

**EFFECTS OF *MORINGA OLEIFERA* ON LEAD-INDUCED
TOXICITY IN *PUNTIUS ALTUS***

SUNISA SIRIMONGKOLVORAKUL

**A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
(PATHOBIOLOGY)
FACULTY OF GRADUATE STUDIES
MAHIDOL UNIVERSITY
2013**

COPYRIGHT OF MAHIDOL UNIVERSITY

Thesis
entitled

**EFFECTS OF *MORINGA OLEIFERA* ON LEAD-INDUCED
TOXICITY IN *PUNTIUS ALTUS***

.....
Miss Sunisa Sirimongkolvorakul
Candidate

.....
Lect. Amonrat Naranuntarat Jensen, Ph.D.
Major advisor

.....
Lect. Tawewan Tansatit, D.V.M., Ph.D.
Co-advisor

.....
Lect. Narin Preyavichyapugdee, D.V.M.,
Ph.D.
Co-advisor

.....
Prof. Banchong Mahaisavariya, M.D.
Dip. Thai Board of Orthopedic
Dean
Faculty of Graduate Studies
Mahidol University

.....
Assoc. Prof. Galayanee Doungchawee,
M.Sc.
Program Director
Doctor of Philosophy Program in
Pathobiology
Faculty of Science, Mahidol University

Thesis
entitled

**EFFECTS OF *MORINGA OLEIFERA* ON LEAD-INDUCED
TOXICITY IN *PUNTIUS ALTUS***

was submitted to the Faculty of Graduate Studies, Mahidol University
for the degree of Doctor of Philosophy (Pathobiology)
on
July 2, 2013

.....
Miss Sunisa Sirimongkolvorakul
Candidate

.....
Assoc. Prof. Ong-ard Lawhavinit, Ph.D.
Chair

.....
Lect. Narin Preyavichyapugdee, D.V.M.,
Ph.D.
Member

.....
Lect. Amonrat Naranuntarat Jensen,
Ph.D.
Member

.....
Assist. Prof. Wanee Jiraungkoorskul,
Ph.D.
Member

.....
Lect. Tawewan Tansatit, D.V.M.,
Ph.D.
Member

.....
Prof. Banchong Mahaisavariya, M.D.
Dip. Thai Board of Orthopedic
Dean
Faculty of Graduate Studies
Mahidol University

.....
Prof. Skorn Mongkolsuk, Ph.D.
Dean
Faculty of Science
Mahidol University

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Amornrat N. Jensen for her advices, critical reading and editing of my thesis. Special thanks to Assistant Professor Dr. Wanee Jiraungkoorskul for her kindness and valuable advices throughout my study. I am grateful to my advisor committee, Dr. Tawewan Tansatit and Dr. Narin Preyavichyapugdee for their collaborations and constructive comments for my research works.

I wish to express my sincere thanks to Associate Professor Dr. Ong-ard Lawhavinit for helpful comments and suggestions for my works. I would like to express grateful appreciation to the members of the examination committee for their helpful comments and suggestions. I also would like to express my sincere appreciation to Mr. Piya Kosai, Mr. Somneuk Koota, Miss Kanjana Siridthi, Mr. Niwat Kangwanrangsang, Mrs. Tasanee Inwisai and all staffs of the Department of Pathobiology, Faculty of Science, Mahidol University for their support, assistance, and advice throughout my entire study. I also wish to thank, Mrs. Donrudee Chaisiri, staff of Faculty of Veterinary Technology, Kasetsart University for her technical advice on high performance liquid chromatography analysis and phytochemical study.

Last but not least, I would like to dedicate this thesis to my dad, my sister, and my brother. Their love and encouragement are always the great support for me throughout my study.

Sunisa Sirimongkolvorakul

**EFFECTS OF *MORINGA OLEIFERA* ON LEAD-INDUCED TOXICITY IN
*PUNTIUS ALTUS***

SUNISA SIRIMONGKOLVORAKUL 5236966 SCPA/D

Ph.D. (PATHOBIOLOGY)

**THESIS ADVISORY COMMITTEE: AMONRAT NARANUNTARAT JENSEN
Ph.D., TAWEWAN TANSATIT, Ph.D., NARIN PREYAVICHYAPUGDEE, Ph.D.**

ABSTRACT

Lead contamination can be found in soil, water, and food which can be accumulated into many organisms. Currently, lead exposure through dietary sources is a major public health concern. There is a growing trend worldwide on using medicinal plant as an alternative treatment for various diseases. *Moringa oleifera*, a plant in Moringaceae family, has been used in traditional medicine in many parts of the world. In this study, the protective potency of *M. oleifera*-supplemented diets protect against lead toxicity to the fish *Puntius altus* were investigated. The results showed that the gills of fish pre-administering with both dosages of *M. oleifera* diets (20 mg g⁻¹ and 60 mg g⁻¹) before lead exposure showed only mild alterations to the gill filament. Interestingly, a number of mucous cells particularly the acid mucopolysaccharide cells were observed in the group of fish pre-administered with *M. oleifera*-supplemented diets. The control fish fed without *M. oleifera* supplement diet showed 94 neutral mucous cell types which indicated that the protective efficiency of this plant could be due to the role of acid mucous cells. Moreover, pre-treatment with *M. oleifera* supplement diet also reduced liver and kidney damages due to lead exposure as well as decreased in an expression of proliferating cell nuclear antigen (PCNA), a marker of cellular proliferation. Overall, these results suggest that pre-treatment with *M. oleifera*-supplemented diet is able to protect the fish against damages from lead exposure.

KEY WORDS: *MORINGA OLEIFERA/ PHENOLICS/ FISH/ MUCOUS CELL/ CELL PROLIFERATION*

105 pages

ผลของอาหารเสริมในมะรุ่มต่อพิษสารตะกั่วในปลาตะเพียน

EFFECTS OF *MORINGA OLEIFERA* ON LEAD-INDUCED TOXICITY IN *PUNTIUS ALTUS*

สุนิษา ศิริมงคลวรกุล 5236966 SCPA/D

ปร.ค. (พยาธิชีววิทยา)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์: ออมรัตน์ นรานันทรัตน์ เจนเซ่น Ph.D., ทวีวัลย์ ตันสกิตย์, Ph.D., นรินทร์ ปริยิชญากัดี, Ph.D.

บทคัดย่อ

สารตะกั่วที่ปนเปื้อนทั้งในดิน น้ำ และอาหารสามารถถูกดูดซึมเข้าสู่ร่างกายของสัตว์มีชีวิตได้ ปัจจุบันพบว่าการปนเปื้อนของสารตะกั่วจากอาหารเป็นปัญหาสำคัญทางสาธารณสุข ขณะเดียวกันการรักษาโดยใช้พืชสมุนไพรได้รับความสนใจเพิ่มขึ้นอย่างต่อเนื่อง มะรุ่มเป็นพืชในวงศ์ Moringaceae จัดเป็นพืชสมุนไพรที่มีการใช้ประ�อยชน์แพร่หลายทั่วโลก การศึกษานี้เป็นการประเมินการป้องกันของอาหารเสริมในมะรุ่มต่อการเกิดพิษอันเนื่องมาจากการตะกั่วในปลาตะเพียน จากการศึกษาพบว่าปลาตะเพียนที่ได้รับอาหารเสริมในมะรุ่มก่อนได้รับสารตะกั่วมีการเปลี่ยนแปลงทางพยาธิสภาพของเนื้อเยื่อหेँก็อกเพียงเล็กน้อยเมื่อเทียบกับปลาตะเพียนที่ไม่ได้รับอาหารเสริมในมะรุ่ม และจากการศึกษานี้อีกหนึ่งพิสัยที่นักวิทยาเคมีพบว่ามีการเพิ่มจำนวนของ acid mucous cells ในขณะที่ปลาตะเพียนในกลุ่มควบคุมพบ neutral mucous cell เป็นเซลล์ส่วนใหญ่ การศึกษานี้แสดงให้เห็นว่า ประสิทธิภาพของอาหารเสริมในมะรุ่มในการป้องกันพิษจากสารตะกั่วอาจมีความเกี่ยวข้องกับบทบาทของ acid mucous cells นอกจากนี้ยังพบว่าการได้รับอาหารเสริมในมะรุ่มก่อนได้รับสารตะกั่วช่วยลดการเกิดพยาธิสภาพของเนื้อเยื่อ ໄตแต่ตับ อีกทั้งยังลดการเพิ่มจำนวนของเซลล์เนื้อเยื่อในหेँก็อกและเซลล์ตับอีกด้วย กล่าวโดยสรุปคือ อาหารเสริมในมะรุ่มอาจสามารถป้องกันพิษจากสารตะกั่วในปลาได้

CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xi
CHAPTER I INTRODUCTION	1
CHAPTER II OBJECTIVES	3
CHAPTER III LITERATURE REVIEW	4
CHAPTER IV MATERIALS AND METHODS	20
CHAPTER V RESULTS	31
CHAPTER VI DISCUSSION	69
CHAPTER VII CONCLUSION	74
REFERENCES	76
APPENDIX	99
BIOGRAPHY	104

LIST OF TABLES

Table		Page
3.1	Effect of different concentrations of lead on apoptosis	6
4.1	Experimental design	21
5.1	Histopathological analysis of gill, liver, and kidney of <i>P. altus</i>	61

LIST OF FIGURES

Figure		Page
3.1	Schematic representation of lead on inhibition of ALAD and glutathione peroxidase	5
3.2	Effect of reactive oxygen species (ROS) induced by lead on liver	7
3.3	Diagrammatic structure of the fish gills	10
3.4	Possible mechanisms of ion uptake by gill epithelium of freshwater fish engage in active ion uptake to maintain gill homeostasis	11
3.5	Taxonomy of <i>Puntius altus</i>	13
3.6	External anatomy of <i>Puntius altus</i>	13
3.7	Structures of major phenolics in herbs	16
3.8	Taxonomy of <i>Moringa oleifera</i>	17
3.9	Morphology of <i>Moringa oleifera</i>	18
4.1	Blood collection from <i>Puntius altus</i> at caudal vein	22
5.1	Effects of <i>Moringa oleifera</i> -supplemented diets on growth performance in <i>Puntius altus</i>	34
5.2	Effects of <i>Moringa oleifera</i> -supplemented diets on hematological variable in <i>Puntius altus</i>	35
5.3	Effects of <i>Moringa oleifera</i> -supplemented diets on liver function related enzymes activities in <i>Puntius altus</i>	39
5.4	Effects of <i>Moringa oleifera</i> -supplemented diets on liver LPO and antioxidant enzymes activities in <i>Puntius altus</i>	40
5.5	Representative of light micrographs of gill filament in <i>Puntius altus</i> illustrating basic gill structure (<i>H&E stain</i>)	46
5.6	Histological changes of the gill of <i>Puntius altus</i> showed gill alterations (<i>H and E stain</i>)	47

LIST OF FIGURES (cont.)

Figure		Page
5.7	Histological changes of the gill of <i>Puntius altus</i> showed gill alterations (<i>H and E stain</i>)	48
5.8	Representative of light micrographs of gill filament in <i>Puntius altus</i> in controlled fish (<i>AB/PAS stain</i>)	49
5.9	Higher magnification view of the gill filament of <i>Puntius altus</i> showed certain mucous cell types (<i>AB/PAS stain</i>)	50
5.10	Percentage neutral, acidic, and neutral-acidic mucous cells of the gill filament of <i>Puntius altus</i>	51
5.11	Representative of light micrographs of the liver of <i>Puntius altus</i> (<i>H&E stain</i>)	52
5.12	Representative of light micrographs of the liver of <i>Puntius altus</i> (<i>H&E stain</i>)	53
5.13	Representative of light micrographs of the liver of <i>Puntius altus</i> (<i>H&E stain</i>)	54
5.14	Representative of light micrographs of the liver of <i>Puntius altus</i> with lead exposure (<i>H&E stain</i>)	55
5.15	Representative of light micrographs of the liver of <i>Puntius altus</i> (<i>PAS stain</i>)	56
5.16	Representative of light micrographs of the liver of <i>Puntius altus</i> (<i>PAS stain</i>)	57
5.17	Representative of light micrographs of kidney of <i>Puntius altus</i> (<i>H&E stain</i>)	58
5.18	Representative of light micrographs of kidney of <i>Puntius altus</i> (<i>H&E stain</i>)	69
5.19	Immunohistochemical staining patterns for PCNA in gill and liver	63

LIST OF FIGURES (cont.)

Figure	Page
5.20 Relative levels of total phenolic compounds (A), flavonoid compounds (B) concentrations in <i>Moringa oleifera</i> leaves	65
5.21 Relative reducing power (A) and DPPH radical scavenging activity (B) of different solvent extracts of <i>Moringa oleifera</i> leaves extract	66
5.22 Representative HPLC chromatograms of methanolic extract constituent of <i>Moringa oleifera</i> leaves under different detection wavelength 335 nm for (A) and 227 nm for (B)	68
7.1 Schematic diagram of the possible protective mechanisms of <i>Moringa oleifera</i> diet against lead-induced toxicity in fish	75

LIST OF ABBREVIATIONS

%	Percentage
μ g	Microgram
μ L	Microliter
μ m	Micrometer
μ M	Micromolar
δ -ALAD	Delta-aminolevulinic acid dehydratase
Ac	Absorbance of the control
AE	Anion exchanger
ALA	Delta-aminolevulinic acid
ALAD	Aminolevulinic acid dehydratase
ALT	Alanine aminotransferase
ANOVA	Analysis of Variance
As	Absorbance of the sample
ASE	Ascorbic acid equivalent
AST	Aspartate aminotransferase
BSA	Bovine serum albumin
$^{\circ}$ C	Degree Celsius
CAT	Catalase
cm	Centimeter
dL	Deciliter
DMSA	Meso-2,3 dimercaptosuccinic acid
DNA	Deoxyribonucleic acid
DPPH	2,2-diphenyl-1-picrylhydrazyl
EDTA	Ethylenediaminetetraacetic acid
FRAP	Ferric reducing antioxidant power
FRSA	Free radical scavenging activity

LIST OF ABBREVIATIONS (cont.)

g	Gram
GA	Gallic acid
GAE	Gallic acid equivalent
G-6-PDH	Glucose-6-phosphate dehydrogenase
GP	Glutathione peroxidase
GR	Glutathione reductase
GSH	Reduced glutathione
GSSG	Glutathione disulfide
H ₂ O ₂	Hydrogen peroxide
HSI	Hepatosomatic index
LPO	Lipid peroxidation
M	Molar
mg	Milligram
min	Minute
mL	Milliliter
mM	Milimolar
MS-222	Tricaine methan sulphonate
NBT	Nitro blue tetrazolium
nm	Nanometer
¹ O ₂	Singlet oxygen
O ₂ ⁻	Superoxide radical
OH	Hydroxyl
Pb	Lead
PBS	Phosphate buffer saline
PCNA	Proliferating cell nuclear antigen
PMS	Post-mitochondrial supernatant
ppb	Part per billion

LIST OF ABBREVIATIONS (cont.)

ppm	Part per million
ROS	Reactive oxygen species
RP	Reducing power
rpm	Round per minute
SOD	Superoxide dismutase
TBA	Thiobarbituric acid
TBARS	Thiobarbituric acid reactive substance
TCA	Trichloroacetic acid

CHAPTER I

INTRODUCTION

Over a decade, heavy metals contamination in the environment continuously increases owing to anthropogenic activities and they tend to concentrate in the aquatic organisms [1, 2]. Many metal contaminations in an environment accumulate in the food chain and thus threaten animals and human beings [3]. Lead, which is commonly found in wastewater, is among the common hazardous heavy metals to human health and aquatic ecosystem [4]. Lead can be released into the environment in various ways, such as the discharge of by-products from batteries, gasoline, lead shot for fire alarm, and plastic manufacturing [5]. Lead has been known to cause adverse health effects including nephrotoxicity [6], harmful effects on the hematological [7] and cardiovascular systems [5]. Owing to its tendency to accumulate in water and sediment, lead contamination can result in a reduction of aquaculture yield [3].

Utilizing natural materials from plants for reducing toxicity of environmental metal contaminants has gained increasing attention. Among all the plant materials that have been tested, *Moringa oleifera* has been shown to be one of the most effective as a coagulant for water treatment [8]. *M. oleifera* is also known as “Maroom” in Thai [9]. It is commonly used as nutritional and medicinal plants in several tropical countries including Thailand [10]. *M. oleifera* tree has also been found to be well adapted to hot, humid, or wet condition, thus it can be cultivated under a variety of conditions [10]. It has been shown that *M. oleifera* displays various health benefits including anti-inflammation [11], anti-hepatotoxic [12], and antitumor [13]. However, the protective potency of *M. oleifera*-supplemented diet against lead toxicity has never been reported. In this study, we focused on the effects of *M. oleifera* supplement on the fish *Puntius altus* exposed to toxic level of lead contamination in the water. The use of *M. oleifera* extract as a dietary supplement may not only have an

effect on reduction of metal toxicity but may also provide growth advantages due to high proteins, vitamins, and minerals contained in the leaves [14].

The first part of this thesis demonstrated the influence of *M. oleifera* leaf extract on the histopathological changes due to lead toxicity in *P. altus*. In the second part, we investigated the antioxidant activities and phytochemical constituents of *M. oleifera* leaves which may have an influence on alterations of lead toxicity. The studies on physiological, hematological, biochemical and histopathological changes will allow us to assess the potential of using *M. oleifera* supplement in reducing lead toxicity. Herein, we demonstrated that pre-treatment with *M. oleifera* diet to the fish reduced the damages in the gill, liver, and kidney. We observed the presence of phenolics and flavonoids in *M. oleifera* extracts which may exert potent protective effects against lead-induced toxicity. Overall, *M. oleifera* diet has protective effects against lead-induced toxicity when pre-administered to fish *P. altus* before lead exposure. These protective effects of *M. oleifera* are most likely mediated through antioxidant properties of the extracts that are able to protect the cells from oxidative stress induced by lead.

CHAPTER II

OBJECTIVES

The goal of the work presented in this thesis is to assess the potential abilities of *Moringa oleifera* leaves as dietary supplementation to protect damages from lead exposure in fish.

The specific objectives are as follows:

1. To measure the protective effects of *M. oleifera* leaves as dietary supplement on lead-induced toxicity in freshwater fish, *Puntius altus* using histopathological, histochemical, hematological, and biochemical analyses.
2. To investigate whether *M. oleifera* diets can protect lead-induced cellular proliferation in gill and liver.
3. To evaluate the antioxidant potential of *M. oleifera* leaves and to screen for potential phytochemicals in the extract of *M. oleifera* leaves that can confer antioxidant activities.

CHAPTER III

LITERATURE REVIEW

3.1 Lead

3.1.1 Lead as a common pollutant

Lead (Pb) is a toxic metallic element considered as a common pollutant due to its wide distribution and persistence in all environmental media [15]. Certain human activities such as base metal mining, combustion of leaded gasoline, the use of Pb-based paints, and the uncontrolled disposal of Pb-containing products have resulted in elevated environmental level of Pb [16]. Pb exposure occurs mainly through ingestion, inhalation, and skin absorption [5]. Pb adversely affects multiple organ systems and can cause permanent damage [5]. To date, it is well accepted that an exposure to even small amounts of Pb is harmful to animals and human beings [17]. Pb shows a broad range of acute or chronic behavioral, biochemical, and physiological risks [15, 18, 19]. The Centers for Disease Control and the American Pediatric Association consider blood Pb levels $\leq 10 \mu\text{g dL}^{-1}$ to be excessive for infants, children, and women of childbearing age [20, 21]. Measuring Pb level in the blood is the common biomarker for Pb exposure, however it appears that some of the adverse effects of Pb can occur at undetectable levels as well [22].

3.1.2 Toxicology of lead

Pb is well documented to cause several types of toxicities including neurotoxicity, nephrotoxicity, and deleterious effects on the hematological, cardiovascular, and reproductive systems [23, 24]. Lead can bind strongly to the enzymes and proteins containing sulfhydryl group (-SH) leading to protein inactivation and further contributing to cellular damages [25]. Particularly, the activities of delta-aminolevulinic acid dehydratase (δ -ALAD) and glutathione reductase (GR) were found reduced in both animals and humans exposed to Pb [25]. As shown in Figure 3.1, inhibition of ALAD activity by Pb leads to a decreased heme

production and an increased level of substrate delta-aminolevulinic acid (ALA) [26]. An increased amount of ALA is known to stimulate the production of reactive oxygen species (ROS) including hydrogen peroxide (H_2O_2) and superoxide radical (O_2^-) [27]. In addition, Pb is shown to induce changes in red blood cell membrane protein and lipid leading to hemolysis of the cells [28]. GR is a crucial enzyme responsible for recycling of glutathione from the oxidized form (glutathione disulfide, GSSG) to the reduced form (reduced glutathione, GSH) [29]. In addition to GR, glutathione peroxidase (GP) and glutathione-S-transferase are also inhibited by Pb [25].

Figure 3.1 Schematic representation of lead on inhibition of ALAD and glutathione peroxidase.

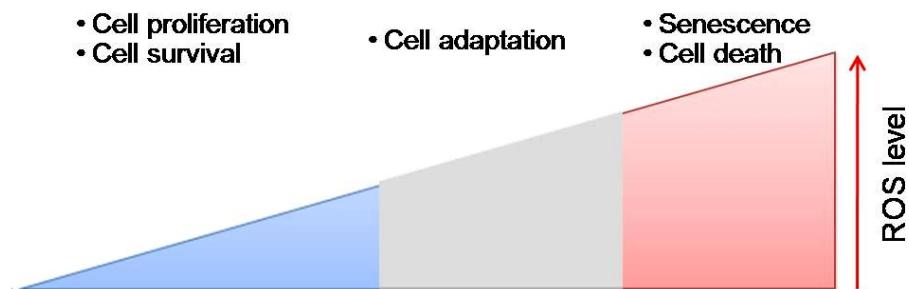

Many studies have reported that lead can cause increased ROS production, DNA damage, and apoptosis in the liver by altering Bcl-2/Bax expression in liver [30, 31]. These ROS include superoxide (O_2^-), hydroxyl (OH), singlet oxygen ($^1O_2^-$), and hydrogen peroxide (H_2O_2) which can react with many biomolecules attributing to cellular damage and depletion of antioxidant molecules [32, 33]. However, the molecular mechanisms of lead-induced ROS are not yet completely understood. Lead can also exert its effects by reacting with one or more reactive groups (ligands) essential for normal physiological function [25]. These reactive sites are oxygen (-OH, -COO-, -OPO₃H, -CO-), sulfur (-SH, -S-S-) [34], and nitrogen (-NH₂, -NH-) [35]. Binding of lead to these reactive groups can cause disruption of the three-dimensional configuration of proteins leading to loss of catalytic functions, structural change and inhibition of transport processes of cell membrane [5, 36]. In addition, lead-induced apoptosis has also been reported (Table 3.1).

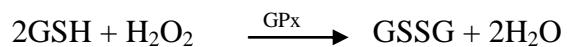
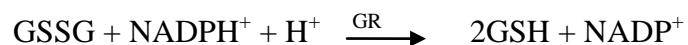
Table 3.1 Effect of different concentrations of lead on apoptosis

Lead concentration	Effects
Pb ²⁺ (1 µM)	Selective apoptosis in rat rod cells [37] Decrease in mitochondrial membrane potential, increase in cytochrome c, and caspases-9 and -3 activated in rat rod cells [38]
PbNO ₂ (10 µM/100g)	Apoptosis in liver of rat [39]
PbNO ₂ (60-240 µM)	Apoptosis in rat alveolar macrophages [40]

3.1.3 Effect of lead on oxidant/ antioxidant balance

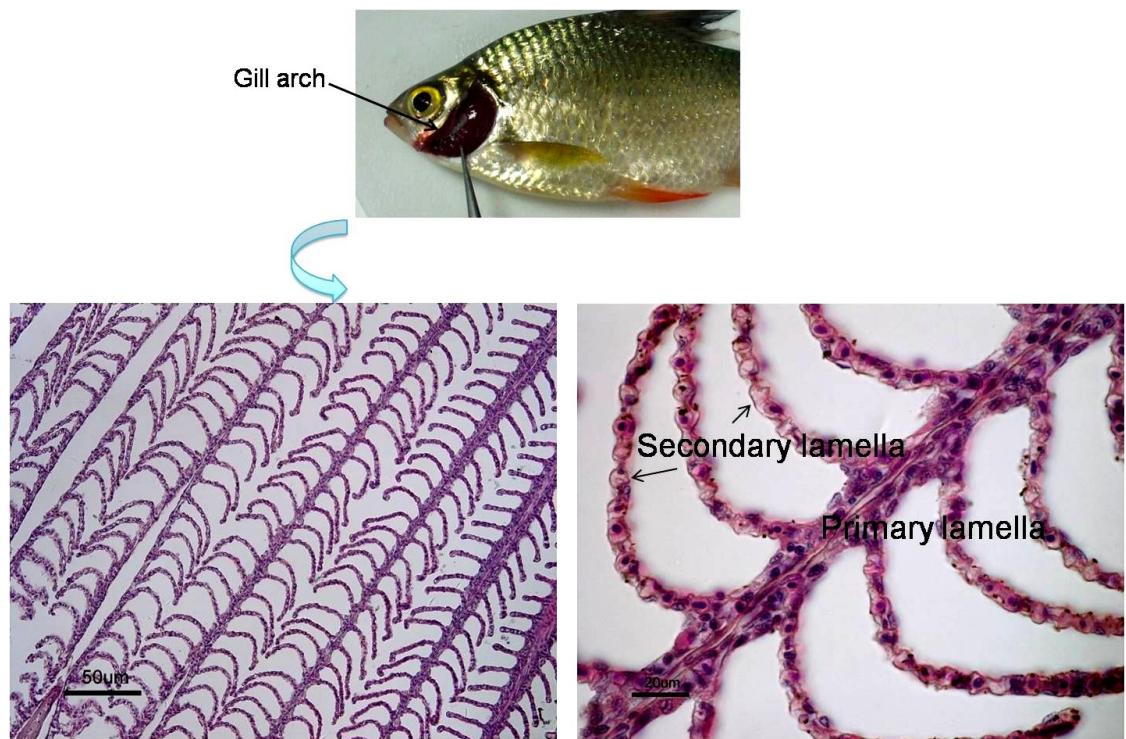
Lead can induce oxidative stress by two mechanisms. First, lead can directly catalyze the formation of ROS [41]. Second, exposure to elevated levels of lead significantly disrupts the prooxidant/antioxidant balance in tissues which leads to biochemical and physiological dysfunction [42]. Increase in generation of ROS can cause damages to cellular macromolecules, including proteins, lipids, and DNA [43]. Consequently, the fluctuations in the levels of ROS production activates signal transduction pathways [44, 45]. As indicated in Figure 3.2, there are three major roles of these reactive molecules in the liver cell response: stimulation of cell proliferation, cell adaptation, or cell death.

Figure 3.2 Effect of reactive oxygen species (ROS) induced by lead on liver cell fate. Elevated levels of ROS induce cell proliferation, excessive level of ROS causes oxidative stress that can ultimately lead to cell death [44, 46].

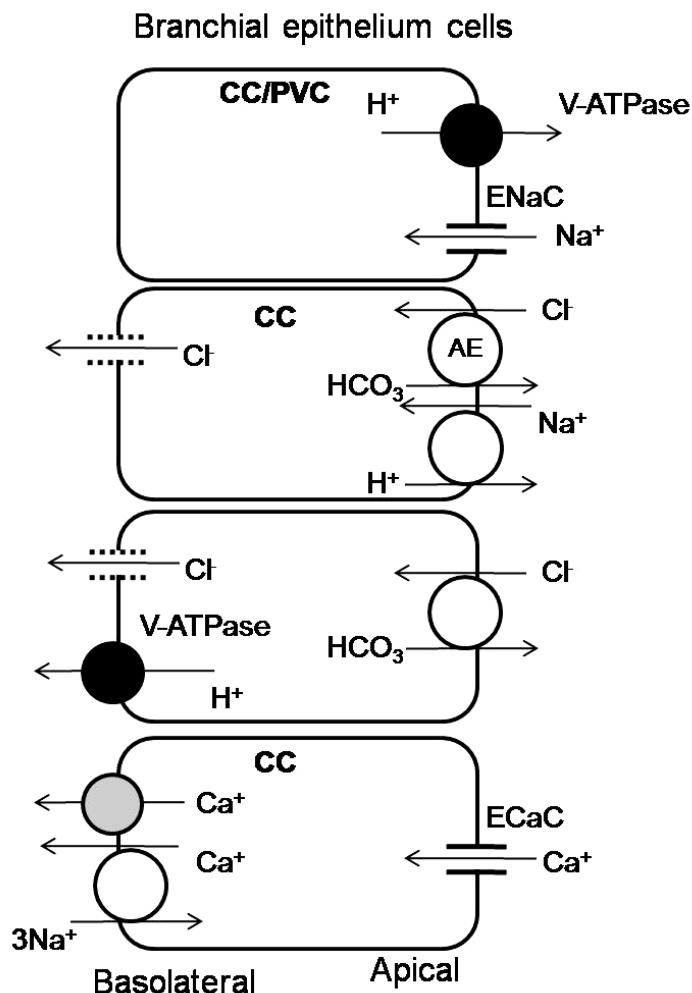


Certain enzymes as well as non-enzymatic molecules are involved in the detoxification of ROS. Non-enzymatic antioxidants are classified into two major groups; 1) endogenous antioxidants, which are derived or originated internally, 2) exogenous antioxidants originating outside of the body [47, 48]. Numerous effective exogenous antioxidants have a dietary origin. The best known are vitamins such as ascorbic acid [49], vitamin E [50], and polyphenol [51]. Examples of endogenous enzymes are superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidases (GPx). SOD catalyzes the superoxide anion (O_2^-) into hydrogen peroxide (H_2O_2) and molecular oxygen [52]. The SOD activity is shown in the following reaction.

