302	34	24.9	0
262	34.9	24.6	0	303	34	24.7	2.19
263	35.4	21.2	0	304	34.5	24.4	1.21
264	35.5	22	0	305	34.7	25.5	0
265	33.5	22	0.09	306	33.8	25	1.12
266	35	26.1	0	307	32.8	24.5	0
267	31.2	25.4	1.02	308	32.8	23.8	0
268	30.6	24.9	0.25	309	32	24	0.76
269	32.5	22.5	0	310	32.5	24.8	0.01
270	35	22.5	2.13	311	33.7	25	0
271	35.2	24	0.57	312	33.9	23	3.9
272	33.2	24	0.36	313	32.8	25.3	0
273	32.5	24	0.03	314	34	24.2	0
274	34	24.5	0	315	34	25	0
275	33.7	24	2.98	316	34.3	24.8	0
276	34	25.3	0	317	33.4	24.3	0
277	34.5	25.5	0	318	32	24.3	0
278	34	25.4	0	319	32.6	22.5	0
279	30.1	23.8	0.3	320	32.7	24	0
280	32	24.8	0	321	32.7	23	0
281	31	24.6	0	322	31.7	22.2	0
282	31.5	23.5	2.65	323	31	21.2	0
283	33.8	25	0	324	31.1	20.5	ů 0
284	33	23.9	0.62	325	31.2	21.5	0
285	32	24.1	0	326	32.8	21.7	0
286	32.8	23.5	Õ	327	32.5	21.7	0
287	32.8	25.3	0	328	33	22.2	0

APPENDIX A 1: Daily maximum temperature, minimum temperature and precipitation at Chai Nat in 2014. (Con't)

Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)	Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)
329	33.3	22.5	0	348	30.7	20	0
330	33.7	23.3	0	349	31.4	19.5	0
331	34	24	0	350	31.5	20.4	0
332	34	24.2	0	351	27.7	19.8	0
333	35	24.9	0	352	29	17.4	0
334	34.5	25.4	0	353	29.5	18	0
335	33.5	22.8	0	354	30.9	19.5	0
336	30	24.2	0	355	32.1	19.5	0
337	32.6	24.5	0	356	32.2	20.4	0
338	32.5	21.5	0	357	29.5	16.4	0
339	30.5	24.7	0	358	30.7	17.9	0
340	33.9	23	0	359	30.3	22.4	0
341	34	23	0	360	34	21	0
342	32.3	24	0	361	34.6	22.9	0
343	32	21.4	0	362	32.8	24.6	0
344	32.7	21	0	363	30.5	21.2	0
345	33.2	20.1	0	364	31	17.9	0
346	32.2	21.7	0	365	30.3	17.2	0
347	29.8	20.3	0				

APPENDIX A 1: Daily maximum temperature, minimum temperature and precipitation at Chai Nat in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
1	31.2	17.2	0	42	33.7	20.8	0
2	32.5	16.1	0	43	34	24	0
3	33.2	17.7	0	44	34.2	23.5	0
4	34.2	18.2	0	45	33.6	24.2	0
5	32.8	20.6	0	46	33.8	24.8	0
6	34	19.7	0	47	33.7	24.7	0
7	33.5	21.6	0	48	35	25.1	0
8	34.4	21.5	0	49	34.7	25	0
9	33.6	21.5	0	50	34.8	24.2	0
10	33.1	22.5	0	51	28	21.4	0
11	34	21.2	0	52	30.4	20.7	0
12	34	22.5	0	53	34.7	20.5	0
13	32	21.3	0	54	34.8	23.4	0
14	30.6	19.3	0	55	35	24.7	0
15	29.9	18.4	0	56	34.6	24.5	0
16	29.5	18.2	0	57	34.3	24.1	0
17	31.5	16.2	0	58	34.7	24.4	0
18	29	19.2	0	59	34.5	24.5	0
19	29	18.4	0	60	34.5	24	0
20	29.8	16.7	0	61	34.6	23.6	0
21	29	18.9	0	62	36.1	24.4	0
22	27.4	16.7	0	63	36.1	25	0
23	28.7	16.2	0	64	36	23.8	0
24	29.7	14.5	0	65	36	24	0
25	31.4	14	0	66	35.6	24.4	0
26	31.7	16.2	0	67	35.5	24.9	0
27	33	18.6	0	68	36.1	25	0
28	33.5	19.7	0	69	34.1	25.1	0
29	33.7	19.5	0	70	35.7	25	0
30	34.5	19.6	0	71	35.8	24.6	0
31	33.7	19.4	0	72	35.7	25.3	0
32	34.5	24	0	73	37.6	25	ů 0
33	33.4	19.6	0	74	36.7	26.2	0
34	34.9	21.2	0	75	36	20.2	0
35	34.5	21.2	0	76	36.9	21.2	0.04
36	33.7	22.9	0	70	37	27.1	0.04
30	3/	23.5	0	78	37	24.5	0
38	34	2+.1 24.1	0	70	37 0	20.7	0
30	34	27.1 24	0	19 80	37.9	20.2 26	0
39 40	34 34	∠+ 22	0	0U 01	20.J 22 5	20 25 5	0
40 41	34 22 5	22	0	81 02	33.5	25.5	0
41	33.3	20.2	0	82	36	23.2	0

APPENDIX A 2: Daily maximum temperature, minimum temperature and precipitation at Phachinburi in 2014.

Precipitation	Minimum	Maximum	Julian day	Precipitation	Minimum	Maximum	Julian day
(cm)	temp.(C)	temp.(C)	(2014)	(cm)	temp.(C)	temp.(C)	(2014)
0	25.2	37.2	124	0	25.5	36.9	83
0	27	38.5	125	0	26.5	36.6	84
9.47	27.7	37	126	0	25.7	37	85
0	24.3	35.8	127	0	26.4	38.5	86
0	25.5	36.9	128	0	26.6	37.6	87
0	26.1	37.5	129	0	25.3	38.5	88
0.21	27.2	37.4	130	0	26.4	38.4	89
0	25.5	37.9	131	0	26.1	39.5	90
0.03	27.7	38.5	132	0	26.2	39	91
0	28	38	133	0	25.4	38.5	92
0	26.7	37.2	134	0	26.4	39.7	93
0	27.7	38.6	135	0	26.8	39.6	94
0	28.2	37.9	136	1.25	25.8	34	95
0.03	27.9	38	137	0	22.7	35.5	96
0	27.5	37.2	138	0	25.8	37.1	97
0	26.7	36.7	139	0	26.3	37.6	98
0	26.7	37.5	140	0	27.3	38	99
0	27.6	38	141	0	26.4	37.9	100
0	27.6	37.9	142	0.16	26.3	35.5	101
0	26.8	37.7	143	0	26	35.8	102
0	27.7	38.5	144	2.24	26.2	36.9	103
0	27.7	38.5	145	0	24.7	37	104
4.09	27.6	39	146	0.03	25	37.5	105
0.42	27	37.7	147	0	26	37.2	106
0	26.6	37.1	148	0	26	37.5	107
0	26.8	37.4	149	0.5	26.8	38.6	108
0	27.6	38.4	150	0	25.7	37.6	109
0	28.2	37.7	151	0	27.6	37.2	110
0	27.4	37.7	152	0	26.2	38	111
0	28	38.5	153	0	27.3	37.9	112
0.84	28.5	37.9	154	0	27.6	37.9	113
0	24.8	37	155	0.1	28	39	114
0.02	27	35.5	156	0	27.3	38.1	115
0	26.7	36.6	157	0	26.7	39.5	116
0	27	35.6	158	0	27.4	39.2	117
0.25	26.5	37.2	159	0	27.5	39	118
0	26.7	34.5	160	0	25.8	36.5	119
ů 0	26.7	37	161	1.12	26	36.8	120
0.4	27.3	34.5	162	0.02	26.6	37	121
1.31	25.1	33.7	163	0	27.2	36.9	122
2.31	25.1	32.1	164	Ő	267	38	123

APPENDIX A 2: Daily maximum temperature, minimum temperature and precipitation at Phachinburi in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
165	33.4	26.7	0.97	206	33.2	25.9	0.45
166	34.5	26	0.55	207	35	25.7	0
167	31.8	25.7	1.44	208	34.8	25.8	0.89
168	34.5	26.6	0.61	209	31.1	24.7	0.08
169	34	25.3	0.33	210	35	25.2	1.05
170	33.5	26.7	0	211	32.6	25	1.38
171	34.6	26.7	0	212	34	24.9	0
172	34.9	27.5	2.68	213	33.9	26.6	0.54
173	34.4	24.5	0.34	214	31.8	25.4	1.37
174	34.6	24.9	0	215	32.8	25.7	0.45
175	34.1	26	1.15	216	32.5	25.2	2.23
176	31.5	26.3	0.11	217	30.5	24.6	1.97
177	31.5	25.2	0.51	218	31.2	24.4	0.84
178	34.9	24.9	0	219	33.3	24.5	0.82
179	35.6	26.6	0	220	34.1	24.2	0
180	36.2	26.9	0.04	221	33.1	25.1	1.16
181	33.3	26.8	2.25	222	33.3	25	0
182	34.7	24.4	0.06	223	35.7	26.4	0.02
183	35.5	24.6	1.25	224	34.4	25	2.47
184	35.4	26.7	1.78	225	34.4	24.8	0.28
185	36	25	0	226	33	25	0.14
186	36	27.2	0	227	34	23.9	0
187	35.9	27.2	0	228	34.1	26.4	0
188	35.1	27	0	229	36	26.3	0
189	34.6	27.8	1.43	230	35.8	26.2	0
190	33.4	25.3	0.03	231	35.5	27	2.08
191	33.6	25.7	0.04	232	34.4	25.3	1.39
192	34.2	25.9	0.01	233	31.9	24.8	2.25
193	33.7	26.6	0.12	234	34	25.5	0
194	34.7	26.6	4.46	235	33.9	25.7	0
195	32.6	24	0.74	236	35.8	26.4	1.1
196	33.7	24.7	0.37	237	34.2	24.1	0
197	33.1	25.2	1.9	238	34.1	26.5	4.57
198	35	25	0.06	239	33.8	24.5	0.04
199	33.3	26.1	0.57	240	32.9	24.6	0.6
200	30.7	25.5	0.93	241	32.7	24.5	2.08
201	34	24.8	0.03	242	30.2	24.3	0.38
202	31.7	26.6	2.1	243	31.2	24.8	3 58
203	33.5	24.8	1.42	244	32	24.3	0.99
204	33.8	25.2	0.38	245	32	24.5	2 77
205	34.7	25.1	0	246	32.2	23.8	0

