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ABSTRACT 

 
This study quantitatively assesses the effects of stochastic wind energy on power 

quality and stability of a power system using both stochastic and probabilistic methods. 

The stability analysis method is newly developed in this thesis basing on the theory of 

stochastic stability and is called the stochastic stability index (SSI). To compute SSI, 

several processes have to be done consisting of the determination of steady state variables, 

estimation of well-defined energy function, and formulation of stochastic differential 

equations. Energy function method, basing on Lyapunov’s theory, is used to determine the 

region of attraction of stable equilibrium points and the critical values of energy. The wind 

power is modeled using aggregated doubly-fed induction generator (DFIG) and squirrel 

cage induction generator (SCIG) wind turbines.  

The stochastic stability index (SSI) can quantify the effects of increasing wind 

power and its noise intensity on power system stability. When the stochastic wind power 

increase, SSI will decrease and the system is less stable, especially, when there is 

exchanged power to or from an infinite bus. The results of SSI are corresponded to the 

results of the simulation. If apply white noise for wind power, when wind power increase 

50%, 100%, and 150%, the SSI decrease about 56%, 75%, and 84%, respectively, 

comparing with base case. However, the percentage of decreasing of SSI when apply 

colored noise are larger than when apply white noise.  

To maintain the synchronization of the system, the wind power generation should 

be limited at an appropriate value for a given noise intensity. This index gives an 

alternative analysis for power system stability by stochastically incorporating wind power. 

This stochastic stability analysis method can analyze the nonlinear and stochastic power 

system stability with less time and computational effort. 

 
Keywords: stochastic stability index; small signal stability; energy function method; 
Lyapunov’s stability; theory of stochastic stability; deterministic method 
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CHAPTER 1 

INTRODUCTION 

 
Energy and environmental problems have encouraged people to increase their 

awareness of energy consumption that is friendlier to the environment. This leads to more 

interest in renewable and clean energy, especially solar and wind energy. 

Long-term RE development, especially wind power, requires the power system to 

be able to support RE efficiently in terms of physical structure and performance. This 

requires an understanding on constraints relating to characteristics of wind power and other 

RE sources. 

In order to increase wind power penetration, the power system stability and power 

quality must first be studied for grid interconnection standardization, for grid performance 

improvement and for basic knowledge for long-term planning of RE development. 

1.1 Rationale and Problem Statement 

Power system stability (PS) is the ability of the power system to maintain or control 

the system (synchronization, voltage, and frequency) within an equilibrium operating 

condition after subjection to small and large disturbances. This ability depends on 

characteristics of generators, loads, transmission system, and control system. PS includes 

phenomena with period range from several seconds to several minutes. These phenomena 

are, for example, the loss of synchronization, and loss control of voltage and frequency 

after subject to disturbances such as transient fault, loss of generator, loss of transmission 

line, suddenly increase of load, and small perturbation as a noise. 

Power quality (PQ) concerns the quality or characteristics of voltage, current, 

frequency, and power that may harm the electrical equipment of customers. It is influenced 

by relationship between generation, transmission, and power consumption. Voltage 

variation, Frequency variation, and wave form distortion are general issues of PQ which 

period range from millisecond to several minutes. 

Wind power affects both PS and PQ since it generates random and fluctuating 

signals to the power system. As the generated power fluctuate, system responses to the 

disturbances possibly vary significantly and result in power system instability and/or poor 

power quality.  



2 
 

The study of the effects of wind power on a power system previous was based on 

these deterministic methods for which all operating conditions and network topology are 

explicitly determined. The stochastic characteristics of winds, varied by space and time, 

can cause the large variation and unpredictable of power output. Since the nature of wind 

power generation, load, and disturbances in the power system are stochastic, the classical 

deterministic methods, which rely on steady characteristics assumptions, cannot be used 

realistically. Furthermore, the larger systems lead to higher degrees of complexity of 

solutions with many uncertainties. Since the wind power has become very much larger than 

the last two decades, the more complexity and severity affecting to the power system can 

be found frequently. 

Accordingly, the probabilistic methods are the most relevant tools to overcome the 

realistic and dynamics conditions of a system. Even though, the probabilistic methods have 

been used to study the power system stability and reliability problems more than two 

decades, the understanding in the influencing of the random wind power still far from the 

real situations.  

Therefore, this research aims to develop the suitable probabilistic methods to assess 

the effects of wind power on power quality and stability of the power system, which 

incorporates the stochastic characteristics of winds. 

The impact of wind energy generation on power systems becomes a more serious 

issue according to an increase of wind energy penetration in many countries to close to the  

conventional acceptable level of 20% [60]. The cumulative wind power capacity grew 21% 

per year on average since 2004 to reach about 318 GW at the end of 2013 [24] and the 

most market share of wind turbine technology is Doubly-Fed Induction Generator (DFIG) 

at about 54.8% [64]. Wind power is the third ranking of renewable energy of the world and 

increase with the rate of about 25% per year. At the end of 2013, the cumulative installed 

capacity of wind power was about 318 GW, starting from 1995. 
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Figure 1.1 Cumulative wind power capacity growth and annual growth [24] 

 

In the late 1990s, transient voltage stability and the dynamic behavior of induction 

generator during disturbances were the first that be focused on [49]. Later, International 

Electrotechnical Commission (IEC) published the first edition of technical standard on 

assessment of power quality from wind turbine in 2001 (IEC 61400-21, 2008). 

In North Germany, there is high risk of grid instability due to 3-phase fault of 

transmission line if 3,000 MW of wind power fail. Therefore, on 1st of April in 2006, new 

grid interconnection regulations were published requiring fault-ride-through to deal with 

this problem. [29] 

The same as Spain, before, Spanish’s requirement is that wind turbine (WT) had to 

disconnect when subject to voltage dip. This caused large amount of wind power cascading 

decrease for 500MW, 400MW, and 1,000MW for 6 hours on 19th March in 2007. This 

results in high risk of grid instability and therefore, new grid code required voltage dip 

fault-ride-through to avoid this problem. [29] 

In China, PS and PQ are already a problem because of weak inter-regional 

interconnections, causing power shortages. This leading many existing wind farms to be 

left unconnected and unused. For example, 10GW wind project at Jiu Quan in Gansu is the 

biggest problem which wind farm located too far from load center.(www.atimes.com, 16th 

Jan., 2010). 

In USA, on Tuesday, 26th of February in 2008, the loss of wind power caused 

Texas grid operator when to the state of emergency and cut service to some large customer 

for 90MW. In this case, wind power fell from 1,700MW to 300MW cause grid frequency 

suddenly dropped and followed by blackout (www.reuters.com : Wed, 27th Feb 2008). 
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In 2008, the IEC published a new edition of IEC 61400-21 with advanced technical 

standards for assessment of power quality of wind power. This standard is an assessment 

procedure that considers phenomena, for example, voltage fluctuation during both 

continuous and switching operation, harmonics and interharmonics, response to voltage 

drop, active power ramp rate limitation, reactive power capability, grid protection, and 

reconnection time after grid fault. These phenomena depend on local characteristics of the 

power system. Therefore, different country with different structure of power system leads 

to dissimilar regulation for the unlike problems concerning.  

Motivation of regulations involving impacts of wind power still be an issue of 

interesting more and more since the power system is more complex while renewable such 

as wind power is random and almost unpredictable. However, the standardization of PS 

assessment cannot be easily prepared due to many reasons, including the different 

characteristics of the power system, uncertainty of the analyzing methods, and uncertainty 

of many variables concerning the power system.  
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Figure 1.2 Development of small signal stability problems (gray), wind power problems 

(red) and probabilistic methods (blue) for analyzing 

 
In summary, while wind power has increased continuously, more serious power 

system problems occur. For example, low frequency oscillation occurred in HK and CN in 

1991. In 2001, IEC 61400-21 standard was published to counteract the growth of wind 

power. In 2006, risk of grid stability in Germany occurred with the 3GW wind power. In 

2007, voltage dip fault-ride-through regulation has been applied in Spain. In 2008, loss of 

wind power happened in Texas, US and followed by new edition of IEC 61400-21. In 
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2010, power system stability and power quality problems had occurred in Gansu, CN with 

10GW wind power. 

 
1.2 Literature Review 

1.2.1 Characteristics of Wind Power 

The dynamics of wind speed consists of two main components, the slow variation 

component with spectral ranges between 10 hours and several months, and the turbulence 

components with spectral ranges between 1 second and 10 minutes as represented in the 

figure below [68].  

   

 

Figure 1.3 Wind speed spectrum model of Van der Hoven  

 

In the figure above, over a large frequency range (0.007 to 900 cycles/hr) of wind 

speed spectrum (WSS) at Brookhaven, Van der Hoven [32] found that the 2 main 

phenomena influencing WSS were synoptic scale, and turbulence (micro-scale dynamics). 

The Meso-scale dynamics, such as diurnal effect, had less influence in this area.  

The other studies about wind speed spectrum are from H. J. Hwang (1969), Jay Apt 

(2007), and Joaquín Mur-Amada and Ángel A. Bayod-Rújula (2007). Hwang found that at 

Palmyra Island as represented in Figure 1.4, WSS at 3 sites are notably different. Synoptic 

scale dynamics is, clearly, the most influence for Barren Island, and Causeway as shown in 

below figure. For Army site, synoptic scale dynamics has less influence to wind speed. For 

conclusion, the different location can cause vastly difference of wind speed spectrum.  
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Figure 1.4 Wind speed spectrum at 3 areas of Palmyra Island by Hwang  

Jay Apt used 1-s and 1-h time resolution wind data to construct the power spectrum 

of wind, as presented in Figure 1.5. The left figure represents the real power output (kW) of 

the 10-turbine wind farm for ten days at 1 sec resolution. The right figure presents power 

spectral density of the power output from the same wind farm at 1-h and 1-s resolutions. 

For highly fluctuate wind power, log-scale of power spectral density (PSD) has linear 

relationship with log-scale frequency during about 0.00001 - 0.5 Hz. 

 

 

Figure 1.5 Real power output (kW) variation (left) and power spectral density  

(PSD, kW.Hz-1/2) (right) of the power output from 10-turbine wind farm 

Amada and Rújula presented the power spectral density of 10.98 MW Remolinos 

wind farm operating at low winds and 16.2 MW Borja wind farm operating around 6 m/s in 

Aragon of Spain. In this study, the linear relationship between log-scale PSD and log-scale 

frequency can extent up to about 1Hz at low wind speed and 2Hz at high wind speed. At 

about 1 - 2 Hz, fluctuated PSD occur due to 3p (3 times of rotor speed ) or tower shadow 

noise. The low wind speed cause PSD trend to keep constant and then fall at frequency 
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higher than 2Hz. For the high wind speed, log-scale PSD decrease continuously when log-

scale frequency decrease at frequency higher than 2Hz. [38].  

 

Figure 1.6 Power spectral density of 

Remolinos wind farm at low wind speed 

Figure 1.7 Power spectral density of Borja 

wind farm operating  around 6 m/s. 

 

For conclusion, at about 0.00001 - 1 Hz , log-scale PSD of wind power has a linear 

relationship with log-scale frequency. About 1 - 2 Hz, wind power is influenced by tower 

shadow noise or 3p noise. Higher than 2Hz, the low wind speed cause PSD trend to keep 

constant and then fall. Synoptic scale dynamics most influences wind speed followed by 

micro-scale dynamics. Wind speed spectrums at different locations are vastly different. 

The slow variation wind component is influenced by the diurnal and seasonal or 

synoptic meteorological effects and can be modeled statistically using Weibull or Rayleigh 

distributions. The turbulence component can be modeled as a zero average random process 

[32].  

Consequently, the wind power variation can be composed of the slow variation and 

fast variation components. The slow variation of wind power is influenced by the slow 

variation component of wind speed. The fast variation is influenced by the turbulence of 

wind speed and the dynamics of wind turbine. The measurement of wind power reveals the 

decomposition of fast wind power variation, which consist of low frequency (frequencies 

up to 0.5Hz) relating to the turbulence wind speed and the high frequency (frequencies 

above 0.5Hz) power variation relating to the dynamics of wind turbine, as represented in 

Figure 1.8 [49].  

Grey = original PSD  
Black = estimated PSD 
Red = model 
Green = Avg. error of  
model from original
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Figure 1.8 The decomposition of fast wind power variation. 

The contribution of low frequency power variation is about 16 – 22% of rated 

capacity, while of high frequency power variation is only about ±2% [49]. In this study, the 

wind power modeling for the study of power system stability can reasonably neglect the 

effects of high frequency power variation. Therefore, the mechanical power input (Pm) of 

wind turbine can be modeled as follows 

m ms mf ms ml mhP P P P P P          Eq. 1-1 

Where Pms is slow variation wind power, Pmf is fast variation wind power, Pml is low 

frequency wind power variation, and Pmh is high frequency wind power variation. 

      1) The aggregated wind power 

Many previous studies concluded that the aggregation of many wind turbines can 

cause power to be smoother due to wind power fluctuation being compensated among each 

other, as shown in Figure 1.9 [49]. 
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Figure 1.9 Power of aggregated wind turbines in case of 1WT, 30WTs, 150WTs, and 

300WTs 

Many individual wind turbines when connected together may be represented by one 

large turbine and called aggregated wind turbine. Each turbine produces wind power 

exhibiting random behavior with known and unknown probability distributions. Ideally, 

from the property of convolution, the random effects when summarize can reasonably be 

modeled using zero-mean Gaussian distributed white noise [41]. The data distribution of 

power output of aggregated wind turbines will close to Gaussian or Normal distribution.  

In practice, many previous studies have shown that the wind power distribution of 

wind power plants are not a type of Gaussian distribution [41][ 55][48][69]. The wind 

power distribution may be approximated by Beta distribution, kernel estimator, or mixture 

three Gaussian distribution. The wind power deviation distribution is, however, may be 

approximated by Laplace distribution. Examples of wind power distribution for wind 

power plants in different location and the wind power deviation distribution are shown in 

Figure 1.10. 
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Figure 1.10 Histogram and fit Beta distribution (left) and hourly power change (right) of 

aggregated wind power plants in BPA, ERCOT, and Midwest ISO. 

 
The wind power distribution of wind farm depends on many factors, especially, 

geographical diversity, wind speed distribution, wind turbine performance, turbulence of 

wind speed, etc. In Figure 1.10, the power distribution of Midwest ISO power plant seems 

close to normal distribution more than the other two plants due to the larger geographical 

diversity of wind turbines in Midwest ISO power plant comparing with the others [41].  

Therefore, the slow variation component of wind power can be approximated by a 

Normal distribution when the geographical diversity is large enough. For the fast variation 

component, such as an hourly variation wind power or less, the zero mean Laplace 

distribution is more accurate than Normal distribution.  

      2) The colored noise of wind power   

In Figure 1.11, the power spectral density of wind power reveals the finite ranges of 

wind power spectrum [49]. Therefore, the colored noise (limit spectrum) should be used for 

stochastic wind power modeling more realistic than white noise. From previous topic, the 

slow variation wind power distribution is not a type of zero mean Gaussian distribution but 

can be approximated using non-zero mean Beta distribution. Unfortunately, the non-zero 

mean data distribution is not defined in the theory of stochastic differential equations. To 
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apply for the study of stochastic stability analysis, following assumptions are made basing 

on the relaxed conditions for the theory of stochastic differential equation. 

a) The slow variation of wind power (when the fast variation part is filtered out) is 

long enough so that the wind power can be assumed as a constant within a definite 

period. For example, wind power is constant for at least 10 hours or 36,000 

seconds.  

b) The fast variation of wind power (when the slow variation part is filtered out) is 

zero-mean data distribution and can be approximated using colored noise. The low 

frequency component is dominant while the high frequency component has very 

low contribution compared with the low frequency component and the slow 

variation component.   

 

 
Figure 1.11 Power spectral density of power output of 500kW wind turbine  

 

From Eq. 1-1, when high frequency component is neglected, the mechanical wind 

power of aggregated wind turbines can be represented as follows 

 1m ms ml ms w wP P P P           Eq. 1-2 

w w w w wp pW             Eq. 1-3 

Where Pml = αPms, w represents colored noise applying to wind power, αw and w are 

noise intensity and bandwidth of low frequency component of wind power, γw is scaling 

factor depending on application. 
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From measurement by Pedro, the noise intensity of low frequency component of 

wind power between 0.1 – 0.2 is reasonably assumed.  The bandwidth, when increased will 

cause the colored noise act close to a white noise. From Figure 1.11, the bandwidth of PSD 

of wind power in the model should not be larger than 20 Hz. 

1.2.2 Impacts of wind power on the power system stability (PS) 

The instability of the power system occurs when the power system cannot regain a 

state of operating equilibrium after facing a physical disturbance. This can be determined 

as the ability of synchronous machines, most of electrical machine type of generation, in 

the power system to keep synchronization that is called rotor angle stability. Rotor angle 

stability can be affected by the small, but continuous disturbances, and the large 

disturbances. The small and continuous disturbances may be considered using a linear 

relationship between the influencing small signals and the rotor angle and can be called 

small signal stability.  

For the large disturbances, a nonlinear relationship between the influencing 

disturbances and the rotor angle of the power system always occur under transient situation 

and can be called transient stability. 

The other major types of power system stability are voltage and frequency stability. 

It is the ability of the power system to control and stabilize the voltage and frequency under 

any situations. Instability of voltage caused from the negative relationship between reactive 

power and voltage after critical balance of load and generation and then the system lose 

control finally. Instability of frequency caused from unbalance between generation and 

load for a long time. 

      1) Impact on small signal stability (SSS) 

Small signal stability (SSS), for the case of instability, is evaluated by the positive 

eigenvalue which enlarge the state variables to diverge until the system loss control. These 

eigenvalues are influenced by the designed parameters of the power system, for example, 

damping and synchronizing coefficients of generator, base rotor electrical speed, base 

frequency, inertia constant, field circuit inductance and resistance, and mutual inductance.  

J.L. Rueda and F. Shewarega (2009) had studied the impacts of wind power on SSS 

of 4-machine systems with 2652.5 MW of initial value (Figure 1.12). Total load demand is 

2,734 MW, with 967MW of L1 and 1,767MW of L2. Wind power plant totally 750 MW 

(with 215.7 MW of initial value) with 150 DFIG wind generators (5MW each) were set to 

replace G3 synchronous generators. There are 3 cases of this scenario: first, base case 
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without wind power (with  in figure); second, 85% of G3 power generation is replaced by 

wind power (with � in figure); and third, G3 is fully replaced by wind power (with  in 

figure).  Eigenvalues were computed with damping ratio lines as shown in the next figure. 

 

 
 

Figure 1.12 The 4-machine power system Figure 1.13 Root loci of eigenvalues 

 

In Figure 1.13, eigenvalues are classified into 3 groups within 3 rectangular boxes. 

Group 1 (oscillation of G3 or G4 to the rest of system) represent local mode of oscillation 

with high load demand (L2 at bus B09), group 2 (oscillation of G1 or G2 to the rest of 

system) represent local mode of oscillation with low load demand in distant area (L1 at bus 

A07) and group 3 represent inter-area mode of oscillation (oscillation between area 1 with 

G3, G4 and area 2 with G1, G2).  

The larger wind power penetration replacing G3 (path from >>�>>) causes 

 (and ) larger with negative or stability increase for local mode of oscillation with high 

load demand and inter-area mode. Fully replace of wind power (G3 is switched off) occur 

only for inter-area mode with path change obviously. For this case,  has no change 

significantly, but  increase with insufficient damping, and thus, increasing system swing.  

However, local mode of oscillation with low load demand in distant area has no significant 

influence by wind power. 

For wind power with random variations, it can be concluded that SSS can become 

significant depending on location of wind turbine, stress of the system (loading factor), and 

amount of conventional generation that replaced by wind power. Installation of Doubly-

Fed Induction Generator (DFIG) wind power plant within the highly load area to replace 

large amount of conventional generation can improve SSS significantly.  

1 
2 

3 
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Practically, the impact of variations in wind power on SSS or dynamic stability 

cannot be analyzed using eigenvalue methods. The cumulative effect of random variation 

of wind power can finally cause the system away off an equilibrium region and thus 

instability [28]. Dynamic stability cannot easily be characterized using eigenvalue method 

(as presented above) since the variation of mechanical input cannot directly affect to root 

of 1(sI - A) matrix. Therefore, a study of dynamic stability needs other suitable methods 

that can incorporate random variation effects of wind power.  

      2) Impact on transient stability 

The most frequent transient phenomenon in a power system is a short circuit fault. 

During a fault, power and voltage may suddenly drop close to zero. Unbalance between 

mechanical power of generator ( mP ) and electrical power of the system ( eP ) can cause 

transient instability that can be described using swing equation of power system as follow. 

 
2

0
2

d d

d d 2
r

m eP P
t t H

 
         Eq. 1-4 

d dr t         Eq. 1-5 

where  sine S B TP E E X , is called power-angle relationship, r is rotor electrical 

speed,  is rotor angle, 0 is base rotor speed, and H is inertia constant of generator. 

In Equation 1-3, the mechanical power of a generator is larger than the electrical 

power of a power system, and thus, causes acceleration of state variables, such as rotor 

electrical speed and angle. If faulted line is cleared (by open circuit) within a proper time, 

state variables may become stable finally but if not, instability may occur. Numerical 

simulation method always be used to compute time variation of  and r after subject to 

faults with different clearing time. The clearing time of protection devices that can make 

 first enlarge and out of equilibrium is called Critical Clearing Time (CCT). CCT is used 

indirectly to quantify transient stability. The larger CCT means system is more stable due 

to practical clearing time may never reach that CCT.   

The transient stability of an induction generator wind turbine strongly depends on 

pitch control systems. The quicker response of pitch control, the faster converge to stable 

condition. However, dynamics behavior of wind generators (with power 0.5 p.u.) does not 

have so significant effect on transient stability of conventional synchronous generators 

(with power 1.0 p.u.) [39].  
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Furthermore, transient stability is influenced by the location of wind farms, types of 

generators, and wind power penetration. Wind power can improve transient stability for 

some bus, while can cause poorer transient stability for the other bus. Variable speed 

scheme of DFIG wind turbine can have better transient stability than fixed speed scheme of 

IG because DFIG can better control reactive power. However, transient stability decrease 

when penetration of wind power increase [19]. 

      3) Impact on voltage stability 

Voltage instability occurs when a system cannot control voltage by the normal 

compensation of reactive power. This situation happens when load is too high, reactive 

power is limited, and/or under other contingencies such as loss of transmission line. 

Practically, voltage collapse (suddenly large drop of voltage) can possibly be found before 

voltage instability.  P-V curve and Q-V curve usually are used to explain the operating 

condition and state of voltage stability as shown in the next figures.  

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

V
 R
 /
 E
s

P R / P max

Pf = 0.95 lead

Pf = 1.0

Pf = 0.95 lag

**Pmax is the maximum power at 
unity power factor

‐0.4

‐0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

q

v

p = 0 p = 0.2 p = 0.5

p = 0.8 p = 0.9 p = 1.0

Figure 1.14 P-V curve with three power 

factors 

Figure 1.15 Q-V curve with different P 

 

For voltage stability indicators under static conditions, V-Q sensitivity and roots of  

Q-V modal sensitivity are always considered. For dynamic condition, bifurcation concept 

is applied to explain characteristic of the case one value of P or Q have 2 operating points 

of V. The saddle-node bifurcation (SNB or point of collapse) and hopf bifurcation (HB) are 

specified to explain the state of operation. SNB is the point when eigenvalue of system 

matrix is zero while HB occur when complex conjugate eigenvalue cross imaginary axis.  

The operating point at SNB is the point of maximum power at the receiving end on 

the P-V curve while HB may or may not occur on the P-V curve before reaching SNB. At 

SNB, voltage decreases vastly (or voltage collapse), V-Q sensitivity become negative, 
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increase Q cause aggressively drops of voltage, system loss control finally. At the point 

HB, voltage swings corresponding to imaginary part of eigenvalue.  

The induction generator of a wind turbine usually consumes reactive power from 

the power system, reducing capability of the system to control voltage and reduce voltage 

stability (as shown in Figure 1.16). Increasing of internal parameters, such as impedance of 

step-up transformer and transmission line, can also increase voltage stability. Moreover, 

the better wind potential, the more loadability (ability to handle load without voltage 

instability) as shown in Figure1.17. However, using Static var compensator (SVC) instead 

of capacitor bank cannot improve loadability or even SNB but can increase HB that 

reduces the swing of voltage as shown in Figure 1.18 [76].  

Conversely, this last result contrasts with Youjie’s study. Even though both cases 

use DFIG for simulation, Youjie found that SVC can improve loadability and SNB. 

Furthermore, SVC can reduce active and reactive power loss in the line and can improve 

voltage stability at the bus [71]. 

 

 

Figure 1.16 P-V curve of power system with 

and without wind power 

Figure 1.17 P-V curve of power system, 

including wind farm, at different wind speeds 

with normal and contingency situations. 
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Figure 1.18 P-V curve of power system with SVC and Capacitor bank compensator 

 

      4) Impact on frequency stability 

The imbalance between the mechanical power of the generator and the electrical 

power of the system can cause the acceleration of rotor electrical speed that affects 

electrical frequency directly. Therefore, frequency stability depends on ability of generator 

to generate power for load demand. Frequency drop when system loss of generation and 

then frequency instability can occur. This large disturbance may cause cascading outage 

due to load shedding regulation or in worst case, may be cause cascading 

desynchronization of generators.  

Frequency stability incorporating wind power depends on both wind power 

penetration and control schemes of active, reactive power and voltage. For example, after 

2.5% loss of generation, larger penetrations of wind power cause the frequency to drop 

faster with a finite time. In the case of DFIG wind generator with constant P and V control, 

frequency of larger penetration wind power exponentially drops until becoming stable and 

keeps decreasing until lower than less penetration wind power, as shown in Figure 1.19. 

For the case with P and frequency dependent V control, frequency drop slightly and 

suddenly regain to stable value as shown in Figure 1.20. However, this latter case of 

control scheme leads to larger voltage drop especially near a wind farm [31]. 
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Figure 1.19 Frequency deviation with 
constant P and V control 

Figure 1.20 Frequency deviation with P and 
frequency dependent V control 

 

1.2.3 Impacts of wind power on power quality  

For PQ problems, over/under voltage, over/under frequency, flicker, harmonics, 

protection error, and over current could be issues of interest. Problem and causes of these 

issues are listed in Table 1.1 [49]. 

 

Table 1.1 Major problems of power quality from wind power integration  

No. Problems Causes 

1 Steady state voltage rise Wind speed variation 

2 Over-current Peaks of wind speed 

3 Protection error action Peaks of wind speed 

4 Flicker during continuous operation Dynamic operation of wind turbines 

5 Flicker during switching operations Switching/start up operation of generators 

6 Harmonics Power electronic converters 

7 Voltage drop In rush current due to switching operations of generators 

 

Wind power fluctuates with wind speed, which causes the more reactive power 

absorbed by wind farm when there is larger variation of wind speed and with greater wind 

power penetration. Furthermore, the effect of random wind speed (noise including gust and 

ramp) has more effect on fluctuation of P and Q for larger wind power penetration, as 

shown in Figure 1.21 [66]. 
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small amount of wind power large amount of wind power 

Figure 1.21 Test system with 2 generators (G1 and G2), variation of wind speed with 
noise, P and Q of G1, G2 with small amount of wind power, and with large amount of wind 

power. 
 

Aggregation of wind farm (separated into many groups) with proper distance and 

time shifts between each group can cause reduce flicker and 3p noise (3 times of rotor 

frequency), and can make P, Q, and V smoother [36].  

Later, Muljadi et al. also studied the other aspects concerning PQ in a wind power 

plant. From the results (as shown in Figures 1.22 – 1.25), they concluded that voltage 

varied with reactive power and reactive power compensation can improve voltage quality. 

Frequency varied with derivative of active power, and reactive power compensation cannot 

improve frequency quality. Self-excitation can occur when capacitor provide reactive 

power to induction generator during off-grid [20]. 

PG1 

Time (ms) 

PG2 

Base at  10 m/s 

QG1 
QG2 

PG1 

PG2 QG1 
QG2 

24MW, 12MVAR 60MW, 20MVAR 

12 wind turbines each rated 2MVA 

G2 70MVA, 24kV, 50Hz G1 130MVA,18kV,50Hz 
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Figure 1.22 Reactive power and voltage 
without reactive power compensation 

Figure 1.23 Reactive power and voltage with 
reactive power compensation 

 

Figure 1.24 Active power and frequency 
without reactive power compensation 

Figure 1.25 Active power and frequency with 
reactive power compensation 

 

Moreover, the main flicker contributions from wind turbines comes from the 3p 

power variations (at the frequency of 2.1Hz) which is related to rotational turbulence and 

the 3 blades passing the tower. The 1p power variation (approximately 0.7Hz) is related to 

the rotor speed variation. In the frequency of 8.4Hz, corresponding to 12p, a small power 

spectral density (PSD) is related to the flexible aero elastic part of the wind turbine in 

addition to the induction generator, as shown in Figure 1.26 [49]. 
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Figure 1.26 Power spectral density of power from 225kW pitch controlled wind turbine 

 

For conclusion, interesting issues involving PS and PQ when incorporating wind 

power, are presented as follows. 

