รหัสโครงการ : RDG4530019

ชื่อโครงการ: การศึกษาเบื้องต้นของปฏิกิริยาออกซิเดชันบางส่วนและปฏิกิริยาออโด้เทอร์มอล

ในการผลิตเชื้อเพลิงไฮโดรเจนจากเอธานอล

ชื่อนักวิจัย: สุภาภรณ์ เทอดเทียนวงษ์ อภิชัย เทอดเทียนวงษ์ ปานจันทร์ ศรีจรูญ ² วาควิชาวิศวกรรมเคมี ²โครงการทักษวิศวกรรมเคมี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

Email address: supaporn.the@kmutt.ac.th

ระยะเวลาโครงการ : พฤษภาคม พ.ศ. 2545 - เมษายน พ.ศ. 2547

ในการศึกษาการผลิตเชื้อเพลิงไฮโดรเจนจากสารละลายเอธานอลนี้ได้ศึกษาปฏิกิริยา 2 ชนิด คือ ปฏิกิริยาออกชิเดชันบางส่วนและปฏิกิริยาออโต้เทอร์มอล โดยในปฏิกิริยาออกชิเดชันบางส่วนได้ ทำการศึกษาอิทธิพลของอัตราส่วนของออกชิเจนต่อเอธานอล (O2:C2H5OH) ในช่วง 0.1-1.2 และ อิทธิพลของอุณหภูมิในช่วง 550 -700 °C บนตัวเร่งปฏิกิริยา 15%Ni/Al2O3 จากผลการทดลอง พบว่า ค่าผลได้ของก๊าชไฮโดรเจนมีค่าสูงสุดเมื่อค่า O2:C2H5OH มีค่าอยู่ในช่วง 0.3-0.5 ส่วน อิทธิพลของอุณหภูมิในช่วงที่ศึกษาพบว่า เมื่ออุณหภูมิมีค่าสูงขึ้นความเข้มขันของก๊าซไฮโดรเจนและ คาร์บอนมอนนอกไซด์มีค่าสูงขึ้น ในขณะที่ความเข้มขันของก๊าซคาร์บอนไดออกไซด์และมีเธนลดลง ซึ่งเมื่อพิจารณาผลร่วมกันกับค่าผลได้ของไฮโดรเจนพบว่าที่ 550°C เป็นอุณหภูมิที่เหมาะสมที่สุด

ส่วนในปฏิกิริยาออโด้เทอร์มอลได้ทำการศึกษาอิทธิพลของชนิดของโลหะไวของตัวเร่ง
ปฏิกิริยาและอัตราส่วนน้ำต่อออกซิเจน (H₂O:O₂) ชนิดของโลหะไวของตัวเร่งปฏิกิริยา 7 ชนิดที่
ศึกษาคือ Ni Co Cu Cr Pd Ru และ Pt บน Al₂O₃ ค่า H₂O:O₂ ที่ศึกษามีค่าในช่วง 0.5-30
จากผลการทดลองพบว่าชนิดของโลหะไวมีผลต่อการส่งเสริมปฏิกิริยาหลักที่แตกต่างกัน โดย Ni Pd
และ Pt ช่วยส่งเสริมปฏิกิริยาปฏิรูปด้วยไอน้ำซึ่งทำให้เพิ่มปริมาณก๊าซไฮโดรเจน และลำดับของโลหะ
ไวบนอลูมินาที่ให้ค่าผลได้ของไฮโดรเจนจากมากไปหาน้อยมีดังนี้ 15%Ni>0.75%Pt>1%Ru~
15%Co~1%Pd>15%Cu>Al₂O₃>15%Cr จากการเปรียบเทียบค่าผลได้ของไฮโดรเจน ค่าการเลือก
ของไฮโดรเจน โค้กบนตัวเร่งปฏิกิริยาและการวิเคราะห์ทางด้านราคาของตัวเร่งปฏิกิริยา พบว่า Ni
เหมาะสมที่สุดสำหรับปฏิกิริยาออโด้เทอร์มอลของเอธานอล สำหรับอิทธิพลของค่า H₂O:O₂ ใน
กระบวนการออโด้เทอร์มอลที่ใช้ตัวเร่งปฏิกิริยาเป็น 15%Ni/Al₂O₃ พบว่าที่อัตราส่วน 6-14 จะให้ค่า
ผลได้ของไฮโดรเจนที่ดี ค่า H₂O:O₂ ที่ให้ความเสถียรของตัวเร่งปฏิกิริยาที่ดีที่สุดในขณะที่ค่า
ประสิทธิภาพพลังงานปานกลาง (24%) คือ 14 แต่ค่า H₂O:O₂ ที่ให้ค่าประสิทธิภาพพลังงานหรือ