APPENDIX A 2: Daily maximum temperature, minimum temperature and precipitation at Phachinburi in 2014. (Con't)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Julian day	Maximum	Minimum	Precipitation (cm)	Julian	Maximum	Minimum	Precipitation
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(2014)	temp.(C)	temp.(C)	1 ()	day	temp.(C)	temp.(C)	(cm)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					(2014)			
248 33.2 25.6 0.02 289 34.4 24.1 0 249 33.4 26 10.73 290 34.6 24.9 0 250 31.4 24.3 0 291 34.8 25.9 0 251 34.6 25 0 292 32.7 25.8 0 252 34.5 26.2 0 293 33.2 25.8 0.08 253 35.1 26.3 2.69 294 33.6 24.8 0 254 34.2 24.4 2.85 295 33.6 24.5 1.58 257 32.2 24.5 1.87 298 34.5 25 0.29 258 33.6 24.3 1.33 299 34.3 25.2 0.54 259 33.1 24.8 0 300 34.5 25.2 0 260 35.2 26.6 0.02 301 33 24.7 1.32 261 33.9 25.3 1.02 302 33.5 24.6 0.31 262 35 25.8 0.06 303 34.8 24.5 0.02 263 35.2 26.3 0.04 304 34 24.5 4.39 264 34.9 25.4 4.91 305 33.5 24.3 0.18 265 32.7 22.5 0 306 35.2 5.5 0.41 266 35.2 26.8 <t< td=""><td>247</td><td>34</td><td>24.7</td><td>0</td><td>288</td><td>33.2</td><td>24.9</td><td>0</td></t<>	247	34	24.7	0	288	33.2	24.9	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	248	33.2	25.6	0.02	289	34.4	24.1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	249	33.4	26	10.73	290	34.6	24.9	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	250	31.4	24.3	0	291	34.8	25.9	0
252 34.5 26.2 0 293 33.2 25.8 0.08 253 35.1 26.3 2.69 294 33.6 24.8 0 254 34.2 24.4 2.85 295 33.6 25.6 0 255 33.4 24.5 2.38 296 32.7 25.4 0.17 256 34.2 24.2 3.17 297 33.6 24.5 1.58 257 32.2 24.5 1.87 298 34.5 25 0.29 258 33.6 24.3 1.33 299 34.3 25.2 0.54 259 33.1 24.8 0 300 34.5 25.2 0 260 33.2 25.6 0.02 301 33 24.7 1.32 261 33.9 25.3 1.02 302 33.5 24.6 0.31 262 35 25.8 0.06 303 34.8 24.5 0.02 263 35.2 26.3 0.04 304 34 24.5 4.39 264 34.9 25.4 4.91 305 33.5 24.3 0.18 265 32.7 22.5 0 306 35.5 25.5 0.41 266 35 26.8 2.97 307 33.9 24.8 0.22 268 33.9 25.4 0 309 33.5 25 0 271 35.5 $26.$	251	34.6	25	0	292	32.7	25.8	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	252	34.5	26.2	0	293	33.2	25.8	0.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	253	35.1	26.3	2.69	294	33.6	24.8	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	254	34.2	24.4	2.85	295	33.6	25.6	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	255	33.4	24.5	2.38	296	32.7	25.4	0.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	256	34.2	24.2	3.17	297	33.6	24.5	1.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	257	32.2	24.5	1.87	298	34.5	25	0.29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	258	33.6	24.3	1.33	299	34.3	25.2	0.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	259	33.1	24.8	0	300	34.5	25.2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	260	33.2	25.6	0.02	301	33	24.7	1.32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	261	33.9	25.3	1.02	302	33.5	24.6	0.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	262	35	25.8	0.06	303	34.8	24.5	0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	263	35.2	26.3	0.04	304	34	24.5	4.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	264	34.9	25.4	4.91	305	33.5	24.3	0.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	265	32.7	22.5	0	306	35	25.5	0.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	266	35	26.8	2.97	307	33.9	24.8	0.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	267	33.4	24.3	0	308	33.6	24.8	0.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	268	33.9	25.4	0	309	33.5	25	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	269	34	25.9	0	310	33.4	24.9	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270	35.5	26.4	0	311	34.9	25.3	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271	35.4	26.8	0.14	312	34.8	25.2	0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272	35.2	25.4	0.01	313	34.6	25.7	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273	33.6	25.6	0.11	314	35.2	24.5	0.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274	33.7	24.5	0	315	35	25.5	0
276 34.6 25 0 317 34 25.1 0 277 35.5 25.1 0 318 33.1 25.5 0 278 34 25 0.67 319 34.4 24.1 0 279 31.7 24.5 0.16 320 34.5 24.7 0 280 32.2 24.4 0 321 34 24.9 0	275	34.5	25.5	0	316	35.9	25	0 0
277 35.5 25.1 0 318 33.1 25.5 0 278 34 25 0.67 319 34.4 24.1 0 279 31.7 24.5 0.16 320 34.5 24.7 0 280 32.2 24.4 0 321 34 24.9 0	276	34.6	25	0	317	34	25.1	0 0
278 34 25 0.67 319 34.4 24.1 0 279 31.7 24.5 0.16 320 34.5 24.7 0 280 32.2 24.4 0 321 34 24.9 0	277	35.5	25.1	0	318	33.1	25.5	0
279 31.7 24.5 0.16 320 34.5 24.7 0 280 32.2 24.4 0 321 34 24.9 0	278	34	25	0.67	319	34.4	24.1	0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	279	31.7	24 5	0.16	320	34.5	24.7	0
	280	32.2	24.4	0	321	34	24.9	0
281 34 25.2 4.84 322 33.1 24.7 0	280	34	25.2	4 84	321	33 1	24.2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	282	34.1	23.2	0.02	322	32.1	23.2	0
283 34.7 25.7 7.43 324 33 22.1 0	282	34.7	21.0	7.43	323	32.1	23.2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	283	32	23.7	0.48	32-	33 3	22.1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 1 285	33.6	27.3 24.8	0.40	325	217	22.0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	205	34.5	2 4 .0 25	0	320	34.7	22.3	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	280	337	25 25 8	0	327	33.2 34.6	23.5	0

APPENDIX A 2: Daily maximum temperature, minimum temperature and precipitation at Phachinburi in 2014. (Con't)

Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)	Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)
329	35.9	24	0	348	32.7	21.9	0
330	36.2	25.7	0	349	34	22.2	0
331	34.9	25.1	0	350	32	22.7	0
332	34.2	25.2	0	351	28	21.1	0
333	35.3	25	0	352	29.9	20.4	0
334	34.1	25.2	0	353	31.3	19	0
335	35.9	25.5	0	354	32	20.1	0
336	34	26.1	0	355	33	19.7	0
337	31.1	26.2	0	356	30	20.2	0
338	33.4	25.4	0.12	357	31.3	18.3	0
339	31.7	24.9	0	358	33	19.6	0
340	34.8	24.7	0	359	34.3	22.3	0
341	34.4	24.1	0	360	35.4	23.3	0
342	34	23.8	0	361	35.4	25.8	0.08
343	33.6	23	0	362	32.6	24.7	0
344	34.2	21.7	0	363	31	21.3	0
345	34	23.5	0	364	31.8	20.2	0
346	32.9	24.2	0	365	31.8	19.8	0
347	31.5	21.8	0	_			

APPENDIX A 2: Daily maximum temperature, minimum temperature and precipitation at Phachinburi in 2014. (Con't)
Julian	Maximum	Minimum	Precipitation	Julia	Maximu	Minimu	Precipitati
day	temp.(C)	temp.(C)	(cm)	n day	m	m	on
(2014)				(201 4)	temp.(C	temp.(C	(cm)
1	28	14.3	0	42	33.5	18.5	0
2	29.2	16.4	0	43	32.3	21.8	0
3	31.2	16.3	0	44	33	21.8	0
4	31.3	17.2	0	45	33.3	22.9	0
5	30.2	18.2	0	46	32.6	21.7	0
6	31	18.4	0	47	33.8	23.3	0
7	32.2	18.9	0	48	33.4	23.5	0
8	32.5	19.5	0	49	34	23.8	0
9	31.5	19.2	0	50	34	22.3	0
10	30.3	18.9	0	51	27.7	22.8	0.05
11	30.9	18.2	0	52	30.5	18.6	0
12	30.4	16.8	0	53	32.9	20.2	0
13	29.6	18.2	0	54	34.5	21	0
14	27.5	17.3	0	55	33.9	21.6	0
15	27.4	14.8	0	56	34.2	22.1	0
16	27	14.5	0	57	35.2	22.2	0
17	27.9	12.3	0	58	34.6	22.6	0
18	28	13.7	0	59	33.4	23.2	0
19	25.7	13.2	0	60	34.2	22.9	0
20	26.8	11.4	0	61	35.7	23	0
21	26.8	14.2	0	62	35.8	22.6	0
22	26.1	13.5	0	63	37.2	23	0
23	26	10.5	0	64	35.5	22	0
24	27.2	10.6	0	65	35.3	21.6	0
25	29.2	12.2	0	66	35.4	23.3	0
26	30.2	14.4	0	67	34.7	23	0
27	30.5	15.8	0	68	34.3	22.7	0
28	31.3	16.5	0	69	35.5	22.5	0
29	31.6	17.5	0	70	34.8	24.2	0
30	31.4	17.6	0	71	35.9	23.3	0
31	31.3	18.2	0	72	36.2	24	0
32	32.1	18.3	0	73	37.3	23	0
33	33.3	19	0	74	35.5	25.3	0
34	33.6	19.7	0	75	35.3	25	0
35	33.8	17.9	0	76	35.5	24.7	0
36	32.2	18	0	77	36	24.3	0
37	32.5	20	0	78	37.3	25.4	0
38	32.3	19.4	0	79	37.1	25.5	0
39	32.3	20.7	0	80	36.8	24.4	0
40	34.2	19.5	0	81	32.7	24.2	0.14
41	33.2	18.1	0	82	33.2	23.4	0

APPENDIX A 3: Daily maximum temperature, minimum temperature and precipitation at Phitsanulok in 2014.