 

Table 1.2 Interesting issues of power system stability and quality incorporating wind 

power 

Power system stability Causes 

Transient instability loss of wind , voltage drop, or line fault 

Dynamics instability cumulative effect from random variation of wind power 

Voltage instability or  
voltage collapse 

random variation of wind power during critical operating point 
(bifurcation)

Frequency instability loss of loadability (critical imbalance between load and generation) 
during random variations of wind power 

 

Power Quality Causes 

Voltage variation and  Over/Under 
voltage 

Variation of reactive wind power relating to variation of reactive 
power compensation of the power system 

Frequency variation and Over/Under 
frequency 

Variation of active wind power (relating to variation of load) 

Flicker during continuous operation 
Variation of mechanical power of wind turbine relating to turbulence 

of wind and dynamic response of turbine 

Flicker during switching operation 
Variation of scale, occurrence, and duration when start up and/or 

switching of wind power 

12p 

3p 

1p 
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1.2.4 Deterministic methods for power system stability and power quality 

analysis 

Effects of wind energy on power system stability (PS) and power quality (PQ) have 

been studied by many authors using methods generally based on deterministic approaches. 

Deterministic method analyze PS by solving Differential and Algebra Equations (DAE) of 

power system both static and dynamic system based on generator model, network system 

model, load characteristics equations, and control system model.  

For deterministic methods, all operating conditions and network topology are 

explicitly determined with the dynamic response to time-variation of generation of input 

and dynamic (or static) state variables. Classical small signal stability, transient stability, 

and voltage stability, generally based on deterministic method, are well explained in Power 

System Stability and Control by P. Kundur (1998). 

Some of these classical methods are Dynamics numerical method, Equal-area 

criterion, Direct method, Eigenvalue analysis, Q-V modal analysis and V-Q sensitivity 

analysis. Examples of deterministic methods for PS analysis are presented in Chapter 2. 

Moreover, voltage stability analysis method is later improved considerably and well 

described by Claudio A. Canizares (1995, 1998, and 2003) . He clearly describes voltage 

stability and voltage collapse base on bifurcation theory, optimization technique, and 

reduction load flow Jacobian. Furthermore, they had developed many useful voltage 

stability indicators such as Saddle-node bifurcation (SNB), Hopf bifurcation (HB), and 

Linear performance index (linear relationship between Eigenvalue index or HB and loading 

factor).  

However, deterministic methods require enormous exact information to compute 

highly accurate results, which is impossible under the realistic random nature of power 

systems. The power system concerning many uncertainties from, for example, load 

varying, random occurrence of faults, dispatching of transmission line, operating of control 

system, and variation of generation such as renewable sources especially wind power. 

Spectrum of uncertainty varies from very low frequency (0-0.1 Hz) to high frequency (up 

to 3kHz) with small and large scale that affect to operating condition differently. 

To incorporate the real random nature of the complex power system, probabilistic 

methods were developed and applied to studying the effects of randomly fluctuating 

variables. These random variables are, for example, fault type, fault location, fault 

occurrence, load factor, power generation, availability of equipments, impedance of 
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transmission line due to dispatching, impedance of overall network system, and operating 

condition. 

1.2.5 Probabilistic methods for power system stability and power quality 

analysis 

      1)  Classical probability method for small signal (dynamic) stability analysis  

Originally, well-known probabilistic methods for small signal (or dynamic) stability 

(SSS) were discussed by Burchett and Heydt (1978). They evaluated SSS based on 

classical eigenvalues analysis method for the linearized system state matrix. Uncertainty 

(with mean and covariance) of system parameters, such as rotor angle and mechanical 

damping coefficient, and with sensitivity to eigenvalues was determined to compute 

uncertainty of eigenvalues. Probabilistic method was applied to compute the probability 

that all eigenvalues have negative real part which remains in the stable region. This 

approach can save more calculation time than deterministic approach while can accurately 

describe uncertainty of stability statistically. For this study, state space equation in vector 

form are reformed to be, 

X=A X        Eq. 1-6 

To compute the unknown uncertainty of the eigenvalues from the known 

uncertainty of the state variables, sensitivity analysis was determined from this equation: 

i ij jS z               Eq. 1-7 

Where i is ith eigenvalues, jz is jth system parameter and ij i jS z   is sensitivity of ith 

eigenvalues to jth system parameter. i jz  can be computed from the scalar product of 

matrix A, and the right and left eigenvectors as follows. 

,

,

i i
ji

ij
j i i

A
w v

z
S

z w v





 


         Eq. 1-8 

Where ,i iw v are the ith left and right eigenvector, respectively, corresponding to the ith 

eigenvalues. 

If jz are known multivariate random variables, therefore, by chain rule, i also are 

multivariate random variables. Theoretically, properties of multivariate random variable 

are used to calculate uncertainty of eigenvalues in matrix form as follow 

Mean (  ) = 0      Eq. 1-9 

Covariance (  ) = Real ( S ).Covariance ( z ).Real ( tS )   Eq. 1-10 
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To compute the probability of instability that all eigenvalues have no negative real parts, 

zero mean (M) and covariance matrix of multivariate random variables, cov( ) C , are 

used in the probability density function (PDF) of the multivariate random variables , that is 

 
 

 1
1/2

1
( ) exp 0.5( ) ( )

(2 ) det( )

t

n
   Xf X X M C X M

C
  Eq. 1-11 

The probability that all eigenvalues have no negative real parts is 

     1 1 2 2 1 2

2 1

, ,..., .... d d ...dn n n

un u u

x u x u x u x x x
  

         XP P X U f X   Eq. 1-12 

This form of probability can be computed using the Generalized Tetrachoric Series 

method as described by R.C. Burchett and Heydt. The results of eigenvalues ( 1
i iA w A  ) 

with uncertainty (mean and standard deviation) and probability of instability are presented 

in next figure. Standard deviations of eigenvalues are computed from covariance matrix as 

stated before (Std( )i iic  ). 

 

  

Figure 1.27 Complex plane of eigenvalues Figure 1.28 Probability of instability vs 

load 

From the above right figure, since the rotor angle is influenced by the load, 

increasing the loading factor causes the eigenvalues (corresponding to rotor angle) to move 

from negative to close zero. This will increase the probability of the instability as a result.   

      2)  Stochastic differential equation for dynamic stability analysis 

Even though, the classical technique as presented above, has higher statistical 

accuracy than deterministic methods, it cannot be properly used when considering the 

effects of random variations of state variables and overall network parameters. This is due 
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to the differential equations is linearized to consider only steady system state matrix and 

eigenvalue could be computed without respect to fluctuation of state variables.  

Theoretically, given any dynamical system that is continuously perturbed by a zero-

mean Guassian distributed noise, the probability that a given stable operating point will 

eventually leave its stability region in finite time is essentially one, independent of the 

magnitude of the noise and excluding any control actions [7]. Therefore, the cumulative 

effect of random variations can finally cause the system to be away off an equilibrium 

region and thus unstable. Dynamic stability cannot easily be characterized using eigenvalue 

method (as presented above) since the variation of mechanical input or load cannot directly 

affect to eigenvalue matrix. Therefore, study on dynamic stability need the other suitable 

methods which can incorporate random variation effect of wind power.  

Advanced methods for dynamic stability analysis that account for the stochastic 

nature of random variables was clearly explained by S.M. Shahidehpour and J. Qiu (1986 

and 1989) and later improved with many applications by C.O. Nwankpa et al. (1989, 1991, 

and 1992). For this method, Mean First Passage Time (MFPT) is introduced to be as 

stability indicator based on theory of Stochastic Differential Equation (SDE). Cumulative 

effect of random fluctuation of system variables can continuously push the system until 

exit the stable region within finite time. Since there are many values of exit time vary 

randomly, MFPT is the average of the first time exiting stable region of the system. When 

the system is perturbed by stochastic variation, the perturbed differential equation becomes 

d (t)= ( )d d ( )g t w tX X      Eq. 1-13 

Where X(t) is the state variables matrix, g(X) is the bounded function matrix,  0 is a 

small real parameter,   is the diffusion matrix, w(t) is the n-dimensional Weiner process 

(Brownian motion). 

For the exit problem, (x) is the mean first exit time (MFPT) when x exits from the 

boundary of the domain of attraction, while at time 0, x  . (x) is determined from the 

solution of the boundary value problem as follows [61]: 

L( (x))  -1 for x     (x) 0 for x  

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For the power system, the Weiner process (w(t)) can be considered to be white 

noise for the idealization or colored noise depending on the characteristics of the perturbed 

variables and the complexity of the solution.    

The white noise () has properties, as follows 

 mean of (t) = E() = 0 

 power spectral density is constant for infinite bandwidth 

  normally has Gaussian distribution with N(0,2)  

The colored noise () has various properties, for example: 

 E()  or = 0 

 power spectral density is a function of  f-2, f-1, f0, f1, f2, or others with a finite 

bandwidth (word color means at the different range of frequency) 

  not necessary to have Gaussian distribution with N(0,2)  

Realistically, colored noise is generally found in the nature of the power system. 

For the power system with white noise perturbation, Langevin equation is applied as 

follows: 

1 2x x          and    2 2 1( )x x x          Eq. 1-15 

Where x(t)  is state variables,  is coefficient related to ,  0 is magnitude of perturbation 

(noise intensity),  is coefficient of perturbed variables, (t) is white noise, and (x) is 

system potential. When  = 0, therefore,  with respect to x1 is presented in below figure  

 

For above figure, s1 and s2 are stable points while u1 is unstable. This figure can be 

well described by the energy function method. Therefore, energy function method can be 

used as an boundary condition to determine (x) which is bounded by the critical energy 

(Ec=A- B) [61]. 

For the power system with colored noise perturbation, the Orstein-Uhlenbeck process is 

applied as follows [9]: 
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( )k k kx x           and       k              Eq. 1-16 

Where xk is state variables at bus k,  is bandwidth of noise,  0 is noise intensity,  is 

perturbed variable coefficient, k is colored noise,  is white noise, (x) is system 

potential.  

Equations of colored noise are added into the system with known bandwidth and 

intensity. State space equation will be used to determine energy function E = f(xk) . After 

that, find critical energy (Ec) from (x) can be determined from the solution of boundary 

value problem which is a function of , , , , xA, and xB. Process to compute (x) is 

well described by Anawach Sangswang (2003).  

The SDE method adds a perturbation part to the conventional differential equation 

and can be solved only by special calculus for the SDE problem. For example, the swing 

equation added by the perturbation of wind power generation is as follows: 

 d 1
(1 )

d 2
r

m eP w P
t H

         Eq. 1-17 

Where r is rotor electrical speed, H is inertia constant, mP is mechanical power input of 

wind turbine, eP  electrical power of the system,  is noise intensity (standard deviation 

divide by mean value), and w is white Guassian (white) noise (random noise with constant 

power spectral density (PSD) and normal distribution).  

Furthermore, noise with selective filter (colored noise) can be stated instead of 

white noise due to the nature of some variables for which PSD is not constant for wide 

range. 

Hadiza and C.O. Nwankpa (1998 and 2000) have applied this method to 

incorporate stochastic random of wind power. They found that MFPT decreases with 

increasing of wind power, noise intensity and loading factor, as shown in Figures 1.29 – 

1.32 .  



28 
 

Figure 1.29 Variation of MFPT with wind 
power of low noise intensity 

Figure 1.30 Variation of MFPT with wind 
power of high noise intensity 

 

 

Figure 1.31 The 4-bus system one-line 
diagram 

Figure 1.32 Variation of MFPT with loads 
of 2 scaled noise intensity levels 

 

      3)  Stochastic differential equation method for voltage stability analysis  

SDE is also applied to study voltage stability using stochastic voltage collapse 

indicator or MFPT. This concept is based on the structure-preserving model for load bus 

and equation of motion of generator as follows [12]: 

  ( , )Q Q
k lk k k kV V             Eq. 1-18 

( , , )P P
k lk k k ref k kV                       Eq. 1-19 

j j ref           Eq. 1-20 

    ( , )i i i mi eiP P           Eq. 1-21 

Where  is noise intensity for P and Q at load bus k, (x) is system potential for equation 

of  P and Q and for swing equation, V and  are bus voltage and scaled rotor angle, and  

is angular speed of machine i, bus k, reference. 
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Then the energy function (E) is determined from the system potential function (). 

Since E is known, Ec can be computed to determine MFPT for voltage stability as follows 

( )( )
CE hCA E

MFPT e 


       Eq. 1-22 

Where A(Ec) is a function of Ec, h is weighted constant for P and Q . 

Two cases the same and the different load fluctuation intensity levels (l), when the 

load is increased, are presented in Figures 1.33 – 1.34.  

 

 

Bus V (p.u.) Pm (MW) Pl (MW) Ql (MVar)

1 1.0 0 100 20
2 1.0 0 120 20
3 1.0 0 80 20
4 1.0 150 0 0
5 1.0 80 0 0
6 1.0 80 0 0  

Figure 1.33 Schematic diagram and generation/load data of the 6 bus power system model 

 

Figure 1.34 ln  vs. p.u. load increase (6 bus power system) with the same (left) and with 

different (right) load fluctuation intensity levels () for P and Q of buses 1, 2, and 3  

 

Figures 1.33 and 1.34 show that the same l=1.0, Bus#3 has the poorest voltage 

stability while Bus#1 and Bus#2 are better. For the different l, Bus#3 (with smallest l) 

seem to have highest voltage stability at load less than 1.6 p.u., but after that become 

poorest.  

However, wind speed varied with space and time results in different PSD of wind 

power over a finite range of frequency. Therefore, noise intensity and bandwidth will be 

different depend on location, time, wind turbine technology, and wind farm design. Noise 

intensity and bandwidth including wind power in earlier studies still lack of the details and 

need more information for several aspects such as  
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 It is true or not that only noise intensity and bandwidth parameters are enough for 

studying various PSD characteristics of wind power? 

 If enough, how to determine noise intensity and bandwidth with different ranges of 

frequency and different related factors. But if not, what else? 

 How to apply SDE with colored noise to analyze the dynamics and voltage stability 

incorporating wind power? 

 How to determine energy functions of SDE applied to the problem of power 

quality, especially, voltage variation, frequency variation and flicker? 

      4)  Probability method for transient stability analysis 

Transient stability using the probability method was well collected and described by 

R. Billinton and P.R.S. Kuruganty (1979, 1980, and 1981). They computed the probability 

of stability by consider probability distribution function (PDF) of involving aspects for 

example, fault location, fault type, fault clearing time, machine inertia, and system 

reactance. This method even though not complicate to deal with, but require vary much of 

information to accurately compute PDF of involving aspects.  

Lastly, Sherif O. Faried, R. Billinton and P.R.S. Kuruganty (2009 and 2010) 

applied this method to evaluate the transient stability of power system incorporating wind 

farms. The first study, they considered uncertainty from type of fault, location of fault, 

fault impedance, fault location, fault clearing process, system load, and spring constant of 

wind turbine. One year later, they studied the similar aspects with different type of fault, 

location of fault, fault impedance, operating condition, reclosing time, and spring constant 

of wind turbine. They found that, weather wind can improve transient stability or not, it 

depends on location of connection. Increasing of wind power penetration can possibly 

increase of transient stability. 

1.2.6 Probabilistic methods for power quality analysis 

For probabilistic methods for power quality analysis, only voltage (V) fluctuation, 

frequency (Fr) fluctuation, and flicker (Fl) problems are considered. The V, Fr, and Fl 

under acceptable ranges with upper (UL) and lower limits (LL) are reported in the IEEE 

and Grid Codes of many countries. Therefore, we need to know PDF of V, Fr, and Fl of the 

power system to determine probability of V, Fr, and Fl be within the range UL and LL. 

There are 2 ways to determine PDF of V, Fr, and Fl, first is based on convolution of 

independent random variables with known PDF for the linearized equation, second is based 
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on Monte Carlo simulation (MCS) with known PDF of random variables for differential 

equation.  

The first method is based on assumptions that may be far from the real situation, 

while the second method, even though accuracy and realization is better, requires much 

computational time [22].  

A Monte Carlo simulation can compute the random state variables from the 

differential equations. Monte Carlo simulation will randomly generate sample values with 

known probability distribution function and solve the differential equations iteratively. 

Number of calculation normally should large enough (May be more than 1,000 iterations) 

for statistical reason of accuracy. Therefore, large spend of computational time and effort. 

However, advantages of probabilistic methods still be attractive for improvement the 

understanding of PS and PQ incorporating wind power.  

MCS is the method used to compute PDF of output unknown variables by 

generating (or sampling) input random variables with known PDF. Since MCS has high 

probabilistic accuracy and highly acceptable, therefore, this thesis will use Monte Carlo 

simulation method to analyze voltage fluctuation, frequency fluctuation and flicker.  

Examples of probability distributions of voltage with load varying at different times 

by sampling P, Q (from mean and variance data) at each node and switched capacitor (from 

probability distribution) at each hour are presented in Figures 1.35 – 1.37 [14]. 

 

 

Figure 1.35 Daily time 
varying load pattern 

Figure 1.36 Probability 
distribution of voltage at 2 a.m. 

Table37 Probability distribution of 
voltage at 2 p.m. 

 

1.2.7 Conclusions of Literature Review 

For power system stability, the major impacts of wind power to power system are 

dynamic stability and voltage stability due to the continuous random fluctuation of wind 

power causing cumulative effects on the system performance, especially the voltage and 
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synchronization. Transient stability, even though important, occurs infrequently. For 

frequency stability, instability can occur when large amount of wind power loss during 

high load demand. If wind potential is low to medium, therefore, small amount wind power 

loss can cause small possibility of frequency instability. 

For dynamic and voltage stability, MFPT is a proper indicator to quantify the level 

of stability based on SDE theory. Previous studies are not given details of the wind speed, 

wind power or any different technology influencing stability of the power system. 

Therefore, it is a challenge for any future research to apply this method for a study of 

Effects of wind energy on power system stability with more details of wind characteristics, 

random fluctuate wind power, and the others concerning factors.  

For power quality problems, random variations of wind power lead to variations of 

active and reactive power, and cause frequency and voltage fluctuations, respectively. The 

theory of SDE even though, can compute MFPT but cannot easily calculate system 

parameters with uncertainty. However, if deterministic variables with known PDF can be 

specified, therefore, PDF of non-deterministic variables can be computed using analytical 

probabilistic method or Monte Carlo simulation method.  

Power system stability indicators and analytical methods for deterministic and 

probabilistic methods are summarized in Table 1.3. 

Table 1.3 Deterministic indices and analytical methods of power system stability 

Disturbance Type of stability Stability indices Analyzing methods 

Large 
disturbances 

Voltage stability Voltage drop or rise with duration Dynamics numerical method 

Transient stability 

Area under power curve Equal-area criterion 

Critical clearing time (CCT), and 
angle 

Dynamics numerical method 

Critical energy (CE) of instability Direct method 

Frequency 
stability 

Frequency drop or rise with 
duration 

Dynamics numerical method 

Small 
disturbances 

Small signal 
(Dynamics) 

Eigenvalue of system 
characteristics matrix 

Eigenvalue , Eigenvector analysis 
with linearized model 

Voltage stability 

V-Q sensitivity Newton-Raphson iterative method 

Eigenvalue of Q-V modal 
sensitivity 

Eigenvalue , Eigenvector analysis 

Point of Collapse Bifurcation analysis 
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Table 1.4 Probabilistic indices and analytical methods of power system stability 

Disturbance Type of stability Stability indices Analyzing methods 

Large 
disturbances 

Voltage stability - - 

Transient stability 
P(CT<CCT) 
(line fault) 

1) Equal area criterion  
 2) Dynamics simulation 

Frequency stability - - 

Small 
disturbances 

Dynamics stability 
(small signal stability) 

P(<0)  
of linearized system 

Eigenvalue analysis with 
multivariate random variables 

MFPT Stochastic differential equation 

Voltage stability 
(Voltage collapse) 

Stochastic voltage 
collapse indicator 

Stochastic differential equation 

 

Generally, the deterministic method, called eigenvalue analysis, is used for the 

study of small signal stability of the power system incorporating wind power, for example, 

the studies of Thomas Ackermann (2005), T.R. Ayodele et al. (2010) and J.L. Rueda and F. 

Shewarega (2009). However, this method uses the linearization technique to approximate 

nonlinear characteristics of the system and lose key information as a result. Even though, 

there are many attempts to include the probabilistic characteristics in the SSS analysis, 

such as in [54], [75], and [62] but these studies still based on linearization eigenvalue 

analysis method.  

Another probabilistic method, such as Monte Carlo Simulation (MCS), has been 

applied to study the nonlinear and random characteristics of the power system, for example 

in R. Billinton and W. Li (1994) and Z. Xu et al. (2005), but it consumes much time and 

computational resources. Alternatively, the stochastic techniques, such as in [11], [2], and 

[28], have been developed and applied for power system stability analysis using stochastic 

stability theory of exit time [74]. However, these techniques are based on the simplified 

(quadratic) energy function which is not proper for induction generator of wind turbine. 

Recently, there is an alternative technique to study the effects of wind power using 

stochastic stability analysis method [47]. This technique can characterize a nonlinear power 

system including stochastic wind power while consumes less time and computational 

resource. Nevertheless, that paper used the simplified induction generator (IG) wind 

turbine in the model which is not the major share of the market and may miss the 

significant effects due to the different technology.  

Therefore, this paper aims to study the effects of DFIG wind turbines on the 

stability of the power system using the stochastic stability analysis method. 
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1.3 Research Objectives 

To quantitatively assess the effects of wind energy on the power quality and the 
stability of the power system using probabilistic methods to incorporate the stochastic 
characteristics of wind power.  
 
Scope of Thesis 

1)  The probabilistic methods were developed for the purpose of assessing the effect of 

wind power on power quality and stability of the power system to incorporate the 

stochastic characteristics of winds. 

2)  The designed power system is based on the standard test system as a main part and with 

case study of Thailand as addition. 

3)  The wind power system models have been selected from suitable published studies. 

Fixed Speed Induction Generator (FSIG) and Doubly-Fed Induction Generator (DFIG) will 

be used in this research. 

4)   For power system stability analysis, dynamic stability and voltage stability are the 

major parts of interest for this study. The theory of Stochastic Differential Equations will 

be applied for power system stability analysis. 

5)  For power quality, over/under magnitude from fluctuations of voltage and frequency are 

the major part of interest for this research. Monte Carlo simulation and analytical 

probabilistic method were used for power quality analysis. 

 
 
 
 
 
 
 
 
 
 

 



CHAPTER 2 

THEORIES 

 
From the objectives and scopes of thesis, to design the methodology for the study, it 

is necessary to understand the theoretical background of the power system stability, the 

power quality, the wind power characteristics, and the probabilistic methods. This chapter 

reviews these theoretical backgrounds, which are   

The Power System: Consists of (1) the generator model, (2) the transformer model, and 

(3) the transmission line model. 

Power System Stability Classification: Consists of (1) Rotor angle stability, (2) Small 

signal instability, (3) Transient stability, (4) Voltage stability, and (5) Frequency stability. 

Wind Power: Consists of (1) Estimation of wind power, (2) Probability distribution of 

wind,  

(3) Wind turbine technology, (4) Wind Turbine Type and Classification, (5) Wind power 

models, and (6) Wind Power and Power quality. 

Probabilistic Methods for the Power System: Consists of (1) Random variables,  

(2) Stochastic processes, (3) Stochastic differential equation, and (4) Monte Carlo 

simulation. 

Energy Function Methods: Consists of (1) Lyapunov’s theory of stability, (2) Modeling 

aspects for stability problems, (3) Potential energy boundary surface (PEBS) method, and  

(4) Boundary controlling unstable equilibrium point (BCU) method (5) Critical energy 

estimation, and (6) Well-defined energy function formulation using the first integral 

method. 

 

2.1 The Power System 

Structure of the power system, which is represented in Figure 2.1, consists of 

 Generation Unit: the generator (synchronous and/or induction generators), which 

converts kinetic energy into electric potential energy.  

 Transmission Unit: the electrical network, which transfers energy from the 

generation unit to the distribution unit. It includes transformers, electrical wires, 

and electrical control and protection equipment. 
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 Distribution Unit: the electrical network which receives energy from the 

transmission unit and distributes to its customers. It includes transformers, electrical 

wires, and electrical control and protection equipment.  
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Figure 2.1 Structure of the power system 

 

The main components focused on the study of power system stability, are the 

generator, transformer, and transmission line. The model of each component is described 

below. 

2.1.1 Generator Model 

The principle of the generator is based on the magnetic theory of Maxwell, which 

explains the relation between the magnetic field and the electric field as follows. 

. 0B   

.D    

D
H J

t


  


 

B

t
 

  


 

Ampere’s law  .d d
s

H l J a Ni    

Faraday’s law .d .d
s

B
l a

t
 

 
   

From Ampere’s law, moving charges induce 

magnetomotive force ( mmf = Ni) 

B  is magnetic flux density  

D  is electric field flux density  

ρ  is charge distribution 

H  is magnetic field intensity 

J  is current density 

ε  is electric field intensity 

l  is length path of H 

i  is current 

a  is cross section area (s) 

N  is turns of coil 
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Figure 2.2 Current induces magnetic flux on solenoid  

 

Where magnetic flux d
s

B a   and for N turns of coil, total magnetic flux (flux linkage) is  

1 2 3 4 N            Eq. 2-1 

From Faraday’s law, variation of magnetic flux induces electric field with induced 

voltage, vi as follows: 

d

div
t


      Eq. 2-2 

Flux linkage can be presented in terms of inductance L and current i as follows: 

Li        Eq. 2-3 

Maxwell’s equations and Eqs. 2-1 – 2-3 are used to explain the characteristics of 

the generator and transformer in the following sections. 

The generator transforms kinetic energy into electromagnetic energy. The rotating 

turbine causes magnetic field on field circuit (on the rotor or stator) to vary periodically. 

By Faraday’s law, variation of magnetic flux induces electric field and voltage on armature 

circuit. The different type of generator depends on the design of rotor and stator 

corresponding to source of magnetic field and armature circuit.        

The two types of generators discussed are synchronous generators, and 

asynchronous or induction generators. 

      2.1.1.1 Synchronous generators 

For synchronous generators, the electrical frequency is synchronized with the 

mechanical rate of rotation of the generator.  

120
s

f
n

p
       Eq. 2-4 

Where f is electrical frequency (Hz), ns is mechanical speed (or synchronous speed) of 

magnetic field (rpm), and p is number of poles. 
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The generator consists of two main parts, the field and the armature. The dc current 

is supplied to the field winding on the rotor and induces a magnetic field which N pole for 

d-axis and its quadrature is q-axis. The three phases system corresponds to the a-a’, b-b’, 

and c-c’ armature windings. Axis of phase a is 90 with the a-a’ winding while axis of 

phase b and c is 120 counterclockwise shift and clockwise shift, respectively and be 

presented in below figure. [52]  

The dc current is from an external source or from a special circuit on the rotor shaft. 

The external source supplies dc current through slip ring or brushes which suitable for 

small machine since it is cost effective even though require maintenance and cause voltage 

drop on brushes. The special circuit, or called brushless exciter, consists of exciter field on 

the stator and exciter armature on the rotor. Rotating of rotor induces ac current on exciter 

armature which is converted to be dc current by 3 phase rectifier and then supply for the 

main field circuit on the rotor. The power supplied to an exciter field is from an external 

power source or from a permanent magnet circuit.  

 

 

Figure 2.3 Schematic diagram of a three-phase synchronous machine 

 

There are two rotor structures, depending on the operating speed. For low rotational 

speeds, such as wind turbines and hydraulic turbines, a salient pole rotor with a large 

number of poles is required to achieve the rated frequency. For the high speed such as 

steam or gas turbines, a round rotor (non-salient) with 2 or 4 poles is required. 

The salient pole rotor always has damper windings or amortisseurs at the end ring 

to damp out speed oscillations and eddy current losses. Non-salient pole rotors, even 
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though without damper windings but a solid steel rotor, offers paths for eddy currents that 

affect amortisseur currents equivalently. 

Therefore, the rotor circuits consist of a d-axis field circuit and d, q-axis 

amortisseur circuits. The stator circuits consist of a, b, c phase windings. However, for 

calculating convenience, the a, b, c phase winding can be presented in d and q-axis using d-

q-0 transformation function. Stator and rotor circuit of a synchronous machine are 

presented in next figure [52]. 

 

  

Figure 2.4 Stator and rotor circuit of a synchronous machine [52] 

 

For the per unit system, the electrical equations of synchronous generator are 

presented as follows [52]. 

 

 

Per unit inductance L Per unit air-gap torque 

afd fda akd kda ad

akq kqa aq

fkd kdf

L L L L L

L L L

L L

   


  
 

           Eq. 2-5 
e d q q dT i i                                     Eq. 2-6 

 

Per unit stator voltage equations Per unit rotor voltage equations 
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                             Eq. 2-8 
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Per unit stator flux linkage equations Per unit rotor flux linkage equations 

1

1 2

0 0 0

( )

( )

d ad l d ad fd ad d

q aq l q aq q aq q

L L i L i L i

L L i L i L i

L i







     


     
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   Eq. 2-9 
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   

          Eq. 2-10

 

Where fd is for field circuit d-axis, 1d is for amortisseur circuit no. 1 in d-axis, 1q and 2q 

are for amortisseur circuits no. 1 and no. 2 in q-axis, ffd is for the value of field circuit, f1d 

is for the value between field and 1d circuit, and 11d and 22q are for the values of 1d and 

2q circuit.   