T 161992

ผลิตภัณฑ์ไฮโดรเจนสูงที่สุด (43%) โดยให้ค่าความเสถียรอยู่ในระดับปานกลาง คือ 6 เมื่อ เปรียบเทียบกระบวนการทั้งสอง พบว่า กระบวนการออโต้เทอร์มอลเป็นกระบวนการที่เหมาะสมใน การผลิตก๊าซไฮโดรเจนเพื่อป้อนเข้าเซลล์เชื้อเพลิงมากกว่ากระบวนการออกซิเดชันบางส่วน โดยให้ ค่าประสิทธิภาพพลังงานสูงถึง 63%

จากผลการศึกษาในงานวิจัยนี้ทำให้ทราบว่าเอธานอลที่ได้จากพืชผลทางการเกษตรสามารถ นำไปเป็นเชื้อเพลิงเพื่อถูกเปลี่ยนเป็นไฮโดรเจนด้วยกระบวนการออโต้เทอร์มอลได้อย่างมี ประสิทธิภาพ ซึ่งกระบวนการและตัวเร่งปฏิกิริยาที่เหมาะสมที่ได้จากงานวิจัยนี้ควรจะได้มีการศึกษา ละเอียดมากขึ้นในแง่ของความเสถียรของตัวเร่งปฏิกิริยาระยะยาว สภาวะของการเดินเครื่อง และ จลนพลศาสตร์ของปฏิกิริยา รวมทั้งการต่อระบบเข้ากับกระบวนการที่ทำให้ก๊าชบริสุทธิ์เพื่อการ ออกแบบเครื่องปฏิกิรณ์สำหรับใช้กับเชลล์เชื้อเพลิงต่อไป

Project Code: RDG4530019

Project Title: Study of Partial Oxidation and Autothermal Reaction of Ethanol for

Hydrogen Production

Invertigators: Supaporn Therdthianwong¹, Apichai Therdthianwong², Panchan Srijaroon¹, ¹ Department of Chemical Engineering, ²Chemical Engineering Practice School, King Mongkut's University of Technology Thonburi

Email address: supaporn.the@kmutt.ac.th

Project Duration: May 2002 - April 2004

Hydrogen production from ethanol via 2 processes, partial oxidation and autothermal reforming, were studied. In partial oxidation study, effect of oxygen to ethanol ratio (O₂:EtOH) in the range of 0.1-1.2 and effect of reactor temperature in the range of 550-700°C on Ni/Al₂O₃ catalyst were investigated. From the experimental results, product gas composition, product gas flow rate, H₂ yield and CO yield were influenced by O₂:EtOH and the value giving maximum H₂ yield was between 0.3-0.5. In the study of reactor temperature effect, both H₂ and CO composition, CO yield, and H₂ yield were increased whereas CO₂ and CH₄ composition were decreased as the reactor temperature increased. The temperature of 650°C was chosen to be the suitable temperature for partial oxidation.

In autothermal reaction study, type of metal catalyst and water to oxygen ratio $(H_2O:O_2)$ were selected to investigate. Seven active metals on Al_2O_3 were tested: Ni, Co, Cu, Cr, Pd, Ru, and Pt. The range of $H_2O:O_2$ ratio studied were 0.5-30 equivalent to 95.5-26.5% ethanol concentration. The experimental results showed that different metals enhanced type of reaction differently. Ni, Pd and Pt improved steam reforming of ethanol resulting in high H_2 yield. The order of active metal on Al_2O_3 giving H_2 yield ranked from high to low is 15%Ni > 0.75%Pt₃ >1%Ru ~ 15%Co ~1%Pd > 15%Cu> Al_2O_3 > 15%Cr. When considering H_2 yield and coke yield together with the price of catalysts, Ní was shown to be the best catalyst and hence chosen to study for the effect of $H_2O:O_2$ ratio. The $H_2O:O_2$ ratios that gave high H_2 yield were in the range of 6-14. In combination with energy

TE 161992

efficiency analysis, H₂O:O₂ ratio of 6 showed the best energy efficiency (43%) with average stability while H₂O:O₂ ratio of 14 gave the best stability with average energy efficiency value (24%).

In comparison of partial oxidation and autothermal reaction at the same operating condition studied in this research both in terms of H₂ yield or energy efficiency and catalyst stability, autothermal reaction giving energy efficiency of 63% was a better process.

From this research study, ethanol produced from agricultural raw materials can be utilized as raw material for hydrogen production via autothermal reaction efficiently. The study on conversion process and catalyst selected should be further studied on its stability, operating condition, kinetic of reaction as well as combined product-gas-purification process for utilizing in fuel cell.