Catalase is located mostly in peroxisomes and mitochondria [53]. CAT catalyzes the decomposition of H_2O_2 to hydrogen and water as shown in the reaction below [53].

GPx are a group of selenium-dependent enzymes located in the cytosol and the mitochondrial matrix [54]. All GPx require reduced glutathione (GSH) as a cofactor and secondary enzymes, such as glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G-6-PDH), to function. G-6-PDH generates NADPH to recycle the GSH [54, 55]. GPx catalyzes peroxidase activity by reducing H_2O_2 to water using GSH as a hydrogen donor [55]. The GPx activity is shown in the following reaction.


3.1.4 Lead contamination in aquatic environment

Lead contamination has been reported in aquatic organisms [2, 3]. Lead competes with calcium and disrupts calcium-regulated and calcium-mediated functions [56]. Bioaccumulation within the biota depends on its physiochemical form as well as its metabolism in the individual organism [57]. Dissolved Pb concentrations are typically <1 ppb in uncontaminated water, but may exceed 20 ppb in contaminated water [5]. Toxicity of Pb to aquatic organisms is associated with the concentration of the free dissolved ion, Pb^{2+} [58]. Waterborne Pb is more toxic and more bioavailable in soft freshwater than either hard freshwater or saltwater due to its complex formation with dissolved organic and inorganic substances [59, 60].


Among aquatic species, fish are one of the inhabitants that could not escape from Pb exposure in contaminated water sources [61]. Fish gills are the organ most affected by lead as they are the primary sites for the uptake of substances dissolved in water [62]. A number of researchers have studied the noxious effects of lead in different fish species [63-65]. Lead has been noted to affect the biosynthesis of antioxidant enzymes and disturbs the normal physiology of the fish [66]. Lead induces histopathological alterations in various organs of fish such as gills, liver, and kidney [4, 7, 60, 67].

The fish gill is a multifunctional organ (respiratory, ion regulation, acid-base regulation, and nitrogenous waste excretion) [68]. Besides its importance in gas exchange, fish gill is the major sites of lead uptake [69]. Waterborne lead can bind to the gill and disrupt its functions [70]. In teleosts, the gills are located at the rostral end of the body on either side of the pharynx and operculum [71]. They are comprised of two sets of four holobranchs and each side consists of the gill arch, double rows of the gill filaments (primary lamella) forming hemibranches and gill rakers [71, 72]. The secondary lamellae, the sites of gas exchange, are regularly spaced on the upper and lower surfaces on each filament [73] (Figure 3.3). The cellular composition of gill lamellae is consisted of an envelope of simple squamous epithelium and some small goblet cells, mucous cells, supported and separated by pillar cells arranged in a row [74]. At the base of the gill lamellae, some chloride cells (acidophilic cells) which are stained bright pink with hematoxylin and eosin (H&E) are observed [75]. The lamellae epithelium is considered necessary for the normal operation of all biochemical or

physiological processes by maintaining body fluid and mineral homeostasis [71, 72]. Freshwater teleosts regulate diffusive ions loss and osmotic gain of water by absorbing Ca^{2+} , Na^+ , and Cl^- and by producing large volumes of dilute urine [76]. As shown in Figure 3.4, the active ion uptake is mediated by chloride cells and pavement cells. Briefly, Na^+ uptake is through the epithelial Na^+ channel in combination with the electrogenic vacuolar type proton pump; Cl^- is absorbed by an anion exchanger in exchange for HCO_3^- ; and Ca^{2+} uptake is via an apical Ca^{2+} channel and basolateral Ca^{2+} -ATPase [77-79]. Importantly, numerous studies have demonstrated that these ion exchanges and acid-base regulations may have an influence on toxicants or heavy metals uptake [80-82]. Many studies revealed that the affinity of gills for lead is relatively high and there is a strong relationship between gill lead burden and level of toxicity during acute lead toxicity [70, 83, 84]. However, the impact of lead on fish is complex and also depends on physicochemical characteristics of water [71]. High concentration of calcium in the water has been shown to limit lead toxicity in the aquatic insect [85]. Cations, such as Ca^{2+} and complex ligands, such as mucus which are distributed along the gill, skin and lining the digestive tract of fish, are able to reduce lead toxicity by preventing lead from binding to the gill [86].

Figure 3.3 Diagrammatic structure of the fish gills showing gill arch and gill filament. The fish gills are protecting beneath the operculum from which pairs of gill filaments arise.

Figure 3.4 Possible mechanisms of ion uptake by gill epithelium of freshwater fish engage in active ion uptake to maintain gill homeostasis.

The liver is also considered as a target organ of Pb toxicity as it has a large volume of blood supply leading to high level of toxicant exposure and accumulation [7]. Fish liver is required for internal homeostasis and survival due to its function in metabolisms. Fish liver is found in the anterior part of the body cavity as brownish red mass. Like other animals, it produces many types of enzyme which are stored in the gall bladder [87, 88]. However, certain features of fish liver are quite different from those of mammals [88, 89]. There are fewer tendencies for disposition of the hepatocytes in cord or lobules of the fish when compared with mammals [89]. A

few sinusoids are lined by endothelial cells with prominent nuclei [90]. Fish liver is also a glucose-utilizing, glucose-producing and glucose storage organ [91, 92]. As such, it acts as a glucostat by maintaining blood glucose levels in vertebrate organisms [91]. Glycogen levels in fish liver vary over a wide range of concentrations, and can make up to more than four percent of body weight [93]. Previous studies reported that hepatic glycogen is rapidly mobilized during stress conditions [94]. Shaffi et al. demonstrated that lead nitrate exposure can cause several biochemical parameter changes including glycogenolysis in various species of freshwater fish [18]. It appears that there is a direct relationship between lead levels in water and levels of serum glucose and lactose [18, 95]. Under lead exposure most of antioxidant enzymatic defense system in the liver is induced [96]. The mechanism of lead toxicity in the liver is not clearly known but maybe a consequence of direct binding of lead to thiol groups resulting in enzyme-inactivating activity [96]. Several studies have shown a variety of changes in the liver of fish, resulting from exposure to different lead concentrations and the length of exposure [97-99]. In addition, lead decreases cytochrom P450 activity [100] and depletion of cellular glutathione levels in carp [101].

3.1.5 Effect of lead on *Puntius altus*

P. altus has been placed in a superclass Neopterygii and classified as follows:

Phylum	Chordata
Subphylum	Vertebrata
Superclass	Neopterygii
Class	Teleostei
Subclass	Euteleostei
Order	Cypriniformes
Suborder	Cyprinoidei
Family	Cyprinidae
Genus	Puntius
Species	Altus

Figure 3.5 Taxonomy of *Puntius altus*

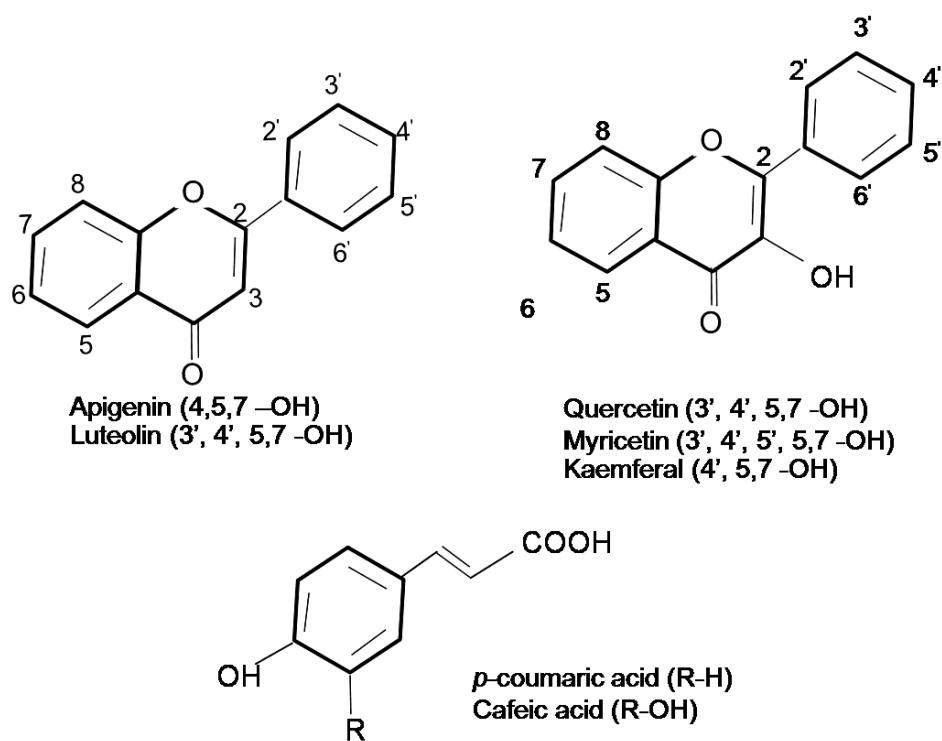
Figure 3.6 External anatomy of *P. altus*

P. altus is economically important ornamental fish and widely cultured in Singapore and Malaysia for an export [102] (Figure 3.5 and Figure 3.6). It is also an important fish product in Thailand [103]. *Puntius spp.* (syn. *Barbodes*) has been widely cultivated due to its rapid growth and the ability to be commercially cultivated in cages, raceways as well as in open ponds [104]. These species are also distributed widely in freshwater regions of Thailand. With the remarkable increase in fish production demand and their relatively low prices, *P. altus* are expected to become an important source of animal protein [102].

Lead contamination is a serious concern because of its toxicity, persistence and bioaccumulation in the food chain [16, 23]. The presence of lead in river, lakes, and seas has considered undesirable effects to fish [2, 63]. For all the above reasons, it is important to determine the toxicity of lead and the influence of *M. oleifera*-supplemented diets on lead exposure.

3.1.6 Role of antioxidant in alleviation of Pb-induced pathology

The current therapeutic approach of Pb toxicity is to increase the excretion of Pb by using chelation therapy [105, 106]. Ethylenediaminetetraacetic acid (EDTA) and meso-2,3 dimercaptosuccinic acid (DMSA) are chemical chelating agents used for Pb poisoning treatment [107, 108]. However, EDTA-chelated Pb burden have been shown to cause renal dysfunction, peripheral nerve damage, and neurobehavioral symptoms [110, 111]. Chelation of Pb by DMSA has been shown to be more effective than by EDTA, but the long-term use of DMSA has also been shown to decrease renal function resulting in nephrotoxicity [112-114].


One of the current approaches to minimize Pb toxicity is the use of antioxidants which act as free radical scavengers [47]. Antioxidants, specifically, vitamin C, vitamin E, zinc, and selenium have been shown to minimize the damaging effects of Pb-generated ROS [114-116]. In Pb-exposed rats, administration of vitamin C in drinking water has been shown to inhibit lipid peroxidation and reduce ROS levels by 40 percent [116, 117]. Other studies indicate that vitamin C is efficient to chelate Pb with the ability to reverse heme production and normalized blood ALAD levels of Pb-exposed rats [118]. In addition to acting as an antioxidant, vitamin C also has inhibiting effect on Pb uptake as seen in mammalian cell co-culture with Pb

and vitamin C [119]. Similar to vitamin C, vitamin E and its-related compounds have been shown to prevent lipid peroxide-related Pb toxicity in Rbc, liver, and kidney of Pb-exposed rats [6, 120].

Zinc is known to compete with Pb in binding to metallothionein-like transport protein, cysteine rich proteins that bind Pb ions in the gastrointestinal tract [121, 122]. As a result, when zinc was given the presence of Pb, elevated urine ALA and decreased in ALAD levels from Pb toxicity were improved [123]. Similarly, supplementation with selenium in Pb-exposed rats improved SOD, GR, and GSH activities in liver and kidney [122]. Selenium is required mineral for metalloenzyme GP, which play a key role in glutathione metabolism [124]. The proposed mechanism of selenium in reducing Pb toxicity is due to its affinity to form selenium-Pb complexes [125, 126]. Nevertheless, further study is need in utilizing these antioxidants alone or in combination with chelating agents in reducing Pb toxicity.

3.1.7 Natural antioxidants in herb as alternative antioxidant sources

To attenuate the effect of oxidative stress, the use of natural antioxidant such as phenolic compounds, vitamin C, vitamin E, and carotenoids has increased interest [127, 128]. Phenolic compounds are mainly composed of phenolic acids and flavonoids [128, 129]. These compounds have been shown to possess extensive biological properties such as antioxidant, anti-aging, anti-inflammation, and inhibition of angiogenesis and cell proliferation [130, 131]. Phenolics are substituted with one to three hydroxyl groups on the aromatic ring in different positions (Figure 3.7). The antioxidant capacity depends mainly on the number and the position of hydroxyl groups and identity of the main substituent [132]. A variety of herbs have known to be sources of phenolic compounds [133]. These phytochemicals possesses significant antioxidant capacities that are associated with lower incidence of toxicity of chemicals [134-136].

Figure 3.7 Structures of major phenolics in herbs [128].

3.2 *Moringa oleifera*

3.2.1 Taxonomy, distribution, nutrient composition and uses

Moringa oleifera Lam. (syn. *Moringa pterygosperma*) is a plant of the family Moringaceae, which is a fast-growing plant widely distributed in the tropical and subtropical countries [10, 137].

Kingdom	Plantae
Phylum	Tracheobionta
Class	Magnoliophyta
Subclass	Magnoliopsida
Order	Dileniidae
Family	Moringaceae
Genus	Moringa
Species	Oleifera

Figure 3.8 Taxonomy of *Moringa oleifera*

The anatomical structure of *M. oleifera* is shown in Figure 3.9. Generally, Moringa species is comprised of 13 species [137]. Among those species, *M. oleifera* is the most economically and medicinally important species due to its compositions and is widely cultivated throughout Southeast Asia, including Thailand [9]. Most part of the tree including leaves, long bean-like pods, flowers and seeds are edible and exceptionally nutritious [10].

Figure 3.9 Morphology of *M. oleifera*

Moringa species was used as animal forage (from leaves and seed-cake), biogas (leaves), fertilizer (seed-cake), foliar nutrient (juice expressed from the leaves), green manure (leaves), gum (tree trunks), honey and sugar cane juice-clarifier (powdered seeds), honey (flower nectar), medicine (all plant parts), pulp (wood), rope (bark), tannin for tanning hides (bark and gum) and also provide materials for industrial applications, such as water filtration and purification (powdered seeds), and the production of insecticide [119].

In addition, *M. oleifera* is also considered a medicinal plant [12, 138, 139]. Parts of the tree are applied in folk medicine for the treatment of human diseases due to its potential health benefits such as hypocholesterolemic activity [140], cardio protective effect [141], and anti-microbial property [142]. Recently, it is used for treatment of enlarged liver and shown to be effective in cancer prevention in rat [143]. Various parts of *M. oleifera* are also known for their multiple biological activities including hepatoprotective [12], hypolipidemic [140], and antioxidant [143]. *M. oleifera* leaves have been used as nutritional supplement and growth promoters due to the significant presence of protein, selenium, phosphorus, calcium, β -carotene and α -tocopherol [14].

Moringa species are a rich source of various phytochemicals such as a simple sugar, rhamnose, and a unique group of glucosinolate and isothiocyanate compounds [144, 145]. Glucosinolates and their relative compounds have been demonstrated to have a wide range of biochemical and pharmacological effects [9, 137]. There are also reports of various nitriles, thiocarbamates, and carbamates which

have been shown to have strong hypotensive and spasmolytic effects present in the leaves of plants in *Moringa* species [146]. *Moringa* plants have been shown to display anti-carcinogenic activities [147]. The proposed anti-carcinogenic mechanism is via modulations of the activities of phase I (cytochrome P450s) and phase II (glutathione-S-transferase, UDP-glucuronosyl-transferase, and quinone reductase) enzymes [148, 149]. In addition, sinigrin, one of the abundant glucosinolates showed similar effects on enzyme activities [150]. Moreover, it has been demonstrated that sinigrin can stimulate glutathione-S-transferases which play a key role in phase II metabolism.

CHAPTER IV

MATERIALS AND METHODS

4.1 Fish and *in vivo* treatments

4.1.1 Animal maintenance

Freshwater fish, *Puntius altus* (35-40 g in body weight and 12-15 cm in total length) was chosen for this study because it is commonly available in local fish farm in Thailand. Juvenile *P. altus* were acclimated under laboratory conditions for 30 days ($29\pm1^{\circ}\text{C}$, total hardness 68 to 88 mg L⁻¹ and alkalinity 75 to 80 mg L⁻¹) and were supplied with dechlorinated tap water prior to experimentation. All the necessary precautions for maintaining the fish followed the American Water Works Association recommendations [151]. Water quality conditions (pH, temperature and salinity) were measured daily. The amount of food fed was approximately equal to 2% of their body mass and was given twice daily with commercial fish food (Charoen Pokphand Group, Bangkok, Thailand). Abnormality and mortality at each test group were recorded once every 24 hours. The fish were watched carefully for signs of disease, stress, physical damage and mortality. A 16-hour light and 8-hour dark photoperiod was maintained. This study was approved beforehand by the Mahidol University-Institutional Animal care and Use Committee (MU-IACUC, protocol no. 210).

4.1.2 Plant material and supplemented food preparation

The commercial fish food was supplemented with 0, 20 and 60 mg of *Moringa oleifera* leaves powder per g of fish food. All ingredients were mixed with grounded commercial fish food and distilled water. Then, the prepared diets were extruded through minced-meat machine and allowed to dry at 70°C for 48 hr and stored at room temperature until use. These doses of *M. oleifera* are selected based on the previous report that they do not show toxicity to the fish [152].

4.1.3 Experimental design

The healthy fishes were assigned into six groups each group consists of 14 each in duplicate groups. The fish were fed with the formulated diet containing various levels of *M. oleifera* leaves for 28 days due to their rapid growth. All fish were weighed at the start and at the end of the experiment. Fish were fed at 2% of their body mass and the diets were offered to each tank twice daily. Every five days, fish in each tank were weighed and the amount of feed was re-adjusted accordingly. At the last administration of feeding program, fish were exposed to 93.8 ppm of $\text{Pb}(\text{NO}_3)_2$ for another 24 hours (Table 4.1). Contaminant was directly exposed in fish using $\text{Pb}(\text{NO}_3)_2$ diluted as freshly prepared mixture in new tank. The dose of lead exposure was selected based on the previous published studies [153]. Subsequently, the fish were anesthetized with 0.2 g L^{-1} of MS-222 for blood collection. After euthanasia with overdose of MS-222, gill, liver, and kidney were removed and preserved in 10% neutrally buffered formalin for future analyses.

Table 4.1 Experimental design

	1	2	3	4	5	6
			(20 mg g^{-1} of fish food)		(60 mg g^{-1} of fish food)	
Commercial fish food	+	+	+	+	+	+
Supplemented with <i>M. oleifera</i>	-	-	+	+	+	+
Exposed to 93.8 ppm of $\text{Pb}(\text{NO}_3)_2$	-	+	-	+	-	+

4.2 Blood collection and Hematological parameters

All fish were anesthetized before blood sampling. Blood sample was collected from the caudal vein. The sample was taken at the midline of the anal fin.

The needle was inserted via the musculature into the ventral surface of the fish spine (Figure 4.1). Samples for hematological analysis were collected in heparin tubes and were immediately centrifuged. The remaining blood was allowed to clot at room temperature and subsequently centrifuged for 10 minutes. Plasma was withdrawn and stored at -20°C until assayed.

Figure 4.1 Blood collection from *Puntius altus* at caudal vein.

4.2.1 Hemoglobin concentration was determined according to cyanmethemoglobin method [154]. Hemoglobin in red blood cells reacts with Drabkin's reagent to form cyanmethemoglobin, which its absorbance can be measured by spectrophotometry. Twenty microliter of blood sample was added to 5 ml of Drabkin's solution. Then, the absorbance was measured at 540 nm (Hitachi Model 150-20, Japan).

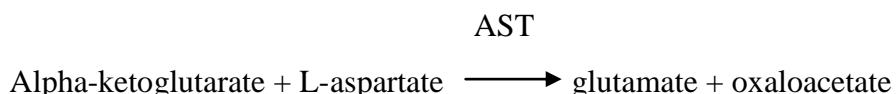
4.2.2 Pack red cell volume (PCV) or hematocrit was determined employing a micromethod by holding blood in the capillary tube (3/4 of height) centrifuged at 10,000 to 12,000 rpm for 5 min (BOECO, Germany). Then, place the tube in the microhematocrit reader and read the hematocrit by following the instruction on the micro capillary reading device (IEC Micro Capillary Reader No 2210, USA).

4.2.3 Total red cell count was counted manually by using hemacytometer. Blood sample was diluted 1:200 with Natt and Herrick solution. Erythrocytes were counted in the loaded hemacytometer chamber and total numbers were reported as 10^6 cells cu.mm^{-1} . The derived erythrocytes of mean corpuscular volume (MCV: μm^3), mean corpuscular hemoglobin (MCH: pg), and mean corpuscular hemoglobin concentration (MCHC: g dl^{-1}) were calculated using following formulars:

$$\text{MCV} = \frac{\text{Hct} (\%) \times 10}{\text{Rbc in million ml}^{-1} \text{ blood}}$$

$$\text{MCH} = \frac{\text{Hb} (\text{g dl}^{-1}) \times 10}{\text{Rbc in million ml}^{-1} \text{ blood}}$$

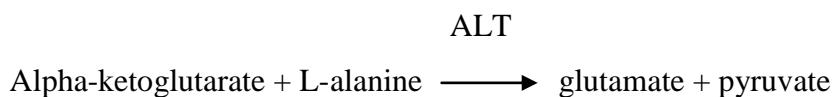
$$\text{MCHC} = \frac{\text{Hb} (\text{g dl}^{-1}) \times 100}{\text{Hct} (\%)}$$


4.2.4 Total white cell count was also determined by using hemacytometer. Two milliliter of Natt and Herrick diluting solution and 10 μl of blood were mixed and dropped onto the hemocytometer at the edge of the cover slip. The suspension was allowed to flow under the cover slip by capillary action onto the counting chamber. Then, white bold cells (WBC) were counted under light microscope.

4.2.5 Blood smear analyses were allowed to quantitative difference types of WBC and detection of morphologic abnormalities of blood cells constituents [155]. Briefly, a drop of blood was dropped on the end of the slide. A clean slide, held at 45°C angle, was touched to the slide with the drop of blood and gently spreads the blood across the slide. The smear was allowed to air dry, fixed with absolute methanol, and then stained with Wright Instant Staining Set (Polysciences, Inc, Germany) according to the protocol. The stained smear was determined under light microscope (Nikon DMX 1200 digital camera, Tokyo, Japan).

4.3 Blood chemical analyses

4.3.1 Aspartate aminotransferase (AST)


The enzymatic activity of AST was measured using Reitman-Frankel method [156].

Oxaloacetate was measured colorimetrically after the reaction with 2, 4-dinitrophenylhydrazine at 505 nm. Briefly, 0.25 ml of aspartate transaminase substrate was warmed for 5 min in a water bath at 37°C. Then, sample serum was added mixed, covered with parafilm, and incubated for 60 minutes. Later, color reagent (0.25 ml) was added, shaken gently, allowed at room temperature for 20 minutes, NaOH (0.25 ml) was then added and mixed the absorbance was measured by spectrophotometer at 505 nm against distilled water as a blank.

4.3.2 Alanine aminotransferase (ALT)

The enzymatic activity of ALT was measured by monitoring pyruvate produced in the reaction by Reitman-Frankel method [156].

Pyruvate was measured colorimetrically after the reaction with 2,4-dinitrophenylhydrazine at 505 nm. The procedures for the analysis of glutamic pyruvic transaminase activity were performed similar to those of oxaloacetic transaminase, substituting with the alanine transaminase substrate, and incubated at 37°C for 30 min.

4.4 Antioxidant parameter analyses

Immediately after removal, liver of fish was weighed and chopped with scissors, homogenized on ice using Potter Elvehjem homogenizer with 3 mL of 1.17% potassium chloride (KCl). The homogenate was centrifuged at 1,000 rpm for 10 minutes , followed by centrifugation of the resulting supernatant at 20,000 rpm at 4°C for 30 minutes to obtain the post-mitochondrial supernatant (PMS). The antioxidant enzymes activities were determined in the supernatant fraction.

4.4.1 The activity of CAT was determined following the method of Aebi [157]. Briefly, 20 μ l of PMS was added to 80 μ l of 10 mM Tris-HCl pH 8.0 and 900 μ l of 9 mM H_2O_2 , to a final volume of 1 ml. CAT activity was determined spectrophotometrically at 240 nm. The results were expressed as U mg^{-1} protein. Total proteins are measured in both fractions, using the Bradford method [158].

4.4.2 Reduced glutathione (GSH) determination was carried out according to Akerboom and Sies [159]. Briefly, an aliquot of 1.0 ml of 10% PMS was precipitated with 1.0 ml of 4% sulphosalicylic acid and precipitated proteins were separated by centrifugation for 15 min at 1,200 g, 4°C. The mixture assay contained 0.2 ml of 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB, 40 mg in 10 ml of 0.1 M PBS, pH 7.4) in 0.1 M PBS, pH 7.4 (2.7 ml), to a final volume of 3 ml. The DTNB reduction rate was measured spectrophotometrically at 412 nm. GSH was expressed as nmol of H_2O_2 consumed $min^{-1} mg^{-1}$ protein.

4.4.3 Glutathione reductase (GRx) determination was determined following previous published procedure [160]. Briefly, 1.65 ml of 0.1M PBS (pH 7.6) was mixed with 0.1 ml of 0.5mM EDTA, 0.05 ml of 1mM oxidized glutathione, 0.1 ml of 0.1mM NADPH, and 0.1ml of PMS, to a final volume of 2 ml. GRx activity was determined spectrophotometrically at 340 nm and was calculated as nmol NADPH oxidized $min^{-1} mg^{-1}$ protein using a molar extinction coefficient of $6.22 \times 10^3 M^{-1} cm^{-1}$.

4.4.4 Glutathione peroxidase (GPx) determination was determined following previous published procedure [160]. Briefly, the assay consisted of 1.44 ml of 0.05 M PBS (pH 7.0), 0.1 ml of 1mM EDTA, 0.1 mM sodium azide (NaN₃), 0.05 ml of GR (1 U ml⁻¹), 0.1 ml of 1mM GSH, 0.1 ml of 2 mM NADPH, 0.01 ml of 0.25 mM H₂O₂ and 0.1 ml of 10% PMS in a total volume of 2 ml. GPx activity was determined spectrophotometrically at 340 nm and was calculated as nmol NADP reduced min⁻¹ mg⁻¹ protein using a molar extinction coefficient of 6.22 x 10³ M⁻¹ cm⁻¹.

4.5 Lipid peroxidation analyses

The assay for products of lipid peroxidases was performed spectrophotometrically at 535 nm by the thiobarbituric acid reaction at pH 3.5. PMS sample was mixed with 10 mM n-butanol, and 1% orthophosphoric acid, and then the mixture was incubated at 90°C for 45 min before absorbance measurement. Lipid peroxidation was expressed as thiobarbituric acid reactive substances (TBARS) mg⁻¹ protein [161].

4.6 Histological analyses

Gill, liver, and kidney were carefully removed, weighed, and recorded. The liver mass was then calculated as hepatosomatic index (HSI) and kidney index (KI) for each specimen.

$$\text{Hepato-somatic index (HSI)} = \frac{\text{Weight of liver (g)}}{\text{Body weight of fish (g)}} \times 100$$

$$\text{Kidney index (KI)} = \frac{\text{Weight of kidney (g)}}{\text{Body weight of fish (g)}} \times 100$$

Then, gill, liver, and kidney were sampled for comparative histological analyses. The samples were immediately fixed after the dissection in 10% neutrally buffered formalin for 24 hours. The samples were then dehydrated through graded series of alcohols, cleared in xylene and embedded in paraffin wax. The embedded samples were sectioned at 5 µm thickness using microtome (Histo STAT, Reichert, USA). Sections were prepared for light microscopy analyses using hematoxylin and

eosin (H & E) staining. One of the sections was submitted to the alcian blue (AB) and periodic acid Schiff's (PAS) stain for identification of certain mucous cell types in the gill tissue. The PAS alone was used to examine the amount of glycogen composition in fish liver.