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
83	35.7	24.3	1.49	124	35.4	24.4	0
84	33.7	22.5	0	125	36.6	25.7	0
85	36.6	23.2	0	126	35.9	25.3	0
86	37.1	24.9	0	127	35.7	23.5	0
87	37.7	25.3	0	128	37.5	26.2	0
88	37.2	24.6	0	129	37.5	25.4	0
89	37.7	25.2	0	130	37.3	25.4	0
90	38	25.4	0	131	38.1	26.3	0
91	38.3	25.7	0	132	39	26.6	0
92	36.7	25.1	0	133	38.4	28.3	0
93	36.7	26	0	134	38.2	25.5	0
94	34.6	25.8	0.09	135	38	24.3	0
95	34.6	22	0	136	38.1	27.2	0
96	36.1	21.7	0	137	38.9	27.6	0
97	36.7	24.2	0	138	34.1	27.3	2.61
98	36.9	24.3	0	139	34.8	24.5	0
99	36.9	25	0	140	36	26.2	1.14
100	37.7	25.2	0	141	36.5	25	0
101	37.6	26	0	142	36.8	26.2	0
102	37.2	24.9	0.04	143	37	25.8	0
103	36.9	24.3	0	144	37.9	27.3	0
104	36.7	25.6	0.17	145	38	27.3	3.74
105	36.2	23.3	0	146	34.4	23.6	0
106	37.5	23.8	0	147	36.5	25.8	4.77
107	37.4	24.3	0	148	34.8	24	0.36
108	38.7	25.8	0	149	35.3	26.3	0.2
109	38.7	26.7	0	150	35.5	25	0
110	38.4	27.5	0	151	35.3	25	0.14
111	38.4	26	0	152	33	25.5	0.23
112	39.6	26.7	0	153	36	24.5	0
113	39.2	27	0	154	36.1	26.2	0
114	38.4	26.2	0	155	36.5	26.2	0
115	38	24.2	0	156	36	27.6	0.56
116	39.2	26.8	0	157	35.7	25	0.19
117	39.7	26.6	0	158	34.3	25.2	1.01
118	38.8	27.6	5.98	159	34.8	24.8	1.53
119	36.3	22.3	0	160	34.1	24.3	0.02
120	36	23.7	0	161	34	25.6	0.22
121	36.6	23.6	0	162	35.2	25.1	0.28
122	36.3	24.9	3.34	163	34.4	24.5	0.20
123	31.6	22.8	0.06	164	33.7	26.5	0

APPENDIX A 3: Daily maximum temperature, minimum temperature and precipitation at Phitsanulok in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	$\frac{\text{temp.}(C)}{24.4}$	$\frac{\text{temp.}(C)}{26.9}$	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
105	34.4 25	20.8 26	0.00	200	22 2	25.2	0.15
100	33 21 5	20 25.6	0.02	207	22.1	24 25 1	0 %6
107	31.3 24.1	25.0	0.17	200	20.5	23.1	0.80
100	25 25	23.4 25	0	209	30.3 24.0	25.5	1.00
109	33 24 2	23	0 2	210	54.9 24.1	23.2	1.09
170	34.3 22.6	20 25 4	0.2	211	34.1 24	24.7	0
171	52.0 24.9	23.4 25.6	0.01	212	24 24 4	25.4	0 07
172	54.0 24	25.0	0	215	24.4 22 7	23.2	0.07
173	34 24 9	23.0 26	0 22	214	22.2	24.0	0.54
1/4	34.8 25.2	20	0.52	213	22.5 22.5	24	0.00
175	55.2 22.0	23.2 25.0	0	210	21.2	23.4	0.14
170	52.9 22.9	23.9	0	217	21.7	24.5	0.02
179	25.0 25	24.0 25.1	0.00	210	21.7	23.9	3.02
170	33 26	25.1	0	219	22 2	25.0	5.55
179	26 D	20.0	0	220	32.3 32.3	25.0	0 48
100	20.2 20.1	25.1	0.04	221	52.5 22.1	23.0 22.5	0.48
101	52.1 21.5	25.7	0.13	222	52.1 22.4	25.5	0
182	31.3 25 7	23.8	0.08	223	22.5	24.4	1 22
185	55.1 26.6	24 26 1	0	224	22	24.5	1.22
104	30.0 27	20.1	0	223	22 2	24.3	1.12
183	27.2	20.8 26.4	0	220	33.3 24.6	24.5	2.10
180	31.2 26 7	20.4 27.1	0	227	34.0 28.6	25.0	0.80
10/	30.7 25.9	27.1	0	228	20.0	25.8	0.06
100	55.8 25.9	27.4	0	229	34.1 24.6	24	0.00
189	33.8 25.2	27	0.04	230	34.0 22.2	24.4	1.05
190	55.2 25.4	20 26 1	0.43	231	20.5 20.5	24.7	0
191	55.4 24.4	20.1	0.81	252	52.5 22.4	23 25 2	2 28
192	26 A	25.5	0	233	20.4 20.5	25.5	2.38
193	20.4 22.0	20.5	0	234	52.5 24	25	0
194	32.9 32.4	20.7	7.11	235	24 4	20.1	0
195	32. 4 33.6	24.3	2.73	230	34.4	24.2	3.04
190	22.5	24.5	1.52	237	24.0 22.4	25.2	5.04
197	24.2	2 4 25 2	0.02	230	21.5	24	0 77
198	34.Z	23.2	5.40 0.42	239	31.3 32.1	24.4	0.77
200	32.3 30.3	2 4 .2 25.1	0.42	240 241	32.1	24.0	1.2
200	50.5 21.2	23.1	0.51	241	20.6	24.2	2.00
201	31.3 20.0	24.2 25.2	0	242	29.0	24.7	1.09
202	20.9 22.8	23.3 25	1.37	243	32.3 22 A	23.1	0.07
203	33.0 32.0	25 26 1	0	244 245	20.2	24.0 24	2.24 1.62
204 205	52.9 24 4	20.1	0	245	3U.2 21.2	24	1.03
205	34.4	24.2	U	246	31.2	24.3	1.92

APPENDIX A 3: Daily maximum temperature, minimum temperature and precipitation at Phitsanulok in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
247	31.5	25	0.16	288	32.3	22.8	0
248	32.3	25.2	0	289	32.8	22.3	0
249	33.4	24.1	0.62	290	33.5	22.7	0.05
250	32.6	24.5	0	291	33.6	23.5	0.32
251	34.5	25	0	292	33	23	0.18
252	34.4	25.9	0	293	32.3	24.8	0.28
253	33.5	26	0	294	32	23.7	1.85
254	32.9	24.2	0	295	32.6	24	1.2
255	33.5	25.1	0.01	296	30.3	22.9	7.21
256	34.6	25.5	4.92	297	26.7	23	3.44
257	33.6	22.9	0	298	32.5	22.5	0
258	34.3	25.2	0.04	299	33.7	23.2	0
259	33.7	25.6	0	300	34.1	24.3	0
260	33.5	25.6	0.35	301	34	24.3	3
261	31.8	24.8	5.87	302	31.7	24.7	0.51
262	33.1	23.3	0	303	34.2	24.8	3.05
263	34.8	25	0	304	34.2	23.9	0
264	33.8	25.9	0.14	305	35.1	25.5	0
265	30	24.5	0.04	306	34.4	24.8	0.13
266	34.4	25	0.03	307	34.6	24.7	0
267	32	24.9	3.15	308	32.9	23.4	0
268	31.3	24.2	0.43	309	29.4	25	4.58
269	31.6	25	0.02	310	31.6	23.5	0.1
270	34.3	24.3	0	311	32.9	24	0
271	34.9	25.5	0	312	33.5	24.6	0
272	34.2	25	0.54	313	31.5	25	12.4
273	32.5	23.6	0	314	33.7	23.9	0
274	33.1	24.2	0.04	315	34.3	24.2	0
275	32.9	24.4	0.59	316	34.2	23.6	0
276	34.5	23.6	0	317	34.2	24.2	0
277	34.8	24.6	0	318	32.5	23.6	0
278	35	24.7	0.18	319	32.7	23.3	0
279	30.5	23	0.02	320	32.6	23.8	0
280	33.2	23.3	0	321	33.1	23	0
281	33.1	23	0	322	32	21.1	0
282	31.9	24.6	0	323	31.5	20.7	0
283	32.7	25.3	0	324	31	19.3	0
284	34.2	25.1	2.25	325	31.5	20.7	0
285	32.4	23.5	0	326	33.1	20	0
286	33	22.5	0	327	32.6	21.5	0
287	33.7	22.7	0	328	33.1	20.6	0