      2.1.1.2 Induction (or Asynchronous) generators 

For induction generators, alternating current is supplied to the stator winding, which 

induces alternating current in the rotor winding. This is the same as a concept of 

transformer. There are two main types of induction generator: (1) the squirrel cage 

induction generator (SCIG), and (2) the wound rotor induction generator (WRIG). For 

SCIG, the conducting bars at both end of rotor are shorted circuit and look like a cage. For 

WRIG, a rotor winding with terminals are brought out to slip rings for external connection. 

First, the 3-phase current in the stator winding produces a rotating magnetic field in 

the air gap of the machine. The rotating magnetic field induces voltage in conductor bars of 

rotor. The induced voltage produces rotor current which interact with magnetic field in the 

air gap to produces torque. The rotor starts to rotate in the direction of magnetic field. If 

rotational speed of rotor (n) is less than synchronous speed (ns), then the motor mode is 

applied with speed n. If n > ns, the generator mode is applied. But if n = ns, then there will 

be no torque and no induced current. 

The rotational speed of the rotor (n) is always expressed in the form of a fraction of 

the synchronous speed or called slip (s) as follows:  

s

s

n n
s

n


                                                        Eq. 2-11 

Where ns = 120f / p.  

System equations of induction generator consist of at least the voltage equations, 

flux linkage equations, and torque equations.  

For example, per unit voltage equations of a squirrel cage induction generator 

(SCIG) in the d-q (direct-quadrative) reference frame, is as follows [67]: 
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                                    Eq. 2-12 

Where u is voltage, subscript s and r are for stator and rotor, R is the resistance, i is the 

current, s is the synchronous speed,  is the flux, and s is the slip. 

The slip, s, is defined as follows 

1
2

m

s

p
s




                        Eq. 2-13 

Where p is the number of poles and m is angular frequency of generator rotor. 

The flux linkages can be determined as follows 
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                                           Eq. 2-14 

Where L is the inductance and subscript  and m are leakage and mutual, respectively. 

The electrical torque is  e qr dr dr qrT i i                                               Eq. 2-15 

The equation of motion is   
d 1

( )
d 2

m
m e

m

T T
t H


                                        Eq. 2-16 

The equation of active (P) and reactive power (Q) consumed are as follows 

s ds ds qs qs

s qs ds ds qs

P u i u i

Q u i u i

  
  

                                                 Eq. 2-17 

2.1.2 Transformer Model 

From Ampere’s law, the moving charge induces magnetomotive force (mmf = Ni). 

For a two-winding transformer, the input current of primary winding induces magnetic 

fluxes which consist of mutual flux m linking between primary and secondary winding, 

leakage flux Ll and L2 linking only primary and secondary circuit, respectively.  

In case of ideal transformer, there are no losses, no leakage fluxes, and magnetic 

core has infinite permeability. The physical power transformer is close to the ideal with 
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losses about 0.5% of rating, leakage fluxes about 5% of the mutual flux, and high 

permeability of special alloy steels. 

If an ideal transformer is assumed, the flux linkages () are as follows: 

For primary winding   1 1 1 1( )m L mN N                                   Eq. 2-18 

For secondary winding  2 2 2 2( )m L mN N                                  Eq. 2-19 

The schematic diagram of a two-winding transformer is presented in the next figure. 

 

.dH l Hl Ni                             Eq. 2-20

0rB H H                               Eq. 2-21

d
s

B a       or    BA                 Eq. 2-22

1 1 2 2.dc c cH l H l N i N i              Eq. 2-23

  

Figure 2.5 Schematic diagram of two-winding transformer 

 

Where lc is the path length along the metal core, lg is the path length across air gap, Hc is 

magnetic field intensity along lc, Hg is magnetic field intensity along lg, Rc and Rg are 

reluctances. 

Variation of linkage flux (mutual flux) induces the terminal voltages (v) as follows:  

For primary winding   1
1 1

dd

d d
mv N

t t

 
                                            Eq. 2-24 

For secondary winding  2
2 2

dd

d d
mv N

t t

 
                                           Eq. 2-25 

The voltage gain v2 / v1 = N2 / N1 = n is called transformer turns ratio. 

For an ideal transformer in the above figure, the primary and secondary 

magnetomotive forces (mmfs) are added to yield the total magnetomotive force as follows: 

1 1 2 2
c

m m c
c c

l
F N i N i mmf

A
                                  Eq. 2-26 

where c is the reluctance of the core.  
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For the ideal transformer, the core has infinite permeability, thus the reluctance is 

zero. Consequently,  i2 / i1 = - N1 / N2 = -1/n = -a . If i2 is assumed with the opposite 

direction, therefore,  i2- / i1 = N1 / N2 = 1/n = a . 

2.1.3 Transmission Line Model 

Transmission line can be represented in terms of phasor and impedance as follows: 

z = r + jl = series impedance per meter 

y = g + jc = shunt admittance per meter to neutral 

 

 

Figure 2.6 Transmission line circuit diagram 

 

Applying Kirchhoff’s voltage law and current law to the above figure yields 

d ( d )

d ( d ) d ( d )

V I z x

I V V y x V y x


  

                                       Eq. 2-27 

Since the product of the derivative part dV is neglected, the first-order linear 

differential equations are 

d d
,

d d

V I
Iz Vy

x x
                                                     Eq. 2-28 

The second order linear differential equations are 

2 2
2

2 2

d d
,

d d

V I
yzV yzI u I

x x
                                           Eq. 2-29 

where u = (yz)0.5 is called the propagation constant. 

For the lumped-circuit equivalent, a -equivalent is assumed with parameters A, B, 

C, and D from the equations as follows: 

V1 = AV2 + BI2 

I1 = CV2 + DI2 

where (z/y)0.5 = Zc, A = cosh uw , B = Zc sinh uw, C = sinh uw / Zc, D = cosh uw. 
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The diagram of a -equivalent circuit and corresponding equations are presented as 

follows. 

 

Figure 2.7 Schematic diagram of -equivalent circuit 

 

Therefore:                        1 2 2 2 2 21
2 2

Y Z Y
V V Z I V V Z I

              
   

                    Eq. 2-30 

1 1 2 2 2 21 1
2 2 4 2

Y Y Z Y Z Y
I V V I Y V I

                 
   

                       Eq. 2-31 

where  

1 , , 1 , 1
2 4 2

Z Y Z Y Z Y
A B Z C Y D

              
 

                     Eq. 2-32 

Therefore, B is determined as follows: 

sinh sinh
sinh sinhc

z uw uw
Z Z uw uw zw Z

y uw uw
                            Eq. 2-33 

where Z = zw, and A is determined as: 

1 cosh
2

Z Y
A uw

 
                                                Eq. 2-34 

cosh 1 1 tanh( 2)
tanh

2 sinh 2 2 ( 2)c c

Y uw uw Y uw

Z uw Z uw

 
                           Eq. 2-35 

where Y = yw. For uw << 1, tanh(uw/2) / (uw/2) 1, therefore, Y’/2 = Y/2.  

2.2 Power System Stability Classification 

Power system stability can be classified by the affected state variables, the scale of 

disturbance, and the duration of phenomena as represented in the following figure. 
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Figure 2.8 Classification of power system stability 

 

Rotor angle stability is the ability of the power system to control the synchronization of 

generators or to control the rotor angle of generators when disturbed by transient and small 

signal. 

The small signal instability is the cumulative effect on the steady state system due to the 

small but continuous perturbation of the input parameters and the responsive characteristic 

of the system which can push the state parameters (such as rotor angle of generator) and/or 

output parameters (such as voltage and current output of generator) away from the 

operating point until system lost control (or desynchronizations). 

Transient stability is the ability of the power system to maintain the synchronization of 

generators or to balance the mechanical torque and electromagnetic torque after subjection 

to large and instant disturbance of voltage, current, and power. 

Voltage stability is the ability of the power system to maintain or control voltage during 

normal operation and at given initial conditions, after subjection to disturbances. It depends 

on the ability to restore equilibrium between load demand and supply of the power system. 

The result may be voltage progressive drop or rise and finally loss of load in some areas. 

Voltage stability is concerned with load stability while rotor angle stability is concerned 

with generator stability. 

Frequency stability is the ability of the power system to maintain or control frequency, 

during normal operation and at given initial conditions, after subjection to disturbances. 

The characteristics time of frequency stability range from several second corresponding to 

the response of devices such as generators control and protection, to several minutes 

corresponding to the response of devices such as prime mover systems and load voltage 

regulators. Frequency stability is classified as large disturbance with long-term stability 
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due to the characteristic time of the overall islanding is range from seconds to several 

minutes. 

2.3 Small Signal Stability 

Small disturbances, if they occur continuously, can cause the generator to lose 

synchronization, limit of power transfer on the transmission system, and highly stress the 

mechanical shaft. The effects of small disturbance on the power system are explained as 

follows: 

 Loss of synchronization from steady increase and/or diverging oscillation of 

rotor angle  

For under-loaded conditions, the small and continuous disturbance causes the rotor 

angle to swing continuously. If the damping torque is insufficient, the rotor angle will 

swing or oscillate with increasing of amplitude and finally uncontrollable or unstable. 

For overloaded conditions, the small and continuous disturbance causes the rotor 

angle to increase continuously. If synchronizing torque is insufficient, the rotor angle will 

increase continuously and finally unstable. 

These two conditions are the major effects of the small disturbance on the power 

system. However, the case underloaded condition can be found mainly under normal 

operating condition. 

 Limit the power transfer of the transmission system  

For machine with damper winding, the damping torque coefficient decrease with 

increasing power and rotor angle. Therefore, to avoid small signal instability, the power 

cannot be generated at maximum value. Furthermore, the larger impedance of transmission 

line causes the power-angle relationship move to the left with smaller maximum value. If 

small signal occur in such case, more power transfer is limited to avoid the instability 

situation.   

 Increase stress on the mechanical shaft 

Under mechanical dynamic condition, the larger number of shaft mass cause an 

increasing of swing amplitude of shaft. If fluctuating small signal resonance with natural 

frequency of multi-mass shaft, highly stress can be formed on the shaft and finally can 

harm the shaft.  
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Sources and involving factors of small disturbance 

Sources and involving factors of small disturbances can be considered as external 

and internal sources/factors. For example: 

External sources/factors: 

 Load variation 

 Variation of other fluctuating power sources 

 Multi-machine synchronization and interaction 

Internal sources/factors 

 Response of turbine governor  

 Response of excitation voltage system control 

 Damper winding 

 Effect of rotor flux linkage variation on the electrical power generation 

 

The small signal instability is the cumulative effect on the steady-state system due 

to the small, but continuous perturbation of the input parameters and the responsive 

characteristic of the system, which can push the state parameters (such as rotor angle of 

generator) and/or output parameters (such as voltage and current output of generator) away 

from the operating point until the system loses control (or desynchronizations) finally.  

This cumulative effect can cause oscillation or non-oscillation of state parameters 

(rotor angle) depending on synchronizing force and damping on force characteristics of the 

system. Insufficient of synchronizing torque can lead to oscillation of rotor angle while 

insufficient of damping torque can cause the divergence of rotor angle from operating 

point. 

The input parameters are, for example, mechanical torque of generator, voltage 

sources and/or current sources. The state parameters are, for example, rotor angle ( ), 

rotational speed of rotor ( r ), flux linkage of field circuit ( fd ), controlled voltage of 

excitation system, and controlled voltage of power stabilizer. The output parameters are, 

for example, voltage, current, active and reactive power. 

To understand the responsive characteristics of the steady state system, the linearized state 

space equations will be represented in the following forms. 

X=AX BU       Eq. 2-36 

Y=CX DU       Eq. 2-37 
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Using Laplace transformatioms, Eqs. 2-36 and 2-37 become 

sX(s)=AX(s) BU(s)  and 1X(s)=(sI - A) BU(s)                               Eq. 2-38 

Y(s)=CX(s) DU(s)  and 1Y(s)= C(sI - A) B D U(s)                          Eq. 2-39 

Or:    1X(s) / U(s)=A (s)=(sI - A) B                                              Eq. 2-40 

1Y(s) / U(s) = T(s) = C(sI - A) B D                                        Eq. 2-41 

 

 

Figure 2.9 Block diagram representing state variables vector 

 

2.3.1 Small signal stability analysis  

To analyze the characteristics of the steady state stability, the linearized state space 

equations are represented in the following forms. 

    x A x B u      Eq. 2-42 

    y C x D u      Eq. 2-43 

Using Laplace transformations, Eqs. 2-42 and 2-43 become 

s (s)= (s) (s)   x A x B u  and 1(s)=(s  - ) (s) x I A B u                               Eq. 2-44 

(s)= (s) (s)   y C x D u  and 1(s)= (s  - ) (s)    y C I A B D u                        Eq. 2-45 

or    1(s)
= (s)=(s  - )

(s)
 


x

A I A B
u

                                             Eq. 2-46 

1(s)
= (s) = (s  - )

(s)





y
T C I A B D

u
                                      Eq. 2-47 

For small signal stability analysis using the eigenvalue method: 

1) Identify state, input, and output parameters 

2) Identify state space equations in form of =   x A x B u  and/or =   y C x D u  

3) Use Laplace transformations to rearrange to 1(s)=(s  - ) (s) x I A B u and/or 

1(s)= (s  - ) (s)    y C I A B D u  
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4) Identify characteristic functions from det (s  - )I A = 0 

5) Find s from characteristic functions and s is called eigenvalues (in case zero input,  

sX = AX similar to X = AX ). 

6) Find  , n , ,and . Synchronizing and damping characteristics of the system 

depend on these parameters. 

7) Interpret the results. The system is unstable if   

 2 1  , js    , and 0   is the case of oscillation with undamped 

 2 1  , and 0s      is the case of undamped without oscillation 

8) Interpret the results, the system is stable with oscillation if   

 2 0  , 0  , and js    is the case of oscialltion only 

 2 1  , and js     is the case of oscillation with damped 

9) If the system is unstable or oscillated, improve the system by adjusting the 

parameters of A. 

Example of small signal stability analysis of a simple circuit is represented by the 

basic circuit diagram in Figure 2.10: 

 

  

Figure 2.10 Basic circuit diagram for SSS problem  

 

The system equation is represented by using Laplace transformations (for comparison) as 

follows: 

2

( )Y( ) 1 1
T( )

U( ) ( ) ( ) 1 1
o

i

V ss Cs LC
s

s V s R Ls Cs s Rs L LC
   

   
                 Eq. 2-48 

For time domain equation: 

Voltage loop:    C o i R LV V V V V                                          Eq. 2-49 

d dL C R oi i i i C V t                                              Eq. 2-50 

2 2d d d dL L oV L i t LC V t                                         Eq. 2-51 
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d dR oV Ri RC V t                                                  Eq. 2-52 

Set differential equation:      
2

2

d d

d d
o o

i o

V V
V LC RC V

t t
                                       Eq. 2-53 

To compare with the state space equation, if iu V ,    1 ox y V  ,  and   1 2 d dox x V t   

2 2 1u LCx RCx x     or 2 1
2

Rx x u
x

L LC LC
         Eq. 2-54 

X=AX BU  or  1 1

2 2

0 1 0

1 1

x x
u

x xLC R L LC

      
              




         Eq. 2-55 

Y=CX DU  or   1

2

1 0 0
x

y u
x

 
  

 
             Eq. 2-56 

Using Laplace transformations for state space equation:  

1X(s)=(sI - A) BU(s)    or 
1

1 0
( ) ( )

1 1

s
X s U s

LC s R L LC

   
       

 Eq. 2-57  

1Y(s)= C(sI - A) B D U(s)    or    
1

1 0
( ) 1 0 ( )

1 1

s
Y s U s

LC s R L LC

   
       

Eq. 2-58 

2

1 01
( ) ( )

1 11

s R L
X s U s

LC s LCs s R L LC

     
            

                    Eq. 2-59 

 2

1 01
( ) 1 0 ( )

1 11

s R L
Y s U s

LC s LCs s R L LC

     
            

              Eq. 2-60 

2

11
( ) ( )

1

LC
X s U s

ss s R L LC

   
        

                               Eq. 2-61 

2

1
( ) ( )

1

LC
Y s U s

s s R L LC

 
    

                                     Eq. 2-62 

From the term in the brackets in Eq. 2-6, replacing with the damping ratio ( ), 

natural frequency ( n ) and represent in the form: 

2

2 22
n

n ns s


  

  where 1n LC  , and 
2 n

R

L



  

The term det(sI-A) will become the characterized equation of the system: 

 Therefore:                             2 22 0n ns s                                                 Eq. 2-63 

Identify s:  
2 2(2 ) 4

2
n n ns

    
     or    2 1n ns           Eq. 2-64 
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If 2 1  ,  2R L LC , therefore  s      where  n     and  2 1n     

If 2 1  ,  2R L LC , therefore  2( ) 0s     where  n     and  0   

If 2 1  , 2R L LC , therefore js      where  n     and  21n     

If 2 0  ,  2R L LC , therefore  js     where  0    and  n   

where  2R L      and   21 2

2
R

L C
    for  2 1  , 

and  21 2

2
R

L C
     for  2 1   

2 2 2( )( ) 2 0s j s j s s                 and  2 2 2
n     

Assume Vi(s) is 1/s that is called the step function, thus: 

2 2
31 21

( ) ( ) ( )
( )( )o i

kk k
V s V s T s

s s j s j s s j s j

 
       


    

       
       Eq. 2-65 

With inverse Laplace transformation, the above equation becomes: 

( ) ( )
1 2 3( ) j t j t

oV t k k e k e                                      Eq. 2-66 

Term k1 is force response and terms ( )
2

j tk e    and ( )
3

j tk e   are natural responses. 

Example of eigenvalues and phase portraits are represented in Table 2.1. 

2.4 Transient stability  

Transient stability is the ability of the power system to maintain the synchronization 

of the generators, or to balance the mechanical and electromagnetic torques after subjection 

to large and instantaneous disturbances of voltage, current, and power. 

Factors influencing transient stability are, for example, 

o Percentage of generated power of generator 

o Fault location and type 

o The fault-clearing time 

o Post-fault transmission system reactance 
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Table 2.1 Eigenvalues with time variation and phase portraits. 

Conditions 
Complex number 

diagram 
Time variation 

Phase portrait 
L=0.1, C=0.4, 

2 1L LC   
2 1  ,  

2R L LC , 

0s      

R = 1.5 

  

Stable node  

2 1  ,  

2R L LC , 

2( ) 0s   , 0   

R = 1 

  

Stable node 
 

2 0  , 2R L LC  

js   , 0  , 

1n LC    

R = 0 

  

Cycle  

2 1  , 2R L LC , 

js    , 0   

R = 0.5   

Stable spiral 

 
2 1  , 2R L LC , 

js    , 0   

   

Unstable 

 

Not applicable in this 

case 

2 1  ,  

2R L LC , 

0s       

 

  

Unstable 

 

Not applicable in this 

case 
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o The generator reactance (Lower reactance increases peak power and reduces initial 

rotor angle)  

o The generator inertia. The higher inertia the slower response and cause a reduce of 

kinetic energy gained during fault 

o The generator internal voltage which depends on the field excitation 

o The infinite bus voltage 

There are 3 methods for transient stability analysis to be represented in this topic. 

First is an Equal-area criterion, second is the Dynamics system numerical method and third 

is the Direct method. 

2.4.1 Equal-area criterion 

Accelerating torque (or torque caused by differences between mechanical and 

electromagnetic torques) can cause the variations in rotor speed and rotor angle. In a per 

unit system, an electromagnetic torque is equal to and can be replaced by electrical power. 

The relationship between electrical power and rotor angle (Ex. sine S B TP E E X ) is 

called a power-angle relationship, is used to describe the equal-area criterion method. The 

next figure shows examples of power-angle relationships from the classical model of 

generator connecting with an infinite bus. 

 

 

ES EB

T

T

 

Figure 2.11 One-line diagram of power system with 1 generator connected to an 

infinite bus through Transmission lines 1 and 2 

 

1) Initially, at an equilibrium point (Point 1), mechanical and electrical power 

is equal, and therefore, the rotor angle is not varied. The power-angle 

relationship is curve C1.  

2) Later, if there is a disturbance in the system, for example, a short circuit to 

ground of transmission line, and then cause the electrical power to fall under 

the equilibrium point while mechanical power still remain. Since fraction of 

power lose to the ground, power maximum decreases and then the power-

angle relationship is now curve C2.    
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3) At that time, operating point is Point 2, power (Pm) and energy of generator 

is more than of the power system (curve C2) and tries to transfer energy to 

the power system.  

4) During transfer electrical power and rotor angle increase continuously 

through curve C2 from Point 2 to 3. 

5) Immediately after disturbance, the protection system clears the short-

circuited line within some specific time (tc1 or tc2). This stop the loss of 

power to the ground and then power and impedance of the power system 

increase immediately to larger than mechanical power. The power-angle 

relationship is now curve C3.   

6) At this time, operating point is Point 4, the power of the generator is less 

than that of the power system. Rotor speed decreases.  

7) Subsequently, an inertia effects (rotor speed decrease while rotor angle still 

increase with retard) causes rotor angle and electrical power to increase until 

reach the maximum point (Point 5) at specific time (tm).  

8) At this point, there are two situations possible to occur subsequently.  

 First, clearing time is fast enough to allow area A1 to be equal to A2, 

or energy transfer to be equal to energy transfer from the power 

system. Electrical power and rotor angle return and decrease 

continuously to reach equilibrium point again (Point 6). This is 

called Stable case as shown in the upper figure.  

 Or second, clearing time is too late and causes area A1 to be larger 

than A2, and the power system loses synchronism due to electrical 

power and rotor angle overshoot and diverse continuously. This is 

called Unstable case as shown in the figure below. 

There are two situations depend on characteristics of the power system, and 

configuration and/or clearing time of the protection system. 

The area between the mechanical and electrical power of the generator during a 

range of rotor angle variation represents the energy transfer between the generator and the 

power system. If the area before and after clearing time is equal, an energy transfer to the 

power system is equal to the energy that the power system can absorb after fault clearing. 

This situation causes the power system to reach equilibrium point and stable after 
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disturbance. Conversely, if areas are not equal, the power system is unstable and lost 

synchronism finally. This method is then called Equal-area criterion.   

 

 

 

Figure 2.12 Power-rotor angle curve describing equal-area criterion 

 

An equal-area criterion can be described by the following relationship: 

From swing equation of motion ( d dr t   ): 

 
2

0
2

d d

d d 2
r

m eP P
t t H

 
                                          Eq. 2-67 

Multiply by 
2d

dt


,         

2
0

2

2d d 2d

d d 2 dm eP P
t t H t

  
                                  Eq. 2-68 

Reform the above equation,        
2

0d d d

d d dm eP P
t t H t

     
 

                                  Eq. 2-69 

Stable case 

Unstable case 



56 
 

  
  

Integrate both sides,           
2

0d
d

d m eP P
t H

     
                                     Eq. 2-70 

For the stable case, the rotor angle is constant or
d

0
dt


 , therefore: 

 0 d 0

m

o

P Pm e
H






                                            Eq. 2-71 

Therefore, areas under m eP P curve is the integral over the range from 0  to m . It 

can be considered to be 2 ranges, which are, range from 0  to c and range from c  to m . 

 d 1

c

o

P P Am e





   ,   d 2

m

c

P P Ae m





                           Eq. 2-72 

For the stable case, A1 = A2, therefore: 

   d d 0
c m

o c

P P P Pm e e m

 

 

                                  Eq. 2-73 

   d d

c m

o c

P P P Pm e e m

 

 

                                   Eq. 2-74 

Areas A1 and A2 are considered as the energy transfer of the generator to and from 

the power system, respectively. If energy transfers to the power system before clearing 

time equal to the energy that the power system can absorb after clearing time, then, the 

system is stable. 

2.4.2 Numerical methods 

Since state space equations of the power system contain nonlinear ordinary 

differential equations with many state variables and inputs, analytical solutions cannot be 

used without difficulty. Numerical methods are the useful technique to solve this kind of 

problems with the help of computer programming. Ordinary differential equations of the 

power system are generally in the form: 

 dX
= f X,

d
t

t
  

For example:    
2

0
2

d d

d d 2
r

m eP P
t t H

 
      and   0

d

d rt

          Eq. 2-75 

For any state variable x: 
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 d
= f ,

d

x
x t

t
  where  0atix x t t i t                              Eq. 2-76 

By using Taylor’s series expansion: 

2 2

1 2

d d d
.... ....

d 2! d ! d

n n

i i n

x t x t x
x x t

t t n tx x x x x xi i i


                               

      Eq. 2-77 

For the power system, the 1st order differential equation can generally be 

considered. The 2 types of numerical methods, which are explicit and implicit methods, are 

used for power system analysis. These methods can be truncated from Taylor’s series 

expansion. 

     2.4.2.1 Explicit numerical methods  

Explicit numerical methods predict the unknown values at the time step 1 0t t t    

entirely with the known values at time step 0t (or initial values). Examples of classical 

explicit numerical methods are Euler method, Modified Euler method (Huen method, 

Predictor-corrector methods, Adams-Bashforth methods, Milne methods, and Hamming 

methods), and Runge-Kutta methods.  

Euler method   1 .f( , )i i i ix x t x t      

Modified Euler’s method   1 .f( , )p
i i i ix x t x t     and 1 1 1. f( , ) f( , )

2
c p
i i i i i i

t
x x x t x t  

        

Runge-Kutta methods   1 1 2 3 42 2 6i ix x k k k k        

    1 .f( , )i ik t x t   , 1
2 .f( , )

2 2i i

k t
k t x t


    , 

2
3 .f( , )

2 2i i

k t
k t x t


    , 4 3.f( , )i ik t x k t t       

      2.4.2.2 Implicit numerical methods 

Implicit numerical methods predict the unknown values at the time step 0it t i t    

and not explicitly with the known values at time step 0t (initial values), but also with the 

known values at time step nt (boundary values) and the set of unknown values at the time 

step before nt .  

Therefore, this is a kind of algebraic linear system of equations and could be solved 

using the method for example, Gauss elimination. Implicit numerical methods give higher 
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numerical stability (due to being limited by boundary values) but are much more complex 

and difficult to process than explicit methods. For example: 

1-step Backward Euler method 1 1 1.f( , )i i i ix x t x t       

1-step Trapezoidal method  1 1 1. f( , ) f( , )
2i i i i i i

t
x x x t x t  

       

1-step Leapfrog method  1 1 2 .f( , )i i i ix x t x t      

2-step Leapfrog method  1 1 1 13 4 2 .f( , )i i i i ix x x t x t        

 

Table 2.2 Comparison between explicit and implicit methods 

 Explicit methods Implicit methods 

A
dv

an
ta

ge
 

+  Easier to process and program 

+  Higher numerical stability due to being 

limited by boundary values.  

+  Larger t and fewer time step 

D
is

ad
va

nt
ag

e 

In some case, t must be very small 

which can result in long running time. 

Much more complex and difficult to process. 

Algebraic linear system of equations 

(Matrix) require more computer time per 

time step 

Larger t result in larger truncation errors, 

especially for transient problems. 

Therefore, in the case of transients, explicit numerical methods are more suitable 

than implicit methods. This is because implicit methods can cause larger error of transients. 

2.4.3 Direct method 

Parameters from both equal-area criterion and numerical methods do not directly 

measure the level of stability of the power system. They just estimate the state of stability. 

Therefore, new method with direct measure of how significant of stability of the power 
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system should be developed. By this reason, the direct method can be used to quantify the 

level of stability directly.  

Since rotor angle instability from transient causes are due to imbalances between 

mechanical and electrical torque, there are imbalances between the kinetic energy gain 

from generator and potential energy transfer from power system when subject to 

disturbances. The direct method measure minimum energy needed to make the system 

unstable is called critical energy. This method can be described as follows. 

 

 

Figure 2.13 Potential energy-rotor angle curve   

 

At a pre-fault state, the rotor angle is 0 , which is at a state equilibrium point. 

During the fault state, electrical power is zero and the power system gain power and kinetic 

energy (KE) from generator. The rotor angle and potential energy (PE) of generator 

increase continuously until faults are cleared.  

If potential energy is less or equal critical energy (with rotor angle c ), the systems 

will rollback with decreasing of rotor angle and potential energy to reach state equilibrium 

point again. However, if potential energy is larger than critical energy, the generator loss 

synchronism and instability sate occur.   

Even though direct methods are vulnerable to numerical problems, this method 

needs sophisticate and robust solutions. This can make the method slower than the time 

domain numerical methods. 
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2.5 Voltage Stability 

2.5.1 Definition of voltage stability and voltage collapse 

The ability of the power system to maintain or control voltage during normal 

operation and at a given initial condition after subjection to disturbances depends on the 

ability to restore equilibrium between load demand and supply of the power system. The 

result may be voltage progressive drop or rise and finally loss of load in some areas. 

Voltage stability is concerned with load stability while rotor angle stability is 

concerned with generator stability. 

Voltage stability parameters or indices 

1) Voltage drop or rise and duration (Dynamics analysis) 

2) V-Q sensitivity (Static analysis) 

3) Eigenvalues of Q-V modal (Static analysis) 

Factors influencing voltage stability 

o Load factors, for example, over load demand 

o Network factors, for example, weak network power line, loss of transmission 

line, control system/devices error or damage after fault 

o Generation factors, for example, loss of generators, generation control error 

Classification of voltage stability 

1) Small disturbance voltage stability 

Voltage stability following the small disturbances which post-disturbance 

equilibrium voltage can be either close to the pre-disturbance values for stable 

cases or progressive decrease (or increase) for unstable cases.     