The sections were immersed in 1% periodic acid, washed in distilled water, stained in Schiff reagent, counter stained in hematoxylin, washed in distilled water, and dehydrated through ascending alcohol series. They were mounted with permount and examined under light microscope. Mucous cell was quantified along gill filament and results are present as a proportion of the total number of mucous cell counted. All stained sections were examined and photographed using the Nikon DMX 1200 digital camera (Tokyo, Japan).

4.7 Immunohistochemical analyses of PCNA

Tissue samples were quickly dissected, fixed in Davinson's fixative for 24 hours, dehydrated in a graded ethanol, cleared in xylene, and embedded in paraffin. The 5 μ m section was subjected to the indirect immunohistochemistry technique to examine the PCNA protein distributions.

Sample section was deparaffinized, rehydrated and washed in phosphate buffered saline (PBS, pH 7.1). Endogenous peroxidase was blocked by immersing section in 0.3% hydrogen peroxide for 30 min and then washing in PBS. Then, primary antiserum: monoclonal anti-mouse PCNA, PC 10 (Santa Cruz, USA) was then applied at concentration 1:200 and incubated for 16–18 hr at 4°C. Afterwards, rinsed section twice with PBS and incubated with HRP conjugated rabbit anti-mouse IgG (Sigma-Aldrich Canada Ltd) for 1 hr (1:500) at room temperature. PCNA-positive cells were visualized using 3,3-diaminobenzidine tetrahydrochloride (DAB, Sigma-Aldrich Canada Ltd) and peroxidase substrate as chromogen. In addition, hematoxylin stain was used for visualization of the general tissue structure. Sections serving as negative controls were treated similarly except that normal rabbit serum are used instead of anti-PCNA.

4.8 Antioxidant capacities, total phenolic, total flavonoid contents of *Moringa oleifera* and its phytochemicals

Leaves of *M. oleifera* were collected from Nakhon Pathom, Thailand. The whole leaves were washed several times with tap water, shade dried (Thelco®, GCA/Precision scientific, USA) at 45°C for 72 hours and were grounded into powder using a mixer blender (Otto, Thailand).

Sample preparations were optimized by varying the types and ratio of extraction solvents and mixing time. *M. oleifera* leaves powder (2 g) was extracted in 12.5 ml of following solvents: water, 70% ethanol, 50% acetone, and absolute methanol. Each mixture was stirred at 250 rpm for 1, 3, 6, and 24 h at room temperature with shaker (Germmy Orbit Shaker model VRN-480, Taiwan). The extracts were filtered then through Whatman No. 1 filter paper and were centrifuged at 10,000 g for 10 min, and the supernatants were kept at -20°C for further analysis.

4.8.1 Determination of antioxidant constituents in *M.oleifera* extracts

a) Total phenolic content was determined by Folin–Ciocalteu assay [162] using gallic acid (GA) as a standard and expressed as mg g⁻¹ gallic acid equivalent (GAE). Briefly, 0.5 ml of crude extract (2.5 mg ml⁻¹) was mixed with 2.5 ml of 10% Folin–Ciocalteu's reagent and 2 ml of 0.7 M sodium carbonate (Na₂CO₃). Then, the mixture was allowed to stand for 2 h at room temperature and the absorbance was measured by spectrophotometer at 765 nm against distilled water as a blank. The results were expressed as gallic acid equivalents (GAE) mg g⁻¹ all samples were analyzed in triplicate.

b) Flavonoid contents were determined based on colorimetric aluminium chloride (AlCl₃) method [162]. Briefly, 0.5 ml of leaves extract was mixed with 0.1 ml of 10% AlCl₃, 0.1 ml of 1M potassium acetate, and 2.8 ml of distilled water, and then left at room temperature for 30 min. The absorbance of the reaction mixture was measured at 415 nm. Total flavonoid contents were calculated as quercetin from a calibration curve. Quercetin in methanol was used for calibration curve preparation.

c) DPPH radical scavenging activity was measured by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) solution according to previous published procedures with slight modification [163]. Briefly, 2 ml of leaves extract was mixed in 0.5 ml of 1 mM methanolic DPPH solution and was incubated at room temperature in the dark for 30 min. Thereafter, the absorbance of the sample (As) and control (Ac) were read at 517 nm. The percentage inhibition of the DPPH radical by the samples was calculated using the following equation:

$$\text{Scavenging activity (\%)} = [(\text{Ac}-\text{As})/\text{Ac}] \times 100$$

Ac = absorbance of DPPH radical + ethanol

As = absorbance of DPPH radical + extracted sample or ascorbic acid

d) Reducing capacity (RP) was determined by ferric reducing antioxidant power assay [164], using quercetin as reference standard and expressed as ascorbic acid equivalent (1mM = 1 ASE). The ASE ml^{-1} value is inversely proportion to RP. Two milliliter of extract was added to potassium fericyanide (2.5 ml) and was incubated at 50°C for 20 min. Trichloroacetic acid (2.5 ml) was added to the mixture and then centrifuged at 1000 rpm for 10 min. The supernatant (2.5 ml) was mixed with distilled water (2.5 ml) and ferric chloride (0.5 ml). The absorbance was measured at 700 nm. Higher absorbance indicated greater reducing capacity [164].

4.8.2 Reverse phase HPLC analysis of glucosinolates and flavonoids in leaves extract of *M. oleifera*

Five milliliters of milli-Q water was added into the stored sample extract. The sample was centrifuged at 10,000 rpm for 10 min. All sample solutions were filtered through 0.45 μm membrane filter (Millipore, Germany) before the analysis. The quantitative analysis of phenolic compounds was carried out on Water e2695 HPLC system equipped with a 2998 photodiode array detector (Agilent Technologies, Inc). The column used was Phenomenex Luna C₁₈ reversed-phase column (250 x 4.6 mm, 5 μm , Torrance, CA, USA) and the mobile phase a mixture of two solvents of A (20mM ammonium acetate containing 0.05% trifluoroacetic acid) and B (MeOH). Elution was achieved at 30 °C with a gradient of 0% B in 8 min (1ml min^{-1}) and 0-

60% B in 15 min (1ml min⁻¹ 1.0 ml min⁻¹). The compounds were monitored at 335 nm and the injection volume was 10µL.

In order to determine glucosinolates concentrations, sinigrin was used as internal standard, which can be detected at a UV wavelength of 227 nm. The samples were injected into HPLC system. The mobile phases consisted of gradient HPLC with A (20mM ammonium acetate containing 0.05% trifluoroacetic acid) and B (MeOH) at flow rate of 1ml min⁻¹. The thirty min run consisted of 0% B (8 min), 0-60% B (12 min), and a 10 min hold at 60-80% B. Sinigrin was identified by comparison of the retention time and UV spectra to the purified standard and quantitative by relative to the sinigrin standard. All samples were analyzed in duplicate.

4.9 Statistical analyses

All data were calculated as mean \pm SD. Analysis of variance (ANOVA) with least significant difference (LSD) post-hoc test was performed for each groups. Significance of differences was considered when $p \leq 0.05$.

CHAPTER V

RESULTS

A growing concern for the effects of environmental contaminants on the fish health has started a search for an approach to alleviate the toxic effects and thus improve both the quantity and the quality of the fish. In this study, we hypothesize that *Moringa oleifera* can improve the health of fish *Puntius altus* against acute and chronic stress from lead toxicity. Many research studies have demonstrated multiple biological activities of *Moringa oleifera* including hepatoprotective [165], hypolipidemic [166], and antioxidant [14, 143, 167]. To test the protective role of *M. oleifera* on fish health, the fish were divided into three groups. The first group was fed with only basic fish diet (control fed) and the other two groups were fed with diets supplemented with two different concentrations (20 and 60 mg g⁻¹) of *M. oleifera* leaves powder for 28 days. Then, all fish were exposed to 93.8 ppm of Pb(NO₃)₂ for 24 hours. Twenty four hours of lead exposure is too short to be strongly related with effects from lead exposure in the environment. For instance, we observed sublethal responses in fish to lead which provides direct relative toxicities. Analysis of growth, blood and biochemical parameters, enzymes, and histopathological, and histochemical characteristics by various methods were performed.

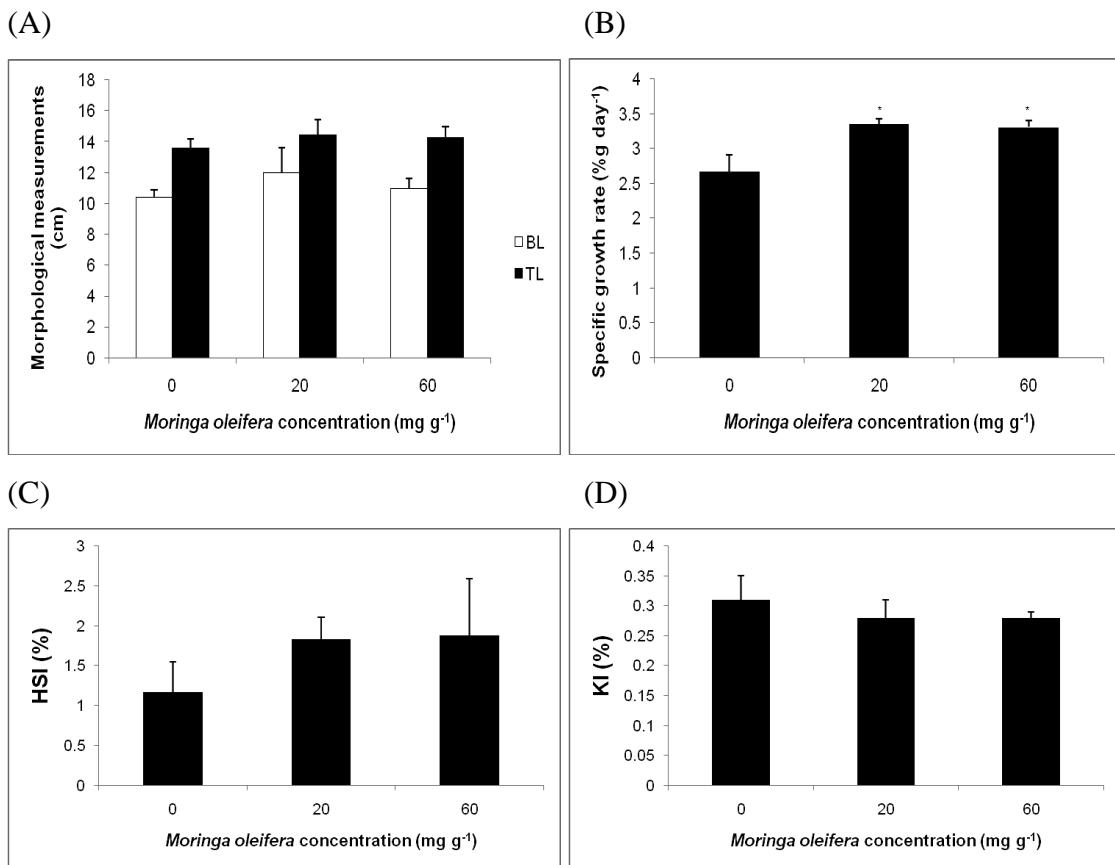
5.1 *In vivo* study of the potential effect of *M. oleifera* dietary supplementation against lead-induced toxicity in *P. altus*

5.1.1 Growth performance

We have monitored the possibilities of *M. oleifera* as a supplement for fish. There was no increase in mortality in *P. altus* fed with the *M. oleifera* supplement observed throughout the experiment. All fish were active and appeared healthy. Regarding the effects of *M. oleifera*-supplemented diets on fish growth, it was found

that the highest fish growth was markedly detected in the group of fish fed with *M. oleifera* diets (Figure 5.1 B). This finding is consistent with several studies showing that the use of plant materials as dietary supplement can improve the growth of fish [168, 169]. Furthermore, hepatosomatic index (HSI) is increased with suggesting that *M. oleifera* leaves may have an effect on the fish liver. As previously of Atlantic salmon *Salmo salar* fed soybean oil found that soybean supplemented diets increased considerably the fat composition and affected morphology of liver [170]. Overall, *M. oleifera* extract appears to increase the growth of fish receiving the extract as a diet supplement.

5.1.2 Effects of *M. oleifera* on hematological parameters and liver functions in lead-treated fish


Hematological indices are useful tools in assessing various aspects on the health of fish exposed to contaminants. Results of hematological parameters are shown in Figure 5.2. Exposure of fish to waterborne lead significantly ($p<0.05$) decreases the white blood cells (WBC) count but has no effect on erythrocytes count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration among treatments. It is noteworthy that an administration of either low dose of *M. oleifera* (20 mg g^{-1} of fish food) or high dose of *M. oleifera* (60 mg g^{-1} of fish food) alone had no affect on any blood parameters. Fish consumed diet containing *M. oleifera* before lead exposure shows increases in WBC levels compared the group without the herbal supplement.

To determine whether *M. oleifera*-supplemented diets can attenuate liver damages in the lead-treated fish, the alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total protein were measured (Figure 5.3). In lead exposed fish, the activity of ALT and AST were significantly increased where as total protein was decreased when compared with non-lead exposed group. Pre-treatment with *M. oleifera* can alleviate liver toxicity as shown by reductions in ALT and AST activities, and an increased total protein (Figure 5.3B). These results suggested that pre-administration of fish with *M. oleifera*-supplemented diet is able to decrease lead-induced liver toxicity.

5.1.3 Effects of *M. oleifera* on hepatic oxidative stress, antioxidant parameters, and lipid peroxidation

Exposure to lead has been described to enhance oxidative stress and causes hepatotoxicity [171, 172]. Thereby, the level of lipid peroxidation (LPO) and the activities of catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR), and glutathione peroxidase (GPx) showing the oxidative stress and antioxidant status respectively were measured from hepatic tissue to evaluate the protective property of *M. oleifera*-supplemented diets.

The level of LPO was significantly increased in the lead-exposed fish (Figure 5.4A). Pre-treatment with high dosage (60 mg g^{-1}) of *M. oleifera* diets appeared to slightly decrease cellular lipid peroxidation (Figure 5.4A). Administration of both doses of *M. oleifera* diet alone showed significant increases in CAT, GSH, GR, and GPx activities when compared to the control group (Figure 5.4B). Exposure of fish to lead significantly decreases CAT, GSH, GR, and GPx activities. Noticeably, pre-treatment with *M. oleifera*-supplemented diets before lead exposure can prevent the fish from losing these hepatic antioxidant enzyme activities due to lead toxicity (Figure 5.4B). These findings indicate that supplementation of *M. oleifera* to the fish diet exhibits protective effects on lead-induced hepatic oxidative stress.

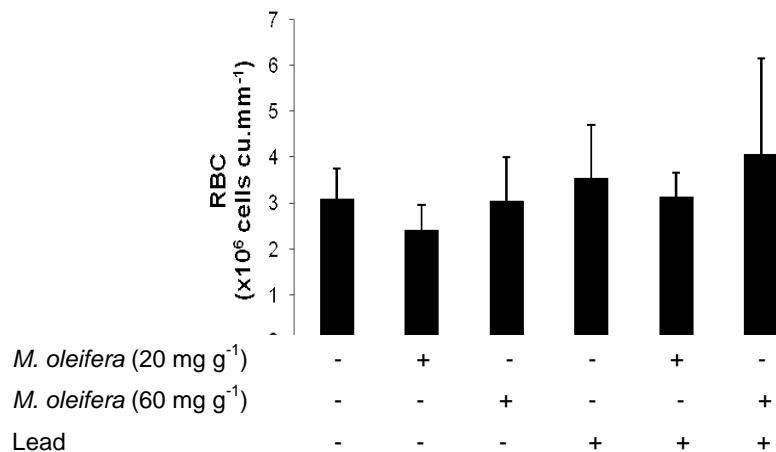
Figure 5.1 Effects of *M. oleifera*-supplemented diets on growth performance in *P. altus*.

Note:

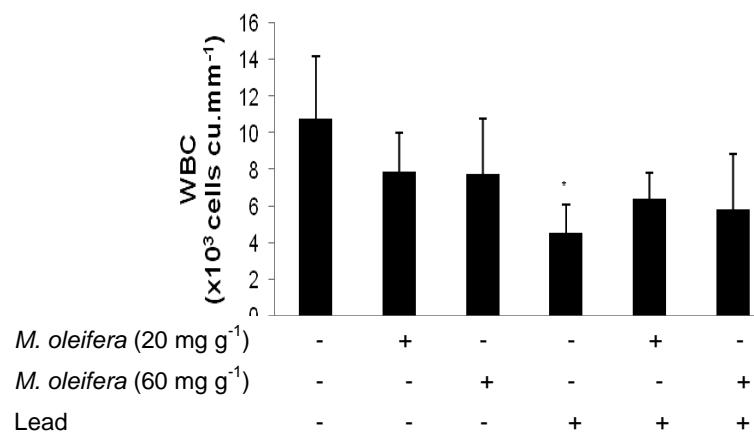
BL = body length (cm);

TL = total length (cm);

SGR = specific growth rate (% g day⁻¹) = $[\ln \text{final weight (g)} - \ln \text{initial weight (g)}]/\text{time (days)} \times 100$;

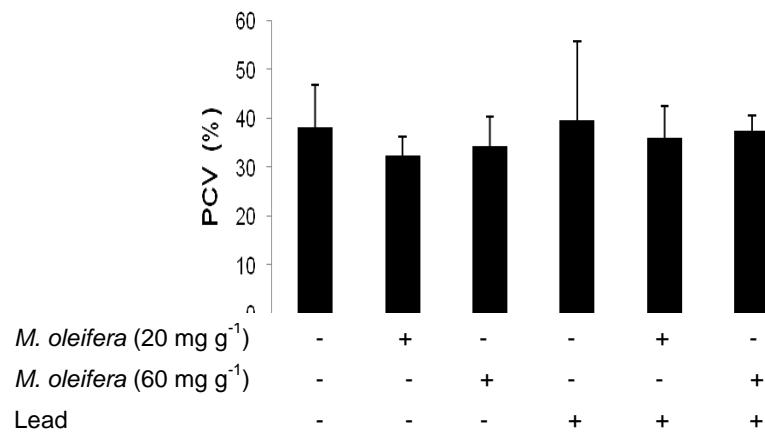

HSI = hepatosomatic index (%) = [liver weight/body weight] $\times 100$;

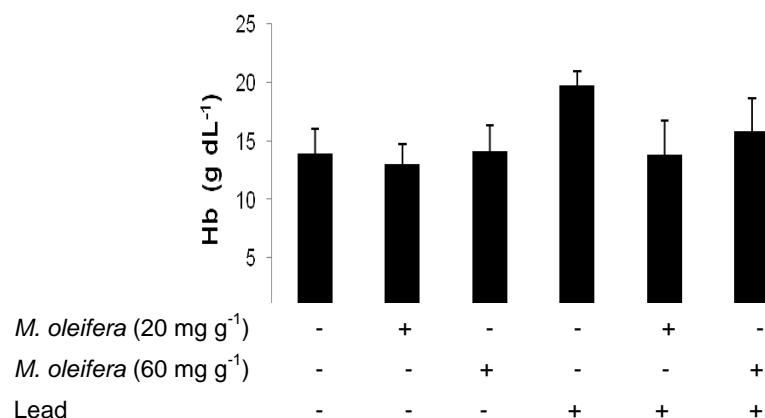
KI = kidney index (%) = [kidney weight/body weight] $\times 100$;


All values represent as mean \pm SD N=84 (7 fish x duplicate)

* Indicates p<0.05 compared with control group (non-lead exposed group).

(A)

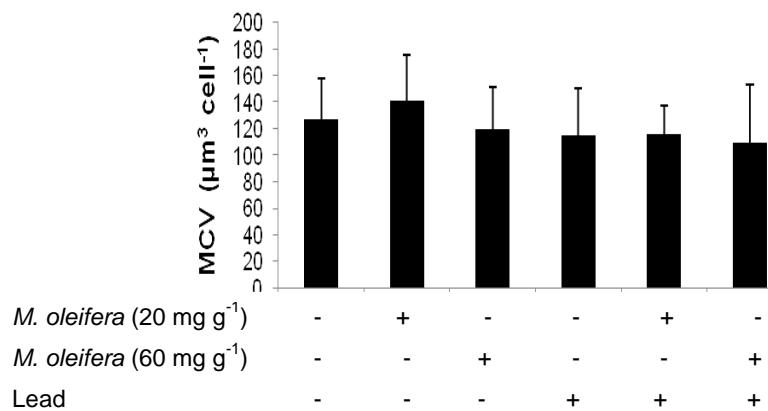

(B)


Figure 5.2 Effects of *M. oleifera*-supplemented diets on hematological variable in *P. altus* (n=84).

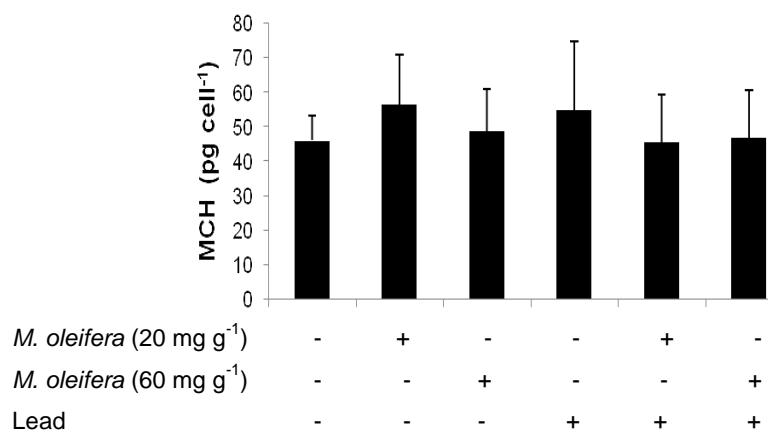
* Indicates p<0.05 compared with control group (non-lead exposed group).

(C)

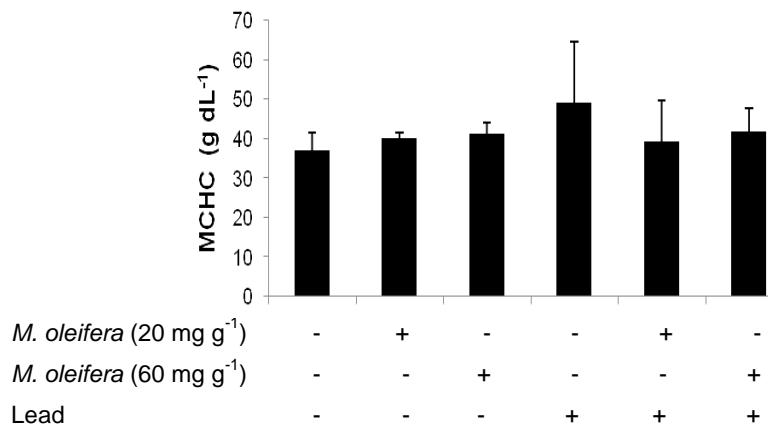
(D)

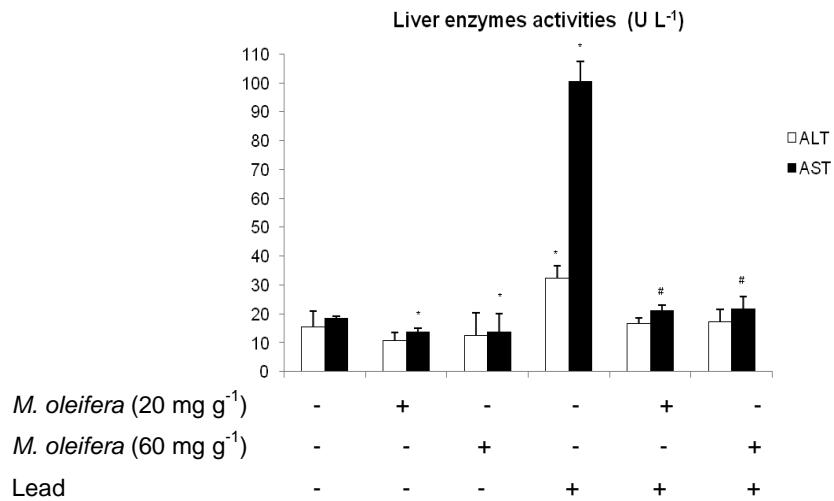

Figure 5.2 (cont.) Effects of *M. oleifera*-supplemented diets on hematological variable in *P. altus* (n=84).

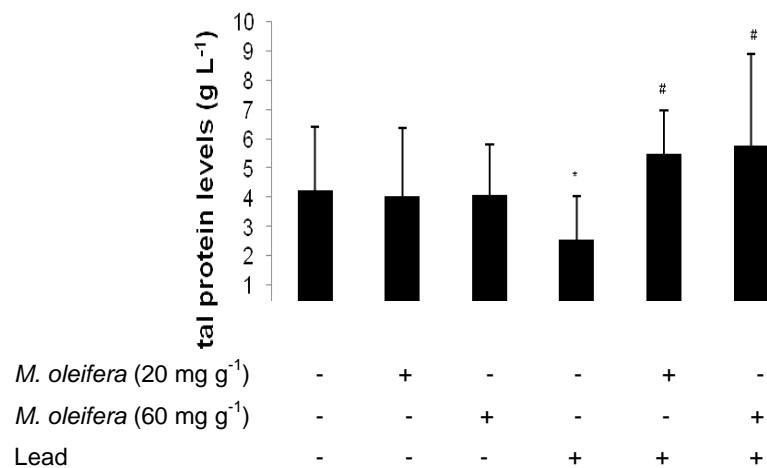
* Indicates p<0.05 compared with control group (non-lead exposed group).


Figure 5.2 (cont.) Effects of *M. oleifera*-supplemented diets on hematological variable in *P. altus* (n=84).

* Indicates p<0.05 compared with control group (non-lead exposed group).


(E)


(F)


(G)

(A)

(B)

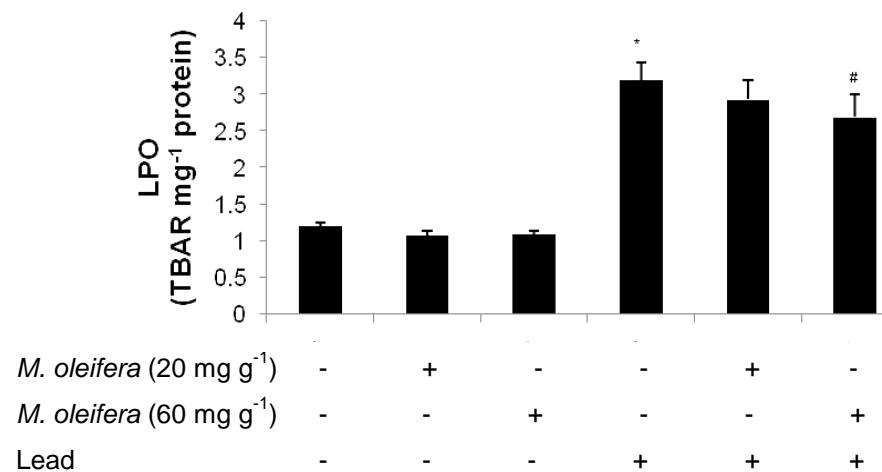
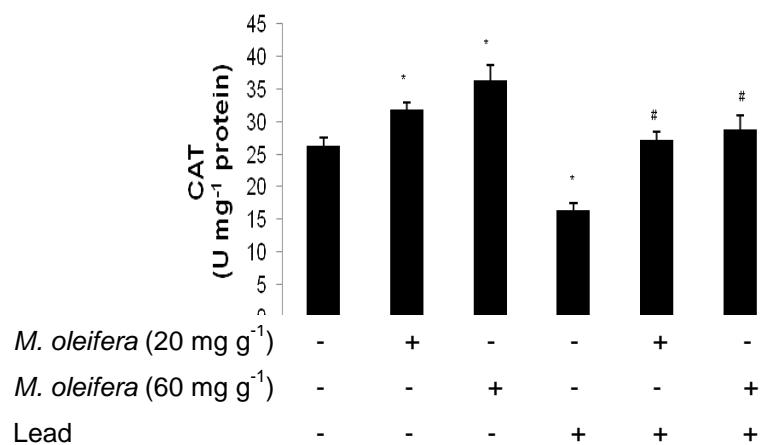


Figure 5.3 Effects of *M. oleifera*-supplemented diets on liver function related enzymes activities in *P. altus* (n=84).


* Indicates $p<0.05$ compared with control group (non-lead exposed group).

Indicates $p<0.05$ compared with lead exposed group

(A)

(B)

Figure 5.4 Effects of *M. oleifera*-supplemented diets on liver LPO and antioxidant enzymes activities in *P. altus* (n=84).

* Indicates $p<0.05$ compared with control group (non-lead exposed group).