APPENDIX A 3: Daily maximum temperature, minimum temperature and precipitation at Phitsanulok in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
329	33.3	20.7	0	348	30	18.7	0
330	34	21	0	349	31.7	19.6	0
331	33.8	22.9	0	350	31.4	20.1	0
332	34.5	23.5	0	351	29.3	19.5	0
333	34.5	23.8	0	352	28.5	17.4	0
334	34.3	22.7	0	353	28.9	17.5	0
335	33.2	20.5	0	354	29.8	18.3	0
336	32.4	23.3	0	355	31.4	18.7	0
337	30	23.7	0	356	28.2	19.1	0
338	33.5	23.3	0	357	27.6	16.1	0
339	31.6	25.6	0	358	29.6	16.2	0
340	32.6	24.1	0	359	30.1	19.2	0
341	34	22.6	0	360	32.5	20.3	0
342	32.7	22.7	0	361	34.7	21.6	0
343	32.1	21.9	0	362	34.3	23.7	0
344	31.7	21.5	0	363	30.5	21.5	0
345	32.1	20.3	0	364	30.6	19.6	0
346	31.5	20	0	365	30.7	18.7	0
347	30.2	18.3	0				

APPENDIX A 3: Daily maximum temperature, minimum temperature and precipitation at Phitsanulok in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	$\frac{\text{temp.}(C)}{28.2}$	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
1	20.2 20.6	12.2	0	42	32.2 33.6	16 5	0
2	20.0 22	13.2	0	43	21.7	10.5	0
3 1	33	15	0	44 15	28.4	19.5	0
+ 5	30.7	15.5	0	4J 46	20.4	10.5	0
5	31.0	15.5	0	40 47	31.1	17.4	0
0 7	33.2	16.5	0	47 /18	34 4	19.5	0
8	33.9	16.8	0	40 49	35.7	20.2	0
9	31.6	17.2	0	50	26.5	20.2	84
10	31.5	17.6	0 0	51	20.3	14.6	0
11	31.6	16.9	ů 0	52	30	15.3	0
12	31.5	18.2	ů 0	53	33	17	0
13	29.7	17.3	0	54	35.1	17.5	0
14	27.5	15	0	55	35.2	17.7	0
15	27	12.4	0	56	35.2	20.5	0
16	29	12.7	0	57	35.8	19.2	0
17	29.6	14	0	58	34.7	20.2	0
18	26.3	16	0	59	35.2	21.5	0
19	27.8	13.5	0	60	36.2	20.7	0
20	29	13.7	0	61	37.5	21	0
21	26	15.8	0	62	37.6	21.9	0
22	25.1	12.8	0	63	37.6	23.5	0
23	27.7	12.2	0	64	36.8	23.5	0
24	28.5	11.5	0	65	35	25	0
25	30.9	12.1	0	66	36.3	22.5	0
26	30.5	14.8	0	67	35.5	23.3	0
27	31.5	15.7	0	68	36.8	23.6	0
28	32	14.8	0	69	35.2	22.5	0
29	31.9	16.4	0	70	37.7	22.5	0
30	31.2	15.5	0	71	37.5	23.3	0
31	31.5	13.7	0	72	37.5	21.7	0
32	33	14.4	0	73	37.8	22.7	0
33	34	15	0	74	36.1	21.7	0
34	35.8	16.8	0	75	36.8	21.8	0
35	33.8	19.5	0	76	38	22	0
36	34	22	0	77	38.6	26.2	0
37	33.5	20.2	0	78	38.2	24.6	0
38	35	20.2	0	79	38.7	24.5	0
39	35	18	0	80	37.2	24.2	0.01
40	34.7	20.7	0	81	32	20.5	0
41	34.8	20.5	0	82	36.4	19	0

APPENDIX A 4: Daily maximum temperature, minimum temperature and precipitation at Ubon Ratchathani in 2014.

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
83	36.3	20	0	124	33.8	23	0.02
84	37.4	21.5	0	125	36.5	24.6	0
85	38.1	22.2	0	126	33.2	24	0
86	37.2	24	0	127	35.4	23.6	0
87	37.2	25.2	0	128	36	24.3	0
88	39	25	0	129	35	25.5	0.05
89	39.2	25.2	0	130	38.7	25	0.01
90	39.8	25.5	0	131	36	24	0
91	39.5	24.6	1.19	132	36.7	26.2	0
92	36.7	22.5	0	133	37.5	26.7	0
93	39	24.7	6.98	134	34.5	24.7	0
94	30.7	21.2	0.02	135	37.5	25.8	0
95	33.2	22	0	136	38	25	0
96	33.8	22.6	0	137	38.6	26.5	0
97	35.9	23	0	138	34.8	25	0
98	35.8	23.2	0	139	37.3	25.2	0
99	36.7	23.8	0.18	140	38.5	26.2	0
100	36.4	24.2	0	141	38.2	25.7	0
101	29.2	25	0.76	142	38.8	26.4	0
102	35.2	23.2	0	143	39	26.6	0
103	35.7	24.7	1.91	144	39.8	26.2	0
104	31	22.2	0.01	145	39.4	26.4	0
105	34.2	23.7	0	146	38.4	27	1.79
106	34.2	24	0	147	36.7	24.5	0.76
107	35.7	24.9	0	148	36.7	25.2	0
108	33	25	0	149	38	25.8	0
109	36.8	25	0	150	38.2	25.7	0
110	36.5	26	0	151	35	26	0
111	36.6	26	0	152	37.5	26	0
112	36.5	25.4	0.82	153	36.5	26.5	0
113	36.2	25	0	154	38.2	24.7	0.66
114	37.3	24	0	155	37.2	23.9	0.03
115	38	25.6	0	156	36.5	26.1	0.002
116	37.3	25.3	0	157	33.6	26	0.15
117	38.2	25.2	0.43	158	35.3	25.2	0
118	34	23.7	0	159	37.4	24.7	0 0
110	32	23.8	0	160	36.5	26.4	0
120	35	22.6	Õ	160	33	20. 4 24 5	1 57
120	34.8	22.0	0 69	167	31.8	27.3 23 4	0.02
121	34.5	23.2	0	162	31.0	23. 4 24.5	0.02
123	34	23.2	2.09	164	32.5	24.5	0.03

APPENDIX A 4: Daily maximum temperature, minimum temperature and precipitation at Ubon Ratchathani in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
165	31.6	24.3	0.22	206	32.5	24.5	0
166	34	24.6	0.22	207	33.4	24.4	0.04
167	34.2	24.5	0	208	30.9	23.9	0.26
168	33.5	25.3	0.07	209	31.4	23.3	0.21
169	32	24.8	0.29	210	30	23.5	1.01
170	34.5	24.5	0.02	211	28	23.8	0.97
171	34.5	24.3	0.04	212	30.7	23	1.29
172	32.4	23.8	1.23	213	29.6	24.8	5.85
173	30.7	23.5	0.87	214	29	24.7	0
174	29	24	0.04	215	31.3	23.8	1.74
175	33.2	24.5	0.14	216	31.7	25.3	0.23
176	32.7	23.6	0.11	217	29.6	23.1	1.36
177	32	23.7	0	218	31.7	23.8	0
178	34.2	24.3	0	219	30.8	23.5	0.13
179	32.2	26	0.25	220	32.5	24.1	0
180	30	23.5	1.06	221	31.8	24.7	0
181	30.3	22.5	0.03	222	33.7	25.5	0
182	34	24.4	0.00	223	34.5	25.7	0
183	32.2	24.7	0.28	224	34.5	25.5	0.18
184	33	24.5	0	225	34.2	24.8	1.46
185	34.9	25.7	0	226	32.5	25.1	0
186	33.6	25.5	0.36	227	33.5	25	0.08
187	34.3	24.8	0	228	35	25.3	0
188	35	26	0.19	229	34.6	24.3	0
189	32.5	23.5	0.03	230	34.2	25.3	0.75
190	33.5	25.2	0.03	231	34.3	25.7	0.02
191	32	24.5	0.00	232	32.2	23.8	0
192	33	25.7	0.17	233	33.2	24.7	0.10
193	32.6	24.5	0.09	234	34.7	25	0.01
194	33.2	24.9	0.14	235	34.5	24.5	0
195	33.3	24	0.61	236	35.8	24.6	1.10
196	31.6	23.2	0.13	237	31.8	25.9	0.20
197	33.5	23.4	0	238	30.6	23.5	0.06
198	32.9	24.5	0	239	32	24.3	0.25
199	30.7	25.5	0.19	240	32.2	24.5	0
200	31	24	0.45	241	33	24	0.01
201	28.3	22.5	0.14	242	32.9	23.7	1 44
202	31	23	0.50	242	33.7	23.7	0.92
203	30.8	23	1.14	2+3 244	30.9	27.2 23.7	0.72
204	27.8	23	0.29	245	31.5	23.7	0.12
205	32.7	23.7	0	246	33	23.5	7.87