2) Large disturbance voltage stability 

Voltage stability normally involves large disturbances, including sudden 

increase, in load or power transfer. The instability is almost always a periodic 

decrease in voltage.  

2.5.2 Power system characteristics influencing voltage stability 

      2.5.2.1 Transmission system and load characteristics 

The transmission system and load characteristics can be described using the 

following figure and equations. For simple power circuit, the system consists of voltage 

source (ES) at terminal of generator, line impedance (ZLN), and load impedance (ZLD). At 
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the terminal of load, voltage (VR), active power (PR), and reactive power (QR), are 

characterized as follows. 

 

S

LN

LD

R R

R

 

Figure 2.14 Circuit diagram of the power system  

with transmission and load impedance 

 

cos sinLN LN LNZ Z j Z                                         Eq. 2-78 

cos sinLD LD LDZ Z j Z                                          Eq. 2-79 

   cos cos sin sin
S S

LN LD LN LD LN LD

E E
I

Z Z Z Z j Z Z   
 

   
   Eq. 2-80 

1 1S
sc

LN

E
I I

ZF F
     , S LD

R
LN

E Z
V

ZF
                           Eq. 2-81 

where                                
2

1 2 cosLD LD

LN LN

Z Z
F

Z Z
 

   
      

   
                            Eq. 2-82 

2

2
cos cosSLD

R R
LN

EZ
P V I

F Z
                                        Eq. 2-83 

When  

LD LNZ Z , then maxRP P , 2 2cos( )R SV E     ,  2 2cos( )S LNI E Z       

 
2

max

max max

cos
cos cos

2 2cos( )
S S S

R
LNP LN P

E E E
P V I

ZF Z F

 
 

  
 

              Eq. 2-84 

   
2

2 2
max

2 2cos( ) 1
cos 2 2cos( )

cos
LNSR LD LD

LN S LN

ZEP Z Z

P F Z E F Z

 
  


  

    
 

             Eq. 2-85 
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Figure 2.15 Current, voltage, and power curves at receiving end with line and load 

impedance 

 

From the above figure: 

      1)  LD LNZ Z , normal or stable conditions.  

Load impedance is higher than line impedance. Increasing of load (reduce LDZ ) 

causes active power, reactive power and current increase. Contradictory, load increase 

cause voltage decrease whereas enlarge voltage drop along the power line. Voltage can be 

controlled by increase or decrease reactive power. For example, in case over voltage, 

operator can increase reactive power to reduce voltage by change tab of substation 

transformers.    

      2)  LD LNZ Z , critical condition.  

Load impedance is equal to line impedance. This situation causes power to reach 

the maximum point and be the critical operating point. 

      3)  LD LNZ Z  , unstable condition or instability.  

Load impedance is less than line impedance due to loading over or loss of 

transmission line. Increasing of load cause decreasing of active and reactive power. 

Voltage in this situation cannot be controlled by regulating reactive power normally and 

lost control finally. This is unstable condition or voltage instability which caused from 

large disturbance of transmission system characteristics.    
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If consider power factor variation, the P-V characteristics is represented as follows. 
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Figure 2.16 the P-V characteristics with different power factor (pf) 

 

In the above figure, normal operating points are the points above the locus of the 

critical operating point line. The 3 solid curves represent P-V characteristics at the different 

power factor or different reactive power. The line of locus of critical operating point 

increases with an increasing of power factor from negative (lag) to be positive (lead) value.  

The characteristics of transmission systems depend on the characteristics of load 

and line impedance, and the flow of active and reactive power, which can impact the 

stability of voltage as explained above. Therefore, the principal causes of voltage 

instability are 

o Load is too high 

o Loss of transmission line 

o Voltage sources are too far from load center 

o Voltage sources are to low 

o Insufficient reactive power compensation 

Considering Q-V characteristics, the power angle relationship is concerned and 

characterized. A Q-V characteristic is helpful for understanding relationship between 

voltage control and reactive power. Assume the power system with line impedance ZLN is X 

(R is very small), as shown in the figure below. 

Locus of critical operating 
point 
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0 cos sinS R S S R
R R R R R R

E V E jE V
S P jQ V I V V

jX jX

         
       

   
   Eq. 2-86 

2sin cosS R S R R
R

E V E V V
S j

X X X

  
   

 
                                Eq. 2-87 

If  2I X  loss is neglected, therefore, 

sinS R
R S

E V
P P

X


                                                 Eq. 2-88 

2cosS R R
R

E V V
Q

X X


                                               Eq. 2-89 

If normalized power is equal to short circuit power, 
2
S

n n

E
Q P

X
   and  R

S

V
v

E
  , therefore, 

sin sinR R

n S

P V
p v

P E
                                                Eq. 2-90 

2

2cos cosR R R

n S S

Q V V
q v v

Q E E
 

 
     

 
                               Eq. 2-91 

If p is specified, for example p = 0, 0.2, 0.5, 0.8, 0.9, and 1.0 , therefore 

1 2cos sin
p

q v v
v

       
                                            Eq. 2-92 

In Figure 2.17, the stable operating condition occurs on the right side of the locus of 

the critical operating point while unstable case occurs on the left side. Under stable 

operating condition, voltage increase with increasing of reactive power. Moreover, the 

operating point depends on Q-V characteristics of capacitor bank which vary between a 

designed range by using automatic switching. At high load power, for example p = 1.0, out 

of range of capacitor bank can be expected. Therefore, operating point never reach when 

load power is too high. 
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Figure 2.17 The Q-V characteristics with different powers 

 

2.5.3 Voltage stability analysis 

Power system elements influencing voltage stability are, for example, loads, 

generators, excitation control of generator, static var systems (SVSs), automatic generation 

control (AGC), and protection and control devices. These elements have significant impact 

on voltage stability and have to be modeled. There are mainly 2 analysis methods to be 

used, which are dynamic and static analysis. 

      2.5.3.1 Dynamic analysis 

Dynamics analysis method is time-domain variation simulation similar to transient 

stability analysis. Therefore: 

the general form of first order differential equations is 

 ,x f x V                     Eq. 2-93 

and the general form of the algebraic equations is 

 ,  NI x V Y V                 Eq. 2-94 

The initial conditions ( x0 and V0) are known, where x is state vector of the system, 

V is bus voltage vector, I is current injection vector, and YN is network node admittance 

matrix. 

Differential equations can be solved using iterative numerical methods (such as 

Newton-Raphson) while algebraic equation can be solved using power flow analysis 

methods. Step-by-step processes for solving these equations are as follows.  

Locus of critical 
operating point 

Shunt capacitor (c 
bank) curve 
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For the first step, specify initial values of variables of generator unit, transmission 

network, load devices and control unit, such as excitation systems and then set an 

equation ( )x f x, V . At this time, the steady state is assumed. The state variables are 

constant and ( ) 0 x f x, V . 

2nd step: set equation ( ) NI x,V Y V and use previous state variables (x1) to 

compute next step current and voltage ( I1 and V1). 

3rd step: use V1 and x1 to replace in ( )x f x, V  and then solve this equation to find 

x2. To solve this problem, explicit or implicit numerical methods could be used. 

4th step: repeat 2nd and 3rd steps using new state variables. 

The overall system equations are provided for differential and algebraic equations 

and can be described similar to transient stability analysis. However, characteristics of 

reactive compensating and voltage control devices are added to model in this case. 

      2.5.3.2 Static analysis 

For static analysis, the derivatives of the state variables are assumed to be zero for 

each time frame. The power system characteristics are captured at various time frames 

along the considered time-domain.  

Therefore, overall system equations can be reduced to be only algebraic equations 

and can be solved using power flow analysis methods. Mainly, 2 static analysis methods 

are described, which are V-Q sensitivity analysis and Q-V modal analysis. 

       1) V-Q sensitivity analysis 

V-Q sensitivity analysis method is based on the Newton-Raphson (NR) iterative 

method for power flow analysis. The Jacobian of NR method is considered to be 

sensitivity between V and Q. To specify Jacobian, the network equation in terms of node 

admittance equation is fist identified as follows. 

1

ˆ ˆ ˆ
n

i ik k
k

I Y V


                                                  Eq. 2-95 

For node i,    ˆ ˆ ˆ
i i i i iS P jQ V I                                              Eq. 2-96 

Substitute îI , yield   
1

ˆ ˆ ˆ
n

i i i ik k
k

P jQ V Y V 



                                           Eq. 2-97 

Where  ˆ ˆ (cos sin )(cos sin ) cos( ) sin( )i k i k i i k k i k i k i kVV VV j j VV j                

and  îk ik ikY A jB   . 
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Therefore, P and Q are functions of V and   that can be presented as follows. 

 
1

cos( ) sin( )
n

i i k ik i k ik i k
k

P V V A B   


                                 Eq. 2-98 

 
1

sin( ) cos( )
n

i i k ik i k ik i k
k

Q V V A B   


                                 Eq. 2-99 
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 
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 

 
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                                  Eq. 2-101 
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

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   

                                          Eq. 2-102 

For the power system with m nodes, or  i = 1 to m, therefore: 
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  
                  
   

P P
P θθ V
Q Q Q V

θ V

  or P PV

Q QV





     
          

J JP θ

J JQ V
                    Eq. 2-104 

The matrix with derivative terms are Jacobian, where, PJ is the relationship 

between P and θ , PVJ  is the relationship between P and V, QJ  is the relationship between 

Q and θ , QVJ  is the relationship between Q and V. 

If we consider only sensitivity between Q andV , therefore, P can be zero, yields 
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0 P PV   J θ J V                                               Eq. 2-105 

Q QV    Q J θ J V                                             Eq. 2-106 

From the above 2 equations:         1
Q P PV QV 

    Q J J J J V      or                    Eq. 2-107 

S  Q J V                                                      Eq. 2-108 

SJ is sensitivity between Q andV or called V-Q sensitivity. The positive SJ means 

stable operation while negative means unstable operation. The smaller the sensitivity, the 

more stable is positive SJ and more unstable is negative SJ . Therefore, SJ is used to be as 

indicator matrix for V-Q sensitivity analysis. 

       2) Q-V modal analysis (eigenvalue , eigenvector) 

From the equation       1
S
  V J Q                                               Eq. 2-109 

If         1 1
S
 J wΛ u  ,                                            Eq. 2-110 

where 1Λ is diagonal eigenvalue matrix, w and u are left and right eigenvector, 

respectively. 

Therefore,      1  V wΛ u Q                                           Eq. 2-111 

Since 1 w u  , thus      1  u V Λ u Q                                          Eq. 2-112 

or             1v Λ q                                                 Eq. 2-113 

where  v u V is modal voltage variation, and  q u Q is modal reactive power variation. 

For the node (or mode) ith , replaces eigenvalue ( i ) for 1Λ yield   

1
i i

i
v q                                                    Eq. 2-114 

i is used as an indicator for the voltage stability condition.  If i >0, iv increase with iq for 

stable operation. The larger i means the more voltage stable. If i <0, iv decrease when 

iq increase for unstable operation. The smaller i means the more voltage unstable. 

V-Q sensitivity analysis and Q-V modal analysis are the fundamental important 

techniques for static analysis of the power system. These methods have been applied for 

modern voltages stability analysis as be described in later section.  
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2.5.4 Voltage collapse 

Voltage collapse is a voltage stability problem when the voltage suddenly drops due 

to cascading change of the power system with the period ranging from several seconds to 

minutes. Voltage drop for large portion of high power system can be expected follow by 

local blackouts. Main cause of voltage collapse is an inability to serve for additional 

reactive power demand. However, for many cases, voltage collapse occurs when the power 

network is weak due to immediate loss of the transmission line. 

Voltage collapse is influenced by many factors for example, large distance between 

generation and load, tab changing action of transformer during low voltage condition, poor 

load characteristics, and poor control and protective system characteristics. 

 Voltage instability always occurs after voltage collapse due to bifurcation. Voltage 

collapse is a nonlinear phenomenon. Therefore, nonlinear analysis methods, such as 

bifurcation theory, are applied to voltage collapse and voltage stability analysis.  

Bifurcation theory characterizes the slow change of the system from a stable 

condition to an unstable one. There are 2 classes of bifurcation that are local and global 

bifurcations. Local bifurcation occurs when parameters change causes critical operating 

point (fixed point) change. There are several types of local bifurcation, for example, 

saddle-node bifurcation, transcritical bifurcation, pitchfork bifurcation, period-doubling 

bifurcation, and hopf bifurcation. Global bifurcation occurs when larger set of parameters, 

such as periodic orbit variation, collide with critical point and causes divergence from the 

critical point. 

For voltage collapse and voltage stability, local bifurcation, especially, saddle-node 

and hopf bifurcations, are always of interest due their agreement with characteristics of the 

power system as real as possible.  

Saddle-node bifurcation occurs at the critical point when stable operating 

conditions slowly disappear.  For example, when load increase cause load impedance to 

decline slowly and equal to line impedance, the power reach maximum equilibrium point 

or critical point. Beyond this point, the system become unstable and cause losses control of 

voltage. This critical point is such kind of saddle-node as shown in the figure below. 
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Figure 2.18 P-V characteristics (left) and root loci plot of eigenvalue (right) 

 

In the above figure, saddle-node or critical point is point C with the maximum 

power Pmax and critical voltage VCT. Operating point of the system slowly changes from 

point B, as stable condition, to point C and after that becomes unstable. In term of 

eigenvalue () consideration, real  (=α) change from positive for stable case, pass zero, 

and decrease further to be negative value for unstable case. This characteristic is the major 

interest of voltage collapse problem of local power system. 

Hopf bifurcation occurs when a pair of complex conjugate eigenvalues (= α ± jρ), 

point A and A’, cross the imaginary axes of the complex plane. The consequence can be 

either stable oscillation or growing oscillatory unstable. This can occur when the resistance 

of the transmission line is significantly not zero [15]. 

2.6 Frequency Stability 

2.6.1 Definition of frequency stability 

Frequency stability is the ability of the power system to maintain or control 

frequency, during normal operation and at given initial conditions, after subjection to 

disturbances. The characteristics time of frequency stability range from several second 

corresponding to the response of devices such as generators control and protection, to 

several minutes corresponding to the response of devices such as prime mover systems and 

load voltage regulators.   

Frequency stability is classified as large disturbance with long-term stability due to 

the characteristic time of the overall islanding is range from seconds to several minutes. 
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Factors influencing frequency stability 

Frequency stability depends on the ability to restore equilibrium between loading 

and generation of the active power. The result may be large excursion of frequency, power, 

voltage, and other system variables, and result in loss of load (load shedding) in large 

areas. 

Frequency stability mostly concerns islanding that may or may not reach an 

acceptable state of equilibrium and with minimum loss of load. Normally, the response of 

overall islanding system to the mean frequency is characterized. Frequency instability 

depends on, for example, poor response of control and protection equipments, or 

insufficient generation reserve. 

2.6.2 Power system characteristics influencing frequency stability 

From an islanding perspective, there are 2 possible cases of frequency instability 

that are, the over-frequency situation corresponding to over-generated Island, and under-

frequency situation corresponding to under-generated Island.  

The over-generated Island cause from, at the time of separation, the islanded area 

has generated power larger than area load including loss. The characteristic of islanding 

system depends on generation, load, loss, and generator control system.  

 

 

Figure 2.19 The over-generated Island diagram 

 

For example, the over-generated cause oscillatory over-frequency for several 

seconds. If control system with auxiliary governor in service, an exceed frequency (or 

overspeed) is detected periodically. Therefore, the governor of mechanical power may be 

switched on-off periodically. This causes oscillatory large swing of mechanical power and 

other involving parameters.   
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The under-generated Island cause from, at the time of separation, the islanded area 

has generated power less than area load including loss. The characteristic of islanding 

system depends on generation, load, loss, and active/reactive devices. 

 

 

Figure 2.20 The under-generated Island diagram 

 

For example, the under-generated cause under-frequency for several seconds. The 

switching sequences include load shedding relays that may reject partly area load with or 

without capacitor switched out. In case of capacitors are not switched out, because of 

surplus reactive power in the area, bus voltage increase significantly. This cause load 

power still high even after load shedding and generator attempt to generate power until 

reach the limit. This causes the frequency to drop for longer periods of time. 

In the case of capacitors are switched out after load shedding, bus voltage increase 

but not significant. Generated power of generator is not reach the limit. The system 

frequency recovers to the rated value within a short time and settles after that.       

2.6.3 Frequency stability analysis 

Power system elements influencing frequency stability are loads, generators, 

excitation control of generator, governor control system, active/reactive control system, 

and protection and control devices. These elements are impacted to frequency stability and 

have to be modeled. There are mainly 2 analysis methods to be used, which are, dynamics 

and static analysis. 

      2.6.3.1 Dynamic analysis 

Dynamic analysis is a time-domain variation simulation that is similar to transient 

and voltage stability analysis.  

The general form of first order differential equations is: 
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 , ,x f x V                                                 Eq. 2-115 

and general form of algebraic equation is 

 , ,  NI x V Y V                                               Eq. 2-116 

Initial conditions ( x0, V0 and 0) are known, where x is state vector of the system, 

V is bus voltage vector,  is rotational speed (or frequency), I is current injection vector, 

and YN is network node admittance matrix. 

Differential equations can be solved using numerical methods while algebraic 

equations can be solved using power flow analysis.  

The overall system equations are provided for differential and algebraic equations 

and can be described similar to transient stability analysis. However, characteristics of 

governor control system, active/reactive control devices, and protection and control devices 

are added to be modeled in this case. 

2.7 Wind Power  

2.7.1 Estimation of wind power  

Wind turbines can be rotated when the air attacks the surface of the blades. 

Therefore, the moving air has kinetic energy to transfer to the blades as lift and drag force 

and then can move or rotate the rotor in the direction of net force. This kinetic energy (KE) 

(Wh) is 

KE = P x H                                                 Eq. 2-117 

Where P is the power of the wind (W) and H is the time that wind move pass the rotor 

(hour).  

For the power of the wind,         21

2
P mV                                                 Eq. 2-118 

where V is velocity (m.s-1), and for the air, the mass transfer is 

m AV                                                   Eq. 2-119 

where   is air density ( kg.m-3 ), A is areas of rotor swept (m2). 

Therefore, the power of the wind (W) over the rotor is 

31

2
P AV                                                  Eq. 2-120 

It can be concluded that power of wind pass one rotor depends on the velocity cube 

( 3V ), areas of rotor , and air density.  
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An extracted mechanical wind power, Pex, can be calculated by 

31

2ex pP c AV                                                 Eq. 2-121 

where cp is performance coefficient which depends on tip speed ratio () and pitch angle 

(p). 

Generally, cp can be estimated using information about the wind turbines from the 

manufacturers which already includes electrical efficiency as shown in the figure below. 
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Figure 2.21 Power curve (left) and Cp curve (right) of Suzlon S64 wind turbine  

 

For example, from the above figure, to estimate cp, two polynomial functions will 

be used to fit 2 different curves. First is for the wind speed from 3 to 6 m/s, second is for 

the wind speed from 6 to 25 m/s. 

For wind speed from 3 to 6 m/s, 3rd order polynomial can be fitted as follows.  

cpa = a1V
3
 + a2V

2
 + a3V + a4      Eq. 2-122 

For wind speed from 6 to 25 m/s, 3rd order polynomial can be fitted as follows.  

 cpb = b1V
3
 + b2V

2
 + b3V + b4          Eq. 2-123 

Therefore, Pex can be calculated using Eqs. 2-121– 2-123 and become 

31

2ex paP c AV    where 3 ≤ V ≤ 6 m/s     Eq. 2-124 

31

2ex pbP c AV    where 6 < V ≤ 25 m/s     Eq. 2-125 

However, the polynomial function can be estimated differently depending on the cp 

curve from the manufacturer. 
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If we know the time series of wind speed and cp curve from manufacturer, then we 

can calculate time series of electrical wind power (Pe) using Eqs. 2-124 and 2-125 (Pe= Pex) 

with the suitable range of selected wind speed. The cpa and cpb can be fitted using 

polynomial function, for example, as show in Eqs. 2-122 and 2-123. Example of electrical 

wind power result of calculation is shown in next figure. 

 

Figure 2.22 Hourly wind speed (m/s) (left) and wind power (kW) (right) for 1000 hours 

 

In the above two figures, examples of hourly wind speed for 1000 hours are shown. 

The electrical wind power (Pe) is then calculated using these hourly wind speed data based 

on Eqs. 2-121 to 2-125. For Suzlon S64 wind turbine, A is 3,217 sq.m. and  ρ is about  1.18 

kg/m3 for Thailand. 

2.7.2 Probability distribution of wind 

The velocity duration of wind 

Velocity duration of wind is the time (hours) that each level of wind velocity occurs 

during a period of one year, one month or one day. The Figure 2.23 is an example of 

frequency distribution of wind over one year. 
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Figure 2.23 Example of velocity duration of wind over one year 

 

Weibull distribution of wind  

The distribution function (cumulative of frequency) of wind speed is expressed as: 

   1

k
V

cF V e
  
                                               Eq. 2-126 

where c is the scale parameter and k is the shape parameter. 

The parameter c is larger for the distribution with stronger wind. The parameter k 

has the value between 1.0 to 2.0 for light and fluctuating wind, and from 2.0 to 4.0 for 

strong and steady wind.  

The frequency function of wind speed can be expressed as: 

 
1 kk V

ck V
f V e

c c

   
    

 
                                    Eq. 2-127 

However, to get a best fit curve of Weibull distribution, R.H.B. Exell et al. (1981) 

claimed that one should exclude calm winds. Figures 2.24 and 2.25 represent examples of 

distribution function and frequency function of wind speed, respectively. 

 

Wind speed (m/s) 
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Figure 2.24 Example of distribution function of wind speed 
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Figure 2.25 Example of frequency function of wind speed 

 

Power Duration and Energy production estimation of Wind Turbine 

From the frequency function of wind speed, we know the parameters c and k, and 

one specified period of time (Ex. 8760 hours), therefore we can produce a velocity duration 

curve as shown in Figure 2.26 (left). Commercial wind turbine generally has information of 

power duration curve of turbine for example as show in Figure 2.26 (right). 

Since we have both the velocity and power duration curves, the energy production 

of that wind turbine with this wind regime can be estimated. Energy production can be 

calculated by integration of the multiplication between the power and duration of wind at 

any velocity for example as follows:  

   
max

0

V V

V

E P V h V dV




         Eq. 2-128 
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Figure 2.26 Power duration curve (left) and Velocity duration curve (right) 

An example of energy production is shown in Figure 2.27. 
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Figure 2.27 Energy production (shaded area) from multiplication between power (kW) and 

velocity duration (hours) 

 

2.7.3 Wind turbine technology  

       2.7.3.1 Wind turbine type 

There are 2 types of wind turbines based on speed control, which are: 

WTS (1) Fixed-speed wind turbines 

The wind turbine’s rotor speed is fixed and can be controlled by stall control. They 

are normally equipped with an induction generator (squirrel cage or wound rotor) which 

directly connect to the grid. The fixed-speed wind turbine is simple, robust, reliable, and 

well-proven. 
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However, its disadvantages are an uncontrollable reactive power consumption, 

mechanical stress, and limited power quality control. In case of weak grid, power 

fluctuation from fixed-speed wind turbine can causes large voltage fluctuation.  

WTS (2) Variable speed wind turbines 

The variable speed wind turbines are designed to achieve maximum aerodynamic 

efficiency over a wide range of wind speeds. Therefore, the rotational speed of a wind 

turbine can accelerate or decelerate and tip speed ratio is fixed depending on maximum 

efficiency. The wind turbines are normally equipped with an induction or synchronous 

generator and connect to the grid through power converter. The power converter controls 

the generator speed, power output and voltage. 

The advantages of variable speed wind turbines are increased energy capture, 

improved power quality, and reduced mechanical stress. The disadvantages are losses in 

power electronics, the use of more components, increasing cost of equipments. 

There are 3 types of wind turbines base on power control, that are 

WTP (1) The stall control 

The stall control wind turbine is robust and cheapest when the blade angle is fixed 

(called passive control). The fixed blade angle is designed for the over wind speed to stall 

and then power losses. This is a slow aerodynamic power regulation causing less power 

fluctuation than fast-pitch power control. 

WTP (2) The pitch control 

The blades can be turned in or out to achieve the maximum power. The pitch 

control has advantage for the starting up and emergency stop. Power output is kept close to 

the rated generation. However, it causes more components with complexity. The high wind 

gust can cause higher power fluctuation around the rated mean power. 

WTP (3) The active stall control 

At low wind speed, the blades are turned the same with pitch control mechanism. 

At high wind speed, the blades are fixed with the angle that can cause stall effect to limit 

the power output. This active stall control can reduce power fluctuation at high wind speed 

unlike in the case of pitch control.     

From the concepts of speed control and power control, wind turbines can be 

classified as presented in the table below. 
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      2.7.3.2 Wind turbine classification  

Typically, 4 conceptual types of wind turbines are presented in the table below [67]. 

 

Table 2.3 Wind turbine types by speed and power control  

Speed control 
Power control 

Stall Pitch Active stall 

Fixed speed Type A Type A0 Type A1 Type A2 

Variable speed 

Type B - Type B1 - 

Type C - Type C1 - 

Type D - Type D1 - 

 

Type A wind turbines (fixed speed with stall control, pitch control, and active stall 

control) are directly connected to the grid with an asynchronous squirrel cage induction 

generator (SCIG). Between SCIG and transformer always has capacitor bank (C-bank) to 

compensate reactive power drawing from the grid. Before C-bank, soft-starter is used for 

smoother connecting to the grid. 

Type B wind turbines (limited variable speed with pitch control) with an 

asynchronous wound rotor induction generator (WRIG) are directly connected to the grid 

through soft-starter, C-bank, and transformer. Additional important equipment is variable 

rotor resistance connecting to the rotor of WRIG which can be controlled by optically 

controlled converter. Therefore, the power output is controlled through variable rotor 

resistance. 

Type C wind turbines (Variable speed with partial scale frequency converter), with 

a slip ring WRIG directly connected to the grid and parallel with partial scale frequency 

converter (PSFC) which are known as doubly fed induction generator (DFIG). The partial 

scale frequency converter (PSFC), parallel to the line between WRIG and transformer, is 

designed for reactive power compensation, the smoother grid connection and grid 

protection. Generally, the frequency or speed range of PSFC is -40% to +30% of the 

synchronous speed.  

Type D wind turbines (Variable speed with full scale frequency converter) with the 

generator connected to the grid through full scale frequency converter (FSFC). FSFC is 

designed for reactive power compensation, the smoother grid connection and grid 
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protection. The generator can be excited electrically by wound rotor synchronous generator 

(WRSG), WRIG, or by permanent magnet synchronous generator (PMSG). 

In 2002, Type C wind turbines had the most shares of 47% of total installed wind 

power follow by Type A wind turbines with 28% shares and type D 20% shares. [67.] 

2.7.4 Wind power models 

For wind power modeling, the 3 main models are wind speed model, wind turbine 

model or wind farm model, and grid system model.  

If a wind farm is considered instead of an individual wind turbine, the wind farm 

model which consists of wind turbine model and wind power integration model are studied. 

 

Wind turbine 1

Wind turbine 2

Wind turbine 3

Wind turbine N

Generators model

Loads model

Network system 
model

Control 
components model

 

Figure 2.28 Schematic diagram of wind power model  

 

      2.7.4.1 Wind speed model 

The main proposed of wind speed model is to generate wind speed for each wind 

turbine. The complex of topography and surrounding obstacles including nearby wind 

turbines causes turbulence of wind and result in complication of the modeling.  

The 3 main parts of the wind speed model are wind speed simulation, turbulence 

model, and wind speed scaled model for wind farm. 

The wind speed simulation will simulate wind speed value, for example, constant 

value, time varying value, ramp, sinusoid, etc., as the main part of wind speed in the case 

of not having the measured wind data. Straightforward wind speed simulation will not 

consider the physical phenomena while the complicated one applies physical phenomena of 

winds using mathematical model. These mathematical functions are such as conservation 
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of mass, conservation of momentum or motion and conservation of heat. The sophisticated 

mathematical modeling bases on the Navier-Stokes Equations that is to simulate steady or 

unsteady (time varying) wind speed.   

The turbulence is a complicated part that is caused by topographical effects and 

from aerodynamic of wind turbine itself and among each other.  The mathematical model 

for topographical effect turbulence is called turbulence closure model which higher order 

of wind speed deviation are considered. The more details are well explained in An 

Introduction to Boundary Meteorology by Roland Stull. 

The turbine generated (aerodynamic of wind turbine) turbulence, or wake effect, can 

be modeled using analytical methods such as velocity deficit model, and numerical 

methods such as eddy viscosity model and computational fluid dynamic (CFD) aeroelastic 

model (from website: www.windpro.com). 

The wind speed scaled model integrates the wind speed simulation and turbulence 

model to generate wind speeds at each wind turbine rotor position in the wind farm. This 

can be called a park scaled model, which are, for example, Mann simulation method, real 

cross spectral method, and complex cross spectral method [51].  

      2.7.4.2 Wind farm/turbine model 

For a wind farm model, the wind power aggregation model is used to approximate 

the power output of a wind farm with reduced computational time and complications. 