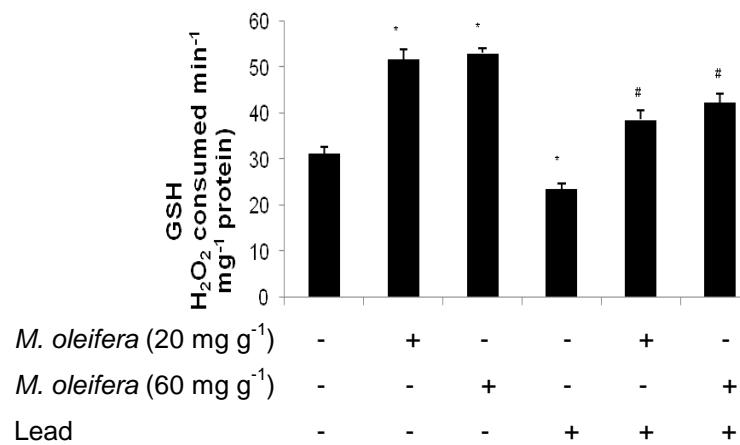
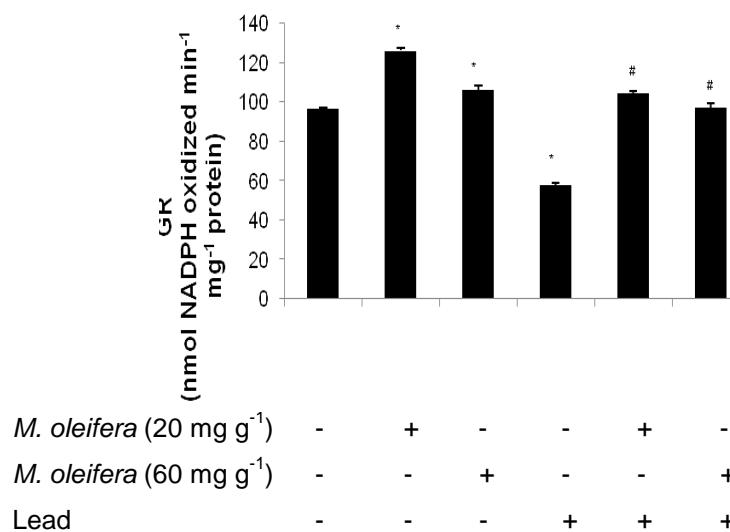
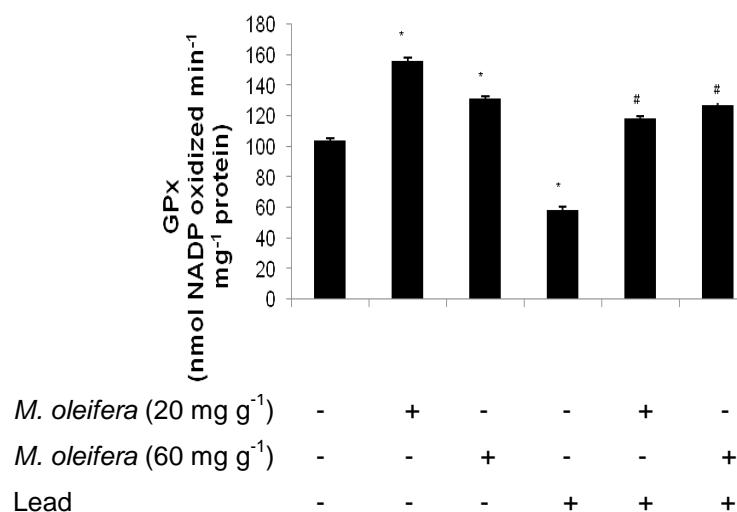

Indicates $p<0.05$ compared with lead exposed group (C)

Figure 5.4 (cont.) Effects of *M. oleifera*-supplemented diets on liver LPO and antioxidant enzymes activities in *P. altus* (n=84).


* Indicates p<0.05 compared with control group (non-lead exposed group).

Indicates p<0.05 compared with lead exposed group.


(C)

(D)

(E)

5.2 Histopathological examination of gill, liver, and kidney

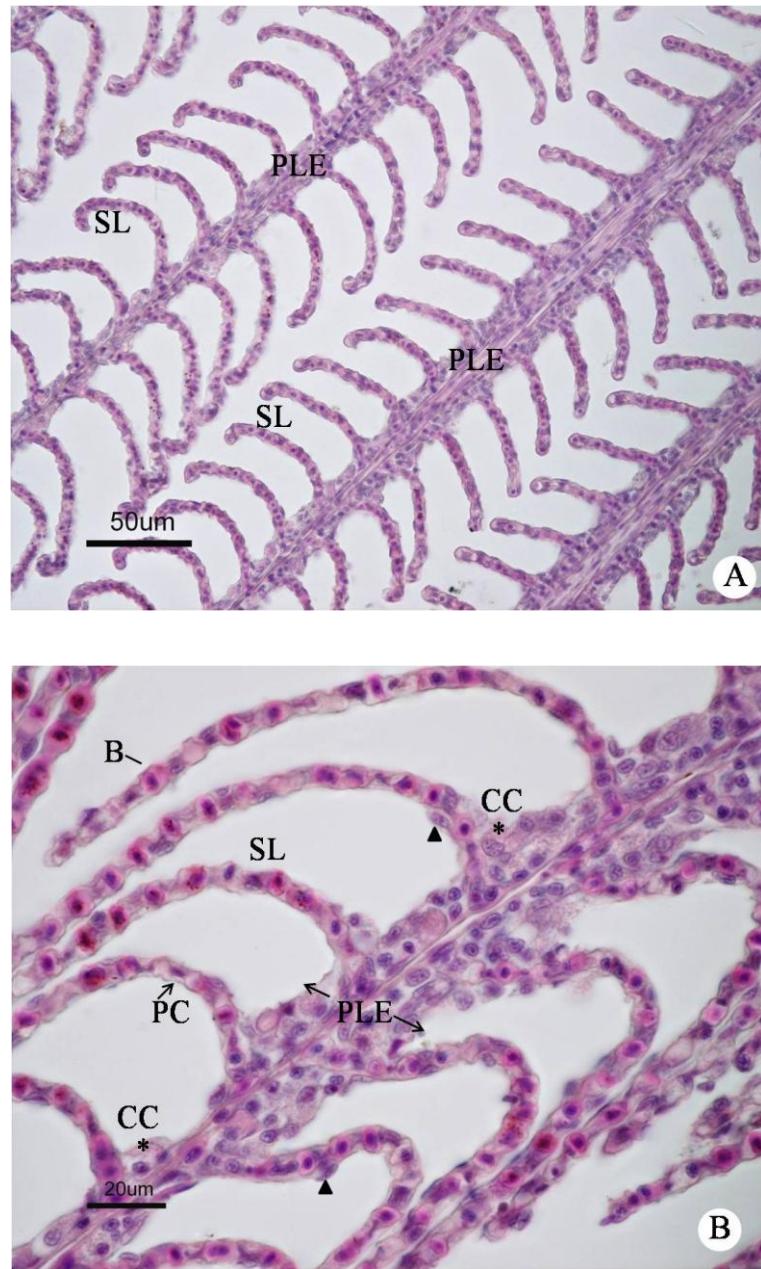
5.2.1 Gills

Gills are the first target of waterborne lead toxicity due to their constant contact with external environment. As illustrated in Figure 5.5, the groups of fish with no lead exposure show normal gill structure. The gill appearance is consisted of primary gill filament and secondary gill filament, which are comprised of various cell types such as mucous cells that located along the gill filament [75]. Fish exposed to waterborne lead alone show the most alterations including increased filament thickness (Figure 5.6B), blood congestion at secondary filament (Figure 5.6C) and lifting of the outer layer of the lamellae epithelium with space under the epithelium (Figure 5.6C). In contrast, the gills of fish pre-administering with both dosages of *M. oleifera* diets (20 mg g^{-1} and 60 mg g^{-1}) show only mild changes which are thickening of primary gill filament and bedding of secondary gill filament (Figure 5.7A and Figure 5.7B). These results indicate that pre-administration of *M. oleifera* diets can protect the gill damages upon lead exposure.

We monitored whether *M. oleifera*-supplemented diet can influence the types of mucous cell in fish gill filament. To determine certain mucous cells, special staining method using combined alcian blue and periodic acid schiff (AB/PAS) was performed. AB was used to stain acid mucopolysaccharide mucous cell, which is detected in blue. PAS was used to stain neutral mucous cell, which is detected in magenta. Mucous cells play an important role in protecting fish against waterborne heavy metals such as lead [173]. The presence of difference types of mucous cell, especially acid mucous cells (contained sulfated and carboxylated mucoproteins), seems very important for fish, living in a stressor environment [174, 175]. An increased in mucous cell containing acidic mucin is bound or trapped with cation metal resulting in reduction of its absorption [176, 177]. Here we found that neutral mucous cells were mainly observed in the gill filament with non-lead exposure (Figure 5.8). As prior to non-lead exposure, neutral mucous cell continue to be found in the group of fish with lead exposure (Figure 5.9A). Interestingly, several acid mucous cells were detected in fish pre-administered with *M. oleifera*-supplemented diets (Figure 5.9B and Figure 5.9C). This indicated that the protective effects of *M. oleifera* diets to the gill could be due to

the defense mechanism of acid mucous cell that is located along the gill filament against water born lead exposure.

5.2.2 Liver


The liver plays a primary role in the metabolism and excretion of lead [7, 178]. Lead exposure induces hepatic enzyme activities and can lead to histopathological changes in the liver [179]. As seen in Figure 5.12A and Figure 5.12B, administration of either 20 mg g^{-1} or 60 mg g^{-1} of *M. oleifera* alone had no affect on liver structure as the fish display normal hepatocytes and nuclei. Hepatocytes are located among sinusoids forming cord-like structures, known as hepatic cell cords. Many of blood sinusoids were observed and separated the hepatic cords one from another. Exposure of fish to waterborne lead exhibited various changes such as abundant cytoplasmatic vacuolation and hepatic cord disorganization with scatter of hypertrophy hepatocytes nuclei (Figure 5.13). In contrast, with pre-treatment of 20 mg g^{-1} or 60 mg g^{-1} of *M. oleifera* before lead exposure, the liver of fish showed significant reduction in hepatic pathological alterations induced by lead intoxication (Figure 5.14A-D). Similar to the results observed in gill tissue, pre-treatment of *M. oleifera*-supplemented diets before lead exposure can protect hepatic changes due to lead-induced hepatotoxicity.

The liver also serves as storages of energy, glycogen and lipids [87, 88]. Glycogen is depleted in response to various physiological processes such as sexual maturation, temperature, or in response to environmental toxicants such as heavy metals exposure [180, 181]. To detect and quantify the amount of glycogen in the cytoplasm of hepatocytes, the periodic acid-Schiff (PAS) staining was performed. Non-lead exposed fish revealed glycogen staining remained constant in all groups (group 1, 3, and 5) (Figure 5.15A, Figure 5.16A and Figure 5.16C). Exposure of fish to waterborne lead showed a dramatic reduction in glycogen content (Figure 5.15B). Remarkably, fish pre-administered with both 20 mg g^{-1} and 60 mg g^{-1} of *M. oleifera* before lead treatment showed only a slight reduction in glycogen levels (Figure 5.16B and Figure 5.16D). Overall, *M. oleifera* as dietary supplementation appears to protect the loss of glycogen content in the liver from lead-induced hepatotoxicity.

5.2.3 Kidney

The kidney of fish is comprised of three distinctive systems; endocrine, hematopoietic, and excretory systems [182]. As in all vertebrates, kidney is one of the major targets of waterborne lead because it is a major route for the excretion of lead [182]. The administration of either 20 mg g^{-1} or 60 mg g^{-1} of *M. oleifera* alone had no affect on kidney structure as the kidney showed normal structure of glomerulus and renal tubules (Figure 5.18A and Figure 5.18C). Exposure of fish to waterborne lead alone showed the most alterations including glomerulus atrophy and an increase in the number of lymphocytes in the parenchyma. Cloudy swelling, tubular narrowing and hyaline droplet were also found in the renal tubule of lead-exposed fish (Figure 5.17A). In contrast, fish pre-administered with both 20 mg g^{-1} and 60 mg g^{-1} of *M. oleifera* showed decreases in renal pathological changes induced by lead exposure (Figure 5.18B and Figure 5.18D).

The semi-quantitative scoring of the gill, liver, and kidney lesion are summarized in Table 5.1. Overall, our findings here indicate that pre-administration of fish with *M. oleifera*-supplemented diets can protect the fish from the gill, liver, and kidney changes due to lead-induced toxicity.

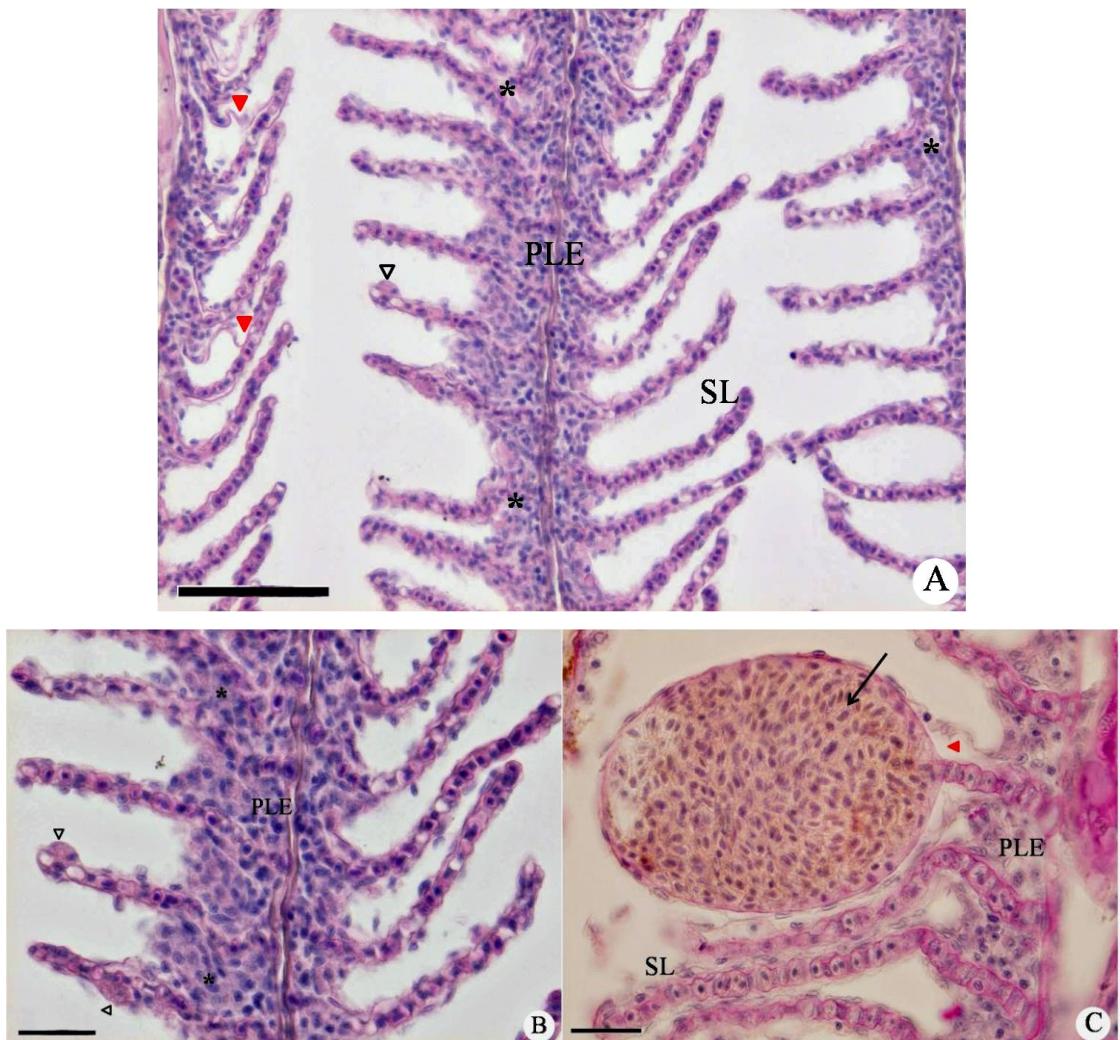
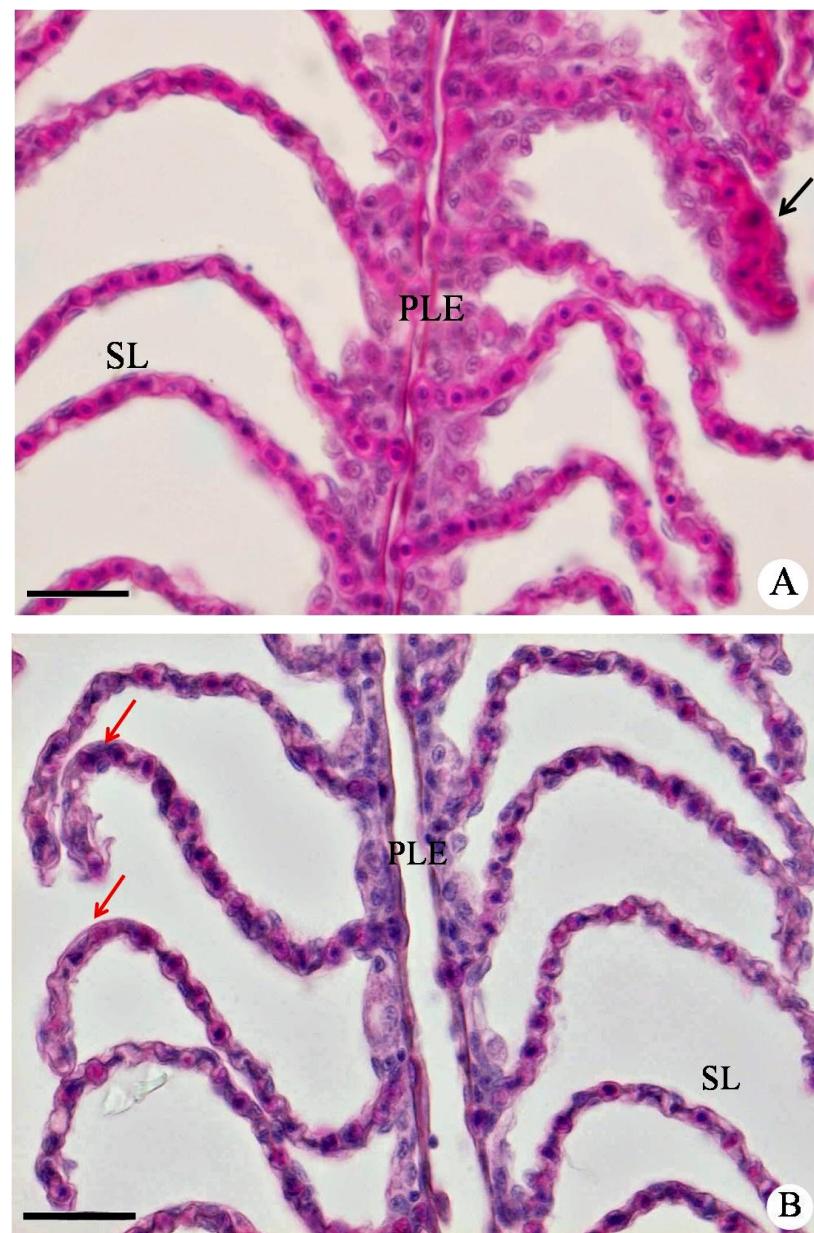


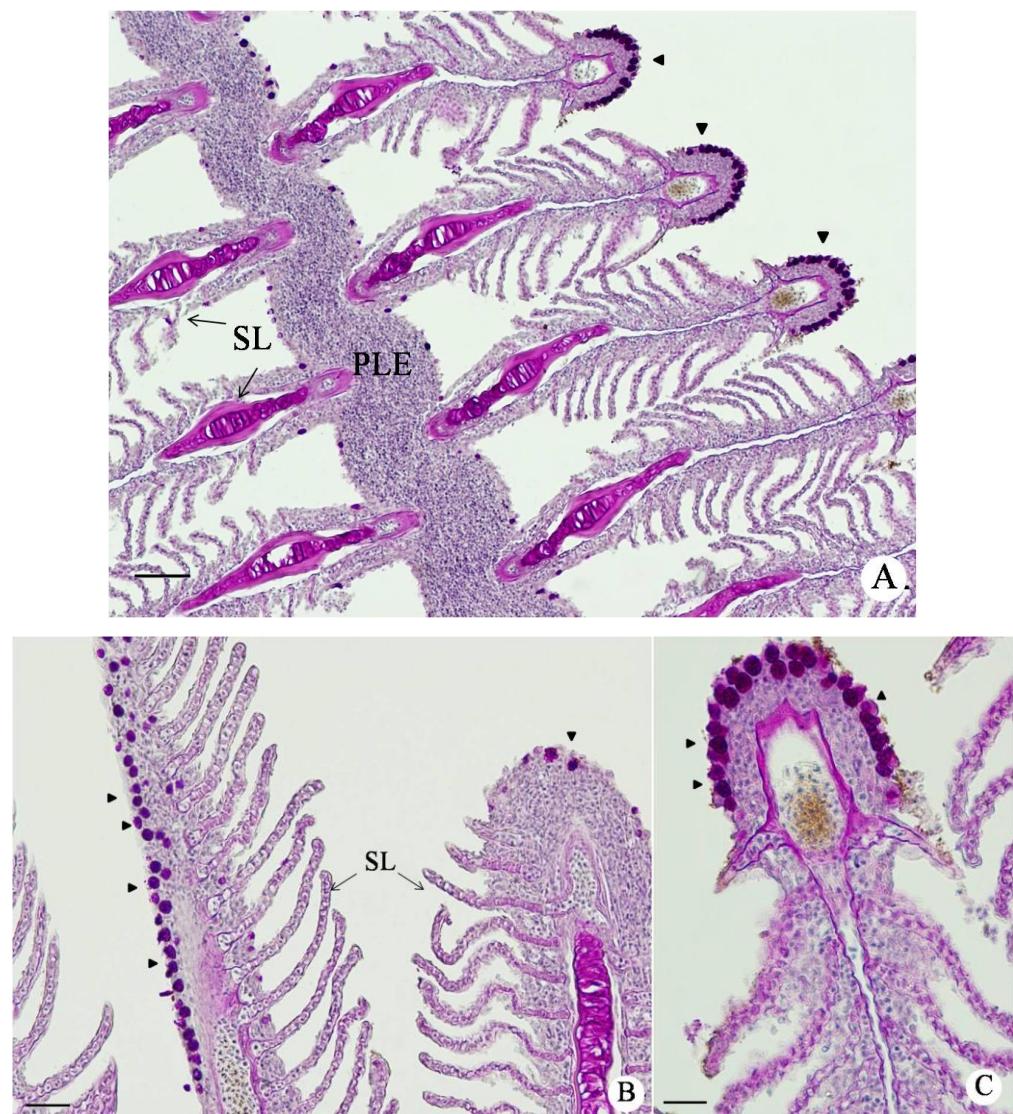
Figure 5.5 Representative of light micrographs of gill filament in *P. altus* illustrating basic gill structure (*H&E stain*)

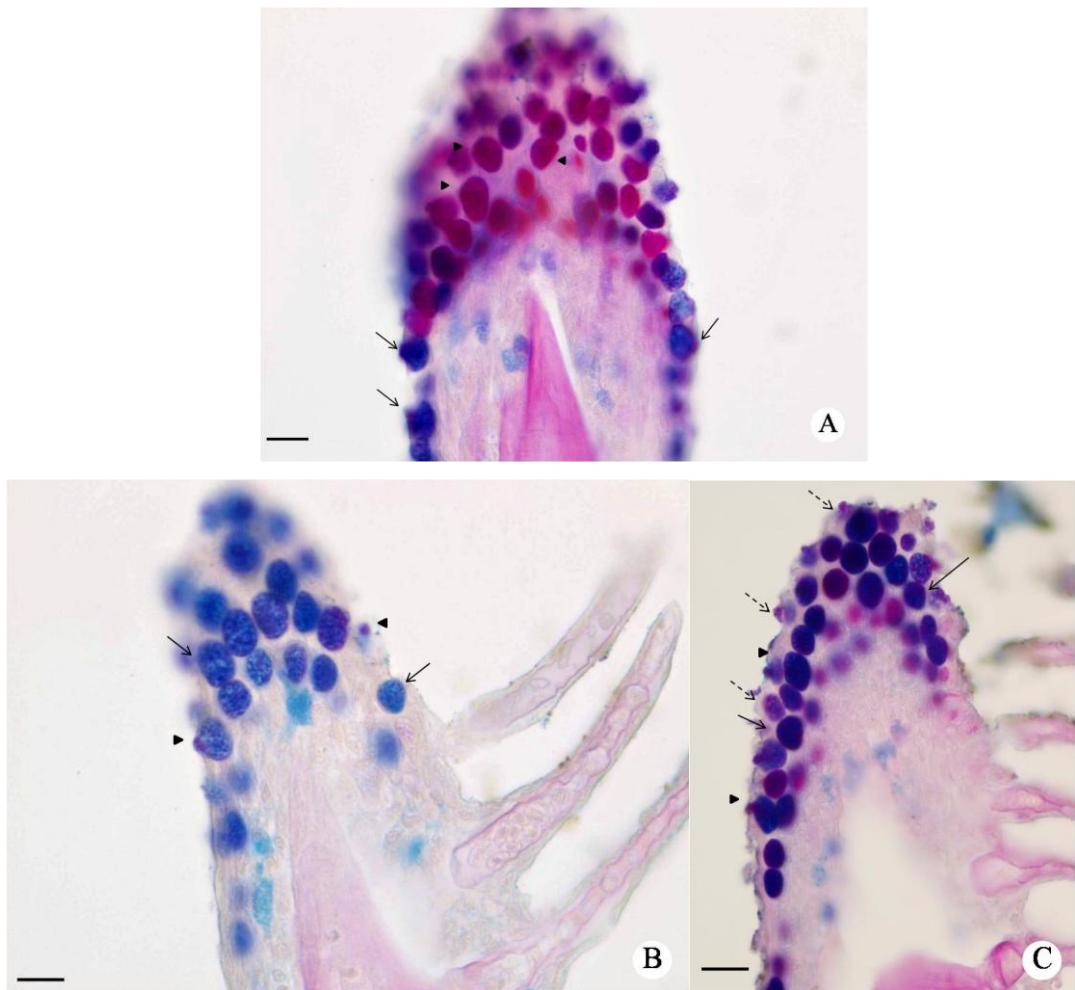
A Overall structure of the gill containing primary gill filament (PLE) and secondary gill filament (SL). *Scale bar* = 50 μ m.


B Cross section of the gill showing typical morphology of pillar cells (PC), chloride cells (CC), blood channel (B), and pavement cells (squamous epithelial cells: ▲)

Scale bar = 20 μ m.

Figure 5.6 Histological changes of the gill of *P. altus* showed gill alterations (*H and E* stain)


- (A) Low magnification of lead-exposed fish showed an increase of the primary filament thickness (*), hypertrophy of the lamellae epithelium (Δ), and epithelial lifting (\blacktriangle) *Scale bar = 50 μ m.;*
- (B) High magnification of lead-exposed fish showed hypertrophy of the lamellae epithelium (Δ) *Scale bar = 20 μ m.;*
- (C) High magnification of lead-exposed fish showed vascular congestion or aneurisms (\downarrow) at secondary gill filament and epithelial lifting (\blacktriangle) *Scale bar = 20 μ m.*


Figure 5.7 Histological changes of the gill of *P. altus* showed gill alterations (H and E stain)

(A) Fish fed with 20 mg g^{-1} of *M. oleifera* before lead exposure showed partial vascular congestion or aneurisms (↓ Scale bar = $20 \mu\text{m}$;

(B) Fish fed with 60 mg g^{-1} of *M. oleifera* before lead exposure showed bend of secondary filament (↖ Scale bar = $20 \mu\text{m}$).