APPENDIX A 4: Daily maximum temperature, minimum temperature and precipitation at Ubon Ratchathani in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
247	33.5	24.3	2.70	288	32.8	21.2	0
248	32.3	21.7	0	289	34.4	21.5	0
249	32.7	23	8.68	290	34.2	21.1	0.08
250	32.3	24.5	0	291	32.8	21.2	0.02
251	32.5	23.5	0	292	34.5	22.7	0.47
252	33.5	24.6	1.14	293	33.6	23.6	0
253	32.4	24.9	0	294	33.2	23.3	0
254	32.8	24.5	0.08	295	34.7	22.9	0.02
255	31	25.1	1.30	296	34.2	23.5	0.79
256	32.4	24.2	0.48	297	31.5	23	0
257	31.8	24.1	0.01	298	32.5	22.5	0.02
258	32	23.7	0.01	299	32.7	23	7.62
259	29.5	24	3.14	300	33	23.5	0.53
260	31.8	23.5	0	301	33.2	23	0.13
261	33.2	23.7	0	302	32.8	23.3	0
262	34	24.5	0	303	33.7	23.1	0
263	35.4	25	0.04	304	33.5	23.6	0
264	33.5	25.8	0	305	34.5	24	0
265	31.2	24.3	0.24	306	33.8	22.8	0
266	33.6	23.5	6.05	307	33.2	21	0
267	32	24.6	7.98	308	34.5	21.4	0
268	26.8	23	0	309	34.5	22.4	0
269	33.2	23.4	0	310	35.4	22.9	0
270	35.4	24.5	1.18	311	35.4	23.5	0
271	34	25	0	312	35.1	24	0
272	33.2	23.8	2.02	313	34.5	22.9	0
273	33.4	24.5	0	314	34.8	21.8	0
274	32.7	22.8	0	315	35.2	22.4	0
275	35	23.7	0	316	35	22	0
276	34.5	23.5	0.23	317	32	23	0
277	34.8	24.5	1.47	318	31.4	22.5	0
278	33.5	24.5	0.00	319	34.2	21.7	0
279	31.6	23.5	0.00	320	34.2	20	0
280	32.3	21.8	0.04	321	33.8	21.7	0
281	32.7	23.2	0	322	31.2	21.2	ů 0
282	33.3	21.5	0	323	32.2	20.8	0
283	33.6	22.2	0	324	32.5	19.5	0
284	33.2	21.6	0	325	33.9	19	0
285	33.5	21.3	Õ	326	34.2	19	0
286	34.2	22.5	Õ	327	34.9	19.8	0
287	33	21.7	0	328	35	22	0

APPENDIX A 4: Daily maximum temperature, minimum temperature and precipitation at Ubon Ratchathani in 2014. (Con't)

Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)	Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)
329	35.5	21.5	0	348	30.7	15.7	0
330	35.9	22.8	0	349	32.5	16.8	0
331	35	23.5	0	350	30.2	19.9	0
332	35.9	23.9	0	351	26.5	18	0
333	34.3	23.2	0	352	28	15.6	0
334	33.4	22.2	0	353	29.6	16.5	0
335	33.4	24.2	0.02	354	30.5	15	0
336	32.8	23.5	0	355	31.5	16.7	0
337	33	21	0.08	356	28.5	16.3	0
338	32	22.8	0.02	357	29.8	14	0
339	33.4	19.9	0	358	32.6	18	0
340	31.6	19	0	359	33.9	18.6	0
341	34.2	20	0	360	34.7	20.3	0
342	32	19.2	0	361	35.2	20.8	0.23
343	32.4	17.5	0	362	30.9	20.7	0
344	32.7	18	0	363	29.1	16.5	0
345	32.2	18.3	0	364	30.2	13.6	0
346	30.4	18.7	0	365	29.5	14	0
347	28.5	18	0				

APPENDIX A 4: Daily maximum temperature, minimum temperature and precipitation at Ubon Ratchathani in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
1	28.9	14.2	0	42	34	17.7	0
2	30.5	13.6	0	43	33.5	21.3	0
3	32.5	14.6	0	44	33.6	20.2	0
4	31.3	14.6	0	45	34	19.7	0
5	32.1	17.6	0	46	34	21.6	0
6	31.8	17.4	0	47	32.8	24.4	0
7	32.5	20	0	48	33.1	22.1	0
8	32.8	18.9	0	49	34.7	21.8	0
9	32.1	20.3	0	50	34.6	22.6	0
10	30.2	19.1	0	51	27.6	22.8	0
11	31.4	17.1	0	52	27.2	21.2	0
12	32.1	18.2	0	53	33	18.4	0
13	29.6	17.1	0	54	33.8	21	0
14	27	17	0	55	34	21.9	0
15	26.7	13.1	0	56	34.2	21.2	0
16	27	12.1	0	57	34.2	20.8	0
17	28.1	13.6	0	58	33.3	22	0
18	28.5	16.6	0	59	33.9	22.3	0
19	25.9	16.7	0	60	34.5	23	0
20	26.5	14.2	0	61	36.5	22	0
21	26.2	16.8	0	62	35.9	22.2	0
22	24.4	14.1	0	63	36.2	22.2	0
23	25.7	10.6	0	64	36.6	22.2	0
24	27.5	10	0	65	35.2	22.9	0
25	29.3	10.3	0	66	35.7	22	0
26	29.2	12.5	0	67	35.8	22.1	0
27	30.2	13.8	0	68	35	21.8	0
28	31.2	16.5	0	69	34.1	22.3	0
29	31.4	16.2	0	70	35.5	22.5	0
30	31.7	17.9	0	71	35.4	23.3	0
31	32.1	16.6	0	72	35.5	23.5	0
32	33	16.6	0	73	36.2	22.5	0
33	34.5	17	0	74	35.2	23.1	0
34	35.9	19.8	0	75	35.8	22.8	0
35	35	21.5	0	76	35.7	24.7	0
36	33.4	23.5	0	77	37	24.5	0
37	35.2	20.9	0	78	37	23	0
38	33.9	22.2	0	79	377	24 5	ů 0
39	33.1	21.4	Õ	80	36	21.5	0
40	34.3	19	0	81	34 5	24 9	3 69
41	33	18.2	0 0	82	32	23	0

APPENDIX A 5: Daily maximum temperature, minimum temperature and precipitation at Nakhon phathom in 2014.

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
83	34.3	23.1	0	124	34.8	24.4	2.09
84	35.7	23.5	0	125	37	23.3	0
85	35.6	24.3	0	126	36.9	25.1	0.29
86	37	25	0	127	35	22.8	2.52
87	37.6	24.3	0	128	37.2	23.3	0
88	35.5	24.5	0	129	37	24.4	0
89	36	24.5	0	130	37.2	24.2	0.04
90	36.6	25.3	0	131	36.2	24.2	0
91	38	25	0	132	38	24.9	0
92	36.2	25.3	0	133	37	26	0.02
93	37	26.2	0	134	38	24	0
94	36.2	24.1	0.05	135	37.5	24.5	0.31
95	34.5	23	0	136	37.5	24.6	0
96	36.4	23.5	0	137	37.5	24	0
97	37.8	24.5	0	138	34.5	26	0
98	37.5	22.9	0	139	36.1	23.5	0
99	37.6	23	0	140	36.5	23.5	0
100	37.2	24.5	0	141	37.2	23	0
101	37.5	25	0	142	36.5	22.5	0
102	37	23.5	0	143	36.6	22.8	0.06
103	36.5	23	0	144	37	22.8	0
104	36.5	25	0	145	37.5	24.5	0
105	36.5	23.6	0	146	37.5	23.5	0
106	36.9	24.1	0	147	37.2	25.1	0.03
107	37.5	24.5	0	148	36.7	23.5	1.03
108	37.5	25	0	149	36.2	22.9	0
109	37.5	25.5	0	150	37.5	23.5	0.4
110	37.2	25.5	0	151	36.5	25	0
111	37.5	25	0	152	35.6	24	0
112	38	23.6	0	153	37.5	23	0.13
113	39	26.5	0	154	38	24.5	0
114	37.8	24.9	0	155	36.9	24.5	3.56
115	37.5	24	0	156	37	23.5	0
116	38.4	24.5	0	157	35	22.5	0.18
117	39	24.5	0	158	34 5	22.3	0.10
118	38	25.5	0	159	35.5	23.3	0
110	36 5	25.5	0	160	35	23.5	0
120	37.5	25.5	0	161	33 5	$23 \\ 24 2$	0
120	38.5	23.5	0	167	35.5	24.2 24 3	0
121	36	23.3 24 7	0	162	33 5	27.5 24.5	0
123	37	25	0	164	34.2	22.9	0.03

APPENDIX A 5: Daily maximum temperature, minimum temperature and precipitation at Nakhonphathom in 2014. (Con't)

the summer manifold receptuation summer ay maximum minimum	Precipitation
(2014) temp.(C) temp.(C) (cm) (2014) temp.(C) temp.(C)	(cm)
165 34 24.8 0.26 206 34.5 21.3	0
166 34.5 23 0.09 207 34 20	1.7
167 34.1 23.5 0 208 33 21	0.06
168 33.5 23 0 209 31 21.5	0.67
169 32.5 23.5 0 210 34.1 21.7	0.83
170 34.9 25.5 0 211 34.5 21.5	0
171 36 23 0.14 212 33.4 21.2	0
172 34.5 23 0.14 213 33 21	0.45
173 35 23.5 0.04 214 33 21	0
174 34.5 23 0 215 32.7 25	0.52
175 34 22 0.51 216 33 22.2	0
176 33.1 23 1.34 217 33.5 20.1	0
177 33 22.5 0 218 33.9 21.1	0.97
178 35.5 21.5 0 219 32.5 20.5	0.3
179 36 22.6 0 220 32 20.5	0.15
180 36 23.2 0.35 221 33 20.7	0.03
181 34.5 24 0 222 34.5 20.5	0
182 34.2 22.3 0.46 223 34.5 21	1.25
183 35 22 0 224 35 20.5	0
184 36 21.5 0 225 33.3 21	1.44
185 37 23.2 0 226 34.5 21.5	0
186 38 22 0.54 227 33.5 21.1	0
187 36.5 22 0.02 228 34.5 20.5	0
188 35.5 22 0 229 36.8 21.5	0
189 33 23 0.36 230 35.8 22.2	0
190 32.5 22.5 0.02 231 35 23.1	0.57
191 32.2 22.5 0 232 34 23.8	4.02
192 33.8 23.2 0 233 33.1 25.6	0
193 34.5 23 0 234 35.3 23.2	0
194 34.5 22.5 0.26 235 36 23.2	0
195 33 22 0.27 236 37.7 22	0.04
196 33 22.4 0.15 237 34.5 23.5	0.54
197 34 21.5 0 238 34 22.5	2.62
197 31 210 0 250 31 2210 198 34.5 22 0 239 35 24.5	0.36
190 31.5 22 0 255 55 21.5 199 33 23.4 0 240 36.5 23.5	0.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 88
205 35 208 0 246 335 235	0.98