There are 3 cases of aggregation model, that are, (1) Aggregated wind farm model, (2) 

Grouped wind farm model, and (3) Detailed wind farm model. 

Aggregated wind farm models assume the same wind speed and same wind turbine 

parameters for all wind turbines. Therefore, only one wind turbine is modeled and then the 

power output of wind farm is the multiply by N turbines [49]. 

Grouped wind farm models assume the same wind speed but different wind turbine 

parameters for wind turbines with the different type. Therefore, each group of wind turbine 

is modeled differently. 

Detailed wind farms compute power from individual wind turbine with different 

wind speed and parameters. This method has higher accuracy than the previous two 

methods but require much of computational time and complication. 

The wind turbine model consists of many sub-models such as rotor model, 

mechanical shaft model, generator model, and power converter model depending on type 
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of wind turbine as be presented in next figure. Furthermore, the converter model, the main 

control system and pitch control system are also considered for some types of wind turbine.  

  

 

Figure 2.29 Schematic diagram of wind turbine model 

 

The rotor model transforms kinetic energy from wind to mechanical power. 

Therefore, the mechanical power output of a rotor depends on wind speed (Vws), air density 

(ρ), area of rotor (Ar), the blade angle (), and the rotational speed of the wind turbine 

(wt).  

( , , )me Pm wt wsP f V                                          Eq. 2-129 

31
( , )

2me p wsP Ac V                                           Eq. 2-130 

The power efficiency coefficient (Cp) depends on tip speed ratio (), and .   

The tip speed ratio is a function of wt, Vws, and turbine radius (R) as follows 

wt

ws

R

V

                                                        Eq. 2-131 

The Cp can be represented in various models, for example, constant power with 

constant Cp, function and polynomial approximation, table representation, and blade 

element momentum method (BEM) and aeroelastic code. [67]   

The moment of inertia of a wind rotor is about 90% of total moment, while the rotor 

generator is about 6-8% and remaining parts of the drive train are about 2-4%.  

The mechanical shaft (or drive train of wind turbine) can be modeled using 

equations of mass motion. A set of the first order differential equations for ith mass model 

is formed as follows [73]: 

d

d
i

i si it

                                             Eq. 2-132 

, 1 1 , 1 1

, 1 1 , 1 1

d
( ) ( )

d
( ) ( )

i
i i i i i i i i i i

i i i i i i i i i i

J K K
t

D D D

     

    

   

   


    

       
                       Eq. 2-133 
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Where i is torsion angle of ith mass (displacement of the mass), i is rotational speed of ith 

mass, ), si is synchronous speed of shaft rotor, Ji is moment of inertia of ith mass, i is 

external torque applied to ith mass, Ki,i+1 and Ki,i-1 are stiffness coefficients of the shaft 

sections between mass (i,i+1)th and mass (i,i-1)th, and Di,i+1 and Di,i-1 are damping 

coefficient of the shaft sections. 

The generator model of squirrel cage induction generator (SCIG) wind turbine in 

the d-q (direct-quadrature) reference frame, was presented already in Section 2.1.3) .  

The generator model of doubly fed induction generator (DFIG) wind turbine in 

the d-q (direct-quadrature) reference frame, the voltages in per unit are as follows [67]: 

[( ) ]

[( ) ]

[( ) ]

[( ) ]

ds s ds s qs s ds s s m qs m qr

qs s qs s ds s qs s s m ds m dr

dr r dr s qr r dr s r m qr m qs

qr r qr s dr r qr s r m dr m ds

u R i R i L L i L i

u R i R i L L i L i

u R i s R i s L L i L i

u R i s R i s L L i L i









 

 

 

 

        


        
        
        

             Eq. 2-134  

The differences from SCIG wind turbine are that the rotor voltage is not zero and 

the derivative of flux linkages are neglected. 

The equations of active (P) and reactive power (Q) are also different due to the 

rotor winding of generator can be adjusted. These equations are 

s r ds ds qs qs dr dr qr qr

s r qs ds ds qs qr dr dr qr

P P P u i u i u i u i

Q Q Q u i u i u i u i

      
      

                       Eq. 2-135 

The power converter model is basically modeled as a current source. uqr is equal 

to ut (the terminal voltage) based on the assumption that d-axis corresponds to the 

maximum of the stator flux. Thus, electrical torque can be computed as follows 

( )
m t qr

e
s s m

L u i
T

L L



                                                 Eq. 2-136 

The reactive power exchanged with the grid at the stator terminals (Qs) depends on the 

direct component of the rotor current. Thus, DFIG wind turbine neglects the stator 

resistance, and assumes that d-axis corresponds to the maximum of the stator flux. 

Therefore,   

2

( ) ( )
m t qr t

s
s m s s m

L u i u
Q

L L L L 
 

 
                                      Eq. 2-137 
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The total reactive power exchanged with the grid depends on both the control of the 

generator and the control of the grid side of converter, therefore, active and reactive power 

converter are 

 
c dc dc qc qc

c qc dc dc qc

P u i u i

Q u i u i

  
  

                                               Eq. 2-138 

Where c stands for converter. 

In this case, Pc is equal to Pr of DFIGURE Pr may be multiplied with the converter 

efficiency. Total reactive power exchanged with the grid is equal to Qs + Qc. 

      2.7.4.3 Power system model 

The power system model is a set of nonlinear first-order differential equations and 

algebraic equations (DAE) expressed by 

( , , )

( , , , ) 0

t

t




x f x u

g x y u


     Eq. 2-139 

Where  x, y, u are state, input, and output vectors of generator, generator controller, 

turbine, turbine controller, transformer,  transformer controller, transmission line, load, 

motor, etc. 

The linear DAE of the power system is described by 

    
    

x A x B u

y C x D u


     Eq. 2-140 
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Where A, B, C, D are state matrixes that define the proportion of the input appearing 

directly in the output and n, m, r are the size of state variables, number of output, and 

number of input variables, respectively.  
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2.7.5 Wind Power and Power quality 

      2.7.5.1 Classification of power quality 

The 4 major international standards of power quality are by J. Arrillaga and N.R. 

Watson (2000) and Roger C. Dugan (2003) as follows: 

 IEC 61000-2-5:1995 is Electromagnetic Compatibility Standard (EMC) for 

- Low-frequency phenomena (<9kHz) (conducted voltage, frequency) 

- High-frequency phenomena (>9kHz) (Electric and mechanical field) 

- Electrostatic Discharge (ESD) phenomena  

 IEC 61000-2-1:1995 for EMC that is technical reported with conducted low-

frequency (<10kHz)  

 IEEE 1159:1995 for the power system with 7 categories depending on spectral 

content, duration, and voltage magnitude. 

(C.1) Transient with impulsive (10-9, 10-6, 10-3 sec) and oscillatory 

(C.2) Short-duration variation (0.5 cycle – 1 min) (sag, swell, Interruption) 

(C.3) Long-duration variation (>1min) (Interruption, over/under voltage) 

(C.4) Voltage imbalance (steady state) 

(C.5) Waveform distortion (d.c.offset, harmonics, inter-harmonics, noise) 

(C.6) Voltage fluctuation ( <25Hz) 

(C.7) Power frequency variation (< 10sec)  

 EN 50160-1999 standard defining the quality of the power supplied to the 

consumers. 7 limits for the low voltage supply are:  

(1) Voltage magnitude : 95% of 10min avg. during 1 week should be within 

10% of the nominal voltage (Vn = 230V)  

(2) Voltage magnitude step : not exceed 5% of Vn  

(3) Voltage fluctuation : 95% of 2h long term flicker (fl) during 1 week not 

exceed 1. ( 12
3

3

1

12lt sti
i

P P


   , Pst is short-term flicker with 10 min averages) 

(4) Harmonic distortion : voltage harmonics up to order 25th not exceeding 

95% of 10 min avg. during 1 week. 40
2

2
h

h

THD V


  is calculated for voltage  8% 

(5) Voltage unbalance : 95% of ratio of – and + sequence voltage 10min avg. 

not exceeding 2% during 1 week. 
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(6) Signaling voltages : 95% of the 3s avg. during 1 day not exceeding 9% for 

frequency up to 500Hz, 5% for freq. 1-10 kHz, 1% for higher frequencies. 

(7) Frequency : 95% of 10s avg. not outside the range 49.5 – 50.5 Hz 

Power quality standard for wind power 
The International Electrotechnical Commission (IEC) published the first edition of 

the technical standard on assessment of the power quality from wind turbines in 2001 that 

is IEC 61400-21 and the latest version in 2008.  

There are many important parameters in IEC 61400-21 for wind turbines (WT) that are: 

(1) Maximum permitted power, Pmc 

(2) Maximum measured power, P60 (60s average) 

(3) Maximum measured power, P0.2 (0.2s average) 

(4) Reactive power, Q 

(5) Flicker coefficient (depend on phase angle, annual avg. wind speed) 

(6) Max. number of switching operation in 10 min, N10 

(7) Max. number of switching operation in 2 h, N120 

(8) Flicker step factor (depend on network impedance phase angle)  

(9) Flicker change factor (depend on network impedance phase angle)  

(10) Maximum harmonics current, Ih (only WT with converter)  

However, the PQ standard on the assessment of wind farm has not yet been published.  

Interesting power quality aspects incorporating wind power 

Based on IEEE 1159 and IEC 61400-21, 3 interesting aspects of power quality 

including wind power are,  

 Long-duration voltage variation (Interruption, Over/under voltage due to 

mismatching between wind power source and load demand) 

 Voltage fluctuation ( <25Hz including flicker) 

 Frequency variation (< 10sec)  

The other categories not directly influenced by wind power fluctuations and/or rare 

to occur at present. Wave form distortion is not considered here since it depends on 

electronics components of wind power system which beyond the scopes of thesis.  
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      2.7.5.2 Voltage variation of wind power [73] 

The variation of voltage when connected to a wind power plant depends not only on 

variation of wind power generation and load but structure of the power network and point 

of connecting have also to be considered. For example 2 types of power network with 

different point of wind power connecting are expressed. These are 1) typical radial power 

network including WTGs at terminal and 2) power network including WTGs at middle 

node.  

The voltage variation (drop) for typical radial power network including WTGs at 

terminal is constructed as presented in next figure.  

 

 

Figure 2.30 Circuit diagram of typical radial power network including WTGs 

 

Variations of voltage, for typical radial power network, including WTGs at a 

terminal, as a function of active, reactive power and impedances is presented as follows. 

1 1

, 1 , 1
0 0

0 0

j j

WTGs l l WTGs l l
WTGs l l

j j j
n

P R Q X
V V V

V

 

 
 


    

 
                   Eq. 2-141 

Where Vn is rated voltage ,V0j is voltage drop in branches from 0 to j without WTGs. 

0
WTGs
jV is voltage drop with WTGs. 

The voltage change in the ith node for power network, including WTGs at jth node 

is constructed, as presented in the figure below. 

 

 

Figure 2.31 Circuit diagram of power network including WTGs at the jth node 

WTGs WTGs

01 01 ij ij
N-1N N-1N

1 1 i i j j N-1 N-1
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Variations of voltage for power network, including WTGs at the middle node as a 

function of impedances and current of WTGs is presented in the equation below. 

1
1 1 1

, 1 , 1 , 1
0 0

3
i N N

WTGs
i i i WTGs p p p p p p

p p j p

V V V I Z Z Z


  

  
  

  
     

  
               Eq. 2-142 

Where Vi is the voltage in ith node without WTGs, WTGs
iV is the voltage in ith node with 

WTGs, and IWTGs is the current of WTGs.  

      2.7.5.3  Flicker [73] 

There are 3 types of flicker according to IEC61400-12, which are: 

 Flicker emission level during continuous operation for N WTGs  

 2

1

1
( , )

N

st lt i k a ni
ik

P P c v S
S




                                      Eq. 2-143 

 Short-term flicker emission level during switching operation for N WTGs 

 
0.31

3.2
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18
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N

st i fi k ni
ik

P N k S
S




   
 
                                     Eq. 2-144 

 

 Long-term flicker emission level during continuous operation for N WTGs 

 
0.31

3.2

120
1

8
( )

N

lt i fi k ni
ik

N k S
S




   
 
                                      Eq. 2-145 

Where Sk is apparent short-circuit power at PCC , Sni is rated the apparent power of 

ith wind turbine, ci is ith wind turbine flicker coefficient, k is network impedance phase 

angle, va is annual average wind speed, kfi is flicker step factor, ku is voltage change factor, 

N10i , N120i are max. number of switching operation within 10 and 120 minutes. ci , kfi , N10i 

, N120i , ku are from measuring methods in IEC61000-21.  

Relative voltage change (%) due to switching operation is 

1100. ( )u k n kd k S S                                                 Eq. 2-146 
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      2.7.5.4 Frequency variation of wind power [3] 

The frequency variation can be considered from two aspects, which are: 

1) The frequency change considering generation characteristics 

1

G GL
G N

n L L
i mi

i

P PPf
R

f P PK P


 
   


                                        Eq. 2-147 

*
0 max min

*
0 max min

1
i

i

f P PP
K

R f P f f


  

 
                                        Eq. 2-148 

 
2) The frequency change considering system control: 

1 1

( )
PS PS PS

PS
n L PS L G L L

P P Pf
R

f P K P K K P

  
     


                         Eq. 2-149 

 PS G L L G L nP P P P K K f f                                          Eq. 2-150 

 
 

 

Figure 2.32 The P-f characteristics of wind power system 

Where 

Ri = 1/ Ki is statism or slope between rotational speed and turbine mechanical power  

RG = 1/ KG is for generation  

RL = 1/ KL is for load  

KPS = 1/ RPS is system stiffness  

PG is power generation  

PL is power load  

Pm is mechanical power generation  

PPS is change in overall power  
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2.8 Probabilistic Methods for the Power System   

Present and future power systems are dynamics systems that are very complicate 

and expected to have high reliability.  Realistic operating conditions and system parameters 

cannot be predicted certainly due to many uncertainties from, for example, the system 

structure, load conditions, generation conditions, and affecting environment. 

Uncertainties from unpredictable phenomena are random. Therefore, deterministic 

methods with high reliability cannot be used directly to deal with these problems. 

Normally, deterministic methods are based on worst case scenarios and ignore the 

variability of the important parameters of the power system. Better technique is the several 

cases scenario which consider several possible values of parameter or condition.  

However, this is not precise enough when dealing with random variables or random 

processes affecting the system design and operation. Accordingly, the probabilistic 

methods are the most relevant tools to deal with random variables and processes of the 

system. 

2.8.1 Random Variables 

Random variable may be continuous or discrete. Important topics relating to 

random variables are probability distribution, cumulative distribution function, probability 

density function, probability mass function, Mean, Variance, and Standard Deviation of 

random variable, multiple random variable, and determination of distribution models. 

2.8.1.1 Probability distribution 

Probability distribution is the probability of the occurrence of random variable X. 

Probability distribution, p(x) when xX has two simple properties as follows: 

For continuous random variable 0 p( ) 1x     and   p( ) 1x




  

For discrete random variable  0 p( ) 1ix     and   p( ) 1i
i

x   

      2.8.1.2 Cumulative distribution function 

Cumulative distribution function, CDF, ( FX(x) ) is the probability that X is less 

than or equal to x when xX or 

   F P XX x x                                                 Eq. 2-151 

 FX(x) has interval between 0 and 1 

  lim F 1x X x   and  lim F 0x X x    
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 If FX(x) is discrete, then X is discrete random variable. But if FX(x) is 

continuous, then X is continuous random variable. 

2.8.1.3 Probability density function 

Considering x on the interval (a,b) on the real axis with a<b, the probability that X 

is in between the interval (a,b) is the integral of probability density function (PDF), fX(x), 

between the limit (a,b) as follows: 

   XP f d
b

a

a X b x x                                                Eq. 2-152 

Several properties involving PDF are as follows: 

 fX(x)  0 for all x  and  Xf d 1x x




  

  XF f( )d
x

x t t


    and       P F Fa X b b a      

 
   X

X

dF
f

d

x
x

x
  

2.8.1.4 Probability mass function 

For a discrete random variable X, the probability mass function (PMF) is the 

probability that X is equal to x.  

PMF = P(X=x)                                               Eq. 2-153 

For the sequence of probabilities of discrete random variables ( P(X=xi) ), CDF can 

be used to describe as follows: 

         1 1F F P X P X P Xi i i i ix x x x x                            Eq. 2-154 

      2.8.1.5 Mean, Variance, and Standard Deviation of random variable 

Mean or Expected value (Central value) 

The mean or expected value of a random variable is the weighted average, while the 

weight is the probability of the random value. 

For discrete random variables: E(X) i i
i

x p                                               Eq. 2-155 

For continuous random variables: XE(X) f ( )dx x x




                                         Eq. 2-156 

Variance and Standard Deviation 

The expected value functions above can be applied to the function of X or g(X) as 

follows: 
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For discrete random variables: E[g(X)] g( ) p
i

i i
all x

x                                      Eq. 2-157 

For continuous random variables: XE[g(X)] g( ) f ( )dx x x




                                Eq. 2-158 

E[g(x)] is called the mathematical expectation of g(X). 

The variance (2) of a random variable is ( Var(X) ) defined as follows: 

2Var(X) E[( X- E(X)) ]                                       Eq. 2-159 

If g(X) = (X-E(X))2 and E(X) = X , therefore : 

For discrete random variables: 2
XVar(X) g( ) p ( - ) p

i i

i i i i
all x all x

x x             Eq. 2-160 

For continuous random variables:      2 2 2
X X XVar(X) ( - ) f ( )d E(X )x x x 





     Eq. 2-161 

The standard deviation () of the random variable is the square root of Var(X), that is:  

Std(X) Var(X)                                           Eq. 2-162  

For bivariate random variable (X,Y), the mean, variance, and covariance are as follows: 

The mean of X is   XYE(X) xf (x,y)dxdy
 

 

                                           Eq. 2-163 

The variance of X is   2
X XY=Var(X) (x ) f (x,y)dxdyX 

 

 

                   Eq. 2-164 

The covariance of X, Y is Cov(X,Y) E[(X )(Y )] E(XY) E(X) E(Y)X Y       Eq. 2-165 

If X and Y are independent X YCov(X,Y) (x )f (x)dx (y )f (y)dyX Y 
 

 

        Eq. 2-166 

The correlation coefficient is  
Cov(X,Y)

X Y


 

                                               Eq. 2-167 

      2.8.1.6 Types of probability distribution 

There are two main types of probability distribution, which are discrete distribution 

and continuous distribution. 

For discrete distribution 

1) The binomial distribution 

The probability of exactly k occurrences in n trials in a Bernoulli sequence is the 

binomial PMF, that is: 
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   P(X ) p 1 p
n kn k

kk
                                         Eq. 2-168 

Where p is probability of occurrence of an event in each trial, ( n
k ) = n!/[k!(n-k)!] is 

binomial coefficient. 

2) The geometric distribution 

For a Bernoulli sequence, the probability that the number of trials until a specified 

event occurs for the first time is called the geometric distribution which is: 

1P(X ) pq jj                                                    Eq. 2-169 

Where q=1- p is the probability of the nonoccurrence of an event in any of prior (j-1) trials. 

 The mean and variance of the geometric distribution are as follows: 

1 2
2

1

1 1
E(X) .pq p(1 2q 3q ...) p

(1 q) p
j

j

x






      
                   Eq. 2-170 

2

1
2

1 q
Var(X) pq

p p
j

j

x  
   

 
                                      Eq. 2-171 

3) The Poisson distribution 

The Poisson distribution is the probability of the occurrence of events in time 

and/or space assuming that a unit interval is constant and the events are all independent.  

The PMF of a Poisson process (or called Poisson distribution) is: 

( )
P(X )

!

x
t

t

t
x e

x
                                              Eq. 2-172 

Where  is the mean occurrence rate (events per unit interval) and Xt is random variable 

representing the number of occurrences in an interval of range t. 

For continuous distribution 

4) The normal distribution 

The normal (or Gaussian) distribution is one of the most commonly used 

distributions. Its density function with a bell shape curve is: 
2

2

( )

2
X 2

1
f ( )

2

x

x e








                                          Eq. 2-173 

This bell shape curve is symmetric around  and its cumulative distribution function is: 

2

2

( )

2
X 2

1
F ( ) d

2

yx

x e y










                                       Eq. 2-174 
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The normal probability density relating to normal distribution is obtained from the 

tables of the standard normal distribution (the normal distribution with zero mean and 

standard deviation = 1or N(0,1) ). The standard normal distribution is: 

2 2
Z

1
( ) d

2

z
tz e t






                                              Eq. 2-175 

Where z = (x-)/. If X has N(,), then CDF of random variable X is as follows: 

XF ( )
x

x



   

 
                                              Eq. 2-176 

Therefore, the probability that X is in between a and b is: 

X XP( X ) F ( ) F ( )
b a

a b b a
 

 
             

   
              Eq. 2-177 

5) The logarithmic normal distribution 

If the logarithm of the random variable X has a normal distribution, then X has the 

logarithmic normal distribution (or log-normal). The PDF of X is: 
2

1 ln

2
X

1
f ( ) ,0

2

x

x e x
x




 

   
                              Eq. 2-178 

Where  = E(lnX) and ε = Var(ln X) are the mean and the standard deviation of  lnX , 

respectively. The probability that X has an interval (a,b] is: 
2

1 ln

21
P( X ) d ,0

2

xb

a

a b e x x
x




 

   
                             Eq. 2-179 

When considering the standard normal distribution of lnX. Let s=(lnx-)/ε and dx = xε ds: 

2
(ln )/

0.5

(ln )/

1 ln ln
P( X ) d

2

b
s

a

b a
a b e s

 

 

 
 






            
                   Eq. 2-180 

6) The gamma distribution 

The gamma distribution has an equation as follows: 

1
Xf ( )

( )
xx x e


 


 


                                               Eq. 2-181 

Where α>0 and >0 are the characteristic parameters of the distribution shape and Г(α) is 

value of gamma function as follows: 

1

0

( ) dxx e x


      and   ( ) ( 1) ( 1)                             Eq. 2-182 

Where  = α/ and 2 = α/2.  
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7) The Weibull distribution 

The PDF of the Weibull distribution is: 

1
Xf ( ) 0, 0, 0xx x e x

                                Eq. 2-183 

The CDF of X is from the integration of fX(x) as follows: 

1
XF ( ) d 1

x
x xx x e x e
      



                                    Eq. 2-184 

Where α and  are scale and shape parameters of the Weibull distribution.  

If  1, then the shape is an exponential distribution. If  >1, then the shape is 

asymmetric bell.  The mean and variance of Weibull distribution can be determined as 

follows: 

 1/ 1 1            Eq. 2-185 

   2 2/ 21 2 1 1             Eq. 2-186 

The Weibull distribution is used to determine the long-term wind speed distribution. 

        2.8.1.7 Multiple random variable 

Before understanding multiple random variable (or multivariate random variable), 

the univariate and bivariate random variables are explained.  

1) The univariate random variable 

 There is only 1 random variable, X. 

 CDF of X is    F P X f( )d
x

X x x x x


      

2) The bivariate random variable 

 There are 2 random variables, X and Y. 

 Joint CDF of X and Y is        XY XYF , P X , Y f , d d
y x

x y x y x y x y
 

        

Where  XYf ,x y is the joint PDF. To find joint PDF of X and Y, CDF and PDF of 

X and Y is explained as follows: 

 For CDF of X:       X XYF P X ,Y f , d d
x

x x x y x y


 

         

 Therefore, PDF of X is:    X
X XY

d F ( )
f f , d

d

x
x x y y

x





     
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 For CDF of Y:       Y XYF P X , Y f , d dx
y

y y x y y


 

         

 Therefore, PDF of Y is:    Y
Y XY

d F ( )
f f , dx

d

y
y x y

y





      

 Joint PDF is:    
 

XY
X|Y

Y

f ,
f |

f

x y
x y

y
    and      

 
XY

Y|X
X

f ,
f |

f

x y
y x

x
     

 If X and Y are independent:    X|Y Xf | fx y x    and      Y|X Yf | fy x y     

Therefore       XY X Yf , f .fx y x y     

If X and Y have a normal distribution (Bivariate normal random variable), then: 
2

X

X
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X

X

1
f ( )

2

x

x e




 

 
  

    and 

2
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1
f ( )

2

x

y e




 

 
  

        Eq. 2-187 

If X and Y are independent:  

     
2 2

X Y

X Y

0.5 0.5

XY X Y
X Y

1
f , f .f

2

x x

x y x y e

 
 

  

          
                       Eq. 2-188 

If X and Y dependent, 

Joint PDF is    
2 2

X X Y Y
2

X X Y Y

0.5
2

(1 )

XY 2
X Y

1
f ,

2 (1 )

x x x x

x y e

   
   

   

                   
         


 Eq. 2-189 

Where ρ=XY/(XY) is the correlation coefficient, XY is the covariance of X and Y. 

3) The multivariate random variable 

 There are more than 2 random variables, U=[X1,X2,…,XN]T. 

 The covariance matrix of U is  T
U E ( )( ) N NR      U U  

1
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X

X

X
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 
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  
 
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 

U

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 
 
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U




   


 

 If U has a normal distribution, the multivariate PDF of U is 

T 10.5 ( ) ( )

1/2/2

1
f( )

(2 )N
e

  

 

     UU U

U

U                          Eq. 2-190 

Where U is a covariance matrix and det(U) = |U |. 
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2.8.1.8 Generalized tetrachoric series method for probability of 

multivariate random variables  

To determine the probability of X  K or P(X  K) where X is a multivariate 

random variable, the integral form is first stated as follows: 

2 1

1 1 2 2 X 1 2 1 2P(X K) ( , ,..., , ) f ( , ,..., )d d ...d
n

n n n n

k k k

P x k x k x k x x x x x x
  

           Eq. 2-191 

The tetrachoric series form is: 

     1 2

1 2 1 2

1 2

1

1 2 1 2 1 2
0 0 0

P(X K) .. ! !.. ! ... ( ) ( ).. ( ) ( ) ( ).. ( )m

m n

m

aa a
m p p p r r r n n

a a a
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P(X K) ( ) ( )
!

i

i
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m

am n
p

r j j
a a a i ji

q
H k g k

a

  

    

  
        

               Eq. 2-192 

Where m=n(n-1)/2, g(x) = (2)-0.5exp(-0.5x2) is standard normal PDF. 

H-1(x) = (1-G(x))/g(x) , H0(x) = 1  , Hj(x) =  
2

2
0.5

0.5 d
1

d

j x
x j

j

e
e

x

 
   

 
, 

G( ) ( )d
b

b g x x


  . 

i

i

a
pq can be determined step by step as follows: 

  Step (1): From covariance matrix of X or matrix C with dimension n x n, divide 

row i with (cii)
0.5 and divide column j with (cjj)

0.5 . The result is matrix Q: 

     
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0.5 0.5 0.521 22 2
22 11 22 22 22
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n
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nn nn nn nn
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q q q
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q q q
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                    
 
  






   
   



 

 Step (2): Find pi which are numbers of row and column of Q, if i = 1,2,3…,m . 

1 2 ... 1 1 ... 2( 1) 2 2( 1) ...

1 2 13 ... 1 2 3 2 4 ... 2 3 4 3 5 ... 1i

i n n n n n n m

p n n n n

   



  

 Step (3) Find 
i

i

a
pq using pi from Step.2) and ai that is stated before. 
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rj is defined by the summation of ai minus 1 which, when compared to i

i

a
pq using the table 

below, q with row j or column j being selected. 

1 2 1 1 2( 1) 2 2( 1)

1 2 13 1 2 3 2 4 2 3 4 3 5 1

... ... ...

... ... ...
i

i n n n n n n m

p n n n n

a a a a a a a a a a

q q q q q q q q q q
   



   

For example,  r1 = ( a1+a2+…+an-1 ) -1,    r2 = (a1+an+an+1+…+a2(n-1) ) -1 

Process to find P(XK): 

(1) Determine n, m, and matrix Q and then start with i = 1 and am = 0 

(2) Define pi and ai and do steps (3)-(6) 

(3) Determine i

i

a
pq from (2) and (1) and then compute  ( i

i

a
pq /ai!) 

(4) For j = 1 to n, determine g(kj), rj and Hrj(kj) and then compute  Hrj(kj)x g(kj) 

(5) Compute result of (3)x(4) 

(6) i = i +1 , if i > m go to (7) but if not return to step (2). 

(7) Increase am = am +1 to infinity (practically 100) with the repeat step (1)-(6) 

while the sum of each step of (5) as a result  

(8) Increase am-1 = am-1 +1 to infinity (practically 100) and repeat steps (1)-(6) 

while summing each step of (7) as a result  

(9) Repeat step (8) with am-2, am-3,…, a1. The final result is P(XK). 

2.8.1.9 Determination of distribution model using the Kolmogorov-Smirnov 

test 

The Kolmogorov-Smirnov (K-S) test compares the selected theoretical CDF ( F(x) ) 

with the cumulative frequency curve of considered data (Qn(x)). 

The maximum difference between F(x) and Qn(x) is the measure of the fit. 