Figure 5.8 Representative of light micrographs of gill filament in *P. altus* in controlled fish (Non-lead exposed) illustrating a number of neutral mucus cells (▲) (AB/PAS stain)

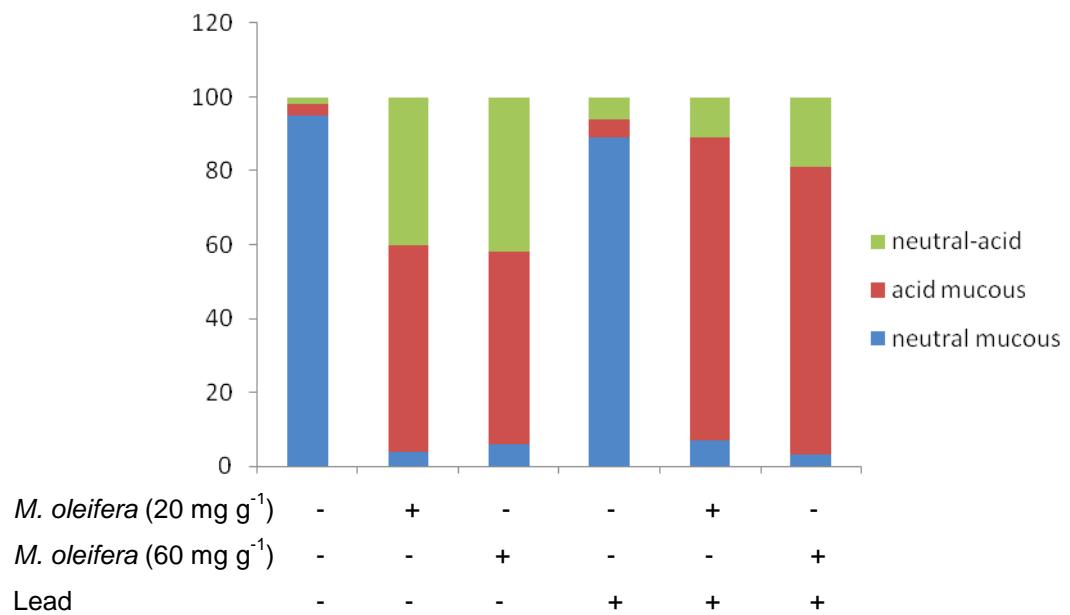
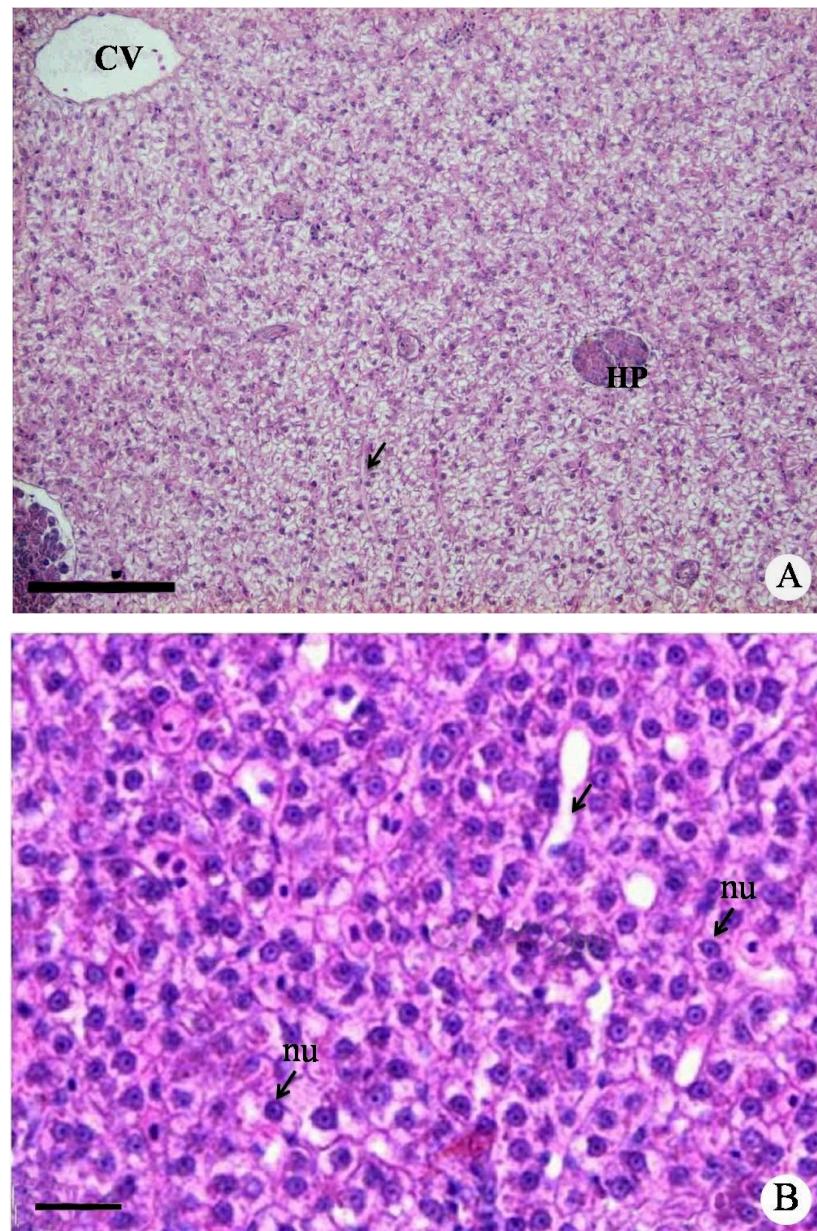
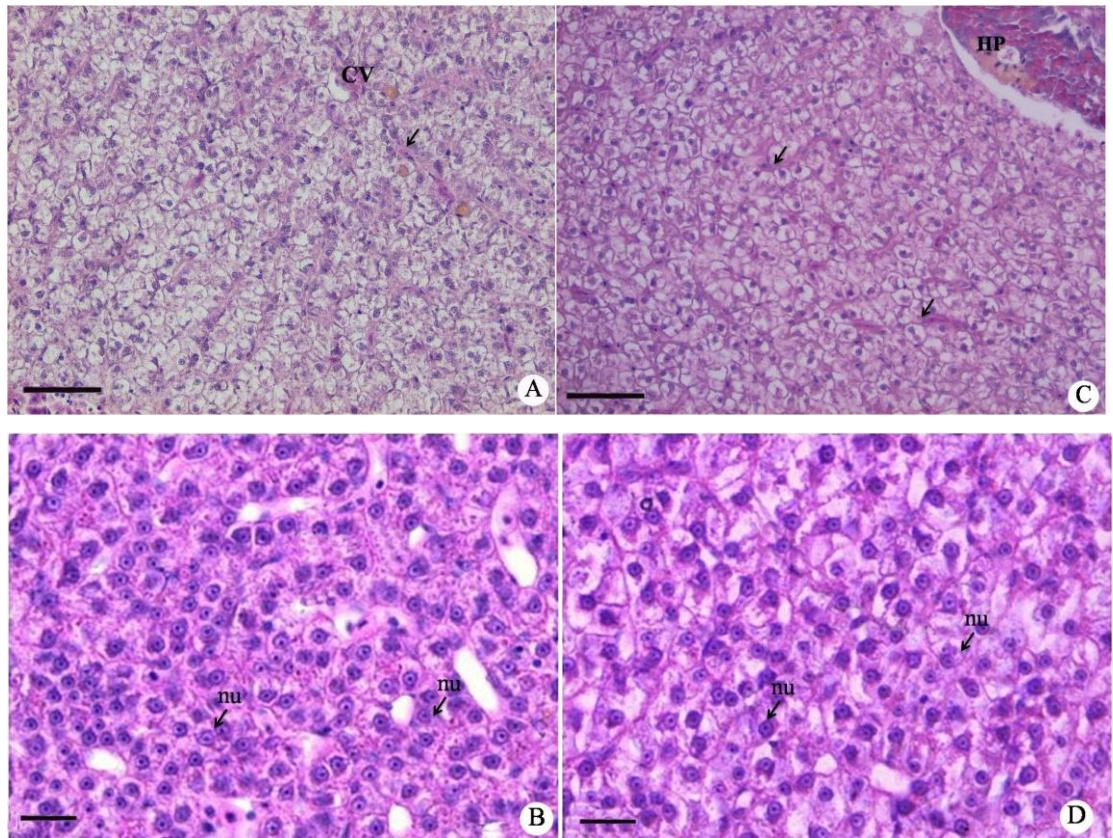
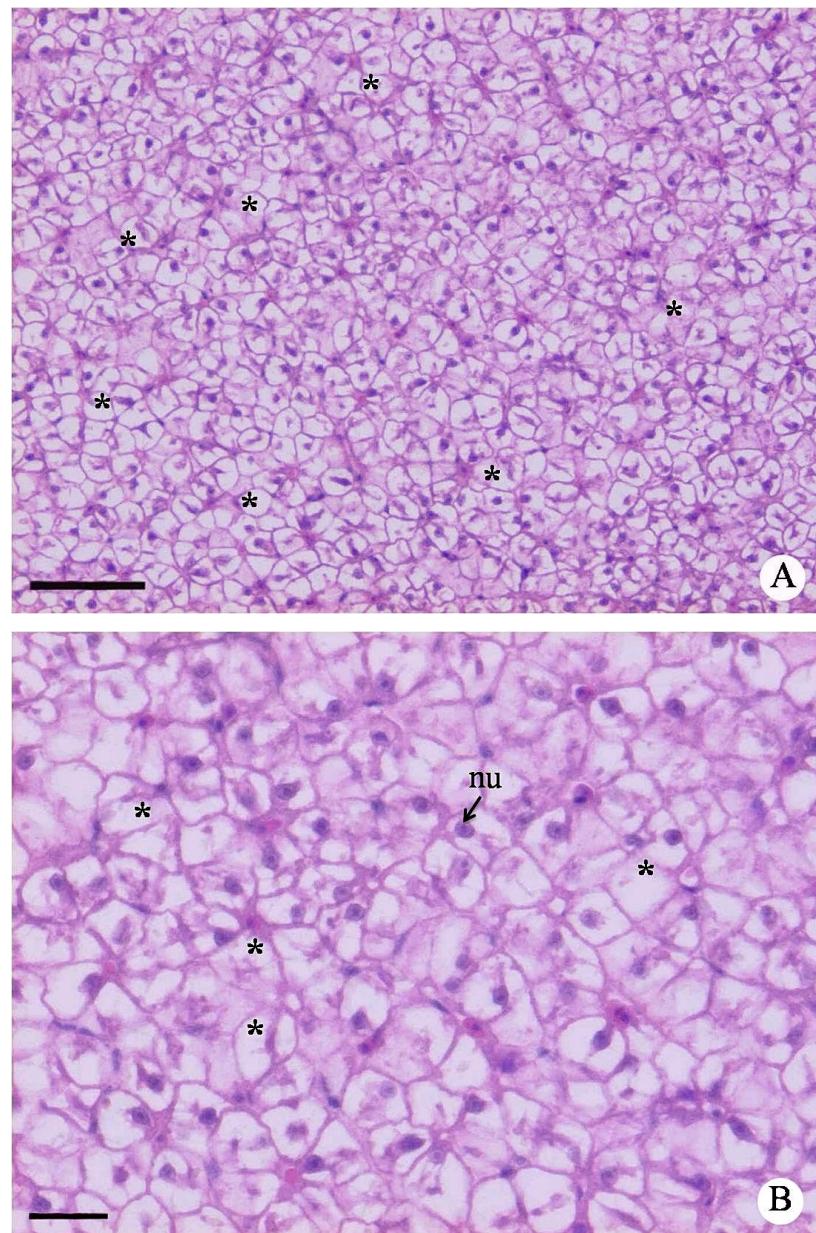


Figure 5.9 Higher magnification view of the gill filament of *P. altus* showed certain mucous cell types (AB/PAS stain)


(A) Lead exposed fish showed neutral mucous cells (\blacktriangle) and scattering of acid mucous cells along gill filament (\rightarrow);

(B) Lead exposed fish supplemented with 20 mg g^{-1} of *M. oleifera* mainly showed acid mucous cells (\blacktriangle);


(C) Lead exposed fish supplemented with 60 mg g^{-1} of *M. oleifera* showed acid mucous cells (\blacktriangle) and neutral-acid mucous cells (\rightarrow). Scale bar = $20 \mu\text{m}$.


Figure 5.10 Percentage neutral, acidic, and neutral-acidic mucous cells of the gill filament of *P. altus*. Data are expressed as percentage of the total number of mucous cell quantified.

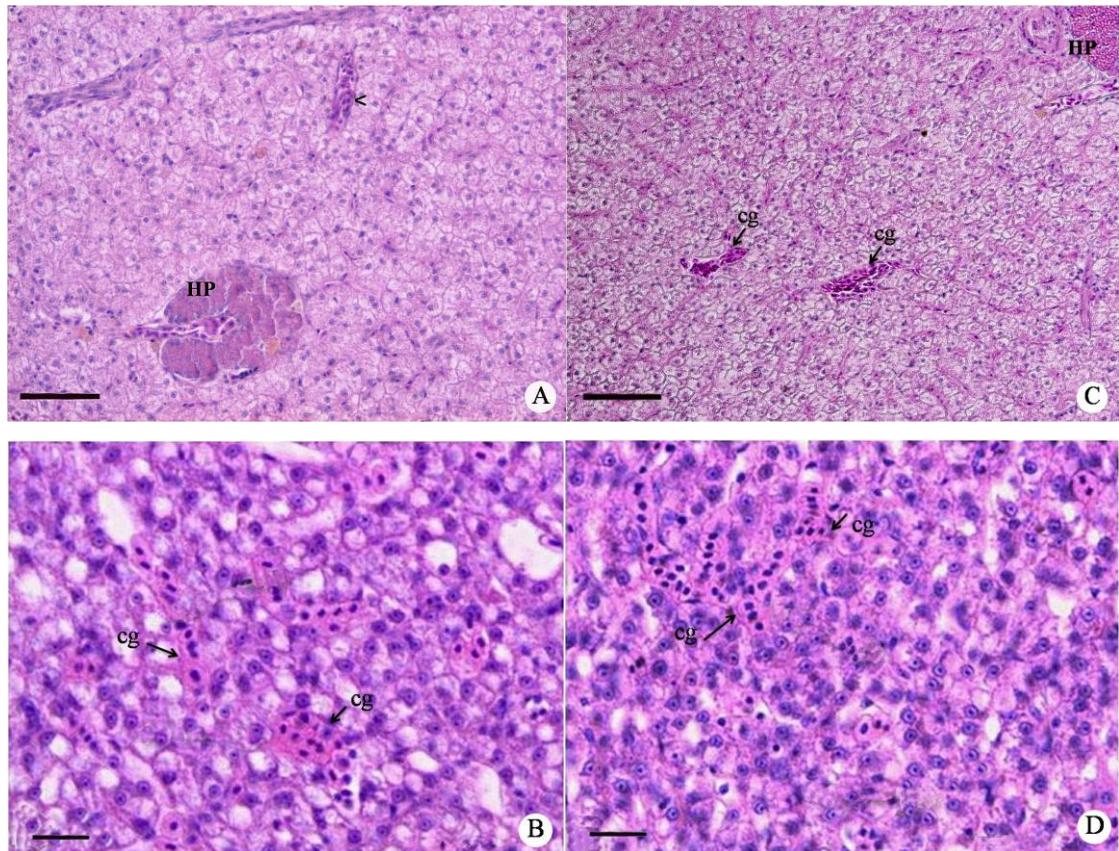

Figure 5.11 Representative of light micrographs of the liver of *P. altus* (H&E stain)
(A) Low magnification of non-lead-exposed fish showed hepatocytes with sinusoidal lumen (→), central vein (CV), and hepatopancrease (HP) *Scale bar = 50 μm.*;
(B) High magnification of non-lead-exposed fish showed, showed hepatocyte nucleus (nu) with sinusoidal lumen (→) *Scale bar = 20 μm.*

Figure 5.12 Representative of light micrographs of the liver of *P. altus* (H&E stain) (A and C) Fish fed with 20 mg g^{-1} and 60 mg g^{-1} of *M. oleifera* showed normal hepatocytes with sinusoidal lumen (\rightarrow) and central vein (CV) Scale bar = $50 \mu\text{m}$; (B and D) Hepatocytes are located among sinusoidal lumen (hepatocyte nucleus: nu) Scale bar = $20 \mu\text{m}$.

Figure 5.13 Representative of light micrographs of the liver of *P. altus* (H&E stain)
(A) Lead-exposed fish showed an abundant of cytoplasmatic vacuolation (*) and hepatic cord disorganization *Scale bar = 50 μm*;
(B) Lead-exposed fish showed hepatocyte nucleus (nu) with sinusoidal lumen (→) *Scale bar = 20 μm*.

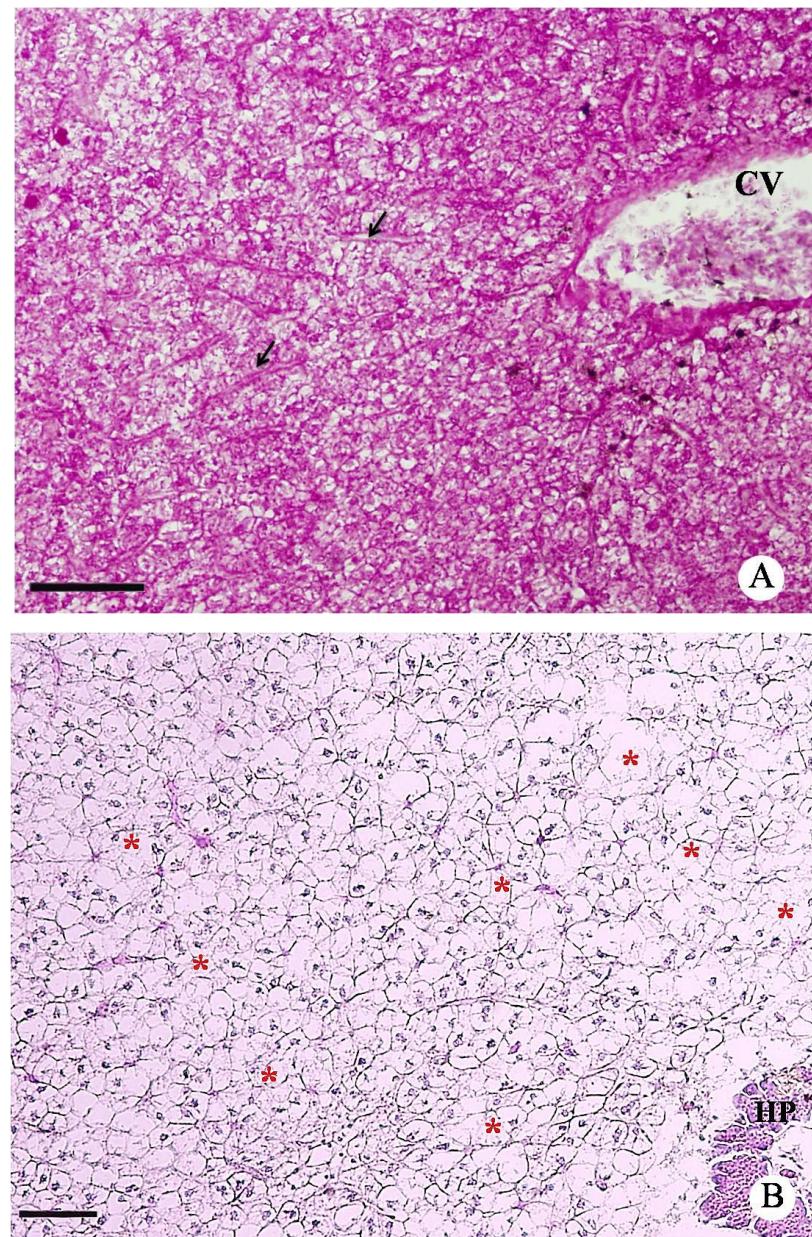
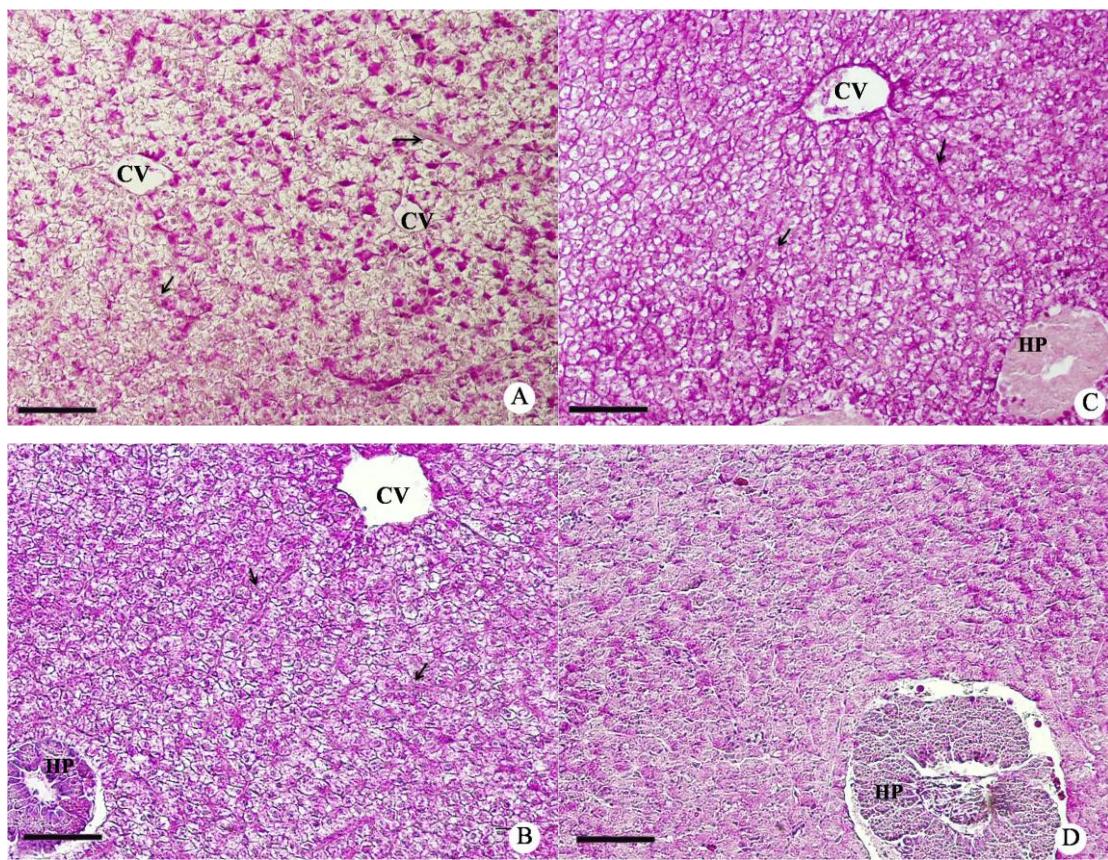


Figure 5.14 Representative of light micrographs of the liver of *P. altus* with lead exposure (*H&E stain*)


(A) Fish fed with 20 mg g^{-1} of *M. oleifera* showed normal hepatocytes with sinusoidal lumen (→) and central vein (CV);

(B) High magnification;

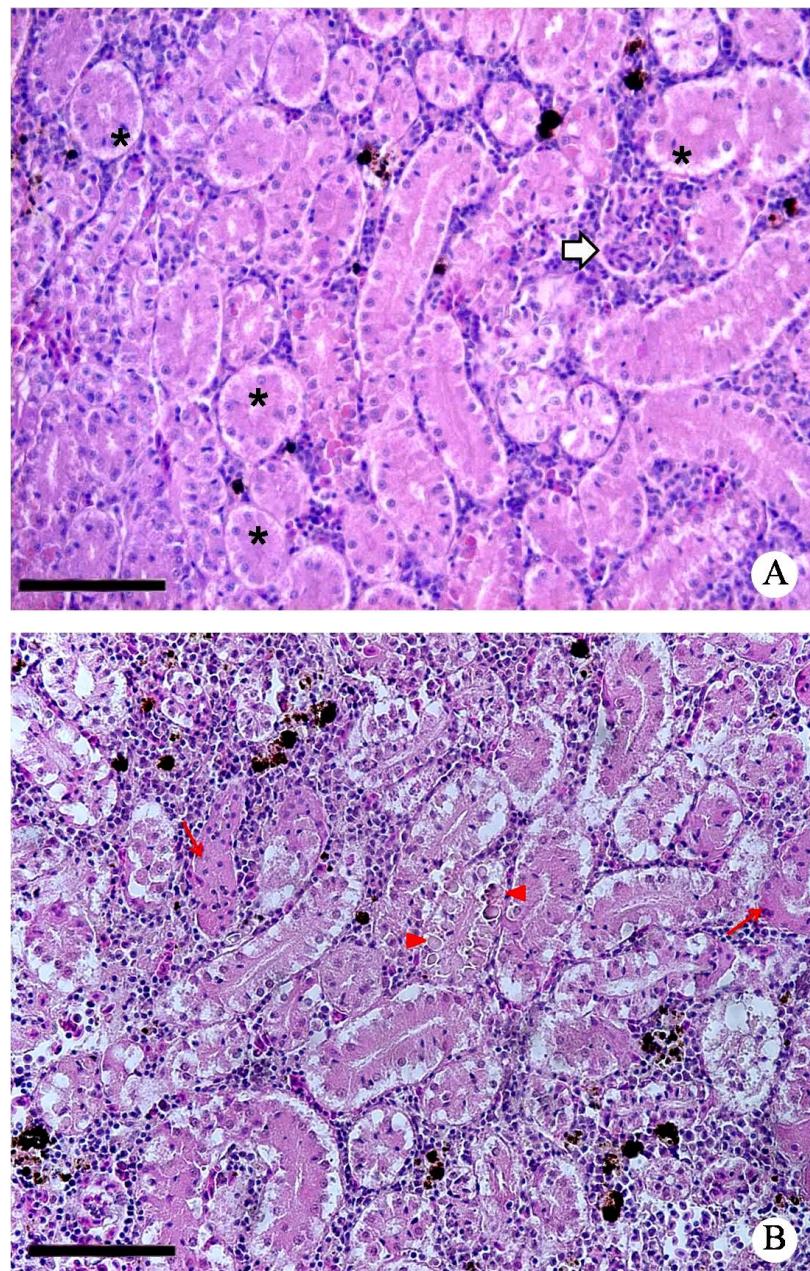

(C) Fish fed with 60 mg g^{-1} of *M. oleifera* showed normal hepatocytes with sinusoidal lumen (→) and central vein (CV); *Scale bar = 100 μm*.

Figure 5.15 Representative of light micrographs of the liver of *P. altus* (PAS stain)
(A) Non-lead exposed fish showed glycogen content represented as purple fine granule in the cytoplasm of hepatocyte;
(B) Lead-exposed fish showed hepatocytes with reductions of glycogen.
Note cytoplasmatic vacuolation (*); central vein (CV); hepatopancrease (HP). *Scale bar = 100 μ m.*

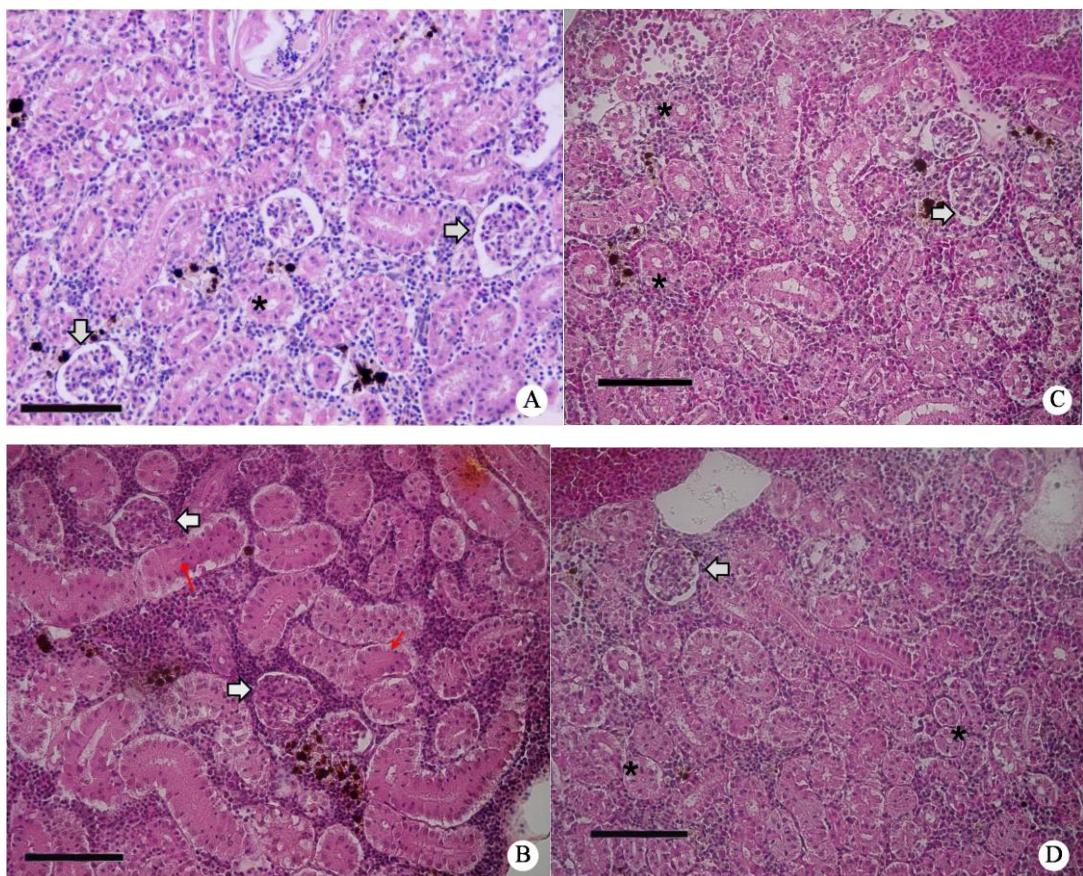


Figure 5.16 Representative of light micrographs of the liver of *P. altus* (PAS stain) (A and C) Non-lead exposed fish fed 20 and 60 mg g⁻¹ of *M. oleifera*, respectively, showed glycogen content represented as purple fine granule in the cytoplasm of hepatocyte. (B and D) Lead-exposed fish showed hepatocytes with reductions of glycogen. Note cytoplasmatic vacuolation (*); blood cell congestion (→); hepatic vessel (v); hepatopancrease (HP). Scale bar = 100 μ m.