APPENDIX A 5: Daily maximum temperature, minimum temperature and precipitation at Nakhonphathom in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
247	33	23.5	0	288	33	22.1	0
248	33.3	24.5	0.02	289	32.4	22	0
249	33	24	0.14	290	32.7	22.2	0
250	35.9	25.3	0	291	32.2	23.1	0
251	35.9	25.1	0.01	292	32.3	23.8	1.53
252	35.2	24	0	293	33.5	23.8	0.28
253	34.6	25.2	0	294	32.8	23.5	0
254	34	24.5	1.16	295	33.9	23.2	0.26
255	35	24.5	0	296	31.8	23.2	2.96
256	35	25	0	297	32.3	22.8	1.36
257	34.9	24.5	0.2	298	32	24.2	0
258	34.5	24.5	1.16	299	33.3	23.5	0
259	33.5	25	0	300	33.4	22.5	0.58
260	33.5	24.9	0	301	31.2	24.5	0.28
261	36.5	25	0	302	33	23.5	0.88
262	36	24.5	0	303	33.5	24	0
263	36.5	25	0	304	33.5	24.2	0
264	34	26	0	305	35	24	0.02
265	37	25.5	0	306	32.4	23.7	0.32
266	34.1	26.5	0	307	29.5	23.2	0.47
267	33	25	2.14	308	32	23	5.1
268	33.5	24.5	0	309	34	24.1	0
269	34.8	25.4	0	310	34	24	0
270	34.8	25.5	0	311	33	23	1.68
271	35.1	23.5	0	312	33.1	22.9	0
272	33	24	0.88	313	33	23.5	0
273	32.5	23.6	1.49	314	33.5	23.5	0
274	34.2	23	1.62	315	33.4	23	0
275	34.1	23.5	0	316	32.5	22.2	0
276	33.9	24.6	0	317	31	22.8	0
277	30.2	24.7	0	318	32	21.8	0
278	30	23.5	3.85	319	31.8	22	0
279	30	24.2	0.54	320	31.5	22.3	0
280	32	23	1.74	321	31	22	0
281	34.2	24	2.2	322	30.5	21.5	0
282	32	23.6	0.07	323	30	19.5	0
283	33	24.5	0.12	324	31.2	18.1	0
284	32.4	23.5	1.72	325	31.6	19.5	0
285	32.2	22	0	326	32.3	19.5	0
286	32	25	0.1	327	32.3	19.4	0
287	32	22	0	328	32.6	20.5	0

APPENDIX A 5: Daily maximum temperature, minimum temperature and precipitation at Nakhonphathom in 2014. (Con't)

Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)	Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)
329	33.2	21	0	348	30.2	17.8	0
330	34.2	23.2	0	349	30.5	19	0
331	34	23.2	0	350	26	19	0
332	35	22.5	0	351	27	15.6	0
333	34	22.3	0	352	28.5	15.4	0
334	33.1	22.7	0	353	28	15.5	0
335	30	22.2	0	354	29	18	0
336	30.6	23	0.03	355	30.7	17	0
337	31.5	22.2	0	356	27	19.4	0
338	29.9	23.6	0.8	357	27.5	16.2	0
339	32.5	21.6	0	358	29.8	16.2	0
340	33	21.2	0	359	30.5	20.5	0
341	32.5	21.3	0	360	32.3	19	0
342	31.3	20.3	0	361	31.1	20.7	0.02
343	31.5	20	0	362	32	20.5	0
344	31.5	19.8	0	363	30.5	20	0
345	30.5	19.8	0	364	28.5	16.1	0
346	26.8	19	0	365	30.5	15.4	0
347	29.1	19.5	0				

APPENDIX A 5: Daily maximum temperature, minimum temperature and precipitation at Nakhon phathom in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
1	30	17	0	42	33.5	21	0
2	30.8	15.6	0	43	32.4	23.5	0
3	32.9	15	0	44	33.5	23.5	0
4	33.2	17.6	0	45	33.8	23.9	0
5	32.1	22.4	0	46	33.1	24.9	0
6	33.2	19.6	0	47	32.6	24	0
7	33.1	20.8	0	48	33.2	24	0
8	33.9	21.7	0	49	33.9	24.2	0
9	33	21.6	0	50	35.3	24.5	0
10	32.5	23	0	51	30.2	21.8	0
11	33	22.9	0	52	31.9	21.4	0
12	32.5	20.4	0	53	34.2	21.2	0
13	31.3	22	0	54	34	24.1	0.5
14	29.1	19	0	55	33.2	24.2	0
15	28.2	19.1	0	56	34.1	23.9	0
16	28.6	16.1	0	57	34.7	23.8	0
17	30.5	15.1	0	58	33.9	24.6	0
18	28.3	19.5	0	59	34	24.8	0
19	28.2	17.8	0	60	34.6	24.3	0
20	28.8	15.7	0	61	35.5	24	0
21	27.6	19.4	0	62	35.6	24	0
22	26.5	17	0	63	36	24	0
23	27.2	15.2	0	64	35	23.9	0
24	28.7	12.9	0	65	35.4	24.4	0
25	30.5	13.2	0	66	35	24.4	0
26	32.7	15.5	0	67	35.3	24.6	0
27	32.3	17.5	0	68	34.1	24.7	0
28	33.9	18	0	69	34.1	24.8	0
29	33.5	19.2	0	70	35.6	24.6	0
30	33.5	19.1	0	71	35.1	25	0
31	33.3	19	0	72	36	25	0
32	32.6	19.3	0	73	37	25	0
33	33.7	19.7	0	74	35.5	26.4	0
34	34.7	22.5	0	75	37.7	26.1	0
35	34.3	23.5	0	76	34.6	27.5	0
36	33	23.5	0	77	37.3	24.9	0
37	33.9	23	0	78	36.7	26.4	0
38	33.4	23.2	0	79	37	26.5	0
39	33.3	23.5	0	80	36.9	26.5	0
40	33.1	22.7	0	81	33.8	26.3	0
41	34	21.9	0	82	34.4	24.8	0

APPENDIX A 6: Daily maximum temperature, minimum temperature and precipitation at Lop buri in 2014.

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
83	36.3	25.4	0	124	37.9	27	0.14
84	35.6	26.6	1.12	125	37.6	27.6	0
85	37.2	26.5	0	126	37.6	27.5	0
86	38.1	26	0	127	35	24.1	0
87	37.5	26.6	0	128	37.4	25.5	0
88	37	26	0	129	36.9	27.3	5.36
89	37	26.6	0	130	37.5	26.7	0.22
90	37.9	26.1	0	131	37.1	26.5	0
91	38	26.5	0	132	38.1	27	0
92	37.3	26.4	0	133	37.3	27.9	0.02
93	37.5	26.6	0	134	37.4	26.5	0
94	36	27.4	0	135	37.7	27.8	0
95	35.2	24	0	136	38.1	28.1	0.01
96	35.8	23.5	0	137	38	28	0
97	37.1	25.6	0.18	138	36.5	27.6	0
98	37.3	26.2	0	139	36.1	25.9	0
99	37.6	26.6	0	140	36.3	25.9	0.07
100	37.3	26.6	0	141	37.3	26.2	0.34
101	36.9	27	0	142	36.6	26.6	0
102	36.5	26.6	0	143	36.9	26.6	0.04
103	36	24.4	0	144	37.7	26.5	0
104	36.9	26	0	145	38	28.2	0
105	35.3	23.3	2.93	146	37.5	27.9	0
106	36	26.3	0.06	147	36.9	28	0
107	37	26.5	4.82	148	36	25.5	0
108	36.5	27	0	149	36.9	26.4	0
109	36.9	26.5	0	150	36.5	27.2	0.33
110	37.5	27.4	0	151	37.4	27.2	0
111	37.6	27.1	0	152	37	27.7	0
112	38.4	27.1	0	153	38	26.9	0
113	37.8	27.9	0	154	38.1	28.4	0
114	37.5	27.6	0	155	37.7	26	0
115	37.3	27.5	0	156	36.8	27.1	0
116	38.3	27.4	0	157	36.5	25.8	0
117	38.2	27.1	0	158	35.7	26.8	0
118	37.5	27.6	0	159	36.3	26	1.85
119	35.5	27	0	160	36	27.4	0
120	35.5	26.7	0	161	35.4	27.5	0
121	37.1	27	0	162	36.2	27.8	0
122	36	26.3	0	163	34.2	26.6	0
123	37.8	27	0.04	164	35.6	26.2	0

