

บทคัดย่อ

173932

งานวิจัยนี้เป็นการศึกษาการทำงานของตัวเร่งปฏิกิริยาแบบวิธีพัณธ์ภายใต้สภาวะไม่คงตัวโดยเลือกปฏิกิริยาเริดักชันค่าวับน์บนมอนอกใช้ด้วยในตริกอกใช้ด้วยใช้ตัวเร่งปฏิกิริยาโดยเดิมบนอะลูมินาเป็นปฏิกิริยาตัวอย่าง สภาวะไม่คงตัวที่เลือกใช้เป็นแบบแบง-แบง (Bang-bang) ในการศึกษาได้เก็บข้อมูลที่เกี่ยวข้องกับจลนพลศาสตร์ของปฏิกิริยาโดยทำการทดลองและคำนวนภายใต้สภาวะคงตัวและไม่คงตัวเพื่อหาผลไก่การเกิดปฏิกิริยาและพารามิเตอร์ที่สามารถทำนายการเกิดปฏิกิริยาได้แม่นยำทั้งภายใต้สภาวะคงตัวและไม่คงตัวจากนั้นจึงได้นำแบบจำลองจลนพลศาสตร์ของการเกิดปฏิกิริยาที่ได้มาทำนายการเกิดปฏิกิริยาภายใต้สภาวะไม่คงตัวอื่นต่อไป ผลงานวิจัยนี้สามารถยืนยันได้ว่าวิธีการที่ใช้ในการศึกษาจลนพลศาสตร์การเกิดปฏิกิริยาซึ่งประกอบด้วยการวัดอัตราการเกิดปฏิกิริยาภายใต้สภาวะคงตัวและการนำรูปภาพการเปลี่ยนแปลงความเข้มข้นของสารตั้งต้นภายใต้สภาวะไม่คงตัวมาปรับเพื่อคำนวนหาพารามิเตอร์ที่ถูกต้องต่อไปนั้น เป็นวิธีที่สามารถนำมาใช้ในการศึกษาการทำงานของตัวเร่งปฏิกิริยาวิธีพัณธ์ได้ดีวิธีนี้ และยังน่าที่จะนำไปประยุกต์ใช้กับการศึกษาการทำงานของปฏิกิริยาอื่นๆ ต่อไปได้อีกด้วย

Abstract

173932

Behavior of heterogeneous catalytic reaction under unsteady condition has been investigated in this study. Reduction of NO by CO over Rh/Al₂O₃ under bang-bang periodic condition was selected as a model system. In order to find the kinetics of the reaction, experiments and calculation were conducted for both steady and unsteady conditions. The obtained kinetics information was interpreted in order to determine appropriate reaction mechanism and its parameters. They were employed for predicting the performance of the reaction under wide range of periodic condition. The results from this research confirmed that application of steady-state reaction rate measurement and fitting the deformation pattern of concentration wave occurring under the periodic condition was an effective method for studying kinetics of such a complicated heterogeneous catalytic reaction. This technique should be further useful for study of other reaction systems, as well.