Figure 5.17 Representative of light micrographs of kidney of *P. altus* (H&E stain)

- (A) Non-lead exposed fish showed normal renal corpuscle, glomerulus, Bowman's space (arrow) and renal tubule (*)
- (d) Lead-exposed fish showed renal tubule cells with hypertrophy nucleus, cloudy swelling degeneration (→) and tubule with hyaline droplet (Δ);

Figure 5.18 Representative of light micrographs of kidney of *P. altus* (H&E stain)

(A and C) Non-lead exposed fish showed normal renal corpuscle, glomerulus, Bowman's space (arrow) and renal tubule (*) in fish fed 20 mg g⁻¹ and 60 mg g⁻¹ of *M. oleifera* groups, respectively;

(B and D) Lead exposed fish that were pre-treated with 20 mg g⁻¹ and 60 mg g⁻¹ of *M. oleifera* pre-treated) showed mild cloudy swelling with cellular occlusion of the tubular lumen and slight melano-macrophages aggregation (white arrow). Scale bar = 100 μ m.

Note: The lesion was evaluated semi-quantitatively by ranking tissue lesion severity. Ranking from – to +++ depending on the degree and extent of the alteration as follows: (–) no histopathology, (+) histopathology in <20% of fields; (++) histopathology in 20 to 60% of fields; (+++) histopathology in >60% of fields. Five slides were observed from each organ and treatment [183].

Group 1: control diet

Group 2: control diet + Pb exposure

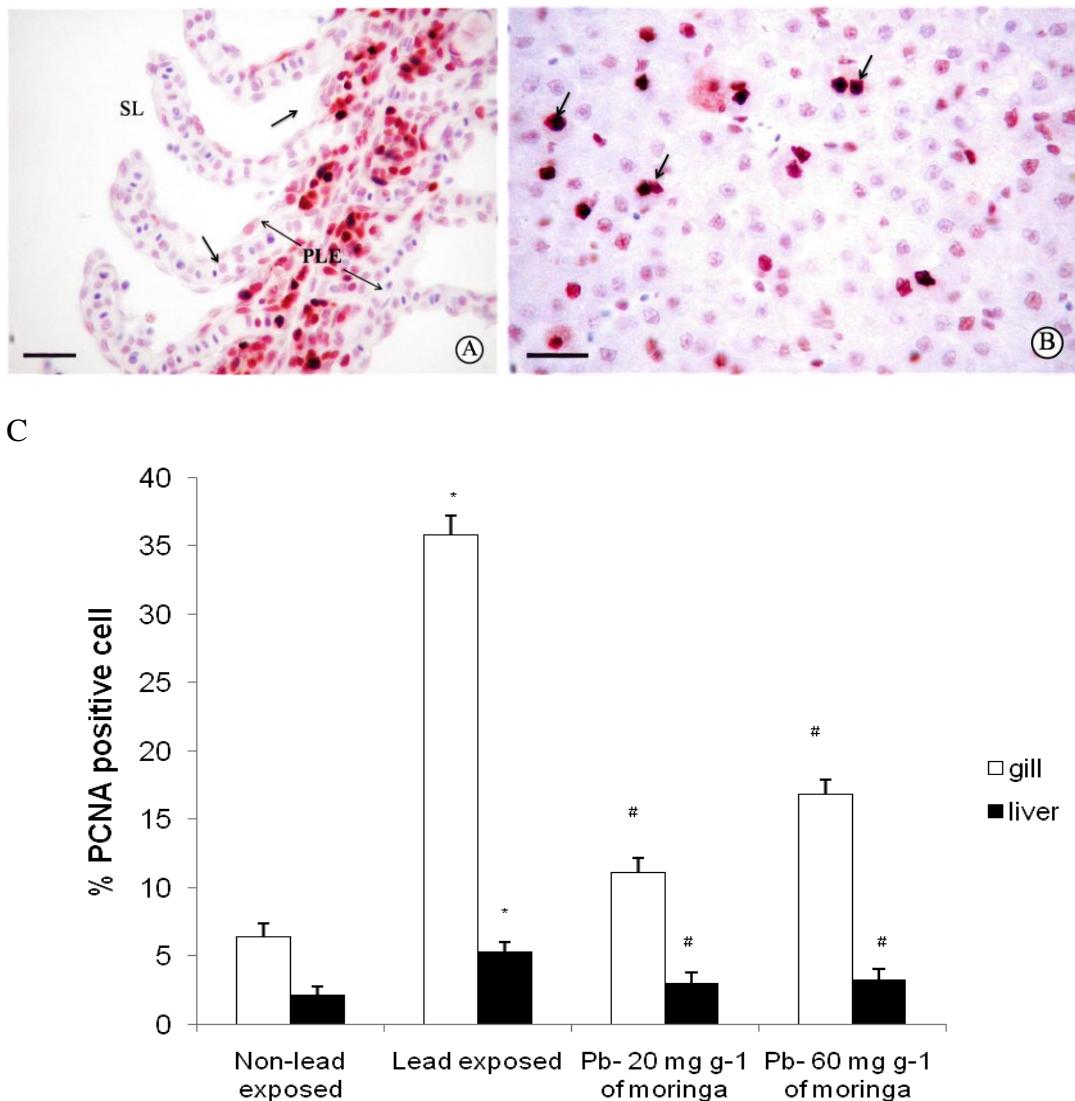
Group 3: 20 mg g⁻¹ of *M. oleifera*

Group 4: 20 mg g⁻¹ of *M. oleifera* + Pb exposure

Group 5: 60 mg g⁻¹ of *M. oleifera*

Group 6: 60 mg g⁻¹ of *M. oleifera* + Pb exposure

Table 5.1 Histopathologic analysis of gill, liver, and kidney of *P. altus*.


Tissue and histopathology	Groups					
	1	2	3	4	5	6
Gill						
Primary filament hyperplasia	+	+++	-	+	-	-
Lamella hypertrophy	-	++	-	+	-	-
Epithelial lifting of lamellae	-	+++	-	+	-	-
Kidney						
Cloudy swelling	-	+++	-	+	-	-
Hyaline droplet degeneration	-	++	-	+	-	-
Liver						
Pyknotic nucleus	-	+	-	-	-	-
Cytoplasmatic vacuolation	+	+++	+	+	+	+
Focal necrosis	-	+	-	-	-	-

5.3 Immunohistochemical analyses

Lead has been reported to induce proliferations of liver cells and epithelium cells of the kidney [184, 185]. To address whether protective role of *M. oleifera* diet is associated with the change in cell proliferation induced by lead, proliferating cell nuclear antigen (PCNA) was monitored.

PCNA-positive cells with brown stained nuclei were detected in primary gill filament (Figure 5.19A). Non-lead exposed fish showed less than 10% PCNA-positive cells. Fish exposed with waterborne lead alone displayed nearly 40% PCNA-positive cells in the filament epithelium. Whereas, pre-administration of either 20 or 60 mg of *M. oleifera* remarkably decreased the percentage of PCNA-positive cells in fish gill (Figure 5.19C).

PCNA-positive nuclei were also examined in the liver cells (Figure 5.19B). As like in the gill, the number of liver PCNA-positive cells was found increased in fish treated with lead only and was reduced with *M. oleifera* pre-administration. These results indicate that pre-administration of 20 and 60 mg of *M. oleifera* can effectively reduce cell proliferation induced by lead in both gills and liver.

Figure 5.19 Immunohistochemical staining patterns for PCNA in gill and liver. Section was immunostained with anti-PCNA monoclonal antibody. Signal detection was accomplished with DAB (brown, positive signal) and 100 cells were evaluated for PCNA labeling.

(A) High number of PCNA-positive nuclei in the primary gill filaments, *Scale bar = 20 μm*;

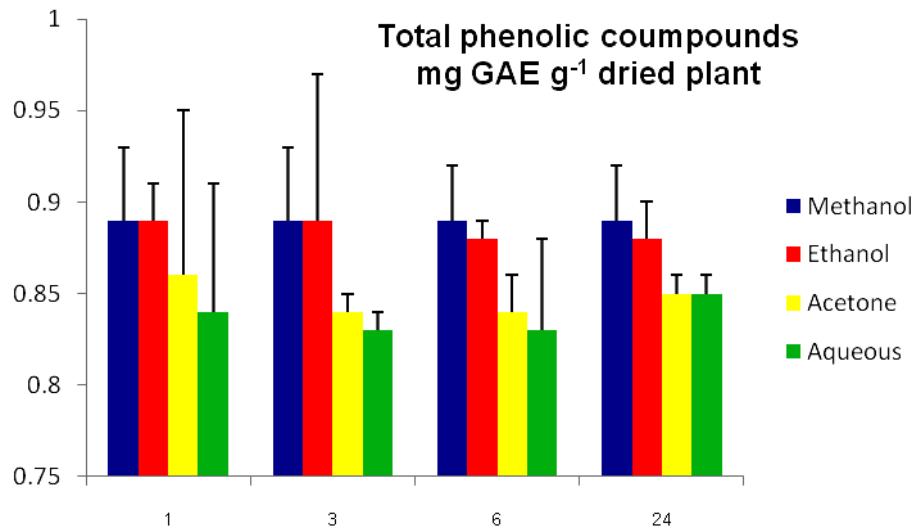
(B) Low number of PCNA-positive nuclei in hepatocytes, which scattered around liver lobules, *Scale bar = 20 μm*;

(C) Percentage of PCNA-positive cells in the gill and the liver. Sections were examined and the results are shown as mean±sd.

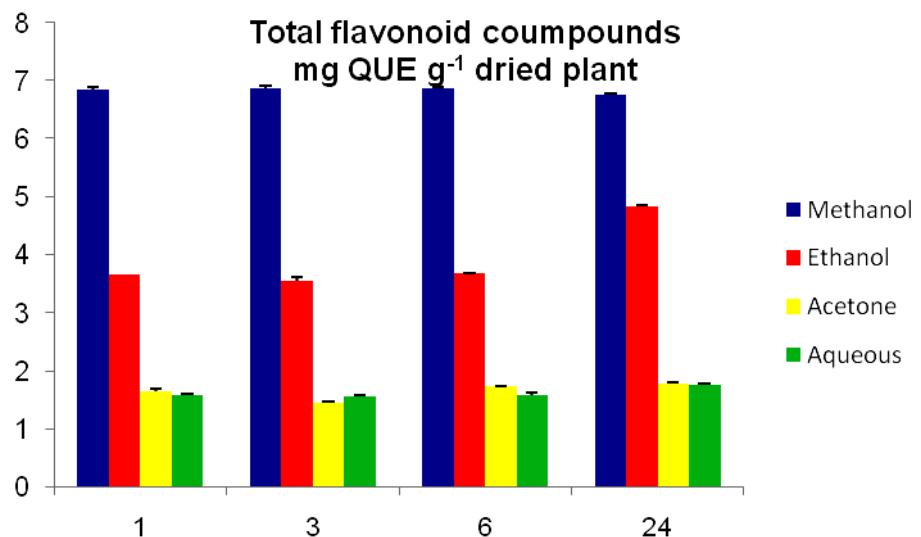
* Indicates $p < 0.05$ compared with control group (non-lead exposed group);

Indicates $p < 0.05$ compared with lead exposed group.

5.4 *In vitro* *M. oleifera* leaves antioxidant studies

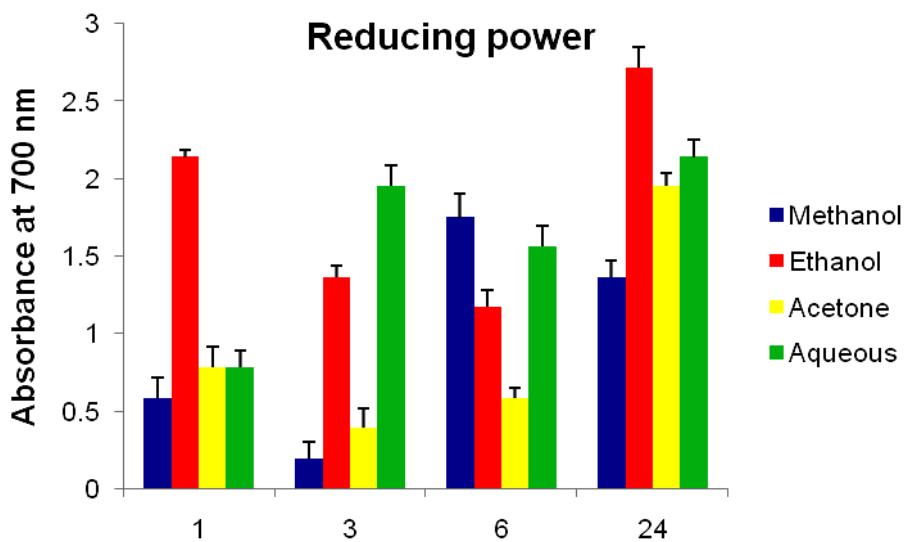

M. oleifera has been recognized to have broad-spectrum of therapeutic functions such as hepatoprotective [165], hypolipidemic, and anti-atherosclerotic properties [14, 143, 167]. In this study, we investigated the antioxidant activities of the extracts from *M. oleifera* leaves through various measurement methods as described in chapter IV.

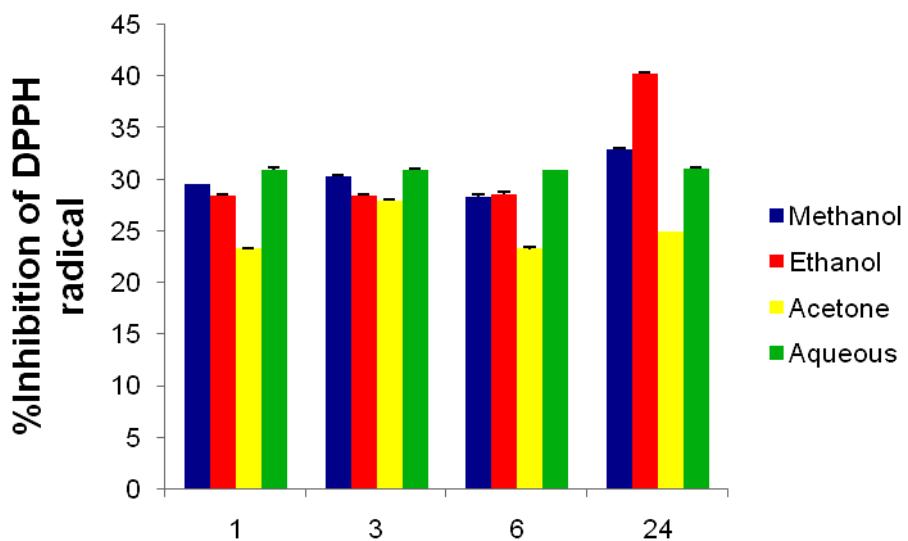
The antioxidant activity of water, acetone, ethanol, and methanol *M. oleifera* leaves extracts revealed the presence of phenolic and flavonoid contents which have been shown to have antioxidant activities. Figure 5.20 shows the total phenolic and flavonoid contents of each extracted sample. Most of the extracts display antioxidant activities with best activities found in the methanolic extract of *M. oleifera* leaves. The highest concentration of total phenolics was observed in methanolic and ethanol extracts (Figure 5.20A).


Methanolic leaves extract of *M. oleifera* also exhibited the highest flavonoids concentration followed by those in ethanol extract, acetone extract and aqueous extract (Figure 5.20B).

Two methods were used to determine the antioxidant capacity of *M. oleifera* leaves; reducing power (RP) and DPPH radical scavenging activity (DPPH) radical scavenging assay. RP was used for a determination of ferric reducing activity based on reduction of a ferric tripyridyltriazine complex to its ferrous colored form [164]. Increasing in the absorbance at 700 nm indicates an increment of antioxidant capacity. As seen in Figure 5.21A, ethanolic extract possessed the highest RP followed by acetone extract, aqueous extract, and methanol extract, respectively. The DPPH method was used for a rapid screening of radical scavenging in complex mixtures [163]. The greatest free radical scavenging activity was also found in 24 hour-ethanol extract (40.23%), followed by methanol extract (32.92%), aqueous extract (31.07%) and acetone extract (23.25%) (Figure 5.21B). These findings indicate that the antioxidant activity of *M. oleifera* extracts is different depending on the solvent used.

(A)


(B)


Figure 5.20 Relative levels of total phenolic compounds (A), flavonoid compounds (B) concentrations in *M. oleifera* leaves determined by spectrophotometry. Methanolic leaves extract of *M. oleifera* exhibited the highest both phenolic and flavonoids concentration. The results are from three independent analysis.

Note: blue bar represented methanol extract; red bar represented ethanol extract; yellow bar represented acetone extract; and green bar represented aqueous extract at 1, 3, 6, and 24 hrs, respectively.

(A)

(B)

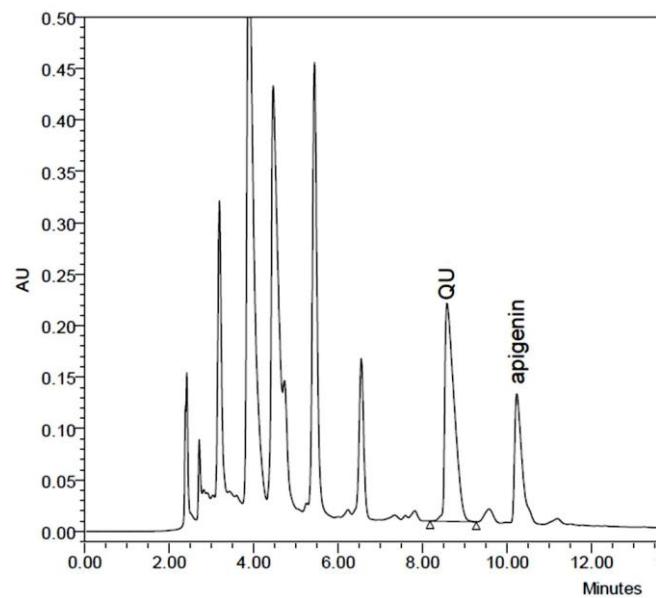
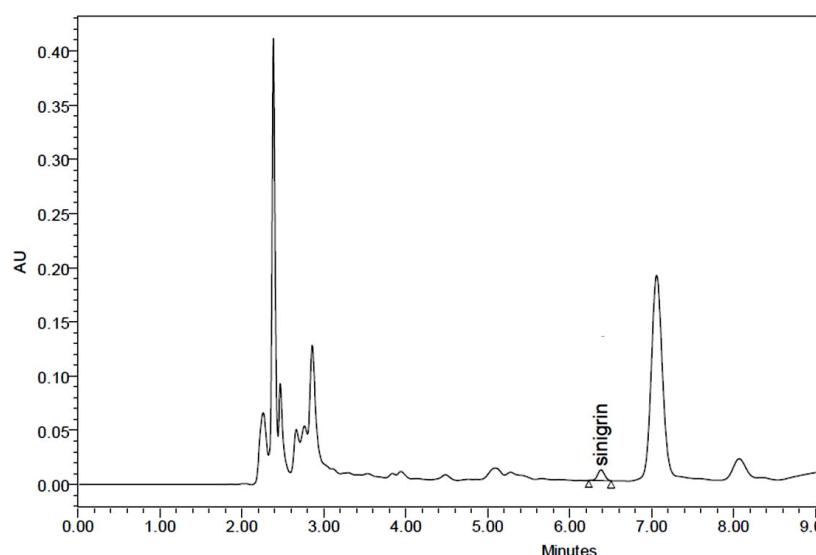


Figure 5.21 Relative reducing power (A) and DPPH radical scavenging activity (B) of different solvent extracts of *M. oleifera* leaves extract. Ethanolic extract possessed high both RP follow by acetone extract, ethanol extract, and aqueous extract, respectively. Whereas, slightly differs DPPH activity were found depending on the solvent used, however ethanol extract showed strongest DPPH capacity. Both assays were used ascorbic acid as a reference standard, the activities based on ascorbic calibration curve.


A modified reverse phase high performance liquid chromatography (RP-HPLC) was used to provide the chromatographic profiles of the phenolics and glucosinolates in the leaves of *M. oleifera* extracts. According to the retention time of calibration standards, the main compounds in the *M. oleifera* leaves extracts are composed of two phenolic compounds including quercetin and apigenin, as well as a glucosinolate compound, sinigrin (Figure 5.22). It is noteworthy that the chromatogram of the *M. oleifera* extracts also showed some other chromatographic peaks apart from those three mentioned; however we could not identify those compounds due to the limitation of the internal standard available. The selection of the three standards used in the assay is based on the medicinal properties reported. Quercetin and apigenin are strong antioxidants which have been proposed to have anti-inflammatory, hepato-protective, or anti-carcinogenic actions [186-188]. Besides their antioxidant capacities, quercetin and apigenin have also been shown to possess metal chelating capacities [189]. Sinigrin has contributed to modulation of the activities of phase I (cytochrome P450s) and phase II (glutathione-S-transferase, UDP-glucuronosyl-transferase, and quinone reductase) detoxification enzymes [150, 190, 191].

Above results indicated that *M. oleifera* leaves extract significantly promote beneficial activities as natural antioxidant. Taken together, overall results suggested that protective efficacy of fish pre-administered with *M. oleifera*-supplemented diets before lead exposure is likely involved in the constituent of phenolics and glucosinolate present in the leaves. It is possible that these phyto-molecules may serve as natural antioxidant and prevent the fish from the harmful effects of lead.

(A)

(B)

Figure 5.22 Representative HPLC chromatograms of methanolic extract constituent of *M. oleifera* leaves under different detection wavelength 335 nm for (A) and 227 nm for (B).

CHAPTER VI

DISCUSSION

A variety of medicinal plants are being studied for their potential protective effects against environmental toxicants including *Moringa oleifera*. *M. oleifera* has been considered as a valuable herb due to its broad spectrum of biological activities [138, 143]. *M. oleifera* has been shown to reduce the hepatic injury from carbon tetrachloride (CCl₄) toxicity in albino rats [192]. Recent research studies have focused on the protective effects of *M. oleifera* on cardiovascular system and liver in rabbits and rats [12, 143]. Due to the high contents of antioxidants found in *M. oleifera*, it is possible that a consumption of *M. oleifera* is able to alleviate the toxicity of lead that has been shown to cause cellular oxidative stress. Lead is an important environmental pollutant affecting aquaculture productions [1, 193]. Therefore, in this study, we investigate the protective effect of *M. oleifera* against deleterious effects from waterborne lead exposure in fish *Puntius altus*.

Although the toxic effects of lead have been known for centuries, harmful lead exposure to the aquatic animals is still widespread [3]. Herein, we demonstrated that exposure to lead causes gills, liver, and kidney damages in fish within a short period of time. The effects of lead on the morphology of gills were similar to those reported previously [194-196]. Large area of epithelial cell lifting, lamella fusion and thickening of gill filament were observed in fish exposed to lead. These changes serve as a protection mechanism by increasing the distance from which waterborne lead can diffuse to the bloodstream [196]. However, such alterations may impede gas exchanges and reduce the oxygen uptake leading to damage to the gill. We have found that pre-treatment with *M. oleifera*-supplemented diets can reduce these lesions in the gill. The reduction in gill damage may be due to an increase in the number of acid mucous cells along the gill filament, which was observed in our study. It has been shown in rainbow trout exposed to zinc that an acid mucous can bind and precipitate zinc, thus reducing the zinc absorption into the body [197]. We hypothesized that an

increase in the number of acid mucous cells in fish receiving *M. oleifera*-supplemented diets potentially helps in reducing lead absorption and thus decreases the toxicity from subsequent lead exposure.

Alterations of the liver from lead exposure including cytoplasmatic vacuolation, hepatic cord disorganization with scattered hypertrophy hepatocytes nuclei, and increased leakage of hepatic enzymes were observed. These alterations are more likely due to an increase in free radicals and impaired endogenous antioxidant activities. In this study, we observed a significant increase in lipid peroxidation in lead-exposed fish similar to the previous reports [96, 198]. This change was also accompanied by decreasing of catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR), and glutathione peroxidase (GPx) activities in lead-exposed fish. It has been shown that a decrease in catalase activity causes increased lipid peroxidation and oxidative stress from lead exposure [199]. GSH and its related enzymes are also shown to be important molecules protecting the cells from lead induced toxicity [200]. The reduction in the activities of these antioxidant molecules may be due to oxidative damage to the enzymes or proteins.

In this study, we found that pre-treatment of *P. altus* with *M. oleifera* before lead exposure was able to reduce the severity of hepatic injuries observed with both histological and biochemical analyses including a reduction of liver enzymes leakage and increases in the antioxidant enzymes activities (CAT, GSH, GR, and GPx) when compared to fish exposed to lead alone. The increases in antioxidant activities such as CAT, GSH, GR, and GPx maybe consider as a protective mechanism against lead-induced oxidative damage. This finding suggests that the activities of these endogenous antioxidant enzymes are enhanced due to the role of exogenous antioxidant constituents that contain in *M. oleifera* supplementation. These results are in agreement with the previous study demonstrating that the methanolic extract of *M. oleifera* leaves can protect the rats from liver injury caused by acetaminophen toxicity [166]. The protective effects of *M. oleifera* are due to an antioxidant action from the phenolics, flavonoids, and related antioxidant constituents. We found that the extract of *M. oleifera* leave contains high levels of phenolics and flavonoids. The levels of phenolic content in *M. oleifera* extracts found in this study is approximately four times higher than the phenolic level present in the reference standard, gallic acid and is

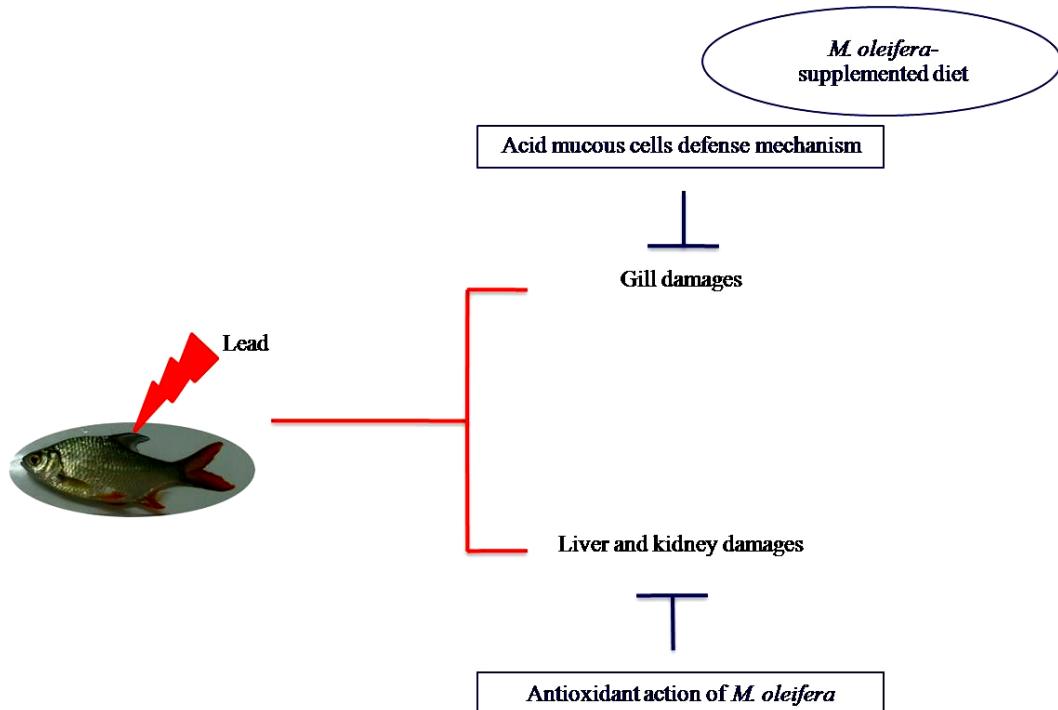
comparable to those of other medicinal plants including *Alcea kurdica* (Malvaceae), *Stachys lavandulifolium* (Lamiaceae), *Valeriana officinalis* (Valerianaceae), *Lavandula officinalis* (Lamiaceae) and *Melissa officinalis* (Lamiaceae). Phenolic compounds are known to be potent free radical scavengers and are considered as agents that can reduce toxicity from chemicals [128]. We therefore propose that the phenolics and flavonoids found in this herb may exert potent protective effects against lead-induced oxidative stress in the liver. Phenolic compounds identified in the *M. oleifera* leaves extracts in this study are quercetin and apigenin. Nonetheless, unknown phenolic compounds were also detected in HPLC chromatograms leading to further identification of these compounds. Quercetin and apigenin are strong antioxidant that has been proposed to have various biological properties such as anti-inflammation [187], hepato-protectant [188], and anti-carcinogen [186]. Interestingly, in addition to the antioxidant activities, quercetin and apigenin also display metal chelating capacities [189]. Overall, these results suggest that *M. oleifera* displays antioxidant properties that potentially counteract the oxidative stress induced by lead and also contains phenolic compounds that may chelate the toxic metal and therefore, reducing the cellular damages from lead exposure. However, further studies are needed in order to elucidate the exact mechanisms of how *M. oleifera* play a role in protecting cellular damages from lead and to identify the major constituents that play a major role in this protection.