Dn = max| F(x) - Qn(x) |                                       Eq. 2-193 

Since Dn is random variable, if Dn is less than the critical value α
nD , then the 

distribution of considered data is fit with the selected theoretical distribution at significant 

level α. The probability that Dn is less than or equal to α
nD is  

P( Dn α
nD ) = 1- α                                              Eq. 2-194 

The smaller is α, the larger is α
nD . The larger is n, the smaller is α

nD . 
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      2.8.1.10 Convolution integral 

If Z = g(X,Y) and a unique g-1(z,y) = x and g-1(x,z) = y exist, Then the PDF of Z is: 

1
1

Z XY

g
f (z) f (g , y) dy

z

 







   where g-1(z,y) = x = g-1 Eq. 2-195 

1
1

Z XY

g
f (z) f (x,g ) dx

z

 







   where g-1(x,z) = y = g-1 Eq. 2-196 

If Z = X + Y , then, 
1g x y

1
z z z

  
  

  
. Thus PDF of z is: 

Z XYf (z) f (z y, y)dy




                                        Eq. 2-197 

Since Z is symmetric with respect to X and Y, therefore:  

Z XYf (z) f (x, z x)dx




                                       Eq. 2-198 

If X and Y are statistically independent: 

Z X Yf (z) f (z y) f (y)dy




                                       Eq. 2-199 

Z X Yf (z) f (x) f (z x)dx




                                       Eq. 2-200 

These above two equations are called the convolution integrals. 

2.8.2 Stochastic processes 

The stochastic process means random functions of time. For random variables, each 

observation corresponds to one or more frequencies of an event occurring. For stochastic 

process, each observation corresponds to a function of time with the time sequence of the 

events. 

2.8.2.1 Types of stochastic processes [58] 

There are 4 categories of stochastic processes that can be analyzed using different 

mathematical techniques:  

 Discrete values and discrete time  

 Discrete values and continuous time (for example, Poisson process) 

 Continuous values and discrete time 

 Continuous values and continuous time (for example, Brownian motion 

process) 
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2.8.2.2 The Markov process [5] 

All possible values of random variables are the state system or state space. The 

probability of transition from one state to another may generally depend on the prior states 

or the previous realization of the process. If the future state is solely influenced by the 

present state of the system, then the process is called a Markov process. If the state space is 

a countable set, the process is called a Markov chain. 

For probability that is independent of the process x at the prior time before t0, if the 

process x(t) is in state ki and time t0, the probability that the process goes into the state kj at 

time t0+t is P{ x(t0+t)= kj | x(t0)= ki }. If this is a Markov chain, the probability is reduced 

to: 

pij(t) = P{ x(t0+t)= kj | x(t0)= ki }                                  Eq. 2-201 

If this is a homogenous Markov chain, this probability is reduced to:  

pij(t) = P{ x(t)= kj | x(t0)= ki }                                     Eq. 2-202 

For arbitrary t and s: 

pij(t+s)  =  P{ x(t+s)= kj | x(0)= ki } 

 = 
a
 P{ x(t+s)= kj | x(t)= ka, x(0)= ki } P{ x(t)= ka | x(0)= ki } 

 = 
a
 P{ x(t)= ka | x(0)= ki }P{ x(t+s)= kj | x(t)= ka}  

pij(t+s)  = 
a
 pia(t) paj(s)                                                             Eq. 2-203 

This transition probability is a continuous version of the Chapman-Kolmogorov equation. 

If we consider the change transition probability, the forward and backward 

Kolmogorov equations are stated as follows: 

For the forward Kolmogorov equation: 

( ) ( )
( ) ( ) , 0,1, 2,...ij ij

ij ia aj
a

p t t p t
p t p t i j

t


  
   

          Eq. 2-204 

For the backward Kolmogorov equation: 

( ) ( )
( ) ( ) , 0,1, 2,...ij ij

ij ia aj
a

p t t p t
p t p t i j

t


  
   

          Eq. 2-205 

Where (0) 0, , (0) 1ij iip i j p   , and 
0

d ( )

d
ij

ij

t

p t

t




 are the transition densities. 
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      2.8.2.3 The Poisson process [22] 

The Poisson process is a Markov process, which is a discrete value with continuous 

time or parameters. For the Poisson process with constant : 

 Pi,j(s,t) = P[X(t) = j | X(s) = i] 

 Events occurring in non-overlapping time intervals are independent of each 

other. 

 For a very small t, the probabilities of occurrence of events in the interval  

(t, t+t] are followed these two assumptions 

(1) Probability of the transition to the next state is   Pi,i+1(t, t+t)  t 

(2) Probability of two or more transitions within t is zero, that is  

Pi,i(t, t+t)  1-t 

Let Pn(t) = P[X(t) = n | X(0) = 0]. Based on assumption (2), in general:  

Pn(t+t) = Pn-1(t) t + Pn(t)(1- t)                             Eq. 2-206 

0
0

d P ( )
P ( )

d

t
t

t
                                          Eq. 2-207 

n
n 1 n

d P ( )
P ( ) P ( )

d

t
t t

t
                                        Eq. 2-208 

If we assume the initial condition P0(0) = 1 and Pk(0) = 0, k=1, 2, 3,… for a given 

interval (0,t] , then the solution of the above linear differential equations is:  

n

n

( )
P ( ) , n 0,1,...

n!
tt

t e                                  Eq. 2-209 

Instead of starting at t=0, the initial observation is made at t=s, s>0 which X(s) = i. 

Therefore, the probability of (n-i) events in the remaining time (t-s) is: 

n-i
( )

i,s

[ ( )]
P ( , )

(n - i)!
t st s

s t e   
                          Eq. 2-210 

      2.8.2.4 The Brownian motion process [5] 

The Brownian motion process is of continuous time and is a continuous value 

stochastic process. It is used to describe the movement of a particle in a liquid relating to 

external force and collision. The position x(t) of a particle is modeled as a function of 

second-order differential equation as follows: 

mx''(t) + f x'(t) + cx(t) = W(t)                                 Eq. 2-211 

where m is the mass of the particle, f is coefficient of friction,  cx(t) is an external force, 

and W(t) is the collision force.  
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W(t) can be viewed as normal white noise with zero mean and power spectrum SF() = 

2kTf where T is absolute temperature, k = 1.37 x 10-23 J.K is Boltzmann constant.   

If restoring force cx(t) is not zero, the position x(t) approaches a stationary state with zero 

mean and power spectrum: 

2 2 2 2

2
( )

( )x

kTf
S

c m f


 


 
                                Eq. 2-212 

Its autocorrelation is:   | |( ) cos sin | |x

kT
R e

c
     


  

  
 

                    Eq. 2-213 

For specific t, its PDF is: 
2

2( )
2

cx

kT
x

c
f x e

kT



                                                  Eq. 2-214 

where x(t) is a normal random variable with zero mean and variance R(0) = kT/c. 

The conditional density of  x(t) is a normal curve with mean ax0 and variance P, where: 

( )

(0)
x

x

R
a

R


  2(0)(1 )xP R a   0t t                      Eq. 2-215 

If restoring force cx(t) is zero (for example free motion), thus:  

mx''(t) + f x'(t) = W(t)                                         Eq. 2-216 

The solution of this equation is nonstationary process (since it has t in an equation). 

If replace position with velocity, v(t) = x'(t), this equation becomes: 

mv '(t) + f v (t) = W(t)                                         Eq. 2-217 

This equation is called Langevin equation. The steady state solution of this equation 

is stationary process (Ornstein-Uhlenbeck process) with: 

spectrum Lorenzian is   
2 2 2

2
( )v

kTf
S

m f






                                       Eq. 2-218 

its autocorrelation is    
| |

( )
f

m
v

kT
R e

m






                                             Eq. 2-219 

v(t) is a normal process with zero mean and variance kT/m, where 

its PDF is   
2

2( )
2

mv

kT
v

m
f x e

kT



                                                  Eq. 2-220 

The conditional density of  v(t) is a normal with mean av0 and variance P, where: 

( )

(0)

ft
v m

v

R
a e

R

 

   
2

2(1 ) (1 )
ft

mkT kT
P a e

m m



                       Eq. 2-221 

Its variance is  2 2
[x( ) ] ft mkT m m

P E t t e
f f f

 
    

 
                                  Eq. 2-222 
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Therefore,  x(t) in free motion is a nonstationary normal process with zero mean 

and variance P. If t >> m/f , the variance P is reduced to: 

2 2 22
[x( ) ] 2

kT kT
P E t t D t D

f f
                                      Eq. 2-223 

where D is the diffusion constant. 

The Brownian motion process has properties such that 

For  > 0 and X(0) = 0, [ X(t+)-X(t) ] is a Gaussian random variable with  

E[ X(t+)-X(t) ] = 0 

Var(X(t+)-X(t)) = α 

which is independent of X(r) for all r  t . 

The joint PDF of Brownian motion process X(t) is 
2

1

1

1

( )

2 ( )
( ),..., ( ) 1

1 1

1
( ,..., )

2 ( )

n n

n n

k

x xk
t t

X t X t k
n n n

f x x e
t t









 


 




                Eq. 2-224 

For the Weiner process, mx''(t) of a particle in free motion is assumed to be very 

small compare to  f x'(t) and can be neglected, thus: 

 f x'(t) = W(t) and 
0

1
x( ) ( )d

t

t W
f

                            Eq. 2-225 

Its variance is  2 22 2
[x( ) ] 2

kT kT
P E t t t D

f f
        

Therefore, x(t) is a nonstationary normal process with PDF: 
2

2
( )

1
( )

2

x

t
x tf x e

t






                                                 Eq. 2-226 

For the Weiner process, the position of a particle in free motion with negligible 

acceleration has the following properties 

 E[x(t)] = 0,  Var(x(t)) = αt ,   Rx(t1, t2) = α min(t1, t2) 

 Independent increment 

 The conditional density of x(t) is normal with mean ax0 and variance P, where: 

0

0 0

( , )
1

( , )
x

x

R t t
a

R t t
   0 0( , ) ( , )x xP R t t aR t t t t            Eq. 2-227 

 Its PDF is  

2
0

0

( )

2 ( )
( ) 0

0

1
( | x( 0) )

2 ( )

x x

t t
X tf x t x e

t t




 
 


                           Eq. 2-228 
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      2.8.2.5 Autocorrelation and autocovariance [22] 

The autocorrelation function of the stochastic process X(t) is 

RX(t,) = E[X(t)X(t+)] 

The autocovariance function of the stochastic process X(t) is 

CX(t,) = Cov[X(t),X(t+)] 

For =0,         CX(t,t) = Var[X(t)] 

The relationship between an autocovariance and autocorrelation function is: 

CX(t,) = RX(t,) – E[X(t)]E[X(t+)] 

      2.8.2.6 The stationary process [58] 

For the stationary process, the statistical properties of the process do not change 

with time. Therefore, the same random variable is observed at all time instants. For any 

time instant t and time difference : 

fX(t)(x) = fX(t+)(x) = fX(x) 

where X(t) = X(t1), X(t2), X(t3),…, X(tm) for t=t1, t2, t3,…tm and x = x1, x2, x3,…,xm . 

Stationary process is defined by the expected value, autocorrelation, and 

autocovariance, while a wide sense stationary process is defined only by expected value 

and autocorrelation as follows: 

For wide sense stationary process (WSS) X(t):  

E[X(t)] = X(t) = X                                             Eq. 2-229 

RX(t,) = RX(0,) = RX()                                          Eq. 2-230 

For a stationary process (strict sense) X(t), one more property is added as follows: 

CX(t,) = RX()-(X)2 = CX()                                      Eq. 2-231 

Therefore, a stationary process (or strict sense stationary process) is a subset of a 

wide sense stationary process. 

The power spectrum or power spectral density (PSD) of a WSS process x(t), real or 

complex, is the Fourier transformation S() of its autocorrelation R() = E{ x(t+)x*(t) } as 

follows: 

PSD is    ( ) ( ) djS R e   






                                                 Eq. 2-232 

Fourier inversion of PSD is 
1

( ) ( ) d
2

jR S e   






                                            Eq. 2-233 

If x(t) is a real process, then R() is real and even, and thus S() is real and even. Therefore  
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PSD is    
0

( ) ( ) cos( )d 2 ( )cos( )dS R R      
 



          Eq. 2-234 

Fourier inversion of PSD is
0

1 1
( ) ( ) cos( )d ( )cos( )d

2
R S S      

 

 



    Eq. 2-235 

The cross-power spectrum of two processes x(t) and y(t) is 

cross-PSD is    ( ) ( ) dj
xy xyS R e   






                                Eq. 2-236 

Fourier inversion of cross-PSD is 
1

( ) ( ) d
2

j
xy xyR S e   







                           Eq. 2-237 

Where Rxy() = E{ x(t+)y*(t) } is cross-autocorrelation. 

2.8.3 Stochastic differential equation [40] 

Considering the ordinary differential equation (ODE) 

0

( ) f( ( )) , 0

(0)

x t x t t

x x

 



      Eq. 2-238 

where x(t)  Rn is the state of the system at time t, f(x) is a function of x for which the 

solution is the trajectory x(t).  

It includes the random effects disturbing the system, ODE becomes: 

0

x( ) f(x( )) B(x( )) ( ), 0

x(0)

t t t t t

x

  



    Eq. 2-239 

where B(x) is a function of x with dimension mxn and (t) is white noise (wide sense 

stationary process) with dimension m. 

If m = n, x0 = 0, and B = I , the solution of the above equation is the Weiner process 

or Brownian motion w(.), which symbolically is 

w(.) (.)                                                      Eq. 2-240 

Therefore, the white noise is the time derivative of the Weiner process.  

Replace  with w, thus: 

d x( ) d w( )
f(x( )) B(x( ))

d d

t t
t t

t t
                                   Eq. 2-241 

Multiplying by dt yields 

d x( ) f(x( ))d B(x( ))d w( )t t t t t                                  Eq. 2-242 

This equation is the Stochastic Differential Equation (SDE). Solve SDE to find x, 

yield: 
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0

0 0

x( ) f(x( ))d B(x( ))d w
t t

t x s s s                                   Eq. 2-243 

For a Langevin equation problem, the model of the motion of a Brownian particle 

with frictional forces is as follows: 

X bX                                                    Eq. 2-244 

where X is the velocity of a particle, b>0 is a coefficient of friction,  is a diffusion 

coefficient. Therefore, this equation can be represented as follows 

0

d d d

(0)

X bX t W

X X

  


                                         Eq. 2-245 

where X0 is independent of Brownian motion (W). This is a Langevin equation. 

The solution is  ( )
0

0

( ) d w , 0
t

bt b t sX t e X e t                                    Eq. 2-246 

Its expected value is 0[ ( )] [ ]btE X t e E X   

Its variance is  
2

2 2
0Var[ ( )] Var[ ] (1 )

2
bt btX t e X e

b

                                  Eq. 2-247 

If t ,  [ ( )]E X t 0, Var[ ( )]X t 2/2b                                        Eq. 2-248 

For the Ornstein-Uhlenbeck process problem, the motion of a Brownian particle 

with frictional forces becomes 

0 1(0) , (0)

Y bY

Y Y Y Y

  

 

 
                                          Eq. 2-249 

where Y(t) is the position of a Brownian particle at time t, Y0 and Y1 are given Gaussian 

random variables.  

Then X = Y , the velocity of a particle satisfies the Langevin equation: 

1

d d d

(0)

X bX t W

X Y

  


                                             Eq. 2-250 

The solution of X is  ( )
1

0

( ) d w , 0
t

bt b t sX t e Y e t                          Eq. 2-251 

The solution of Y is  0

0

( ) d
t

Y t Y X s                                                          Eq. 2-252 
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Therefore, its mean is       0 0 1

0

1
[ ( )] [ ] [ ( )]d [ ] [ ]

t bte
E Y t E Y E X s s E Y E Y

b

 
     

 
  Eq. 2-253 

Its variance is  
2 2

2
0 2 3

Var[ ( )] Var[ ] ( 3 4 )
2

bt btY t Y t e e
b b

                Eq. 2-254 

The details of these solutions are described in “An Introduction to Stochastic 

Differential Equations” by Lawrence C. Evans. For higher order differential equations, a 

SDE solution is still not applicable due to its difficulty. 

 2.8.4 Monte Carlo simulation [22] 

The Monte Carlo simulation is a numerical simulation applied to statistical 

problems with known probability distributions of random variables. It is a repeating 

process to generate values of random variables according to the known probability 

distribution. Therefore, samples from Monte Carlo simulation are (theoretically) the same 

with the samples from experimental observations. 

      2.8.4.1 Uniformly distributed random numbers 

All methods to generate uniformly distributed random numbers are based on 

recurcive calculations of residues of modulus m or x mod (m), which returns the integer 

remainder when x is divided by m.  

The multiplicative congruential method or power residue method, which is used 

most frequently at present, is stated as follows: 

xi = xi(mod m)                                          Eq. 2-255 

However, this method is not suitable for very large numbers of i, therefore, an equivalent 

equation can be used as follows: 

xi = ρxi-1 (mod m) and ui = xi / m                      Eq. 2-256 

where ρ is a constant multiplier  and ui is a uniform CDF of xi which  xi = Fx
-1(ui). 

The most common choice of m is m = rs, where r is the base of the number of the 

computer system (2, 10, 16, 64 bit) and s is the word length in the computer. Standard 

recommendations choose ρ to be values from 8t 3 (t=1,2,3,…).  

Another recursive method is: 

 xi = (ρxi-1 + b)(mod m) and ui = xi / m                          Eq. 2-257 

where b is a nonnegative integer. 

 However, the numbers generated from these methods are really not random 

numbers, but pseud- random number. The large m causes the numbers generated uniformly 

distributed and statistically independent. 
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      2.8.4.2 Random numbers with given distributions 

This method requires specification of the inverse of the distribution function and 

called the inverse transformation method. For example, if ui ( i=1,2,3,… ) are generated, 

the CDF of an exponential distribution function is  

FX(x) = 1 - e-x , x  0                                   Eq. 2-258 

Taking then inverse of this function, thus 

xi = --1 ln(1-ui)    or   xi = --1 ln(ui)                              Eq. 2-259 

since u is uniformly distributed, therefore 1-u is also. 

      2.8.4.3 Jointly distributed random numbers  

If random variables x1, x2, x3,…, xn are dependent, the joint CDF is as follows 

1 n 1 2 nX ,...,X 1 n X 1 X 2 1 X n 1 n 1F (x ,...,x ) F (x ) F (x | x )....F (x | x ,..., x )            Eq. 2-260 

where FX1(x1) and FXk(xk|x1,…,xk-1) are marginal and conditional CDF of X1 and Xk. 

If a set of uniformly distributed random numbers (u1, u2,…, un) is generated, then 

x1 = Fx1
-1(u1)                                                Eq. 2-261 

x2 = Fx2
-1(u2|x1)                                              Eq. 2-262 

xn = Fxn
-1(un|x1,…,xn-1)                                         Eq. 2-263 

This method can be used if the marginal and conditional CDFs can be inverted 

analytically. 

2.8.5 Stochastic stability concept 

The deterministic differential equation can be stated in the following form:  

 x f x    ,  0 0x xt    , 0t t    Eq. 2-264 

If there exists a positive-definite function U(x) (U(x0) = 0 and U(x)>0 for all x  x0) 

such that 

   
1

d U x, U U
f x, 0

d

d

i
i i

t
t

t t x

 
  

       Eq. 2-265 

The equilibrium of this system is called stable. A function U which satisfies these 

conditions is called a Lyapunov function.  

For probabilistic or stochastic differential equations: 

   d x f x, d g x, d Wt t t  ,   0 0x xt    , 0t t   Eq. 2-266 

Where  f x, t is nonlinear function,  g x, t is diffusion function, and d W is Weiner 

process. 
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If there exists a positive-definite function with continuous partial 

differentials,  u x, Ut  , such that the expectation of its differentiation is less than or equal 

to zero 

 d U 0E    for all  0t t     Eq. 2-267 

The function  u x, t is called the Lyapunov function belonging to the particular 

equilibrium state of the stochastic differential equation [26].  

The differentiation of U of stochastic system becomes 

        
1 1

U
d U x, u x, d u x, x, dW

d m

i ij j
i j i

t L t t t g t
x 


 

    Eq. 2-268 

The  u x,L t is a stochastic differential operator according to Ito’s sense. 

       
2

2

u u 1 u
u x, f x, Trace g x, g x,

x 2 x
TL t t t t

t

   
          

Eq. 2-269 

This condition can be used for stochastic system stability analysis in the sense of 

Lyapunov. 

2.9 Energy Function Methods  

The energy function method was first proposed by A.M. Lyapunov in 1892, called 

Lyapunov’s method, which is based on the energy function representing a nonlinear 

dynamic system. It is the concept of energy balance which have been proved and applied 

for stability problems of the power system more than 40 years. Energy function method 

began with the application for transient stability by Magnusson and Aylett, followed by 

more general Lyapunov’s method by Elabiad and Nagappan [50]. It was applied later for 

voltage stability and small signal stability from load and generation change. 

For an energy function method applying for transient stability, or called Transient 

Energy Function (TEF), the system equation with 3 conditions is: 

1. Initial system (Prefault)  ( )Ix f x   , 0t    

2. Faulted system  ( )Fx f x   , 0 clt t   

3. Postfault system  ( )x f x   , clt t  

If initial system variables are known, the faulted system and postfault system 

equations will be used for TEF to quantify critical energy and critical clearing times. 
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2.9.1 Lyapunov’s Theory of Stability 

For a nonlinear dynamic system, ( )x f x   where (0) 0f  , Lyapunov suggests 

that if there is a positive-definite scalar function W(x) > 0 around the equilibrium point and 

the derivative ( ) 0W x  , then the equilibrium is asymptotically (closely to) stable. ( )W x is 

computed from:  

1 1

( ) ( ) . ( )
n n

t
i i

i ii i

W W
W x x f x

x x 

 
   

   W f x                          Eq. 2-270 

   For the power system, W(x) is generally the sum of kinetic (WKE) and potential 

(WPE) energies of the postfault system. The critical value of W(x) causing the system 

instability is called the critical energy (Wcr), which is different for each fault. 

2.9.2 Modeling aspects for stability problems 

In terms of energy perspective, W(x) = WKE + WPE . Since power is the derivative of 

energy, therefore, in terms of power perspective:  

KE PEW W W                                                      Eq. 2-271 

For conservative system, the increasing rate of WKE is equal to the decreasing rate 

of WPE. Therefore KE PEW W    and W is zero.  

An analogy of the equation of motion of a power system: 

 
2

2
0

2 d
0

d
i i

mi ei

H
W P P

t




 
    

 
     or    

2

2
0

2 d

d
i i

mi ei

H
P P

t




                  Eq. 2-272 

Where i = 1, 2, …, m , iH  is inertia constant of machine i, 0 is rated synchronous speed of 

machine i, i is rotor angle of machine i, miP is mechanical power of machine i, and eiP is 

electrical power of machine i.  

If i i iE E    is the terminal voltage of machine i, and ij ij ijY G jB  is admittance 

between machine i and machine j with real part Gij and imaginary part Bij . Thus the 

electrical power of machine i relative to the other machines j=1, 2, .., m is: 

 
1

cos( ) sin( )
m

ei i j ij i j ij i j
j

P E E G B   


                          Eq. 2-273 

 2

1

cos sin
m

ei i ii i j ij ij ij ij
j
j i

P E G E E G B 



                         Eq. 2-274 

Therefore,            
2

2
2
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2 d
cos sin

d

m
i i

mi i ii i j ij ij ij ij
j
j i

H
P E G E E G B

t

  
 



           Eq. 2-275 
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If 02 i iH M  and 0d di it    , thus 

   2

1

cos sin
m

i i mi i ii i j ij ij ij ij
j
j i

M P E G E E G B  



                 Eq. 2-276 

In the form of a first-order differential equation (equation of motion of machine i), 

i i o                                                    Eq. 2-277 

   2

1

cos sin
m

i i mi i ii i j ij ij ij ij
j
j i

M P E G E E G B  



                  Eq. 2-278 

If the center of inertia (COI) concept is applied to the above equation, then: 

1

1 n

COI i i
iT

M
M

 


     and 
1

1 n

COI i i
iT

M
M

 


                       Eq. 2-279 

i i COI      and  i i COI                                     Eq. 2-280 

where      
1

m

T i
i

M M


  and  PCOI is the power at the center of inertia of the system,  

   2

1 1 1 1

2 cos
m m m m

COI mi ei mi i ii i j ij ij
i i i j i

P P P P E G E E G 
    

                  Eq. 2-281 

Therefore, the equation of motion becomes 

ii                                                              Eq. 2-282 

   2

1

cos sin
m

i
ii mi i ii i j ij ij ij ij COI

j T
j i

M
M P E G E E G B P

M
  




                  Eq. 2-283 

For the faulted system: 

 F
ii iM f      where 0 clt t                                   Eq. 2-284 

For the postfault system: 

 ii iM f    where clt t                                          Eq. 2-285 

If we integrate the postfault system, for   between  S (rotor angle at equilibrium) 

and  i , and for  between 0 and i , then:  

KE PEW W W                                                          Eq. 2-286 

21
( , ) ( )d

2

i

S
i

ii i i iW M f




                                             Eq. 2-287 
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   2 2
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1
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

           
   

  

 Eq. 2-288 

This formulation process is called the first integral method. Therefore, the energy 

function of the power system or TEF in the COI reference frame is 

  

   

2 2

1 1

1

1 1

1
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i j i
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E E B E E G d
 

 

    

    

 



   

     

 
    
  

 

 
          Eq. 2-289 

For terms on the right,  

the 1st term is a change in the rotor kinetic energy of all machines,  

the 2nd term is a change in the rotor potential energy of all machines, 

the 3rd term is a change in the stored magnetic energy of all branches, and 

the 4th term is a change in the dissipated energy of all branches. 

The 1st term is kinetic energy (WKE) which depends only on the rotor speed and the 

2nd , 3rd , and 4th terms are the potential energy (WPE) which depends only on the rotor 

angle. If G is very small and close to zero, this equation is good described by Lyapunov’s 

Method. 

The system becomes unstable when energy exits some critical values, called the 

critical energy Wcr . 

Generally, there are 3 methods to compute Wcr : 

1) Potential Energy Boundary Surface (PEBS) method 

2) Boundary Controlling Unstable Equilibrium Point (u.e.p.) method 

3) Lowest Energy u.e.p. method 

The Lowest Energy u.e.p. method finds the u.e.p. with the lowest value of Wcr of 

the postfault system. Since this method is not universally used and needs much 

computational time, it is not considered here in this report. Instead, the other two methods 

are described in the next topic. 

2.9.3 Potential Energy Boundary Surface (PEBS) method 

For the PEBS method, Wcr is determined as the maximum value of the potential 

energy components (2nd , 3rd , and 4th terms of W) of the faulted system. For the 

conservative system, energy (the sum of kinetic and potential energies) is a constant 
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depending on rotor angle and speed. The concept of the PEBS method can be described as 

shown in the figure below.   

 

 

Figure 2.33 The potential energy-rotor angle curve for PEBS method 

 

From the above figure, the postfault system has  = s at time tpf while WKE and WPE 

are zero. The system is perturbed by fault and then the fault is cleared at time tcl with  = 

cl. At this time, energy W is the sum of WKE and WPE. If W < Wcr , thus the rotor will 

accelerate from point a and then start decelerating at point b. If W > Wcr , thus the rotor 

angle will accelerate beyond the value us at point c and the system is unstable. If W = Wcr , 

the potential energy is maximum while the kinetic energy is zero and the system is nearly 

unstable. Therefore, W = WPE = Wcr and the clearing time is called critical clearing time 

(tcr) with  = cr . Wcr is determined from the maximum value of WPE of the faulted system.  

The kinetic energy WKE at time tcl is considered as excess energy injected into the 

system. Therefore, stability of the system is the ability to absorb this excess kinetic energy.  

The steps to compute critical clearing time tcr are as follows 

1) Compute s and s from the post fault system parameters (E, G, B) 

2) Compute WPE from the faulted system equation at each time step 

3) Monitor if WPE reach the maximum value, then maxWPE = Wcr  

4) At W = Wcr of the faulted system, cr and cr are known and then tcr can be 

estimated.  
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2.9.4 Boundary Controlling Unstable Equilibrium Point (BCU) method 

The BCU method, is also called the exit-point method, computes the critical energy 

when an unstable equilibrium point (u.e.p.) is closest to the point where the faulted system 

function exits the region of the post fault system function. This is called controlling u.e.p. . 

The algorithms of the BCU method are as follows: 

1) For a contingency that involves either line switching or load/generation 

change, compute s and s of the post fault system. 

2) Compute the controlling u.e.p. 

(2.1) Integrate the faulted system equation and compute W(,) = WKE + 

WPE at each time step. Find * and time t* when WPE reaches the maximum 

value. 

(2.2) After max WPE, the faulted swing equations are no longer integrated. 

Instead, the gradient system equations of the post fault system are used. For 

t > t*,  

       ,f t           Eq.2-290 

The above equation is integrated and looking for the minimum of  
1

m

i
i

f 

 . 

At the first minimum,  = cus is almost the controlling u.e.p close to the u.e.p 

(us), and WPE (cus) is approximated as Wcr with very little difference. 

(2.3) The exact u.e.p (us) can be computed by solving   0f   using cus 

as starting point to arrive us. 

3) Wcr is determined as Wcr = W(us,0) = WPE (us) 

Compute tcr when W(,) = Wcr . In the case of fault, W(,) is from the faulted 

system equation and the system is stable if the fault is cleared at t < tcr. In the case of 

load/generation change, W(,) is from the post disturbance system equation and the 

system is stable if the W(,) < Wcr for all t.   