APPENDIX A 6: Daily maximum temperature, minimum temperature and precipitation at Lop buri in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
165	35	27.6	1.44	206	33.1	25.5	0
166	34.5	26	0	207	33.7	25.6	0
167	32.9	26.2	0	208	32.7	25.4	0.95
168	37	26.3	0.04	209	31.7	25.5	0
169	34	26.2	0.35	210	35.1	25.6	1.29
170	34	27.2	2.82	211	33.4	25.8	0
171	35.5	26.8	0	212	33.6	25.5	0
172	35	26.5	0	213	34	25.5	3.33
173	35.1	26.5	0	214	34	25.3	0.85
174	32.9	26	0.02	215	33.5	25.9	0
175	34.5	25.5	0.26	216	32.9	26	1.33
176	35.1	27.1	0.41	217	33.9	26.4	0
177	33.4	26	0	218	32.6	25	0.17
178	34.8	24.3	0	219	33.5	25	0
179	36.9	26	0.02	220	33.7	24.5	0
180	36.4	26.3	1.41	221	33.9	25.5	0.09
181	34	26.4	0	222	34.2	25.5	0.53
182	34.1	25.5	0	223	35.5	26	0
183	35.5	26.7	1.85	224	35	24.5	0
184	36.3	27	0.15	225	34.1	26	0
185	36.4	27	0	226	33.9	25.3	1.27
186	36.4	26.7	0	227	33.9	24	0.01
187	36.5	26.2	0	228	33.2	25	0.05
188	34.4	27	0	229	34.9	25.5	4.73
189	35.7	26.5	0	230	36.1	26	0.71
190	34.3	26.3	0	231	34	25.4	0
191	34	26.2	0	232	34.1	25	0
192	35.1	27	0.16	233	33.3	24.5	1.43
193	35.2	27.3	0	234	32.5	25	0
194	35.2	27.4	0	235	34.4	26.1	0.62
195	32.1	25	0	236	35	26.5	3.68
196	33	25.4	0	237	34	24.7	0
197	34	25.5	1.07	238	32	26.3	0.02
198	34.2	25.5	0.06	239	33.9	24.6	0
199	34	26.1	0	240	33.1	24.6	ů 0
200	30.5	25.5	1.04	241	32.5	25	0 0
201	34.1	25.1	0	242	30.3	<i>⊒≥</i> 25	1 34
202	32.9	25	0	242	29.1	25 4	0.18
203	34.5	26.4	Ő	243	32.6	23.4	0.08
202	35.7	26	Ő	245	31.7	23.7	0.00
205	35.5	25.5	0.03	246	32.3	24.5	0.22

APPENDIX A 6: Daily maximum temperature, minimum temperature and precipitation at Lop buri in 2014. (Con't)

Julian day	Maximum	Minimum	Precipitation	Julian day	Maximum	Minimum	Precipitation
(2014)	temp.(C)	temp.(C)	(cm)	(2014)	temp.(C)	temp.(C)	(cm)
247	33.2	24.6	0.94	288	33.1	23.9	0.45
248	33.3	25.3	0.15	289	33.3	22.4	0
249	32.3	25.4	0	290	34	23.9	0
250	32.1	24	0.02	291	33.9	24.8	0
251	34	25	0.09	292	32.5	25.6	0
252	34	25.1	1.13	293	32.5	26	0
253	33.8	25.5	0.49	294	33.3	24.3	0
254	36.5	26.3	0	295	33.8	24.3	0
255	34.4	25.3	0	296	33	24.3	0
256	33.7	24.5	0	297	32.2	24.5	0.78
257	33.5	25.9	0	298	34	25.4	0
258	33.7	24.5	1.41	299	33.1	26	0.53
259	33.7	25	0.01	300	35.3	24.4	0
260	33	25.3	9.07	301	34.7	24	0.18
261	33	26	0.5	302	33.3	25.6	0
262	34.5	25.9	0	303	34.1	24.7	0.19
263	35	26.3	0	304	33.6	25.2	0.71
264	35.1	26.4	0	305	35.2	25.2	0.75
265	31.5	24.5	0	306	34.8	24.6	0.02
266	34.5	26.4	0	307	34.5	24.5	0
267	32.3	25.7	0.05	308	32.6	24.9	0.37
268	32	25	0	309	31.1	23.7	0
269	32.2	24	0	310	33.5	25.5	0.15
270	34.6	26.3	1.38	311	34.4	25.7	0
271	34.6	25.5	4.92	312	33.5	24.5	3.6
272	34.1	25.8	0	313	32.8	25.1	0.02
273	32.5	24.5	0	314	34.1	24.4	0
274	33.2	24.4	0.51	315	34.9	25	2.86
275	33	23.6	0.99	316	35.1	25	0.05
276	34.4	24.7	0.84	317	34	24.2	0.2
277	34.5	25	0	318	31.5	25.2	0
278	33	24	2.25	319	33.2	24.9	0
279	30.8	23.5	0.24	320	33.6	24.4	0
280	31.5	25.6	0.06	321	33.4	24.5	0
281	31.1	25.4	0	322	32.9	24.3	0
282	32	24.3	0	323	31.5	22.6	0
283	34.5	24.6	0.04	324	32.2	22.3	0
284	31.4	25.8	0	325	33	20.5	0
285	32.9	24	0.65	326	34.1	21	0
286	33.6	23.1	0	327	34.6	21.9	0
287	33.4	25.2	0.16	328	35.3	21.5	0

APPENDIX A 6: Daily maximum temperature, minimum temperature and precipitation at Lop buri in 2014. (Con't)

Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)	Julian day (2014)	Maximum temp.(C)	Minimum temp.(C)	Precipitation (cm)
329	35.5	23	0	348	31.9	21	0
330	35.5	23.8	0	349	33.5	21	0
331	35.1	25.1	0	350	31.9	22	0
332	35.1	24.7	0	351	28.3	21.6	0
333	35.5	25.4	0	352	29	20.5	0
334	35.9	25.1	0	353	31	21.3	0
335	34.6	23.3	0	354	31.5	21.5	0
336	31.4	26.1	0.4	355	32.7	18.5	0
337	33.2	24.1	0.51	356	29	21	0
338	34.1	24.5	0	357	28	20	0
339	34.1	25.5	0	358	32	18	0
340	34	23.7	0	359	33.5	22.6	0
341	34.4	23.5	0	360	34.9	21.7	0
342	33.3	23.6	0	361	35	23.2	0
343	33	23.5	0.04	362	32.9	24.5	0
344	33.6	21	0	363	30.7	22.1	0
345	33.5	24.4	0	364	30.9	19.6	0
346	32.4	24	0	365	30.8	17.6	0
347	29.1	22	0				

APPENDIX A 6: Daily maximum temperature, minimum temperature and precipitation at Lop buri in 2014. (Con't)

Chai Nat			
Julian_day	WaterTable_cm	Julian_day	WaterTable_cm
31	1.7	69	3
38	1.5	73	3.5
42	2.6	77	3.3
44	1.8	80	3.2
48	2.8	84	3.4
52	2.8	87	3.5
59	3.3	91	3.4
62	3.1	100	4.1
66	3.4		

APPENDIX B 1: Water table depth at Chai Nat in 2014 under continuous flooding.

APPENDIX B 2: Water table depth at Lop buri in 2014 under continuous flooding.

Lop buri			
Julian_day	WaterTable_cm	Julian_day WaterTable_	_cm
210	2.5	283	0.5
231	1	284	1.5
238	1.5	287	1.2
244	3	288	1.6
246	1	289	6.3
252	0.5	290	1.8
259	1	291	5.3
267	1	292	1.3
277	3.5	293	1.2
278	1.2	294	0.7
279	4.8	301	0.8
281	0.5	308	1.3
282	0.5		

Nakhon phathom			
Julian_day	WaterTable_cm	Julian_day	WaterTable_cm
1	10	66	10
3	10	70	10
4	10	71	10
24	10	76	10
25	10	77	10
34	10	88	10
35	10	89	10
41	10	93	10
42	10	94	10
50	10	101	10
51	10	102	10
57	10		
58	10		
65	10		

APPENDIX B 3: Water table depth at Nakhon phathom in 2014 under continuous flooding.

Phachinburi				
Julian_day	WaterTable_cm	Julian_day	WaterTable_cm	
179	4.03	219		9.67
180	3.35	220		9.83
181	9.88	221		9.83
182	8.30	222		10.00
183	8.78	223		9.50
184	8.75	224		9.17
185	8.78	225		9.33
186	8.03	226		9.33
187	8.83	227		9.33
188	8.58	228		9.83
189	8.50	229		9.33
190	8.42	230		9.33
191	8.83	231		9.08
192	8.25	232		9.33
193	8.33	233		9.17
194	8.58	234		9.67
195	9.17	235		9.75
196	10.00	236		10.00
197	8.58	237		9.58
198	8.83	238		9.25
199	9.33	239		9.75
200	8.83	240		9.42
201	9.00	241		9.50
202	10.00	242		12.33
203	10.00	243		11.67
204	8.92	244		11.58
205	9.17	245		10.67
206	9.17	246		11.75
207	9.08	247		12.08
208	9.33	248		11.67
209	9.17	249		10.83
210	9.50	250		11.83
211	9.33	251		14.33
212	9.33	252		12.92
213	9.83	253		11.83
214	9.33	254		11.50
215	9.33	255		11.67
216	9.67	256		15.00
217	9.83	257		17.00
218	10.33	258		41.00

APPENDIX B 4: Water table depth at Phachinburi in 2014 under continuous flooding.

Phitchanulok	
Julian_day	WaterTable_cm
30	3
37	3
44	2.5
47	5
51	8
58	8
65	8
72	8.5
79	8.5
82	8.5
86	9.3
93	10
100	10
103	9.5

APPENDIX B 5: Water table depth at Phitchanulok in 2014 under continuous flooding.

APPENDIX B 6: Water table depth at Ubon Ratchathani in 2014 under

continuous flooding.

Ubon Ratchathani				
Julian_day	WaterTable_cm	Julian_day	WaterTable_cm	
218	2.5	293	3	
225	1.9	295	2.4	
232	1.9	296	3.1	
235	2.2	297	3.3	
239	2.4	298	3.4	
246	1.6	299	2.4	
250	2.1	300	3.2	
253	1.6	301	2.1	
260	2.3	302	3	
267	3	303	2.2	
270	0	304	2.7	
274	3.2	305	2.3	
281	2.3	306	4	
288	3.2	307	4.6	
289	2.5	308	2.3	
290	1.8	309	3.2	
291	2.4	310	2.5	
292	2.7	311	2.3	

Chai Nat				
Julian_day	WaterTable_cm	Julian_day	WaterTable_cm	
31	1.4	69	3.1	
38	2	73	3	0
42	2.7	7	7	3.6
44	0	80)	0
48	0	84	1	3
52	3.6	8	7	0
59	0	9:	1	3.5
62	3.5	100)	3.7
66	0			

APPENDIX C 1: Water table depth at Chai Nat in 2014 under AWD.