M. oleifera can also protect nephrotoxic effect induced by lead. This finding is consistent with the previous study in rats showing that the extract of *M. oleifera* leaves can attenuate renal injury induced by gentamicin [201]. The nephroprotective effect of *M. oleifera* observed may also occur via its antioxidant action similar to the observations found in the liver. Lead is known to affect cell proliferations of liver cells and epithelium cells of the kidney [184, 185] and interfere with localization and expression of proliferating cell nuclear antigen (PCNA, marker for cell proliferation). So, we next addressed whether protective effect of *M. oleifera* diet is associated with the change in cell proliferation induced by lead. The present investigation reveals that cell proliferation in gill and liver were increased after lead treatment. However, pre-treatment with *M. oleifera* diets effectively decrease numbers of cell proliferation of gills and liver cells in fish exposed to lead possibly by

protecting the cells from oxidative stress that can lead to increase cell proliferation. Recent studies have shown that phenolic compounds, particularly quercetin and apigenin, are important compounds involved in attenuation of cell proliferation [202-204]. We therefore propose that the action of *M. oleifera* supplement in reducing cell proliferation upon lead exposure is by the antioxidation property of phenolic compounds found in *M. oleifera* extract.

Additionally, we monitored the protective effects of *M. oleifera*-supplemented diets against waterborne lead exposure on hematological parameters of fish *P. altus*. Due to intimate contact between the fish circulatory system and lead-contaminated water, both hematology and blood chemistry assessment are important parameters used for an evaluation of physiological status of the fish [205]. A significant decrease in white blood cell count was detected in fish exposed to lead alone consistent with the known immunotoxicity of lead [206]. The decrease in white blood cell has direct consequences on the fish immune response as well as altering the host resistant against infectious pathogens [207]. However, fish pre-administered with *M. oleifera* diet showed an increase in the number of white blood cells when compared to the group without herbal supplement. Although the exact mechanism of how *M. oleifera* diet increases the level of white blood cells is not yet known, we propose that this may also come from the antioxidant activity of phenolic compounds present in *M. oleifera*. The observed values of erythrocytes count, pack red cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) in all fish fall within the range previously reported for teleost [208]. Slightly increase in erythrocytes count with increase in PCV and MCV indicated that small red blood cells circulate in fish as results from lead exposure [209].

In summary, the present study demonstrated that *M. oleifera* has protective effects against lead-induced toxicity when pre-administered to *P. altus* before lead exposure. The results presented in this thesis shed a light on a possibility of using *M. oleifera* leaves as natural supplement in the fish food diet in aquaculture farm to help alleviate the toxicity of lead that may contaminate the water sources. The dosage of 20 mg g⁻¹ *M. oleifera* supplementation seems to be able to protect the fish from lead induced toxicity. These protective effects of *M. oleifera* are most likely mediated


through antioxidant properties of the phenolic constituents that are able to protect the cells from oxidative stress induced by lead.

CHAPTER VII

CONCLUSION

Many research studies have focused on using herbs as dietary supplements for aquaculture in order to promote growth as well as prevent of chemicals toxicity [210, 211]. *Moringa oleifera* has been known to have various biological properties and is considered to be a highly nutritive herb [10, 143]. In this study, we investigated the protective potency of *M. oleifera*-supplemented diets against lead toxicity to the fish *Puntius altus*.

This study demonstrated that waterborne lead exposure causes marked oxidative damage in the liver, alters the activities of antioxidant enzymes, alters histological structures of gill, liver, as well as kidney, and induces the proliferations of gill and liver cells. Pre-treatment with *M. oleifera*-supplemented diets to the fish before exposing to a toxic level of lead can reduce these alterations. Moreover, we have shown the extract of *M. oleifera* leaves contains both phenolic and flavonoid compounds and possesses high antioxidant activities when compared with other studies medicinal antioxidant plants [130, 131]. We have identified quercetin and apigenin as potential major sources of antioxidant found in the leave extract. These findings indicate that *M. oleifera* contains compounds that are capable of preventing cellular oxidative damage induced by lead.

Figure 7.1 schematic diagram of the possible protective mechanisms of *M. oleifera* diet against lead-induced toxicity in fish.

Once lead is absorbed, it can generate reactive oxygen species resulting in various physiological changes and cellular damage in fish [184, 212, 213]. However, pre-treatment with *M. oleifera*-supplemented diets can reduce these adverse affects to the fish by restoring biochemical parameters, improving hepatic structure, enhancing hepatic antioxidant enzyme activities, and reduction of gill and liver cell proliferations. Specifically, *M. oleifera* diet attenuated lead-induced gill damages perhaps by defensive action of acid mucous cells as well as inhibiting liver and kidney damages possibly through its antioxidant properties (Figure 7.1). *M. oleifera* extract showed high amounts of quercetin, apigen, and sinigrin which have been reported to not only exert strong antioxidants, but also display chelating capacities [189, 214, 215]. We proposed that the protective effects of *M. oleifera* dietary supplement could be mainly due to the presence of these constituents. Overall, the research herein demonstrated *M. oleifera* as a potential supplement utilized in aquaculture to protect the aquatic organisms against the toxicity of lead that may contaminate the water system. The diets supplemented with *M. oleifera* could potentially help improving the quality of aquatic animals as well as increasing the aquaculture yield.

REFERENCES

- 1 Çelik U, Oehlenschläger J. High contents of cadmium, lead, zinc and copper in popular fishery products sold in Turkish supermarkets. *Food Control*. 2007;18(3):258-61.
- 2 Ganjavi M, Ezzatpanah H, Givianrad MH, Shams A. Effect of canned tuna fish processing steps on lead and cadmium contents of Iranian tuna fish. *Food Chemistry*. 2010;118(3):525-8.
- 3 Castro-González MI, Méndez-Armenta M. Heavy metals: Implications associated to fish consumption. *Environmental Toxicology and Pharmacology*. 2008;26(3):263-71.
- 4 Espinoza-Quiñones FR, Módenes AN, Thomé LP, Palácio SM, Trigueros DEG, Oliveira AP, et al. Study of the bioaccumulation kinetic of lead by living aquatic macrophyte *Salvinia auriculata*. *Chemical Engineering Journal*. 2009;150(2-3):316-22.
- 5 Bradberry S, Vale A. Lead. *Medicine*. 2007;35(12):627-8.
- 6 Jurczuk M, Brzóska MM, Moniuszko-Jakoniuk J. Hepatic and renal concentrations of vitamins E and C in lead- and ethanol-exposed rats. An assessment of their involvement in the mechanisms of peroxidative damage. *Food and Chemical Toxicology*. 2007;45(8):1478-86.
- 7 Campana O, Sarasquete C, Blasco J. Effect of lead on ALA-D activity, metallothionein levels, and lipid peroxidation in blood, kidney, and liver of the toadfish *Halobatrachus didactylus*. *Ecotoxicology and Environmental Safety*. 2003;55(1):116-25.
- 8 Pritchard M, Mkandawire T, Edmondson A, O'Neill JG, Kululanga G. Potential of using plant extracts for purification of shallow well water in Malawi. *Physics and Chemistry of the Earth, Parts A/B/C*. 2009;34(13-16):799-805.

- 9 Sahakitpichan P, Mahidol C, Disadee W, Ruchirawat S, Kanchanapoom T. Unusual glycosides of pyrrole alkaloid and 4'-hydroxyphenylethanamide from leaves of *Moringa oleifera*. *Phytochemistry*. 2011;72(8):791-5.
- 10 Anwar F, Latif S, Ashraf M, Gilani AH. *Moringa oleifera*: a food plant with multiple medicinal uses. *Phytotherapy Research*. 2007;21(1):17-25.
- 11 Koheil MA, Hussein MA, Othman SM, El-Haddad A. Anti-inflammatory and antioxidant activities of *Moringa peregrina* Seeds. *Free Radicals and Antioxidants*. 2011;1(2):49-61.
- 12 Hamza AA. Ameliorative effects of *Moringa oleifera* Lam seed extract on liver fibrosis in rats. *Food and Chemical Toxicology*. 2010;48(1):345-55.
- 13 Guevara AP, Vargas C, Sakurai H, Fujiwara Y, Hashimoto K, Maoka T, et al. An antitumor promoter from *Moringa oleifera* Lam. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*. 1999;440(2):181-8.
- 14 Sánchez-Machado DI, López-Cervantes J, Ríos Vázquez NJ. High-performance liquid chromatography method to measure α - and γ -tocopherol in leaves, flowers and fresh beans from *Moringa oleifera*. *Journal of Chromatography A*. 2006;1105(1-2):111-4.
- 15 Needleman H. Lead Poisoning. *Annual Review of Medicine*. 2004;55(1):209-22. PubMed PMID: 14746518.
- 16 Meyer PA, Brown MJ, Falk H. Global approach to reducing lead exposure and poisoning. *Mutation Research/Reviews in Mutation Research*. 2008;659(1-2):166-75.
- 17 Zhu M, Fitzgerald EF, Gelberg KH, Lin S, Druschel CM. Maternal low-level lead exposure and fetal growth. *Environ Health Perspect*. 2010;118(10):1471-5. PubMed PMID: 20562053. Pubmed Central PMCID: 2957931.
- 18 Shaffi SA. Lead toxicity: Biochemical and physiological imbalance in nine freshwater teleosts. *Toxicology Letters*. 1979;4(3):155-61.
- 19 Silbergeld EK, Waalkes M, Rice JM. Lead as a carcinogen: Experimental evidence and mechanisms of action. *American Journal of Industrial Medicine*. 2000;38(3):316-23.

20 von Lindern I, Spalinger S, Petroysan V, von Braun M. Assessing remedial effectiveness through the blood lead:soil/dust lead relationship at the Bunker Hill Superfund Site in the Silver Valley of Idaho. *Science of The Total Environment*. 2003;303(1-2):139-70.

21 Lin J-L, Lin-Tan D-T, Hsu C-W, Yen T-H, Chen K-H, Hsu H-H, et al. Association of Blood Lead Levels With Mortality in Patients on Maintenance Hemodialysis. *The American Journal of Medicine*. 2011;124(4):350-8.

22 Xie X, Ding G, Cui C, Chen L, Gao Y, Zhou Y, et al. The effects of low-level prenatal lead exposure on birth outcomes. *Environmental Pollution*. 2013;175(0):30-4.

23 Gulson B. Stable lead isotopes in environmental health with emphasis on human investigations. *Science of The Total Environment*. 2008;400(1-3):75-92.

24 Fewtrell LJ, Prüss-Üstün A, Landrigan P, Ayuso-Mateos JL. Estimating the global burden of disease of mild mental retardation and cardiovascular diseases from environmental lead exposure. *Environmental Research*. 2004;94(2):120-33.

25 Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. *Free Radical Biology and Medicine*. 1995;18(2):321-36.

26 Kelada SN, Shelton E, Kaufmann RB, Khoury MJ. δ -Aminolevulinic Acid Dehydratase Genotype and Lead Toxicity: A HuGE Review. *American Journal of Epidemiology*. 2001;154(1):1-13.

27 Konuk M, Ciğerci İH, Korcan SE. ALAD (δ -aminolevulinic Acid Dehydratase) as Biosensor for Pb Contamination, Intelligent and Biosensors, Vernon S. Somerset (Ed.); 2010.

28 Gürer H, Özgunes H, Neal R, Spitz DR, Erçal N. Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats. *Toxicology*. 1998;128(3):181-9.

29 Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. *Biochimica et Biophysica Acta (BBA) - General Subjects*. 2013;1830(5):3217-66.

30 Xu J, Ji L-D, Xu L-H. Lead-induced apoptosis in PC 12 cells: Involvement of p53, Bcl-2 family and caspase-3. *Toxicology Letters*. 2006;166(2):160-7.

31 Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*. 2009;674(1–2):3-22.

32 Shalan MG, Mostafa MS, Hassouna MM, El-Nabi SEH, El-Refaie A. Amelioration of lead toxicity on rat liver with Vitamin C and silymarin supplements. *Toxicology*. 2005;206(1):1-15.

33 El-Ashmawy IM, Ashry KM, El-Nahas AF, Salama OM. Protection by Turmeric and Myrrh against Liver Oxidative Damage and Genotoxicity Induced by Lead Acetate in Mice. *Basic & Clinical Pharmacology & Toxicology*. 2006;98(1):32-7.

34 Davidovich RL, Stavila V, Whitmire KH. Stereochemistry of lead(II) complexes containing sulfur and selenium donor atom ligands. *Coordination Chemistry Reviews*. 2010;254(17–18):2193-226.

35 Reger DL, Wright TD, Smith MD, Rheingold AL, Kassel S, Concolino T, et al. Syntheses and structures of mono-thiocyanate complexes of cadmium(II) and lead(II) containing bulky nitrogen based polydentate ligands. *Polyhedron*. 2002;21(18):1795-807.

36 Wan Z, Xu Z, Wang J. Flow injection on-line solid phase extraction for ultra-trace lead screening with hydride generation atomic fluorescence spectrometry. *Analyst*. 2006;131(1):141-7.

37 Fox DA, Rubinstein SD. Age-related changes in retinal sensitivity, rhodopsin content and rod outer segment length in hooded rats following low-level lead exposure during development. *Experimental Eye Research*. 1989;48(2):237-49.

38 He L, Poblenz AT, Medrano CJ, Fox DA. Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. *The Journal of biological chemistry*. 2000;275(16):12175-84. PubMed PMID: 10766853.

39 Columbano A, Ledda-Columbano GM, Coni PP, Faa G, Liguori C, Santa Cruz G, et al. Occurrence of cell death (apoptosis) during the involution of liver

hyperplasia. *Laboratory investigation; a journal of technical methods and pathology.* 1985;52(6):670-5. PubMed PMID: 4010225.

40 Shabani A, Rabbani A. Lead nitrate induced apoptosis in alveolar macrophages from rat lung. *Toxicology.* 2000;149(2-3):109-14.

41 Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. *Chemico-Biological Interactions.* 2006;160(1):1-40.

42 Sun X, Tian X, Tomsig JL, Suszkiw JB. Analysis of Differential Effects of Pb²⁺on Protein Kinase C Isozymes. *Toxicology and Applied Pharmacology.* 1999;156(1):40-5.

43 Rao GM, Shetty BV, Sudha K. Effect of lead on oxidant: Antioxidant balance in painters. *Clinica Chimica Acta.* 2006;367(1-2):209-10.

44 Bondy SC, Guo SX. Lead potentiates iron-induced formation of reactive oxygen species. *Toxicology Letters.* 1996;87(2-3):109-12.

45 Gargioni R, Filipak Neto F, Buchi DF, Randi MAF, Franco CRC, Paludo KS, et al. Cell death and DNA damage in peritoneal macrophages of mice (*Mus musculus*) exposed to inorganic lead. *Cell Biology International.* 2006;30(7):615-23.

46 Aleo MF, Bettoni F, Boniotti J, Morandini F, Giuliani R, Steinberg N, et al. A comparative in vitro study of the toxic potency of five inorganic lead compounds on a rat liver epithelial cell line (REL). *Toxicology in Vitro.* 2006;20(6):874-81.

47 Gurer H, Ercal N. Can antioxidants be beneficial in the treatment of lead poisoning? *Free Radical Biology and Medicine.* 2000;29(10):927-45.

48 Rodríguez-Estival J, Martínez-Haro M, Monsalve-González L, Mateo R. Interactions between endogenous and dietary antioxidants against Pb-induced oxidative stress in wild ungulates from a Pb polluted mining area. *Science of The Total Environment.* 2011;409(14):2725-33.

49 Majchrzak D, Mitter S, Elmadafa I. The effect of ascorbic acid on total antioxidant activity of black and green teas. *Food Chemistry.* 2004;88(3):447-51.

50 Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. *Free Radical Biology and Medicine.* 2007;43(1):4-15.

51 Faller ALK, Fialho E. Polyphenol content and antioxidant capacity in organic and conventional plant foods. *Journal of Food Composition and Analysis*. 2010;23(6):561-8.

52 Spitz DR, Oberley LW. An assay for superoxide dismutase activity in mammalian tissue homogenates. *Analytical biochemistry*. 1989 May;179(1):8-18. PubMed PMID: 2547324.

53 Krinsky NI. Mechanism of action of biological antioxidants. *Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine*. 1992;200(2):248-54. PubMed PMID: 1579590.

54 Schisler NJ, Singh SM. Modulation of selenium-dependent glutathione peroxidase (Se-GSH-Px) activity in mice. *Free Radical Biology and Medicine*. 1988;4(3):147-53.

55 Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. *Biochimica et Biophysica Acta (BBA) - General Subjects*. 2013;1830(5):3289-303.

56 Snoeijns T, Dauwe T, Pinxten R, Darras VM, Arckens L, Eens M. The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch (*Taeniopygia guttata*). *Environmental Pollution*. 2005;134(1):123-32.

57 Darling CTR, Thomas VG. Lead bioaccumulation in earthworms, *Lumbricus terrestris*, from exposure to lead compounds of differing solubility. *Science of The Total Environment*. 2005;346(1-3):70-80.

58 Nelson YM, Lo W, Lion LW, Shuler ML, Ghiorse WC. Lead distribution in a simulated aquatic environment: Effects of bacterial biofilms and iron oxide. *Water Research*. 1995;29(8):1934-44.

59 Newman MC, McIntosh AW. The influence of lead in components of a freshwater ecosystem on molluscan tissue lead concentrations. *Aquatic Toxicology*. 1982;2(1):1-19.

60 Debelius B, Forja JM, DelValls Á, Lubián LM. Toxicity and bioaccumulation of copper and lead in five marine microalgae. *Ecotoxicology and Environmental Safety*. 2009;72(5):1503-13.

61 Adeyemi O, Ajayi JO, Olajuyin AM, Oloyede OB, Oladiji AT, Oluba OM, et al. Toxicological evaluation of the effect of water contaminated with lead,

phenol and benzene on liver, kidney and colon of Albino rats. *Food and Chemical Toxicology*. 2009;47(4):885-7.

62 Rogers JT, Richards JG, Wood CM. Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (*Oncorhynchus mykiss*). *Aquatic Toxicology*. 2003;64(2):215-34.

63 Katti SR, Sathyanesan AC. Lead nitrate induced changes in lipid and cholesterol levels in the freshwater fish *Clarias batrachus*. *Toxicology Letters*. 1983;19(1-2):93-6.

64 Kljaković Gašpić Z, Zvonarić T, Vrgoč N, Odžak N, Barić A. Cadmium and lead in selected tissues of two commercially important fish species from the Adriatic Sea. *Water Research*. 2002;36(20):5023-8.

65 Schmitt CJ, Brumbaugh WG, May TW. Accumulation of metals in fish from lead-zinc mining areas of southeastern Missouri, USA. *Ecotoxicology and Environmental Safety*. 2007;67(1):14-30.

66 Wood CM. 1 - An introduction to metals in fish physiology and toxicology: basic principles. In: Chris M. Wood APF, Colin JB, editors. *Fish Physiology*. Volume 31, Part A: Academic Press; 2011. p. 1-51.

67 Chen J, Chen Y, Liu W, Bai C, Liu X, Liu K, et al. Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish. *Neurotoxicology and Teratology*. 2012;34(6):581-6.

68 Malte H, Weber RE. Gas exchange in fish gills with parallel inhomogeneities. *Respiration Physiology*. 1989;76(1):129-37.

69 Tao S, Li H, Liu C, Lam KC. Fish Uptake of Inorganic and Mucus Complexes of Lead. *Ecotoxicology and Environmental Safety*. 2000;46(2):174-80.

70 Macdonald A, Silk L, Schwartz M, Playle RC. A lead-gill binding model to predict acute lead toxicity to rainbow trout (*Oncorhynchus mykiss*). *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*. 2002;133(1-2):227-42.

71 Evans DH. Osmotic, ionic and nitrogenous-waste balance mechanisms of gill salt secretion in saline teleosts. In: Editor-in-Chief: Anthony PF, editor. *Encyclopedia of Fish Physiology*. San Diego: Academic Press; 2011. p. 1354-8.

72 Nilsson GE, Dymowska A, Stecyk JAW. New insights into the plasticity of gill structure. *Respiratory Physiology & Neurobiology*. 2012;184(3):214-22.

73 Onken H, Riestenpatt S. NaCl absorption across split gill lamellae of hyperregulating crabs: Transport mechanisms and their regulation. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*. 1998;119(4):883-93.

74 Nilsson GE. Ventilation and animal respiration plasticity in gill morphology. In: Editor-in-Chief: Anthony PF, editor. *Encyclopedia of Fish Physiology*. San Diego: Academic Press; 2011. p. 796-802.

75 Olson KR. Vascular anatomy of the fish gill. *Journal of Experimental Zoology*. 2002;293(3):214-31.

76 Ahokas RA, Duerr FG. Salinity tolerance and extracellular osmoregulation in two species of euryhaline teleosts, *culaea inconstans* and *fundulus diaphanus*. *Comparative Biochemistry and Physiology Part A: Physiology*. 1975;52(3):445-8.

77 Goss GG, Perry SF, Fryer JN, Laurent P. Gill Morphology and Acid-Base Regulation in Freshwater Fishes. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*. 1998;119(1):107-15.

78 Hirose S, Kaneko T, Naito N, Takei Y. Molecular biology of major components of chloride cells. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*. 2003;136(4):593-620.

79 Kumai Y, Perry SF. Mechanisms and regulation of Na^+ uptake by freshwater fish. *Respiratory Physiology & Neurobiology*. 2012;184(3):249-56. PubMed PMID: WOS:000312428600006.

80 Roast SD, Rainbow PS, Smith BD, Nimmo M, Jones MB. Trace metal uptake by the Chinese mitten crab *Eriocheir sinensis*: the role of osmoregulation. *Marine Environmental Research*. 2002;53(5):453-64.

81 Brooks SJ, Lloyd Mills C. The effect of copper on osmoregulation in the freshwater amphipod *Gammarus pulex*. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*. 2003;135(4):527-37.

82 Saglam D, Atli G, Canli M. Investigations on the osmoregulation of freshwater fish (*Oreochromis niloticus*) following exposures to metals (Cd, Cu) in differing hardness. *Ecotoxicology and Environmental Safety*. 2013;92(0):79-86.

83 Torreblanca A, Diaz-Mayans J, Ramo JD, Núñez A. Oxygen uptake and gill morphological alterations in *Procambarus clarkii* (Girard) after sublethal exposure to lead. *Comparative Biochemistry and Physiology Part C: Comparative Pharmacology*. 1987;86(1):219-24.

84 Amado EM, Freire CA, Grassi MT, Souza MM. Lead hampers gill cell volume regulation in marine crabs: Stronger effect in a weak osmoregulator than in an osmoconformer. *Aquatic Toxicology*. 2012;106-107(0):95-103.

85 Poteat MD, Diaz-Jaramillo M, Buchwalter DB. Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect *Hydropsyche sparna*. *Journal of Experimental Biology*. 2012;215(9):1575-83. PubMed PMID: WOS:000302786300027.

86 Pratap HB, Wendelaar Bonga SE. Effect of ambient and dietary cadmium on pavement cells, chloride cells, and Na⁺/K⁺-ATPase activity in the gills of the freshwater teleost *Oreochromis mossambicus* at normal and high calcium levels in the ambient water. *Aquatic Toxicology*. 1993;26(1-2):133-49.

87 Slooff W, Van Kreijl CF, Baars AJ. Relative liver weights and xenobiotic-metabolizing enzymes of fish from polluted surface waters in the Netherlands. *Aquatic Toxicology*. 1983;4(1):1-14.

88 Treberg JR, Lewis JM, Driedzic WR. Comparison of liver enzymes in osmerid fishes: key differences between a glycerol accumulating species, rainbow smelt (*Osmerus mordax*), and a species that does not accumulate glycerol, capelin (*Mallotus villosus*). *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*. 2002;132(2):433-8.

89 Witas H, Gabryelak T, Matkovics B. Comparative studies on superoxide dismutase and catalase activities in livers of fish and other antarctic vertebrates. *Comparative Biochemistry and Physiology Part C: Comparative Pharmacology*. 1984;77(2):409-11.

90 Braunbeck T, Storch V, Nagel R. Sex-specific reaction of liver ultrastructure in zebra fish (*Brachydanio rerio*) after prolonged sublethal exposure to 4-nitrophenol. *Aquatic Toxicology*. 1989;14(3):185-202.

91 Ingram P. Uridine diphosphate glucose-glycogen glucosyl transferase from trout liver. *International Journal of Biochemistry*. 1970;1(3):263-73.

92 Dasmahapatra AK, Medda AK. Effect of estradiol dipropionate and testosterone propionate on the glycogen, lipid, and water contents of liver, muscle, and gonad of male and female (vitellogenic and nonvitellogenic) Singi fish (*Heteropneustes fossilis* bloch). *General and Comparative Endocrinology*. 1982;48(4):476-84.

93 Begum G. Carbofuran insecticide induced biochemical alterations in liver and muscle tissues of the fish *Clarias batrachus* (linn) and recovery response. *Aquatic Toxicology*. 2004;66(1):83-92.

94 Fernandes MdO, Volpato GL. Heterogeneous growth in the Nile tilapia: Social stress and carbohydrate metabolism. *Physiology & Behavior*. 1993;54(2):319-23.

95 Ansaldo M, Nahabedian DE, Holmes-Brown E, Agote M, Ansay CV, Guerrero NRV, et al. Potential use of glycogen level as biomarker of chemical stress in *Biomphalaria glabrata*. *Toxicology*. 2006;224(1-2):119-27.

96 Dafre AL, Medeiros ID, Müller IC, Ventura EC, Bainy ACD. Antioxidant enzymes and thiol/disulfide status in the digestive gland of the brown mussel *Perna perna* exposed to lead and paraquat. *Chemico-Biological Interactions*. 2004;149(2-3):97-105.

97 Martínez Tabche L, Arias DG, Sánchez Hidalgo E, Galar CI. Toxic effects of Paraquat and lead on fish liver (*Oreochromis hornorum*). *European Journal of Pharmacology*. 1990;183(4):1534-5.

98 Schmitt CJ, Whyte JJ, Roberts AP, Annis ML, May TW, Tillitt DE. Biomarkers of metals exposure in fish from lead-zinc mining areas of Southeastern Missouri, USA. *Ecotoxicology and Environmental Safety*. 2007;67(1):31-47.

99 Lombardi PE, Peri SI, Verrengia Guerrero NR. ALA-D and ALA-D reactivated as biomarkers of lead contamination in the fish *Prochilodus lineatus*. *Ecotoxicology and Environmental Safety*. 2010;73(7):1704-11.

100 Henczová M, Deér AK, Filla A, Komlósi V, Mink J. Effects of Cu²⁺ and Pb²⁺ on different fish species: Liver cytochrome P450-dependent monooxygenase activities and FTIR spectra. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*. 2008;148(1):53-60.

101 Gutiérrez-Praena D, Pichardo S, Jos Á, María Cameán A. Toxicity and glutathione implication in the effects observed by exposure of the liver fish cell line PLHC-1 to pure cylindrospermopsin. *Ecotoxicology and Environmental Safety*. 2011;74(6):1567-72.

102 Elangovan A, Shim KF. The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (*Barbodes altus*). *Aquaculture*. 2000;189(1-2):133-44.

103 Dierberg FE, Kiattisimkul W. Issues, Impacts, and Implications of Shrimp Aquaculture in Thailand. *Environmental management*. 1996;20(5):649-66. PubMed PMID: 8703103.

104 Elangovan A, Shim KF. Growth response of juvenile *Barbodes altus* fed isocaloric diets with variable protein levels. *Aquaculture*. 1997;158(3-4):321-9.

105 Beaudin SA, Stangle DE, Smith DR, Levitsky DA, Strupp BJ. Succimer chelation normalizes reactivity to reward omission and errors in lead-exposed rats. *Neurotoxicology and Teratology*. 2007;29(2):188-202.

106 Chen K-H, Lin J-L, Lin-Tan D-T, Hsu H-H, Hsu C-W, Hsu K-H, et al. Effect of Chelation Therapy on Progressive Diabetic Nephropathy in Patients With Type 2 Diabetes and High-Normal Body Lead Burdens. *American Journal of Kidney Diseases*. 2012;60(4):530-8.

107 Stewart PW, Blaine C, Cohen M, Burright RG, Donovick PJ. Acute and longer term effects of meso-2,3 dimercaptosuccinic acid (DMSA) on the behavior of lead-exposed and control mice. *Physiology & Behavior*. 1996;59(4-5):849-55.

108 Flora SJS, Saxena G, Gautam P, Kaur P, Gill KD. Response of lead-induced oxidative stress and alterations in biogenic amines in different rat brain regions to combined administration of DMSA and MiADMSA. *Chemico-Biological Interactions*. 2007;170(3):209-20.