2.9.5 Critical energy estimation 

The computation of critical energy needs the determination of unstable equilibrium 

points and stable equilibrium points. The stable equilibrium point can be calculated using 

the power flow solution or the simulation until reaching the steady state. For mathematical 

convenience, unstable equilibrium points can be estimated using the process of M. 

Ribberns-Pavella [43]. For the method of M. Ribberns-Pavella, unstable equilibrium points 
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of rotor angle, when any machine loss synchronism, can be approximated using the value 

 - xs (where xs is stable equilibrium point). Only the case of loss synchronization 

(unstable) of 1 machine and all machines are considered. 

Table 2.4 Unstable equilibrium points formulation 

Case 1 (5 sets) Case 2 (5 sets) Case 3 (1 set) Case 4 (1 set) 

ܠ ൌ ሼ1ݔ, ,2ݔ ,3ݔ ,4ݔ  5ሽ  5ݔ
4 of ݅ݔ ൌ ݅ݔ

  for  i=1,2, .., 5  ݏ
1 of ݇ݔ ൌ ߨ െ ݇ݔ

  ݏ

for k = 1,2, .., 5 and (ik) 

ܠ ൌ ሼ1ݔ, ,2ݔ ,3ݔ ,4ݔ  5ሽ  5ݔ
4 of ݅ݔ ൌ ݅ݔ

 for  i = 1,2, .., 5  ݏ
1 of ݇ݔ ൌ െߨ െ ݇ݔ

ݏ   

for k = 1,2, .., 5 and (ik) 

ܠ ൌ ሼ1ݔ, ,2ݔ ,3ݔ ,4ݔ  5ሽݔ
݅ݔ ൌ ߨ െ ݅ݔ

   ݏ
for  i = 1,2, .., 5 

  

ܠ ൌ ሼ1ݔ, ,2ݔ ,3ݔ ,4ݔ  5ሽݔ
݅ݔ ൌ െߨ െ ݅ݔ

   ݏ
for  i = 1,2, .., 5 

  

 

2.9.6 Well-defined energy function formulation using first integral method 

The energy function is used in this thesis and will be applied to the study of the 

impact of wind power on power system stability. Energy function method, basing on 

Lyapunov function, is used to determine the region of attraction of stable equilibrium 

points and the critical values which beyond these values, system become unstable.  

The cumulative effect of continuous small disturbances in the power system (such 

as load and wind power) can finally make the system reach critical values and become 

stable. An average time that the system first hit the critical boundary of region of attraction 

is called mean first passage time (MFPT). The mean first passage time (MFPT) is the 

performance index to quantify the average time a state-space trajectory takes to change 

from a given operating point to the boundary of its domain of attraction under the influence 

of small perturbations [2][9][10][11[13]. 

An important step for an energy function construction is to ensure that this function 

is a type of Lyapunov function. If then, this is called well-defined energy function which 

the theory of system stability of Lyapunov can be described. However, since now, there is 

no complete or exact solution of energy function. Carefully check an existence of energy 

function ( W(xt) ) should be considered by using following conditions [9]. 

I.   0tW x   when operating points are stable equilibrium points ( xt = xs ) 

II.   0tW x    when trajectories of operating points are within the region of 

attraction around equilibrium points 

III.   0tW x    when trajectories of operating points are within the region of 

attraction and asymptotically move to equilibrium points 
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There are two methods for constructing energy functions, the two-step procedure 

and the first-integral method [30]. This thesis uses well-known first integral methods to 

formulate energy functions. 

For the swing equation, the terms in the form of power balance will be integrated as an 

energy balance as follows: 

i i mi ei i iM y P P D y         Eq. 2-291 

multiply by 
i  and integrate: 

2

0

d d d d
i

i i i

s s s
i i i

y
x x x

i i i mi i ei i i ix x x
M y y P y t P y t D y t          Eq. 2-292 

0

d d d d
i

i i j i

s s s s
i i j i

y
x x x x

i i i mi ei i ix x x x
M y y P x P x D y x




          Eq. 2-293 

     2

1

1
cos cos

2

i

s
i

n m xs s s
i i mi i i i j ij i j i j i ix

j

M y P x x VV B x x x x D y dx




             Eq. 2-294 

Where the left term is kinetic energy (KE) and the right terms are potential energy (PE) 

from mechanical power, electrical power, and damping power, respectively. 

Therefore, the energy function of swing equations (Wsw) of an n machine system is: 

     2

1 1 1 1 1

1
cos cos

2

i

s
i

n n n n m nxs s s
sw i i mi i i i j ij i j i j i ix

i i i j i

W M y P x x VV B x x x x D y dx


    

              
      

Eq. 2-295 

For power flow equations, in the case of active power: 

 
1

sin
n m

lk k j kj k j
j

P V V B x x




      for m load bus   Eq. 2-296 

multiply by dx  and integrate: 

 
1

d sin d
k jk

s s s
k k j

x xx n m

lk k j kj k j
jx x x

P x V V B x x x
 



 
   

 
      Eq. 2-297 

     
1

cos cos
n m

s s s
lk k k k j kj k j k j

j

P x x V V B x x x x




           Eq. 2-298 

Therefore, the energy function of power flow equations (WPF) of m load bus is: 

     
1 1 1

cos cos
n m n m n m

s s s
PF lk k k k j kj k j k j

k n k n j

W P x x V V B x x x x
  

    

             Eq. 2-299 

An energy function, W = Wsw + WPF , can be computed as follows: 
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     

     
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1 1 1 1

1 1 1 1

1
cos cos

2

cos cos
i
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i

n n n n m
s s s

sw PF i i mi i i i j ij i j i j
i i i j

n m n m n m nxs s s
lk k k k j kj k j k j i ix
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W W W M y P x x VV B x x x x

P x x V V B x x x x D y dx



   

  

     

          

             

  

   
  

Eq. 2-300 

If we neglect damping terms by assuming conservative systems or lossless systems, 

and rearrange the above equation, the energy function is 

       2

1 1 1 1 1

1
cos cos

2

n n n m n m n m
s s s s

i i mi i i lk k k i j ij i j i j
i i k n i j

W M y P x x P x x VV B x x x x
  

     

                 

Eq. 2-301 

The existence of Lyapunov function candidate can be proof using three conditions 

as described previously: 

I. 0W   when operating points are the stable equilibrium points ( xt = xs ) 

From the equation of the energy function above, if sx x , term 2nd , 3rd , and 4th on 

the right are exactly zero. For the first term on the right, under steady state when sx x , i 

is nearly equal to 0 which y=i-00. Therefore, energy function is zero (W = 0) when 

sx x . 

II. 0W    when trajectories of operating points are within the region of attraction 

around equilibrium points 

This is true in the case when s sx x x       and sx x . The sx   and sx   

are unstable equilibrium points. 

III. 0W    when trajectories of operating points are within the region of attraction 

and asymptotically move to stable equilibrium points 

 sini i i mi i lk i i j ij ij i

W W
W y x M y y P y P y VV B x y

y x

                        Eq. 2-302 

Placing 
i i mi ei i iM y P P D y    into the above equation, yields 

   2

1 1 1 1

sin sin
n m n n m n m

mi i i j ij ij i i i mi i lk i i j ij ij i
i j i j

W P y VV B x y D y P y P y VV B x y
  

   

   
         
   
         

Eq. 2-303 
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1 1 1
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lk i i j ij ij i i i
i n i n j

W P y VV B x y D y
  

    

          Eq. 2-304 
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       into the above equation, it can be seen that 
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    2

1 1 1 1

sin sin
n m n m n m n m

i j ij ij i i j ij ij i i i
i n j i n j

W VV B x y VV B x y D y
   
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            Eq. 2-305 

2

1

n

i i
i

W D y


           Eq. 2-306 

Therefore, 0W   is always true in this case. 

For summary, an energy function (W) of this system, when applying structure 

preserving models by neglecting transferred conductance terms, is a well-defined energy 

function that will be useful for power system stability analysis in this thesis. 



CHAPTER 3 

METHODOLOGY PART 1 

 

From the objectives and scopes of thesis, the following topics are the main issues 

discussing in this thesis. 

 The characteristics of wind power 

 The characteristics of power systems incorporating wind power 

 A study of effects of wind power on the small signal stability using eigenvalue 

methods 

 A study of effects of wind power on the small signal stability using stochastic 

stability method: the mean first passage time (MFPT) 

 A study of effects of wind power on the small signal stability using new stochastic 

stability methods 

 A study of effects of wind power on the voltage stability using new stochastic 

stability methods 

 A study of effects of wind power on power quality using probabilistic methods 

This chapter describes the methods to study these topics. 

3.1 The Characteristics of Wind Power 

To study the effects of wind power on the power system requires understanding of 

the characteristics of wind speed and wind power in terms of statistics and probabilistic 

data. This topic will focus on the method to analyze the characteristics of the measured 

wind speed and the estimated wind power (since the measured wind power is unavailable). 

The wind speed data is from the monitoring station in Thailand. The wind power is 

calculated using the power curve of selected wind turbine.  In the last section of this topic, 

the wind turbine models are developed and tested. These wind turbine models will be used 

in the stochastic stability analysis. 

3.1.1 Variation of wind speed and wind power 

For the study on the characteristics of wind speed, the measured wind data are 

separated between fast variations and slow variations. Both parts are characterized basing 

on time variation, frequency distribution of data, power spectral density (PSD), and 

standard distribution function test. It can be described using following figure.  
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Figure 3.1 The methods to study the characteristics of wind speed 

 

The study on the characteristics of wind power has two parts. First, the slow wind 

speed variation is used for wind power computation. This wind power is characterized 

basing on time variation, frequency distribution of data, power spectral density (PSD), and 

standard distribution function test as represented in below figure. Second, wind power is 

computed from wind speed model, wind noise model, wind power (turbine) models, and 

power system model which can be simulated using software PSCAD as represented in 

below figure.  
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Figure 3.2 The processes to study the characteristics of wind power 

 

Since we need to know how wind power impact to the power system stability and 

power quality. We assume that different characteristics of wind speed cause the difference 

of wind power which impact on the power system differently. Therefore, important 

questions are what kind of characteristics and how they affect to the power system. 

There are two main types of characteristic of wind speed to be considered, which 

are, slow variation (slower than 10 minutes) and fast variation (faster than 10 minutes)  
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characteristics [42]. This thesis considers both the slow and fast variation characteristics of 

wind speed and wind power especially for a long term. 

The characteristics of wind power are studied which consider three main affecting 

factors, namely, wind speed, wind farm modeling, and power system conditions. The wind 

turbine technology is the other important factor. However, since the measurement wind 

power data is not available, the simulation or modeling wind power is used instead for 

every cases of study. 

The wind speed can be considered to have slow and fast variations, therefore, wind 

power in this case should be studied in term of slow and fast variations as well.  

For slow variation of wind speed and without dynamic behaviors, the output wind 

power (Pw) is calculated using following equations: 

3
1

1

2w pP c AV    where 3 ≤ V ≤ 6 m/s      Eq. 3-1 

3
2

1

2w pP c AV    where 6 < V ≤ 25 m/s      Eq. 3-2 

For wind speed from 3 to 6 m/s, 3rd order polynomial can be fitted as follows.  

cp1 = 0.016V
3
 - 0.295V

2
 + 1.736V - 2.994       Eq. 3-3 

For wind speed from 6 to 25 m/s, 3rd order polynomial can be fitted as follows.  

cp2 = - 0.004V
3
 - 0.001V

2
 + 0.302V - 0.909             Eq. 3-4 

where cp data is from specification sheet of Suzlon S64 wind turbine,  is air density 

(standard air density is 1.225 kg/m3), and A is a swept area of wind turbine (for 50m 

diameter turbine, A is 252 or about 1963.5 m2). 

3.1.2 The probability distribution of wind power  

The study of probability distribution characteristics of wind power can be influenced 

by many factors, such as, wind turbine model, power system model, wind speed model and 

noise model. Testing conditions are listed in Table 3.1. 
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Table 3.1 Testing conditions for the study of probability distribution of wind power 

Case 
Wind turbine 

model 
Power system 

model 
Wind speed model Other conditions 

A1 1x2MVA SCIG 
1 AC source 
without load 

Weibull distribution using 
inverse CDF 

2 values of Weibull scale 
parameter, 100x2 runs 

A2 
2x2MVA 

SCIGs 
1 AC source 
without load 

Independent 2 wind sources 
with Weibull distribution 

Weibull scale parameter = 
10, for 10,000 runs 

A3 
5x10x2MVA 

SCIGs 
1 AC source 
without load 

Independent 5 wind sources 
with Weibull distribution 

Weibull scale parameter = 
10, 100 runs 

A4 
2x2MVA 

SCIGs 
1 AC source 
without load 

The same wind source with 
Weibull distribution 

Add Gaussian random 
noise to WT2, 100 runs 

A5 
2x2MVA 

SCIGs 
1 AC source 
without load 

Constant wind speed = 6, 9, 
and 10 m/s for both WT 

Add Gaussian random 
noise to WT2, 400, 1600 

runs 

A6 
1x50x2MVA 

SCIG 
SMIB system 

with load 
Weibull distribution using 

inverse CDF 
2 values of Weibull scale 

parameter, 200x2 runs 

A7 
1x50x2MVA 

SCIG 
SMIB system 

with load 
Weibull distribution using 

inverse CDF 

WS noise using inverse 
CDF num. method , 100 

runs 
 

3.2 The Characteristics of Power System Incorporating Wind Power 

To study on the characteristics of the power system incorporating wind power, the 

power system with different wind speed noise models is determined. There are two 

different wind speed noise models, the random noise model and the ramp noise model. The 

random noise models can be represented using different standard deviation and frequency 

of noise signal. The ramp noise can be differentiated using frequency of signal. 

 

State variables with
different noise model Freq.

0.5Hz

Same Stdev.
different Freq. 

Same Freq.
different Stdev.

Freq.
0.75Hz

PSCAD
noise WS

PSCAD
ramp WS Freq.

1.0Hz

Freq.
4.0Hz

Stdev = 1.52
Freq = 0.5 and 2.0 Hz
Stdev = 1.52
Freq = 0.5 and 2.0 Hz

Stdev = 0.19 and 1.86
Freq = 1.0 Hz
Stdev = 0.19 and 1.86
Freq = 1.0 Hz  

Figure 3.3 The method to study on the characteristics of  

power system incorporating wind power 
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To study the characteristics of the energy of the power system, the energy function 

is constructed first and then the relative energy is determined using energy function and 

estimated stable equilibrium points. After that, the critical energy is computed using 

relative energy and estimated unstable equilibrium points. This critical energy will be 

evaluated under different wind speed conditions. During the process, rotor speed and phase 

angle will be considered in form of phase portrait.   

 

Construct
State space eq.

Change
WS

Vary stdev.
of noise WS

Vary freq.
of noise WS

Construct
Energy function

Estimate stable
equilibrium points

Estimate unstable
equilibrium points

Determine
relative energy

Determine
critical energy

Phase portrait
rotor speed & 
phase angle

WS = 6, 9, 10, 12 m/sWS = 6, 9, 10, 12 m/s

Freq. = 0.1, 0.5, 2.0 HzFreq. = 0.1, 0.5, 2.0 Hz

Stdev. = 0.5, 1.0, 2.0 m/sStdev. = 0.5, 1.0, 2.0 m/s

 

Figure 3.4 The method to study the characteristics of the energy of the power system 

 

Finally, the stochastic variation of the state variable is considered using basic 

stochastic differential equations and its simulated solution. This process is the preliminary 

study of stochastic differential equation of the power system incorporating wind power. 

The small signal stability of the power system is the ability of the system to control 

rotor angle and speed, and to keep normal synchronization of all generators after being 

perturbed by any small disturbances. Therefore, the characteristics of power and rotor 

angle will be analyzed using the methods representing in this topic. Since the continuous 

and small disturbances are mainly caused by the variation of load, therefore, the relation 

between power generation and load or power-load characteristics will also be analyzed. 

3.2.1 Power-angle and power-load characteristics analysis 

      3.2.1.1 Power-angle characteristics analysis 

The relationship between mechanical power output and the power angle of a 

synchronous generator is an important characteristics to evaluate the performance of the 

machine and the state of operation. Under normal or stable conditions, the power increase 

with increasing angle. For critical condition, the power reaches its maximum value. If the 

angle still increase continuously, the power become decrease and this situation is called 
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unstable condition. Under steady state conditions when a single machine connect to an 

infinite bus (SMIB), for salient pole synchronous generator (neglect internal resistance), 

the power-angle equation is 

2

sin sin 2
2

q B q Totd Totq
e

Totd Totd Totq

E E E X X
P

X X X
 


      Eq. 3-5 

 
2

2 2
2

cos sin cosq B Totq q
e Totd Totq

Totd Totd

E E X E
Q X X

X X
        Eq. 3-6 

For the round rotor machine (neglect resistance) with d- and q- axis total reactance 

are equal (XTotd = XTotq), the power-angle equation becomes 

sinq B
e

Totd

E E
P

X


       Eq. 3-7 

2cosq B q
e

Totd Totd

E E E
Q

X X


        Eq. 3-8 

Where Pe and Qe are active and reactive electrical power output of generator, Eq is q-axis 

internal voltage of generator, EB is infinite bus voltage,  is rotor or power angle.  

Totd d T TLX X X X       Eq. 3-9 

Totq q T TLX X X X       Eq. 3-10 

Where XTotd and XTotq are d- and q- axis total reactance of the system, Xd  and Xq are d- and 

q- axis stator reactance, XT is transformer reactance, and XTL is transmission line reactance. 

Assuming that  EB = 1.0 pu, and ZLN = RLN + j XTL , we get the simplified equations  

sin sinq q
e

d T LN Totd

E E
P

X X Z Z

 
 

 
   Eq. 3-11 

 21
cose q q

Totd

Q E E
Z

        Eq. 3-12 

 

Gen
 jXT

B

ZLN= RLN + jXLN

q

LN jXd

S  

Figure 3.5 Schematic diagram and Phasor diagram of SMIB  
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The Eqs. 3-11, and 3-12, can be used to analyze the power-angle characteristics of 

the system and we can vary voltage to see how power-angle changes with voltage. 

To investigate the power-angle characteristics of the generator, two assumptions 

should be considered. First is the active/reactive power-angle characteristic of single 

machine power system with voltage varying and second is the active/reactive power-angle 

characteristic of single machine power system with line reactance varying. Both cases use 

the previous equations (Eqs. 3-11, and 3-12) for modeling by using Matlab.  

To analyze the power-voltage characteristics of the system, if we find  using  

Eq. 3-11, we will get 

1sin e Totd

q

P Z

E
 

 
   

 
     Eq. 3-13 

From Eqs. 3-12 and 3-13, we can find Qe as a function of Eq, ZTotd, and Pe as follows:  

1 1
cos sinq e Totd

e
Totd q Totd

E P Z
Q

Z E Z


  
       

     Eq. 3-14 

Finally Eqs. 3-11 – 3-14 are used to investigate the power-voltage characteristics of 

the SMIB system which can be modeled using Matlab. 

From the above equations, we will see that the power is related to voltage, internal 

impedance, transformer and line impedance, and power angle. Voltage can be controlled by 

increase or decrease reactive power. For example, in case over voltage, operator can 

decrease reactive power to reduce voltage by change tab of substation transformers.  

For the voltage drop or under voltage conditions, the technique to pull up voltage is 

to inject reactive power by add more capacitive load into the line or to adjust power factor. 

If the voltage decreases to less than the critical point, it cannot be controlled by regulating 

reactive power normally and lost control finally. This unstable condition is called voltage 

instability caused by large and/or small disturbances in the system. 

      3.2.1.2 Power-load characteristic analysis 

The load and transmission lines and characteristics can be described using the 

following figures and equations. For simple power circuit, the system consists of sending 

end voltage (ES) of generator, line impedance (ZLN), and load impedance (ZLD). At the 

terminal of load, receiving end voltage (VR), active power (PR) of load, and reactive power 

(QR) of load, are characterized as follow. 
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ZLN

ZLD

PR jQR
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Figure 3.6 Circuit diagram of the power system with transmission and load impedance 

 

cos sinLN LN LNZ Z j Z       Eq. 3-15 

cos sinLD LD LDZ Z j Z       Eq. 3-16 

   cos cos sin sin
S S

LN LD LN LD LN LD

E E
I

Z Z Z Z j Z Z   
 

   
 Eq. 3-17 

1 1S
sc

LN

E
I I

ZF F
        Eq. 3-18 

S LD
R

LN

E Z
V

ZF
       Eq. 3-19 

 
2

1 2 cosLD LD

LN LN

Z Z
F

Z Z
 

   
      

   
   Eq. 3-20 

2

2
cos cosSLD

R R
LN

EZ
P V I

F Z
      Eq. 3-21 

2

2
sin sinSLD

R R
LN

EZ
Q V I

F Z
      Eq. 3-22 

Find the normalized power using short circuit power, Psc and Qsc as follows: 

2
S

sc sc
LN

E
P Q

Z
        Eq. 3-23 

Therefore, dividing Eqs. 3-21 and Eq. 3-22 by Eq. 3-23, we get the normalized power as: 

cos

2cos( )

R
Rn

sc LN LD

LD LN

P
P

P Z Z

Z Z



 
 

 
   

 

  Eq. 3-24 

sin

2cos( )

R
Rn

sc LN LD

LD LN

Q
Q

Q Z Z

Z Z



 
 

 
   

 

  Eq. 3-25 

The Eq. 3-24, and Eq. 3-25 can be used to analyze the power-load characteristic of 

the system and we can expect that 
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1)  If LD LNZ Z  (normal or stable condition)  

Load impedance is larger than line impedance. Increasing of load (or reduce LDZ ) 

causes active power, reactive power and current increase. Contradictory, load increase 

cause voltage decrease whereas enlarge voltage drop along the power line.    

2)  If LD LNZ Z  (critical condition)  

Load impedance is equal to line impedance. This situation causes power to reach 

maximum point and be a critical operating point. 

3)  If LD LNZ Z  (unstable condition or instability)  

Load impedance is less than line impedance. This causes from over load or lost of 

transmission line. Increasing of load decreases active and reactive power. 

The load varying case assumes the relative load (or line impedance per load 

impedance) vary slowly and hence, has no dynamical effects. Three conditions of relative 

load (stable, critically stable, unstable) are assumed. This type of phenomena can occur 

normally in the power system. 

For the simplification in power system modeling,   always be neglected and 

assume 90 degrees since the line has very small resistance compare to reactance. From this 

assumption, the Eq. 3-24, and Eq. 3-25 become 

    
cos

2sin
Rn

LN LD

LD LN

P
Z Z

Z Z





 

  
 

    Eq. 3-26 

sin

2sin
Rn

LN LD

LD LN

Q
Z Z

Z Z





 

  
 

    Eq. 3-27 

However, reality  is not fixed at 90 degrees and can be changed when there is line 

dispatching, line improvement, and fault or disturbance on the transmission line. 

3.2.2 Power-angle characteristics when applying small signals 

The single machine infinite bus (SMIB) system is selected for power angle 

characteristic analysis, because it not complicated while representing only the relationship 

between electrical power and power angle in the system. 

      3.2.2.1 Small signal from internal sources 

For the case of small signal from internal sources, the original SMIB must be 

modified by adding sources of small disturbances, for example, from governor, turbine, 



129 
 

  
 

and excitation system under operating conditions. The system consists of one synchronous 

machine with transformer connecting to an infinite bus through the transmission line. 

When the system operating under small disturbances, the power-angle characteristics of 

one generator can be examined using simple mathematical model.  

 

 

Figure 3.7 SMIB including internal sources of small signal 

 

Assume losses of transmission line j 0.93, 

0.3 0.15 0.5 0.95d d T TLx X X X j j j j           Eq. 3-28 

0.3 0.15 0.5 0.95q q T TLx X X X j j j j           Eq. 3-29 

Where XT is the transformer reactance, XTL is the transmission line reactance, Xd and Xq are  

d- and q- axis stator reactance. 

In the case of round rotor machine SMIB system, EB is assumed constant at 1.0 p.u., 

therefore: 

sin

0.95
S

e

E
P


    and  

cos 1

0.95 0.95
S

e

E
Q


       Eq. 3-30 

Therefore, Pe and Qe strongly depend on internal voltage of generator and power 

angle. For convenience, the internal dynamic sources are not directly modeled, because 

these small signals can be included in the variation of generator voltage and power angle.  

Therefore, different characteristics of generator voltage and power angle will be modified 

to represent different kinds of external dynamic sources.  

The linear or low frequency increase of power angle is due to linear or slow 

variation of turbine and governor. Variation of generator voltage in term of sinusoidal 

signal is caused from interaction of the excitation system. The band-limited white noise 

characteristics are caused from the stochastic nature of these small signals. 

      3.2.2.2 Small signal from external sources 

In the case of small signals from external sources, the original SMIB must be 

modified by adding sources of small disturbances, for example, from dynamic load, and/or 

wind power under operating conditions. The system consists of one synchronous machine 
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with transformer connecting to an infinite bus through transmission line, adding dynamic 

load and wind turbine generator. When the system operating under small disturbances, the 

power-angle characteristics of one generator can be examined using simulation model in 

PSCAD.  

 

 

Figure 3.8 SMIB including wind power and dynamic load 

 

There are two cases to be considered. The first is the normal case when the system 

operating under normal conditions reaches a steady state. The second is the case of wind 

power being included. The load can be set as a fix resistance load for convenience. Only 

small signal from wind power is considered. 

3.2.3 Characteristics of the power system using simulation software 

In this section, the single machine infinite bus power system is used. The power 

system, including fluctuating wind power, leads to higher degrees of complexity. This 

situation may affect the ac power system synchronization differently depending on 

characteristics of wind power. Therefore, the power angle and rotor speed of synchronous 

generator with various characteristics of wind power are investigated. 
The original single machine infinite bus (SMIB) power system [52] is used for this 

study but with the incorporation of wind power and with additional load as presented in 

following figure. The software simulation for this study is PSCAD/EMTDC which suitable 

for analyzing dynamic characteristic of the power system (www.pscad.com).  

The system voltage is 500kV with load power 50% of 2220 MVA synchronous 

generator. The simulation duration time is 100 seconds, which is enough for the system to 

reach a steady state at about 20 seconds (without wind power). The time step of the 

simulation is 50 micro seconds.  

The synchronous generator model is an IEEE generic steam turbine model 

supported in PSCAD (www.pscad.com). The wind power model consists of a wind source 
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model and wind turbine model with pitch control. The wind source model generates mean 

wind speed with noise. For wind turbine model, the 50x2 MVA squirrel cage induction 

generator (SCIG) is used in this study. For noise wind speed (Vn) model, seven parameters 

are used to define its characteristics which are described in [46]. 

 

  

Figure 3.9 Test power system including wind power and load 

 

Table 3.2 Testing conditions for the study of characteristics of the power system 
incorporating wind power 

 Wind turbine Wind speed Noise conditions Load Base voltage 
Case B1 No wind power 10 m/s - 1100 MW 500 kV 
Case B2 50x2MVA 10 m/s - 1100 MW 500 kV 
Case B3 50x2MVA 10 m/s - 1100 MW 230 kV 
Case B4 50x2MVA 10 m/s Stdev 0.19 m/s, frequency 1 rad/s 1100 MW 500 kV 
Case B5 50x2MVA 10 m/s Stdev 1.86 m/s, frequency 1 rad/s 1100 MW 500 kV 
Case B6 50x2MVA 10 m/s Stdev 1.52 m/s, frequency 0.5 rad/s 1100 MW 500 kV 
Case B7 50x2MVA 10 m/s Stdev 1.52 m/s, frequency 2 rad/s 1100 MW 500 kV 

Case B8 50x2MVA 10 m/s Ramp 1 m/s, 0.5 Hz 1100 MW 500 kV 

Case B9 50x2MVA 10 m/s Ramp 1 m/s, 0.75 Hz 1100 MW 500 kV 

Case B10 50x2MVA 10 m/s Ramp 1 m/s, 1.0 Hz 1100 MW 500 kV 

Case B11 50x2MVA 10 m/s Ramp 1 m/s, 4.0 Hz 1100 MW 500 kV 

 

For wind turbine model, the wind speed (Vw, m/s), mechanical speed of generator 

(, rad/s), and pitch angle (, ) are input while mechanical torque (Tm) and power of 

turbine (P) are the output. The wind turbine has torque- characteristics (or equation of 

power coefficient) vary with Vw using standard model of wind turbine. 

For synchronization system stability, important parameters to be studied are rotor 

speed and power angle (use power angle, , instead of actual rotor angle). The sources of 

small signal are from the different characteristics of wind speed. The 11 testing conditions 

with different characteristics of wind speed are represented in Table 3.2. 
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3.2.4 Characteristics of energy and critical energy of the power system 

To study the characteristics of energy and the critical energy of the power system, 

the system dynamic equations are determined first. The steady state values of state 

variables can be computed from the solution of algebraic equations or using power system 

simulation software. The energy function can be formulated using the first integral method 

and applying steady state variables to compute the energy value.  Finally, the critical 

energy can be approximated using the method of M. Ribbens-Pavella and B. Lemal (1976).  