APPENDIX C 2: Water table depth at Lop buri in 2014 under AWD.

Lop buri			
Julian_day	WaterTable_cm	Julian_day	WaterTable_cm
210	1.1	287	-0.3
231	1.1	288	-4.7
238	2.7	289	-7
244	2.2	290	3.7
246	1	291	0.3
252	1.7	292	-5
259	-3.7	293	-3.5
267	-7	294	-0.7
277	-1	301	3.7
278	-1	308	1.3
279	-1	309	-8.8
281	-5	310	7
282	1	311	-3.7
283	2.3	312	-9.7
284	2		

Phachinburi				
Julian_day	WaterTable_cm	Julian_day	WaterTable_cm	
179	4.22	220	8	8.75
180	3.52	221	8	8.58
181	9.50	222	8	8.08
182	8.08	223	7	.75
183	5.33	224	7	.08
184	4.83	225	6	5.50
185	4.08	226	6	5.33
186	3.60	227	5	5.83
187	2.92	228	6	5.33
188	2.17	229	5	5.75
189	2.00	230	5	5.25
190	-1.25	231	4	.17
191	-1.75	232	3	8.67
192	8.75	233	3	8.58
193	7.67	234	3	3.33
194	6.83	235	3	8.42
195	6.33	236	3	3.33
196	8.00	237	2	2.42
197	7.08	238	1	.33
198	6.75	239	-1	.33
199	9.00	240	-3	6.00
200	7.75	241	-6	5.33
201	7.50	242	12	2.17
202	8.00	243	11	.92
203	8.17	244	11	.42
204	8.00	245	10).67
205	7.75	246	11	.00
206	7.58	247	11	.50
207	7.17	248	11	.00
208	6.75	249	10).17
209	6.50	250	13	3.33
210	6.42	251	15	5.00
211	6.08	252	13	3.33
212	6.58	253	12	2.42
213	7.75	254	11	.92
214	7.17	255	12	2.25
215	7.25	256	15	5.67
216	8.08	257	17	.67
217	8.75	258	41	.17
218	9.67	259	44	.33
219	8.83			

APPENDIX C 3: Water table depth at Phachinburi in 2014 under AWD.

Phitchanulok	
Julian_day	WaterTable_cm
30	2
37	2
44	4.5
47	4
51	3
58	2
65	-2
72	1
79	-15
82	8.5
86	9
93	9
100	5.5
103	3

APPENDIX C 4: Water table depth at Phitchanulok in 2014 under AWD.

APPENDIX C 5: water table depth at Nakhon phathom in 2014 under AWD.

Nakhon phathom				
Julian_day	WaterTable_cm	Julian_day	WaterTable_cm	
1	10	58	10	
3	-15	66	-15	
4	10	70	10	
24	-15	71	-15	
25	10	76	10	
34	-15	77	-15	
35	10	88	10	
41	-15	89	-15	
42	10	93	10	
50	-15	94	-15	
51	10	101	10	
57	-15	102	-15	

Ubon Ratchathani			
Julian_day	WaterTable_cm	Julian_day	WaterTable_cm
218	5	289	2.3
225	2.6	290	1.1
232	1.8	291	1.5
235	1.2	292	0.9
239	2.7	293	0.9
246	1.6	294	3
250	1.1	295	3
251	0	296	4.6
253	1	298	2.1
254	1.7	299	1.3
255	1.5	300	3.1
256	1.2	301	1.7
257	1.7	302	2.4
258	1	303	2.3
260	1.7	304	2.8
261	2.9	305	1.1
263	2.4	306	1.7
268	0.6	307	2.5
270	0	308	2.6
274	0	309	2.8
281	3.9	310	1.1
288	1.1	311	1.7

APPENDIX C 6: Daily water table depth at Ubon Ratchathani in 2014 under AWD.

DAP	Continuous	flooding	AWI)
	Observation	Simulation	Observation	Simulation
7	23.82	2.13	22.46	15.12
14	18.78	11.78	31.17	33.86
20	23.61	25.91	35.05	41.96
24	48.06	33.86	22.86	46.16
28	52.92	39.85	24.88	31.21
35	33.11	47.81	18.03	14.05
42	31.16	38.75	7.09	6.07
49	18.97	36.65	5.12	8.76
56	34.58	33.17	5.05	4.85
59	10.78	11.78	20.84	1.81
69	10.29	17.63	8.99	6.11
70	16.45	11.84	5.78	7.48
77	5.69	24.87	5.14	11.55
84	34.20	20.59	6.41	13.34
91	9.83	16.58	5.41	14.76
97	6.54	15.59	1.79	2.13
104	12.41	13.39	1.19	9.27

APPENDIX D 1: CH_4 emission from observation and simulation at Chai Nat under continuous flooding and $AWD(mgC/m^2/day)$.

APPENDIX D 2: CH_4 emission from observation and simulation at Nakhon phathom under continuous flooding and AWD(mgC/m²/day).

DAP	Continuous flooding		AWD	
	Observation	Simulation	Observation	Simulation
39	16.44	9.89	16.86	13.35
44	26.93	13.50	214.05	146.78
51	63.92	93.27	164.84	119.46
58	60.18	74.63	5.47	93.44
65	48.92	71.96	28.92	79.06
72	213.19	117.97	-29.62	42.93
79	51.76	73.24	26.66	71.96
86	78.47	79.06	26.21	73.24
92	102.19	93.44	43.80	82.47
100	347.55	148.86	158.16	121.89

DAP	Continuous flooding		AWD	
	Observation	Simulation	Observation	Simulation
5	48.80	74.73	17.61	13.50
12	22.68	73.24	13.97	13.42
19	43.16	71.96	54.77	15.21
24	64.70	73.80	99.14	74.63
26	81.97	88.47	91.37	104.99
33	142.52	121.89	68.87	93.27
39	141.72	148.86	41.72	71.96
41	104.45	145.49	51.93	73.80
47	140.21	116.09	14.14	14.45
54	144.24	164.45	41.17	14.63
62	117.17	143.61	37.19	14.54
72	111.19	157.93	16.00	14.14
82	219.59	194.31	15.37	13.86
96	181.07	193.08	14.94	13.43
103	171.66	180.04	27.76	13.38

APPENDIX D 3: CH_4 emission from observation and simulation at Lop Buri under continuous flooding and AWD(mgC/m²/day).

APPENDIX D 4: CH_4 emission from observation and simulation at Phachinburi under continuous flooding and AWD(mgC/m²/day).

DAP	Continuous flo	ooding	AWD	
	Observation	Simulation	Observation	Simulation
21	185.70	3.21	18.57	9.50
28	64.05	8.08	6.41	9.79
35	55.13	10.83	5.51	9.48
42	55.13	13.73	5.51	7.96
43	99.98	13.97	10.00	7.61
44	56.10	14.03	5.61	7.32
45	60.08	14.01	6.01	7.05
46	82.43	13.97	8.24	6.82
47	55.13	13.91	5.51	6.58
49	58.50	13.67	5.85	5.02
56	55.13	13.05	5.51	6.78
63	59.48	13.24	5.95	6.57
64	55.13	13.73	5.51	6.29
65	56.25	14.20	5.63	4.70
66	75.23	14.48	7.52	4.48
67	70.65	14.59	7.07	4.31
70	80.70	14.31	8.07	3.87
77	69.23	14.77	6.92	0.87
84	178.65	15.75	17.87	3.87
88	147.30	15.75	14.73	0.97

DAP	Continuous flooding		AWD	
	Observation	Simulation	Observation	Simulation
7	44.72	8.67	71.44	24.62
14	13.36	16.83	13.36	93.27
21	29.45	82.47	29.45	74.63
28	19.25	71.96	46.93	87.66
35	16.25	73.24	151.62	129.98
39	199.14	204.56	460.91	180.13
42	93.68	121.89	237.71	154.49
49	149.33	181.22	307.78	293.88
59	249.94	202.99	264.26	283.32
63	234.97	202.37	318.01	286.44
70	180.66	190.68	281.89	271.01
77	135.06	187.70	217.72	260.81
84	338.86	202.60	408.07	336.65
91	172.43	189.59	156.45	182.21
98	239.65	195.06	311.90	268.97
105	273.20	196.78	292.80	239.82

APPENDIX D 5: CH_4 emission from observation and simulation at Phitsanulok under continuous flooding and $AWD(mgC/m^2/day)$.

APPENDIX D 6: CH_4 emission from observation and simulation at Ubon Ratchathani under continuous flooding and AWD(mgC/m²/day).

DAP	Continuous flooding		AWD	
	Observation	Simulation	Observation	Simulation
7	1.83	7.80	1.70	2.79
14	11.49	9.97	6.03	3.09
21	65.01	11.02	83.62	9.15
24	12.70	12.34	15.61	74.63
28	34.72	73.24	70.37	93.27
35	156.51	122.69	90.23	104.99
39	141.76	128.31	38.07	59.88
42	226.36	121.27	89.44	56.01
49	57.66	107.78	253.84	82.94
56	213.21	110.19	83.20	87.66
59	170.83	113.53	91.53	112.39
63	149.22	110.76	107.28	117.97
70	225.67	200.42	151.43	123.30
77	220.86	212.33	102.47	129.98
84	587.27	204.48	233.02	180.13
91	273.44	196.93	136.97	173.44
98	278.23	193.49	574.71	152.50
105	17.05	113.53	124.62	154.49