109 Huang H, Li T, Tian S, Gupta DK, Zhang X, Yang X-e. Role of EDTA in alleviating lead toxicity in accumulator species of *Sedum alfredii* H. *Bioresource Technology*. 2008;99(14):6088-96.

110 Batuman V, Landy E, Maesaka JK, Wedeen RP. Contribution of Lead to Hypertension with Renal Impairment. *New England Journal of Medicine*. 1983;309(1):17-21. PubMed PMID: 6406892.

111 Luchese C, Zeni G, Rocha JBT, Nogueira CW, Santos FW. Cadmium inhibits δ -aminolevulinate dehydratase from rat lung in vitro: Interaction with chelating and antioxidant agents. *Chemico-Biological Interactions*. 2007;165(2):127-37.

112 Mehta A, Flora SJS. Possible role of metal redistribution, hepatotoxicity and oxidative stress in chelating agents induced hepatic and renal metallothionein in rats. *Food and Chemical Toxicology*. 2001;39(10):1029-38.

113 Flora SJS, Dubey R, Kannan GM, Chauhan RS, Pant BP, Jaiswal DK. Meso 2,3-dimercaptosuccinic acid (DMSA) and monoisoamyl DMSA effect on gallium arsenide induced pathological liver injury in rats. *Toxicology Letters*. 2002;132(1):9-17.

114 Raafat BM, El-Barbary A, Touson E, Aziz S. Di-Mercapto Succinic Acid (DMSA) and vitamin C chelating potency in lead intoxication, regarding oxidative stress and apoptotic related proteins in rabbits. *Journal of Genetic Engineering and Biotechnology*. 2011;9(2):121-31.

115 Hsu P-C, Guo YL. Antioxidant nutrients and lead toxicity. *Toxicology*. 2002;180(1):33-44.

116 Flora SJS, Pande M, Mehta A. Beneficial effect of combined administration of some naturally occurring antioxidants (vitamins) and thiol chelators in the treatment of chronic lead intoxication. *Chemico-Biological Interactions*. 2003;145(3):267-80.

117 Patra RC, Swarup D, Dwivedi SK. Antioxidant effects of α tocopherol, ascorbic acid and l-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. *Toxicology*. 2001;162(2):81-8.

118 Dalley JW, Gupta PK, Hung CT. A physiological pharmacokinetic model describing the disposition of lead in the absence and presence of L-ascorbic acid in rats. *Toxicol Lett*. 1990;50(2-3):337-48.

119 Becker JC, Grosser N, Boknik P, Schröder H, Domschke W, Pohle T. Gastroprotection by vitamin C—a heme oxygenase-1-dependent mechanism? *Biochemical and Biophysical Research Communications*. 2003;312(2):507-12.

120 Fahim MA, Tariq S, Adeghate E. Vitamin E modifies the ultrastructure of testis and epididymis in mice exposed to lead intoxication. *Annals of Anatomy-Anatomischer Anzeiger*. 2013;195(3):272-7.

121 Batra N, Nehru B, Bansal MP. The effect of zinc supplementation on the effects of lead on the rat testis. *Reproductive Toxicology*. 1998;12(5):535-40.

122 Roney N, Colman J. Interaction profile for lead, manganese, zinc, and copper. *Environmental Toxicology and Pharmacology*. 2004;18(3):231-4.

123 Fujihara J, Agusa T, Yasuda T, Soejima M, Kato H, Panduro A, et al. Ethnic variation in genotype frequencies of δ -aminolevulinic acid dehydratase (ALAD). *Toxicology Letters*. 2009;191(2-3):236-9.

124 Dolezych B, Szulinska E. Selenium modifies glutathione peroxidase activity and glutathione concentration in mice exposed to ozone-provoked oxidative stress. *Journal of Trace Elements in Medicine and Biology*. 2003;17(2):133-7.

125 Othman AI, El Missiry MA. Role of selenium against lead toxicity in male rats. *Journal of Biochemical and Molecular Toxicology*. 1998;12(6):345-9.

126 Chuang H-Y, Kuo C-H, Chiu Y-W, Ho C-K, Chen C-J, Wu T-N. A case-control study on the relationship of hearing function and blood concentrations of lead, manganese, arsenic, and selenium. *Science of The Total Environment*. 2007;387(1-3):79-85.

127 Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. *Food Chemistry*. 2006;94(4):550-7.

128 Wojdyło A, Oszmiański J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. *Food Chemistry*. 2007;105(3):940-9.

129 Shetty K. Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: a review. *Process Biochemistry*. 2004;39(7):789-804.

130 Bektic J, Guggenberger R, Spengler B, Christoffel V, Pelzer A, Berger AP, et al. The flavonoid apigenin inhibits the proliferation of prostatic stromal cells via the MAPK-pathway and cell-cycle arrest in G1/S. *Maturitas*. 2006;55, Supplement 1(0):S37-S46.

131 Balasubramanian S, Eckert RL. Keratinocyte proliferation, differentiation, and apoptosis—Differential mechanisms of regulation by curcumin, EGCG and apigenin. *Toxicology and Applied Pharmacology*. 2007;224(3):214-9.

132 Bektaşoğlu B, Esin Çelik S, Özyürek M, Güçlü K, Apak R. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. *Biochemical and Biophysical Research Communications*. 2006;345(3):1194-200.

133 Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, et al. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. *Journal of Agricultural and Food Chemistry*. 1999;47(10):3954-62.

134 Irtelli B, Navari-Izzo F. Influence of sodium nitrilotriacetate (NTA) and citric acid on phenolic and organic acids in *Brassica juncea* grown in excess of cadmium. *Chemosphere*. 2006;65(8):1348-54.

135 Gursoy N, Sarikurkcu C, Cengiz M, Solak MH. Antioxidant activities, metal contents, total phenolics and flavonoids of seven *Morchella* species. *Food and Chemical Toxicology*. 2009;47(9):2381-8.

136 Kováčik J, Klejdus B, Hedbavny J, Zoń J. Significance of phenols in cadmium and nickel uptake. *Journal of Plant Physiology*. 2011;168(6):576-84.

137 Rajanandh MG, Satishkumar MN, Elango K, Suresh B. *Moringa oleifera* Lam. A herbal medicine for hyperlipidemia: A pre-clinical report. *Asian Pacific Journal of Tropical Disease*. 2012;2, Supplement 2(0):S790-S5.

138 Anwar F, Ashraf M, Bhanger M. Interprovenance variation in the composition of *Moringa oleifera* oilseeds from Pakistan. *J Amer Oil Chem Soc*. 2005;82(1):45-51.

139 Soliva CR, Kreuzer M, Foidl N, Foidl G, Machmüller A, Hess HD. Feeding value of whole and extracted *Moringa oleifera* leaves for ruminants and their effects on ruminal fermentation in vitro. *Animal Feed Science and Technology*. 2005;118(1-2):47-62.

140 Ghasi S, Nwobodo E, Ofili JO. Hypocholesterolemic effects of crude extract of leaf of *Moringa oleifera* Lam in high-fat diet fed wistar rats. *Journal of Ethnopharmacology*. 2000;69(1):21-5.

141 Panda S, Kar A, Sharma P, Sharma A. Cardioprotective potential of N, α -1-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of *Moringa oleifera* in isoproterenol induced cardiotoxic rats: In vivo and in vitro studies. *Bioorganic & Medicinal Chemistry Letters*. 2013;23(4):959-62.

142 Prabhu K, Murugan K, Nareshkumar A, Ramasubramanian N, Bragadeeswaran S. Larvicidal and repellent potential of *Moringa oleifera* against malarial vector, *Anopheles stephensi* Liston (Insecta: Diptera: Culicidae). *Asian Pacific Journal of Tropical Biomedicine*. 2011;1(2):124-9.

143 Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-ngam L, et al. The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of *Moringa oleifera* Lam. leaves. *Journal of Ethnopharmacology*. 2008;116(3):439-46.

144 Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. *Phytochemistry*. 2001;56(1):5-51.

145 Cheenpracha S, Park E-J, Yoshida WY, Barit C, Wall M, Pezzuto JM, et al. Potential anti-inflammatory phenolic glycosides from the medicinal plant

Moringa oleifera fruits. Bioorganic & Medicinal Chemistry. 2010;18(17):6598-602.

146 Shanker K, Gupta MM, Srivastava SK, Bawankule DU, Pal A, Khanuja SPS. Determination of bioactive nitrile glycoside(s) in drumstick (*Moringa oleifera*) by reverse phase HPLC. Food Chemistry. 2007;105(1):376-82.

147 Costa-Lotufo LV, Khan MTH, Ather A, Wilke DV, Jimenez PC, Pessoa C, et al. Studies of the anticancer potential of plants used in Bangladeshi folk medicine. Journal of Ethnopharmacology. 2005;99(1):21-30.

148 Wang H, Griffiths S, Williamson G. Effect of glucosinolate breakdown products on β -naphthoflavoneinduced expression of human cytochrome P450 1A1 via the Ah receptor in Hep G2 cells. Cancer Letters. 1997;114(1-2):121-5.

149 Schramm K, Vassão DG, Reichelt M, Gershenzon J, Wittstock U. Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochemistry and Molecular Biology. 2012;42(3):174-82.

150 La Marca M, Beffy P, Della Croce C, Gervasi PG, Iori R, Puccinelli E, et al. Structural influence of isothiocyanates on expression of cytochrome P450, phase II enzymes, and activation of Nrf2 in primary rat hepatocytes. Food and Chemical Toxicology. 2012;50(8):2822-30.

151 APHA. Standard methods for examination of water and wastewater 21st ed. ed. District of Columbia.: Washington; 2005.

152 Dongmeza E, Siddhuraju P, Francis G, Becker K. Effects of dehydrated methanol extracts of moringa (*Moringa oleifera* Lam.) leaves and three of its fractions on growth performance and feed nutrient assimilation in Nile tilapia (*Oreochromis niloticus* (L.)). Aquaculture. 2006;261(1):407-22.

153 Jiraungkoorskul W, Sahaphong S, Kangwanrangsar N. Toxicity of copper in butterfish (*Poronotus triacanthus*): Tissues accumulation and ultrastructural changes. Environmental Toxicology. 2007;22(1):92-100.

154 Zijlstra WG, Buursma A. Spectrophotometry of Hemoglobin: Absorption Spectra of Bovine Oxyhemoglobin, Deoxyhemoglobin, Carboxyhemoglobin, and Methemoglobin. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 1997;118(4):743-9.

155 Washington IM, Van Hoosier G. Chapter 3 - Clinical Biochemistry and Hematology. In: Mark AS, Karla AS, Ronald P. WilsonA2 - Mark A. Suckow KAS, Ronald PW, editors. *The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents*. Boston: Academic Press; 2012. p. 57-116.

156 Bergmeyer HU, Horder M, Rej R. International Federation of Clinical Chemistry (IFCC) Scientific Committee, Analytical Section: approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 3. IFCC method for alanine aminotransferase (L-alanine: 2-oxoglutarate aminotransferase, EC 2.6.1.2). *Journal of clinical chemistry and clinical biochemistry Zeitschrift fur klinische Chemie und klinische Biochemie*. 1986;24(7):481-95. PubMed PMID: 3734711.

157 Aebi H. Catalase in vitro. *Methods in enzymology*. 1984;105:121-6. PubMed PMID: 6727660.

158 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical biochemistry*. 1976;72:248-54. PubMed PMID: 942051.

159 Akerboom TP, Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. *Methods in enzymology*. 1981;77:373-82. PubMed PMID: 7329314.

160 Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney: Possible implications in analgesic nephropathy. *Biochemical Pharmacology*. 1984;33(11):1801-7.

161 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. *Analytical biochemistry*. 1979;95(2):351-8. PubMed PMID: 36810.

162 Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Lester P, editor. *Methods in enzymology*. Volume 299: Academic Press; 1999. p. 152-78.

163 Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. *Journal of agricultural and food chemistry*. 1995;43(1):27-32.

164 Apáti P, Szentmihályi K, Kristó ST, Papp I, Vinkler P, Szoke É, et al. Herbal remedies of *Solidago*—correlation of phytochemical characteristics and antioxidative properties. *Journal of Pharmaceutical and Biomedical Analysis*. 2003;32(4–5):1045-53.

165 Pari L, Kumar NA. Hepatoprotective activity of *Moringa oleifera* on antitubercular drug-induced liver damage in rats. *Journal of medicinal food*. 2002 Fall;5(3):171-7. PubMed PMID: 12495589.

166 Fakurazi S, Hairuszah I, Nanthini U. *Moringa oleifera* Lam prevents acetaminophen induced liver injury through restoration of glutathione level. *Food and Chemical Toxicology*. 2008;46(8):2611-5.

167 Iqbal S, Bhanger MI. Effect of season and production location on antioxidant activity of *Moringa oleifera* leaves grown in Pakistan. *Journal of Food Composition and Analysis*. 2006;19(6–7):544-51.

168 Peng S, Chen L, Qin JG, Hou J, Yu N, Long Z, et al. Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black seabream, *Acanthopagrus schlegeli*. *Aquaculture*. 2008;276(1–4):154-61.

169 Yan L, Meng QW, Kim IH. Effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weanling pigs. *Livestock Science*. 2012;145(1–3):189-95.

170 Ruyter B, Moya-Falcón C, Rosenlund G, Vegusdal A. Fat content and morphology of liver and intestine of Atlantic salmon (*Salmo salar*): Effects of temperature and dietary soybean oil. *Aquaculture*. 2006;252(2–4):441-52.

171 McCord JM. The evolution of free radicals and oxidative stress. *The American Journal of Medicine*. 2000;108(8):652-9.

172 Castro L, Freeman BA. Reactive oxygen species in human health and disease. *Nutrition*. 2001;17(2):161-5.

173 Varanasi U, Markey D. Uptake and release of lead and cadmium in skin and mucus of coho salmon (*Oncorhynchus kisutch*). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. 1978;60(2):187-91.

174 Rombout JHWM, Taverne N, van de Kamp M, Taverne-Thiele AJ. Differences in mucus and serum immunoglobulin of carp (*Cyprinus carpio* L.). Developmental & Comparative Immunology. 1993;17(4):309-17.

175 Suzuki Y, Tasumi S, Tsutsui S, Okamoto M, Suetake H. Molecular diversity of skin mucus lectins in fish. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2003;136(4):723-30.

176 Ojo AA, Wood CM. In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of the rainbow trout (*Oncorhynchus mykiss*). Aquatic Toxicology. 2007;83(1):10-23.

177 Uthayakumar V, Ramasubramanian V, Senthilkumar D, Priyadarisini VB, Harikrishnan R. Biochemical characterization, antimicrobial and hemolytic studies on skin mucus of fresh water spiny eel *Mastacembelus armatus*. Asian Pacific Journal of Tropical Biomedicine. 2012;2(2, Supplement):S863-S9.

178 Abdel-Tawwab M, Mousa MAA, Ahmad MH, Sakr SFM. The use of calcium pre-exposure as a protective agent against environmental copper toxicity for juvenile Nile tilapia, *Oreochromis niloticus* (L.). Aquaculture. 2007;264(1-4):236-46.

179 Ademuyiwa O, Agarwal R, Chandra R, Behari JR. Lead-induced phospholipidosis and cholesterologenesis in rat tissues. Chemico-Biological Interactions. 2009;179(2-3):314-20.

180 Vieira VARO, Correia TG, Moreira RG. Effects of aluminum on the energetic substrates in neotropical freshwater *Astyanax bimaculatus* (Teleostei: Characidae) females. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2013;157(1):1-8.

181 Barcellos LJG, Marqueze A, Trapp M, Quevedo RM, Ferreira D. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá *Rhamdia quelen*. Aquaculture. 2010;300(1-4):231-6.

182 Cengiz EI. Gill and kidney histopathology in the freshwater fish *Cyprinus carpio* after acute exposure to deltamethrin. *Environmental Toxicology and Pharmacology*. 2006;22(2):200-4.

183 Benli AÇK, Köksal G, Özkul A. Sublethal ammonia exposure of Nile tilapia (*Oreochromis niloticus* L.): Effects on gill, liver and kidney histology. *Chemosphere*. 2008;72(9):1355-8.

184 Berntssen MHG, Aspholm OØ, Hylland K, Wendelaar Bonga SE, Lundebye A-K. Tissue metallothionein, apoptosis and cell proliferation responses in Atlantic salmon (*Salmo salar* L.) parr fed elevated dietary cadmium. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*. 2001;128(3):299-310.

185 Mauceri A, Fossi MC, Leonzio C, Ancora S, Minniti F, Maisano M, et al. Stress factors in the gills of *Liza aurata* (Perciformes, Mugilidae) living in polluted environments. *Italian Journal of Zoology*. 2005;72(4):285-92.

186 Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. *Chemico-Biological Interactions*. 2012;195(2):154-64.

187 García-Mediavilla V, Crespo I, Collado PS, Esteller A, Sánchez-Campos S, Tuñón MJ, et al. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. *European Journal of Pharmacology*. 2007;557(2-3):221-9.

188 Huang J, Wang S, Zhu M, Chen J, Zhu X. Effects of Genistein, Apigenin, Quercetin, Rutin and Astilbin on serum uric acid levels and xanthine oxidase activities in normal and hyperuricemic mice. *Food and Chemical Toxicology*. 2011;49(9):1943-7.

189 Galleano M, Verstraeten SV, Oteiza PI, Fraga CG. Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis. *Archives of Biochemistry and Biophysics*. 2010;501(1):23-30.

190 Nho CW, Jeffery E. The Synergistic Upregulation of Phase II Detoxification Enzymes by Glucosinolate Breakdown Products in Cruciferous Vegetables. *Toxicology and Applied Pharmacology*. 2001;174(2):146-52.

191 Nho CW, Jeffery E. Crambene, a bioactive nitrile derived from glucosinolate hydrolysis, acts via the antioxidant response element to upregulate quinone reductase alone or synergistically with indole-3-carbinol. *Toxicology and Applied Pharmacology*. 2004;198(1):40-8.

192 Sivaprasad R, Nagaraj M, Varalakshmi P. Combined efficacies of lipoic acid and 2,3-dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver. *The Journal of Nutritional Biochemistry*. 2004;15(1):18-23.

193 Feldlite M, Juanicó M, Karplus I, Milstein A. Towards a safe standard for heavy metals in reclaimed water used for fish aquaculture. *Aquaculture*. 2008;284(1-4):115-26.

194 Heerden Dv, Vosloo A, Nikinmaa M. Effects of short-term copper exposure on gill structure, metallothionein and hypoxia-inducible factor-1 α (HIF-1 α) levels in rainbow trout (*Oncorhynchus mykiss*). *Aquatic Toxicology*. 2004;69(3):271-80.

195 Palaniappan PR, Sabhanayakam S, Krishnakumar N, Vadivelu M. Morphological changes due to Lead exposure and the influence of DMSA on the gill tissues of the freshwater fish, Catla catla. *Food and Chemical Toxicology*. 2008;46(7):2440-4.

196 Liu XJ, Luo Z, Xiong BX, Liu X, Zhao YH, Hu GF, et al. Effect of waterborne copper exposure on growth, hepatic enzymatic activities and histology in *Synechogobius hasta*. *Ecotoxicology and Environmental Safety*. 2010;73(6):1286-91.

197 C G, DJ M, ME S. Waterborne zinc alters temporal dynamics of guppy *Poecilia reticulata* epidermal response to *Gyrodactylus turnbulli* (Monogenea). *Diseases of Aquatic Organisms*. 2012;98(2):143-53.

198 Ergurhan-Ilhan I, Cadir B, Koyuncu-Arslan M, Arslan C, Gultepe FM, Ozkan G. Level of oxidative stress and damage in erythrocytes in apprentices indirectly exposed to lead. *Pediatrics International*. 2008;50(1):45-50.

199 Kasperczyk A, Machnik G, Dobrakowski M, Sypniewski D, Birkner E, Kasperczyk S. Gene expression and activity of antioxidant enzymes in the blood cells of workers who were occupationally exposed to lead. *Toxicology*. 2012;301(1-3):79-84.

200 Massó EL, Corredor L, Antonio MT. Oxidative damage in liver after perinatal intoxication with lead and/or cadmium. *Journal of Trace Elements in Medicine and Biology*. 2007;21(3):210-6.

201 Ouédraogo M, Lamien-Sanou A, Ramdé N, Ouédraogo AS, Ouédraogo M, Zongo SP, et al. Protective effect of *Moringa oleifera* leaves against gentamicin-induced nephrotoxicity in rabbits. *Experimental and Toxicologic Pathology*. 2013;65(3):335-9.

202 Liu C-M, Ma J-Q, Sun Y-Z. Quercetin protects the rat kidney against oxidative stress-mediated DNA damage and apoptosis induced by lead. *Environmental Toxicology and Pharmacology*. 2010;30(3):264-71.

203 Lin M, Lu S-s, Wang A-x, Qi X-y, Zhao D, Wang Z-h, et al. Apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, c-Jun NH₂-terminal kinase and Akt signaling. *Journal of Dermatological Science*. 2011;63(1):10-6.

204 Liu C-M, Sun Y-Z, Sun J-M, Ma J-Q, Cheng C. Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-κB pathway. *Biochimica et Biophysica Acta (BBA) - General Subjects*. 2012;1820(10):1693-703.

205 Wells RMG, Baldwin J, Seymour RS, Christian K, Brittain T. Red blood cell function and haematology in two tropical freshwater fishes from Australia. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*. 2005;141(1):87-93.

206 Bussolaro D, Filipak Neto F, Gargioni R, Fernandes LC, Randi MAF, Pelletier E, et al. The immune response of peritoneal macrophages due to exposure to inorganic lead in the house mouse *Mus musculus*. *Toxicology in Vitro*. 2008;22(1):254-60.

207 Dietert RR, Lee J-E, Hussain I, Piepenbrink M. Developmental immunotoxicology of lead. *Toxicology and Applied Pharmacology*. 2004;198(2):86-94.

208 Lay PA, Baldwin J. What determines the size of teleost erythrocytes? Correlations with oxygen transport and nuclear volume. *Fish Physiology and Biochemistry*. 1999;20(1):31-5.

209 Romero D, Hernández-García A, Tagliati CA, Martínez-López E, García-Fernández AJ. Cadmium- and lead-induced apoptosis in mallard erythrocytes (*Anas platyrhynchos*). *Ecotoxicology and Environmental Safety*. 2009;72(1):37-44.

210 Becker K, Makkar HPS. Effects of dietary tannic acid and quebracho tannin on growth performance and metabolic rates of common carp (*Cyprinus carpio* L.). *Aquaculture*. 1999;175(3-4):327-35.

211 Ahmad MH, Abdel-Tawwab M. The use of caraway seed meal as a feed additive in fish diets: Growth performance, feed utilization, and whole-body composition of Nile tilapia, *Oreochromis niloticus* (L.) fingerlings. *Aquaculture*. 2011;314(1-4):110-4.

212 Au DWT. The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. *Marine Pollution Bulletin*. 2004;48(9-10):817-34.

213 Camargo MMP, Martinez CBR. Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. *Neotropical Ichthyology*. 2007;5:327-36.

214 Chedea VS, Choueiri L, Jisaka M, Kefalas P. o-Quinone involvement in the prooxidant tendency of a mixture of quercetin and caffeic acid. *Food Chemistry*. 2012;135(3):1999-2004.

215 Kanter M, Aktas C, Erboga M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. *Food and Chemical Toxicology*. 2012;50(3-4):719-25.

APPENDIX

Light microscope study

1. Reagent preparation

1.1 Preservative solution (10% buffered Formalin)

1. Formalin (40% Formaldehyde)	1000 ml
2. Distilled water	9000 ml
3. Di-sodium-hydrogen-phosphate, anhydrous	65 g
4. Sodium-di-hydrogen-phosphate, monohydrate	40 g

1.2 Haris's haematoxylin Stain

1. Aluminium alum	40 g
2. Distilled water	400 ml
3. Haematoxylin	2 g
4. Absolute alcohol	20 ml
5. Mercuric Oxide	1 g
6. Glacial Acetic Acid	5 ml

1.3 Eosin Stain

1. 1% Eosin in water	100 ml
2. 1% Phloxin-B in water	20 ml
3. 95% alcohol	780 ml
4. Glacial Acetic Acid	4 ml

2. Schedule for histological process

No	Method	Duration	
1	Dissection		Removal and fixing tissues in 10% buffered formaldehyde 24 hours.
2	10% buffered formaldehyde	24 hours	
3	70% alcohol	24 hours	Washing out the fixative
4	80% alcohol	40 minutes	Dehydration
5	95% alcohol	40 minutes	
6	95% alcohol	40 minutes	
7	Absolute alcohol	40 minutes	
8	Absolute alcohol	40 minutes	
9	Xylene	1 hour	
10	Xylene	1 hour	
11	Paraffin	40 minutes	
12	Paraffin	40 minutes	
13	Embedding		
14	Sectioning	24 hours	Sectioning, placing on glass slides, drying overnight
15	Staining		Staining, mounting, and examination

3. Schedule for staining sections (H & E)

No	Method	Duration
1	Xylene (I)	5 minutes
2	Xylene (II)	5 minutes
3	Xylene (III)	5 minutes
4	Absolute alcohol (I)	3 minutes
5	Absolute alcohol (II)	3 minutes
6	Absolute alcohol (III)	3 minutes
7	95% alcohol	3 minutes

8	80% alcohol	3 minutes
9	70% alcohol	3 minutes
10	Running water	5 minutes
11	Hematoxylin	6 minutes
12	Running water	6 minutes
13	Eosin	1 minutes
14	95% alcohol (I)	3 minutes
15	95% alcohol (II)	3 minutes
16	95% alcohol (III)	3 minutes
17	Absolute alcohol (I)	3 minutes
18	Absolute alcohol (II)	3 minutes
19	Absolute alcohol (III)	3 minutes
20	Xylene (I)	5 minutes
21	Xylene (II)	5 minutes
22	Xylene (III)	5 minutes
23	Mounting	
24	Examination	

4. Schedule for staining sections (PAS/AB)

No	Method	Duration
1	Xylene (I)	5 minutes
2	Xylene (II)	5 minutes
3	Xylene (III)	5 minutes
4	Absolute alcohol (I)	3 minutes
5	Absolute alcohol (II)	3 minutes
6	Absolute alcohol (III)	3 minutes
7	95% alcohol	3 minutes
8	80% alcohol	3 minutes
9	70% alcohol	3 minutes
10	Distilled water	5 minutes

11	Alcian blue	5 minutes
12	Running water	3 minutes
13	Schiff's reagent	15 minutes
14	Running water	5 minutes
15	Hematoxylin	1 minutes
16	Acid rinse	1 minutes
17	Running water	5 minutes
18	95% alcohol (I)	3 minutes
19	95% alcohol (II)	3 minutes
20	95% alcohol (III)	3 minutes
21	Absolute alcohol (I)	3 minutes
22	Absolute alcohol (II)	3 minutes
23	Absolute alcohol (III)	3 minutes
24	Xylene (I)	5 minutes
25	Xylene (II)	5 minutes
26	Xylene (III)	5 minutes
27	Mounting	
28	Examination	

BIOGRAPHY

NAME	Ms. Sunisa Sirimongkolvorakul
DATE OF BIRTH	21 February 1986
PLACE OF BIRTH	Surat thani, Thailand
INSTITUTIONS ATTENDED	Kasetsart University, 2005-2009 Bachelor of Science (Veterinary Technology) Mahidol University, 2009-2013 Doctor of Philosophy (Pathobiology)
FELLOWSHIP/ RESEARCH GRANT	In part by the Thailand Research Fund and the Commission on Higher Education: Research Grant for Mid-Career University Faculty
ADDRESS	4 Village No. 1, Bang pho Sub-district, Mueang District, Surat thani 84000, Thailand. E-mail: sirikul_sunii@hotmail.com
PUBLICATION/ PRESENTATION	1. Sirimongkolvorakul, S., et al., <i>Efficiency of Moringa oleifera dietary supplement reducing lead toxicity in Puntius altus</i> . Journal of Medicinal Plants Research, 2012. 6(2): p. 187-194. 2. Sirimongkolvorakul, S., et al., <i>Influence of Moringa oleifera on histopathological changes due to lead toxicity in red-tail tin foil barb, Puntius altus</i> . Fresenius Environmental Bullein (In Press).

3. Sirimongkolvorakul, S., et al., *Protective effect of Moringa oleifera supplement against lead-induced toxicity in fish*. (oral presentation). 2012 Malaysia-Thailand Graduate Forum in Life Science, Food Science and Agriculture. December 12-14, 2012. Bangkok, Thailand.
4. Sirimongkolvorakul, S., et al., *Protective effect of Moringa oleifera supplement against lead-induced toxicity in fish*. (SC STAR). MUSC Graduate Research Exposition 2012. October 29-30, 2012. Bangkok, Thailand.
5. Sirimongkolvorakul, S., et al., *Influence of Moringa oleifera on histopathological changes due to lead-toxicity in red-tail tinfoil barb, Puntius altus*. (oral presentation). The third International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2011) & SECOTOX Conference. June 19-24, 2011. Skiathos Island, Greece.