      3.2.4.1 The power test system and conditions 

The power test system in this paper is designed to clearly represent the effects of 

wind power on a nearby synchronous generator and load bus, which are connected to the 

infinite bus through long transmission lines. The per unit base power is 100 MVA. From 

the one line diagram below figure, there are aggregated synchronous generators (G2) and 

aggregated DFIG wind turbines (G3), connecting on bus B2 and B3, respectively.  Bus B1 

is an infinite bus and B4 is a load bus. The system is assumed lossless which the line 

resistance can be neglected. X14 is a line reactance (tie line) connecting between bus B1 

and B4. X24 and X34 are line reactances including transformer’s reactance. The electric load 

is a dynamic load which has ck at about 0.05 [13]. The other values of system parameters 

and constants are list in Table 3.3. 

 

Table 3.3 System Parameters and Constants 

M = 7.0 sec 0 = 314.2 rad/sec Lm = 3.95279 p.u. 

Lr = 0.09955 p.u. Ls = 0.09241 p.u. T0 = 2.343  p.u. 

X = 4.0 p.u. X’ = 0.1 p.u. XT = 0.5 p.u. 

kd = 0.8868 kb = 7.372 ka = 0.274Pm + 0.346 

kp = 1.0 kop = 0.56 ca = -0.022 Pm +0.006 

|E’| =Vw=1.05 p.u. kc1 = 0.97396 kc2 = 1.90308 

Vs = 1.0 (p.u.) V0 = 1.0 (p.u.) km = 1.017 

X14 = 0.75 p.u. X24 = 0.2 p.u. X34 = 0.2 p.u. 

 

3.3 A study of effects of Wind Power on Small Signal Stability using Eigenvalue 

Method 

The eigenvalue method is the conventional and well-known method for the small 

signal stability analysis in the power industry.  
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3.3.1 Eigenvalues of single machine power system  

In this section, wind power is modeled using a squirrel cage induction generator 

(SCIG) and doubly-fed induction generator (DFIG). The swing equation and voltage 

behind transient reactance are focused regarding the synchronization stability problem. The 

difference between synchronous generator and induction generator is the slip (sw) which is 

the difference between angular speed of rotor and electrical field at stator of induction 

generator. Moreover, in the swing equations, damping coefficient (D) is diminished in the 

case of SCIG, but occurs in the case of DFIG. The state space equations for induction 

generator from are rewritten here: 

      3.3.1.1 Wind turbine with squirrel cage induction generator (SCIG) 

To analyze the small signal stability of an induction generator wind turbine, the 

state space equation will be represented in a new form as follows. 

If we represent system equations in the form of a matrix:  

 X AX BU  
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Where e
S

P
K

x





 is synchronizing power coefficient, and e
D

P
K

y





 is damping power 

coefficient of induction generator.  

 
1,

cos
n

s se
S w j wj w j

j j ww

P
K V V B x x

x  


  
   and  0e

D

P
K

y


 


    Eq. 3-32 

 cosb

s
E sw a a w aVkK k k x c         Eq. 3-33 

magnitude of damping power coefficient (KD) and synchronizing power coefficient (KS).  

Eqs. 3-32 and 3-33 can be represented using block diagram as in the following 

figure. 

0
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s

SK

1

Ms
wy wx

mP
+ +

EK

+

+

  
Figure 3.10 Block diagram representing state space equation of the SCIG wind turbine 
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Even though, induction generator has no damper circuit, its oscillation is less than 

synchronous generator and can improve oscillation stability of the power system when 

replace synchronous generator [45]. From the above figure, the flux decay effect (term with 

cosine function causing from varying of E’) and Ks causing the negative feedback control 

of xw can finally improve small signal stability of the system. This conclusion can be 

examined by the following simulation. 

 

  
Figure 3.11 Single machine infinite bus power system 

 

The induction machine parameters for computation are as follows [45]: 

Given:  

M = 7.0 sec 0= 314.2 rad/sec Lm = 3.95279 p.u. Lr = 0.09955 p.u. Ls = 0.09241 p.u. 

X = 4.0 p.u. X’ = 0.2 p.u. T0 = 2.343  |E’| =Vw=1.05p.u. c = 0.95 

kd = 0.8868  kb = 7.372 ka = 0.61 ca = - 0.05 XT = 0.75 p.u. 
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      Eq. 3-34 

 4.497 cos 0.61 0.05E
s

sw wVK x        Eq. 3-35 

 

Table 3.4 The computation conditions of induction machine (SCIG) parameters 

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 

Variables Base case Reduce Vs Increase V0 Increase XT Increase xw 

Vs (p.u.) 1.00 0.50 1.00 1.00 1.00 
V0 (p.u.) 1.0 1.0 0.5 1.0 1.0 

|XT| (p.u.) 0.1 0.1 0.1 0.4 0.1 
s
wx  (rad) 0.3 0.3 0.3 0.3 0.6 
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      3.3.1.2 Wind turbine with doubly-fed induction generator (DFIG) 

To analyze the small signal stability of the induction generator wind turbine, the 

state space equation will be represented in a new form as follows. 

If we represent system equations in the form of a matrix:  

 X AX BU       Eq. 3-36 

We will get 

1 2 0

1
w E E w

mw
w S D w

x K K x
P

y K M K M y M


        
                  




   Eq. 3-37 

Eq. 3-37 can be represented using a block diagram as in the following figure. 

 

1

s

SK

1
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wy wx
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1EK

2EK

DK
  

Figure 3.12 Block diagram representing state space equation of the DFIG wind turbine 

 

Even though the induction generator has no damper circuit, its oscillation is less 

than that of the synchronous generator and can improve oscillation stability of the power 

system when replacing the synchronous generator [45]. From above figure, the flux decay 

effect (term with cosine function causing from varying of E’) and Ks causing the negative 

feedback control of xw can finally improve small signal stability of the system. This 

conclusion can be examined by the following simulation. 

 

  
Figure 3.13 Single machine infinite bus power system for DFIG WT 

 

The induction machine parameters for computation are as follows [45]: 
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Given:  

M = 7.0 sec 0 = 314.2rad/sec Lm = 3.95279 p.u. Lr = 0.09955 p.u. Ls = 0.09241 p.u. 

X = 4.0 p.u. X’ = 0.2 p.u. T0 = 2.343  p.u. |E’| =Vw =1.05p.u. c = 0.95 

kd = 0.8868 kb = 7.372 ka = 0.61 ca = - 0.05 XT = 0.75 p.u. 

kvrq = 0.0056 kop = 0.56 kc1 = 0.97396 kc2 = 1.90308  
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  Eq. 3-38 

 
     

Table 3.5 The computational conditions of induction machine (DFIG) parameters 

Parameters Case1 Case2 Case3 Case4 Case5 Case6 

Variables Base case Reduce Vs Increase V0 Increase XT Increase xw Increase yw 

Vs (p.u.) 1.00 0.50 1.00 1.00 1.00 1.00 
V0 (p.u.) 1.0 1.0 0.5 1.0 1.0 1.0 
|XT| (p.u.) 0.3 0.3 0.3 0.6 0.3 0.3 

s
wx  (rad) 0.3 0.3 0.3 0.3 0.6 0.3 
s
wy  (p.u.) 0.15 0.15 0.15 0.15 0.15 0.2 

 

3.3.2 Eigenvalues of multi-machine power system including wind power 

In this section, wind power is modeled using a doubly fed induction generator 

(DFIG), on which the swing equation and voltage behind transient reactance are focused, 

regarding the synchronization stability problem. The difference between the synchronous 

generator and the induction generator is the slip (sw) which is the difference between 

angular speed of rotor and electrical field at stator of induction generator. Moreover, in the 

swing equations, damping coefficient (D) is diminished in case of SCIG but occur in case 

of DFIG.  

Even though an induction generator has no damper circuit, its oscillation is less 

than that of the synchronous generator and can improve the oscillation stability of the 

power system when replace synchronous generator [45]. From above figure, the flux decay 
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effect (term with cosine function causing from varying of E’) and Ks causing the negative 

feedback control of xw can finally improve small signal stability of the system. This 

conclusion can be examined by the following simulation. 

The induction machine parameters for computation are as follows [45]: 

Given:  

M2 = M3 = 7.0 sec 0 = 314.2 rad/sec Lm = 3.95279 p.u. 
Lr = 0.09955 p.u. Ls = 0.09241 p.u. T0 = 2.343  p.u. 
X = 4.0 p.u. X’ = 0.2 p.u. XT = 0.75 p.u. 
kd = 0.8868 kb = 7.372 ka = 0.61 
kp = 1 kop = 0.56 ca = - 0.05 
|E’| =Vw=1.05 p.u. kc1 = 0.97396 kc2 = 1.90308 
Vs = 1.0 (p.u.) V0 = 1.0 (p.u.) km = 0.98 
 

If we represent the above equations in the form of a matrix:  

 X AX BU      Eq. 3-39 

We will get: 
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  Eq. 3-40 
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  Eq. 3-41 

 

The eigenvalue analysis of induction generator models of wind turbine. 

From Eq. 3-41, rearranging by using the following form and taking a Laplace 

transformation yields:  

1(s)=(s  - ) (s)X I A BU      Eq. 3-42 
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     1 T1
s  - s  - 

det s  - 
 I A I A

I A
            Eq. 3-44 

The solutions of det(sI-A) = 0 are the eigenvalues of this state space equation, therefore: 

         1 44 3 2 0 44 22 33 3det s  - 0Ew S D D S S S Ews s K s K s K s K s K K K K       I A   

Eq. 3-45 

 

Table 3.6 Testing conditions for the study of the effects of wind power on multi-machine 

power test systems 

Variables Case1 Case2 Case3 Case4 Case5 Case6 

Load (p.u.) 4 4 4 4 4 4 

Pm3 of G3 (p.u.) 1 1 1 0.4 0.6 0.8 

Pm2 of G2 (p.u.) 3 4 2 3.6 3.4 3.2 

Pexchanged (PmG) 0 -1 1 0 0 0 

 

3.4 A Study of Effects of Wind Power on Small Signal Stability using Stochastic 

Stability Method: The Mean First Passage Time (MFPT) 

The mean first passage time (MFPT) is used as an index to evaluate the stability of 

the power system when perturbed by any small signal. This section applies the method of 

C.O. Nwankpa [9] to formulate the stochastic differential equations (SDE) and compute the 

MFPT of the power system incorporating stochastic wind power. The MFPT of stochastic 

power system is studied by varying noise intensities and wind speed. The measurement 

wind speed data in Thailand is used as an example for implementation.  

The MFPT is a solution of following problem:  

   
   
1 0 2 3 0

0 0
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0, 0C

C W W C C W W
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      Eq. 3-46 

Therefore, the solution is: 
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Where critical energy (WC) computational technique is presented in the previous Progress 

Report II and coefficients 1C , C2, and 3C are stated in Appendix A. 

From Sections 2.4.1 – 2.4.2 and Appendix A, MFPT can be calculated the using next 

process: 

(S1) Stable equilibrium points and critical energy are computed as represented in 

previous topics. 

(S2) Matrix H can be constructed using Eqs. A-3 to A-6 in Appendix A.  

(S3) Find eigenvalues and eigenvectors of matrix H. After matrix H is constructed 

explicitly, software Matlab can be used to find eigenvalues and eigenvectors. 

(S4) Construct set of matrix D and matrix F using Eqs. A-29 to A-33 in Appendix A. 

These matrixes will be used in the formulation of MFPT. 

(S5) Compute C coefficient using Eqs. A-25 to A-28 in Appendix A. 

(S6) Compute MFPT using Eq. 3-48. Each step from (S1) – (S5) is done completely. 

(S7) Change conditions of wind power, such as wind speed and noise intensity and 

repeat (S1) – (S6) again to see the variation of MFPT. 

The MFPT with different wind speeds (or wind power) and noise intensity is 

determined and explained in the next chapter. The case study of Thailand is examined for 

MFPT implementation. The testing conditions are 

 Wind speed 4, 6, 8, 10, and 12 m/s 

 Noise intensity varies between 0.0 – 4.0 

 Wind speed data is from the 90m-height monitoring station locating in 

Chumporn province of Thailand, during October 2011 and May 2012. 

 The wind power in this case is calculated using VESTAS V90 2000kW 

specification 
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3.5 A Study of Effects of Wind Power on Small Signal Stability using New Stochastic 

Stability Method 

Objectives and scopes 

 To develop new methods for the study of effects of stochastic wind power on power 

system stability using less computational effort. 

 To study the effects of different wind power characteristics, wind turbine type and 

the exchanged power on the small signal stability of the power system using a new 

method. 

Methods 

The new method is developed based on the theory of stochastic stability. The 

following list are the processes to formulate stochastic stability index as a new alternative 

method.  

 Formulate the stochastic differential equations of the power system incorporating 

wind power using power system dynamic equations from Sections 3.1 – 3.3.   

 Find steady state values of state variables at different conditions, such as different 

wind power and its noise intensity, different exchange power. It can be done by 

using simulation software or by solving the power flow problem using Newton-

Raphson’s method. 

 Formulate stochastic well-defined energy function as described in Sections 3.3 and 

3.5 

 Compute critical energy using method of Ribbens as described in Section 3.5. 

 Find the derivative of mean of stochastic well-defined energy function and 

formulate a new stability index and compute.  

 Evaluate the results of new stability index under different testing conditions    

Expected results 

 Steady state values of state variables at different conditions, such as different wind 

power and its noise intensity, different exchange power. 

 Critical energy and the derivative stochastic well-defined energy of the power 

system with different conditions 

 The new stability index with different testing conditions and the evaluation results 
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Figure 3.14 Process to study effects of wind power using SSI 

 

Testing conditions  

The power test system (details are in Section 4.2.2) 

 Two machines infinite bus power system (TMIB) 

The wind turbine types (details are in Section 4.1) 

 Squirrel cage induction generator (SCIG) 

 Doubly-fed induction generator (DFIG) 

The noise model conditions (details are in Section 4.3) 

 White noise wind power (normal distribution with infinite bandwidth) 

 Colored noise wind power (normal distribution with limited bandwidth) 

The power flow conditions 

 Different wind power without exchange power to/from infinite bus 

 Different exchanged power of infinite bus 

In Figure 3.15, G2 is generation bus with synchronous generator (SG), G3 is wind 

power bus with DFIG or SCIG.  X24 is reactance of lines B2-B4 including transformer, 

X34 is reactance of lines B3-B4 including transformer. Load bus is constant active power 

load. For bus 1, x1 is a reference angle of infinite bus generator and y1 is reference speed 

deviation  1 0r s    which is close to zero. The details of the test system is in Section 

4.2.2. 
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Table 3.7 System Parameters and Constants for TMIB 

M = 7.0 sec 0 = 314.2 rad/sec Lm = 3.95279 p.u. 

Lr = 0.09955 p.u. Ls = 0.09241 p.u. T0 = 2.343  p.u. 

X = 4.0 p.u. X’ = 0.1 p.u. XT = 0.5 p.u. 

kd = 0.8868 kb = 7.372 ka = 0.274Pm + 0.346 

kp = 1.0 kop = 0.56 ca = -0.022 Pm +0.006 

|E’| =Vw=1.05 p.u. kc1 = 0.97396 kc2 = 1.90308 

Vs = 1.0 (p.u.) V0 = 1.0 (p.u.) km = 1.017 

X14 = 0.5 p.u. X24 = 0.2 p.u. X34 = 0.2 p.u. 

  

 

Figure 3.15 The two machine infinite bus power system (TMIB) 

 

Table 3.8 Power flow and noise conditions for SSS analysis of TMIB 

Variables Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Load (p.u.) 4 4 4 4 4 4 

Pm3 of G3 (p.u.) 1 1 1 0.4 0.6 0.8 

Pm2 of G2 (p.u.) 3 4 2 3.6 3.4 3.2 

Exchange (PmG) 0 -1 1 0 0 0 

Noise intensity, 
NI 

0.0 – 1.0 

Bandwidth, BW 0 – 20 

 

3.6 A Study of Effects of Wind Power on Voltage Stability using New Stochastic 

Stability Method 

Objectives and scopes 

 To develop new methods to study the effects of stochastic wind power on power 

system voltage stability. 

 To study the effects of different noise intensity of wind power, wind turbine type, 

and conditions of exchange power on the voltage stability of the power system. 
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Methods 

 Formulate power system dynamic equations and stochastic differential equations, 

incorporating DFIG wind turbines, and with dynamic voltage equation at load bus. 

 Find steady state values of state variables at different conditions such as different 

wind power and its noise intensity, different exchange power. 

 Formulate stochastic well-defined energy function using DFIG WT, colored noise 

model, and with dynamic voltage at load bus. 

 Compute critical energy using method of Ribbens. 

 Formulate new voltage stability index and compute using the derivative stochastic 

well-defined energy function and the critical energy.  

 Evaluate the results of new voltage stability index under different testing 

conditions. 

Expected results 

 Steady state values of state variables at different conditions such as different wind 

power and its noise intensity, different exchange power. 

 Critical energy and the derivative stochastic well-defined energy of the power 

system with different conditions. 

 The voltage stability index with different testing conditions and the evaluation 

results. 

Testing conditions  

The power test system 

 Two machines infinite bus power system 

The wind turbine types 

 Doubly-fed induction generator (DFIG) 

The noise model conditions 

 Colored noise wind power 

The power flow conditions 

 Different wind power without exchange power to/from infinite bus 

 Different exchanged power of infinite bus 

 

Therefore, the power test system and parameters are the same as in Section 3.5. 
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Table 3.9 Power flow and noise conditions for VS analysis of TMIB 

Variables Case1 Case2 Case3 Case4 Case5 Case6 

Load (p.u.) 4 4 4 4 4 4 

Pm3 of G3 (p.u.) 1 1 1 0.4 0.6 0.8 

Pm2 of G2 (p.u.) 3 3.5 2.5 3.6 3.4 3.2 

Exchange (PmG) 0 -0.5 0.5 0 0 0 

Noise intensity, 
NI 

0.0 – 1.0 

Bandwidth, BW 0 – 20 

 

3.7 A Study of Effects of Wind Power on Voltage Variations using Probabilistic 

Method 

Objectives and scopes 

 To study the relation between the random wind power and voltage of the power 

system 

 To study the effects of different noise intensity of wind power on voltage and 

frequency of the power system 

 To study the effects of type of wind turbine on voltage of the power system  

Methods 

 Formulate wind power dynamics models using DFIG 

 Apply MCS for the study using PSCAD and Matlab 

 Run the simulation for 1000 rounds comparing between DFIG and with the 

different noise intensity of wind power 

Expected results 

 The probability distribution of wind power with different noise intensity of DFIG 

 The probability distribution of voltage at load bus under different conditions 

The effects of wind power on the power quality, especially voltage, will be 

determined using the probabilistic method called Monte Carlo Simulation (MCS). There 

are two main topics which will be studied: (1) the effects of wind power with stochastic 

noise on load voltage, and (2) the effects of various noises on load voltage. The testing 

conditions for these two topics are stated in the following tables. 
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Table 3.10 Testing conditions for a study of effects of wind power on load voltage 

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

PLoad 4 4 4 4 4 4 

Pm3 1.0 1.0 1.0 0.4 0.6 0.8 

Pm2 3.0 3.5 2.5 3.6 3.4 3.2 

Pexchange (PmG) 0.0 -0.5 0.5 0.0 0.0 0.0 

NI Pm3 0.3, 0.6 

BW Pm3 1, 10 

 

Table 3.11 Testing conditions for a study of effects of various noises on load voltage 

Variable Case T1 Case T2 Case T3 Case T4 Case T5 All 1 All 2 

PLoad 4 4 4 4 4 4 4 

Pmw 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Pmi 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Pexchange 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

QLoad 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

NI,BW Pmw 0.1,10 - - 0.1,0.1 - 0.1,10 0.1,10 

NI,BW PLoad - 0.025,0.1 - - - 0.025,0.1 0.025,0.1 

NI,BW QLoad - - 0.1,0.1 - - 0.1,0.1 0.1,0.1 

Weibull WS - - - - yes yes - 

 

 

 

 



CHAPTER 4 

METHODOLOGY PART 2 

 

The methodologies in part 2 are the techniques used for the studies in Chapter 3 

(Methodology Part 1). These methods are adapted from the studies in the past except the 

stochastic stability index which is a new developed method. The following topics are the 

main issues described in this chapter.  

 Power system modeling 

 Power system simulation 

 Noise modeling and stochastic differential equations formulation 

 Energy function formulation 

 Critical energy estimation 

 Eigenvalue determination 

 Mean first passage time (MFPT) determination 

 Stochastic stability index (SSI) determination 

 

4.1 Power System Modeling 

For the study of power system stability, it is reasonable to neglect dynamics 

occurring at stator while focus only on rotor dynamics. The swing equation is focused 

regarding the synchronization stability problem (for example, small disturbance around 

equilibrium operating point). 

4.1.1 Wind power modeling using SCIG wind turbine  

In this section, wind power is modeled using squirrel cage induction generator 

(SCIG), on which the swing equation is focused regarding the synchronization stability 

problem. The voltage behind transient reactance is also included. The different between 

synchronous generator and induction generator is the slip (sw) which is the different 

between angular speed of rotor and electrical field at stator of induction generator. 

Moreover, in the swing equations, damping coefficient (D) is diminished for SCIG. 

      4.1.1.1 Relationship between rotor angle ( ) and phase angle ( ) 

For three phase electrical system (abc), terminal phase voltage (va, vb, vc) can be 

represented as follows: 
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For rotating reference frame, dq transformation of phase voltage is: 
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     Eq. 4-2 

Where Vm is maximum phase voltage,  is angle of terminal voltage phasor which leads 

angle of reference bus voltage,  is angle which d-axis leads axis of phase a 

and 0rt    (where 0 is initial angle and assumes zero). 

For synchronizing reference frame, d-axis is assumed in phase with phase a. 

Therefore, terminal phase voltage on dq axis of synchronizing reference frame is 

 
 

cos

sin

d a m s

q m s

v v V t

v V t

 

 

   


  
    Eq. 4-3 

For a synchronous machine,  is the rotor angle or power angle, which is the same 

with the angle of voltage behind the transient reactance. But for an induction machine,  is 

determined as the angle of voltage behind transient reactance for synchronizing reference 

frame and is not the rotor angle. The difference between the angle of terminal voltage and 

angle of voltage behind the transient reactance is called internal phase angle (  ) as 

follows: 

         Eq. 4-4 

c         Eq. 4-5 

Where c is angle of terminal current and  is power factor angle which is the difference 

between  and c . 

      4.1.1.2 Electromagnetic torque under steady state conditions 

The dynamical electromagnetic torque (Tg) in per unit is stated by Olimpo Anaya-

Lara, et al. (2009): 

d d q q
g

s

E i E i
T


 

      Eq. 4-6 

Where dE and qE are voltage behind transient reactance in d and q axis, respectively. 

dsi and qsi are stator current in d and q axis, respectively. 
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However, if the magnetic field of rotor rotates at synchronous speed in which q-axis 

in-phase with voltage behind transient reactance, only q components of voltage behind 

transient reactance is occurred. Eq. 4-6 becomes [6]: 

g q qT E i      Eq. 4-7 

Where s is assumed to be one. 

Under steady state conditions, the electromagnetic torque (Tg) of SCIG can be 

expressed as follows [45]: 

23
2

r
g r

w s

rp
T I

s 
      Eq. 4-8 

Where    
s

r
r

s s r
w

rr j X Xs


    
 

V
I      Eq. 4-9 

If we assume , ,s s rr X X are very much less than r wr s , [73], hence: 

s s w
r

r w r

V V s
I

r s r
       Eq. 4-10 

When replacing Ir in Eq. 4-10 into Eq. 4-8, the relationship between power output and slip 

of SCIG can be approximated as follows:  
2 2

3 3
2 2

s w s wr
g

w sw r r sw

V s V srp p
T

s r r 
 

  
 

    Eq. 4-11 

For per unit base 

2 2

3 3
2 2

g g s w s w
g g

base sw base r base r

T P V s V sp p
T P

S S r S r
        Eq. 4-12 

Where baseS is apparent base power and the slip (sw) can be represented by  

1 1
2

s rr r
w

s s s

p
s

  
  


      [67]  Eq. 4-13 

Where p is number of pole, rm is revolution speed of rotor in mechanical radians per 

second, rw is angular speed of rotor in electrical radians per second and sw is angular 

speed of electrical field at stator in electrical radians per second.  

      4.1.1.3 Swing equation of induction generator 

For swing equation (or rotor mechanic equation) of induction generator, Newton’s 

second law is applied to the rotating machine as follows.  
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From iF ma   , F is force which is torque (T) over distance (r) from the center of 

rotating in Newton (N), m is mass in kilogram (kg), and a is acceleration (m/s2). The 

relationship becomes: 

 1gm
i m g

TT
F ma T T

r r r

 
       

 
   Eq. 4-14 

Where Tm is mechanical torque and Tg is electromagnetic torque.  

We know that  d dra r t , replacing in the above equation yields 

2 d d

d d
r r

m gmr J T T
t t

 
       Eq. 4-15 

Where J is moment of inertia (kg.m). 

Eq. 4-15 is the rotor dynamic equation which can be explained as the relationship 

between torque balance and deviation of frequency (angular speed of rotor). To express it 

in per unit base, the inertia constant H (seconds) is proposed and rearranged. 

2

2
s

base

J
H

S


 or

2

2 base

s

HS
J


     Eq. 4-16 

Placing Eq. 4-16 into Eq. 4-15, we will get 

2

2 d

d
base r

m g
s

HS
T T

t




 
  

 
    Eq. 4-17 

Rearrange Eq. 4-17, yields 

d d1 1

d d 2
m gr r

s base s

T T

t t H S

 
 

 
   

 
 or  d

d 2
sr

m gT T
t H


     Eq. 4-18 

In per unit system base

base base base base base

TT T P
T P

T S S S




       Eq. 4-19 

Therefore, in per unit system, torque is equal to power.  

From Eq. 4-18, we have found that [45]: 

 d d 1

d d 2
r

r m g
s

P P
t t H

 

 

   
 

    Eq. 4-20 

If assumes s is constant or change very small, replace Eq. 4-20 into 2-27, we have 

found that 

 d 1

d
w

m g

s
P P

t M
        Eq. 4-21 

Where M = 2H. 
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      4.1.1.4 Voltage behind transient reactance of induction generator 

When neglecting rotor circuit, equivalent circuit is based solely on stator voltage 

behind the transient reactance (E’) of induction generator can be represented by following 

diagram.  

 

Figure 4.1 Single-line (left) and phasor (right) diagrams of induction generator 

 

In the above figure, for system reference axis or XY-axis, it can be represented 

using following relationship. 

2
j

j
xy dqe E e




  
    E E

    
Eq. 4-22 

 2
j

l j
xy dq q de V jV e Ve


 

  
    V V

   
Eq. 4-23 

 2 c
j

jl
xy dq q de I jI e Ie




  
    I I

   
Eq. 4-24 

From above figure, neglecting stator resistance, for d-q reference axis (machine 

reference), the Kirchhoff’s law can be applied and yield 

dq dq dqjX  E V I   or   xy xy xyjX  E V I
   

Eq. 4-25
 

If we give = E Edq d qj  E , = V Vdq d qjV and =dq d qI jII , Eq. 4-25 becomes 

   E E V V I Id q d q q dj j X j       
   

Eq. 4-26 

E V Id d qX  
    

Eq. 4-27 

E V Iq q dX  
    

Eq. 4-28 

Since q-axis is in-phase with E , Ed is assumed zero, therefore, from Eq. 4-27, V Id qX  . 

Given  V Vsind   and  V Vcosq   ,      , replace into Eq. 4-27 and 4-28, yield 

 E E Vcos Iq dX     
    

Eq. 4-29 
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 Vsin IqX  
    

Eq. 4-30 

If we give = E Exy x yj  E , = V Vxy x yjV and =xy x yI jII , Eq. 4-25 becomes 

   E E V V I Ix y x y x yj j X j      
   

Eq. 4-31 

If the stator resistance is very small and can be neglected, for induction motor in x-

y reference axis (system reference), the deviation of voltage behind transient reactance (E’) 

can be represented as follows [23]: 

 
0

d 1

d
xy

xy xy w s xyj X X js
t T




        
E

E I E
   

Eq. 4-32
 

Where T0 is the per unit transient open circuit time constant of induction machine 

(seconds), X is the per unit open circuit reactance, X’ is the per unit transient short circuit 

reactance.  

For the induction generator, only the sign of the current term of the above equation 

is changed to be [6]: 

 
0

d 1

d
xy

xy xy w s xyj X X js
t T




        
E

E I E
   

Eq. 4-33
 

However, to represent Eq. 4-33 in the form of magnitude and angle of 

E separately, placing Eqs. 4-22 to 4-24 into Eq. 4-33, yields 

  
0

dE d 1
e E e E e e E e

d d
j j j j j

q d w sj j X X I jI js
t t T

     
              

Eq. 4-34
 

Divide above equation by e j ,  

  
0

dE d 1
E E E

d d d q w sj X X I jI js
t t T

 
               

Eq. 4-35 

Separate real and imaginary parts, becomes  

 
0

dE 1
E

d dX X I
t T

       
    

Eq. 4-36 

 
0

d

d E
q

w s

X X I
s

t T

 


  
     

Eq. 4-37 

where 

0
r mrr

r r

L LL
T

r r


 

     
Eq. 4-38 

 s ss s s mX L L L   
    

Eq. 4-39 
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2
m

s ss
rr

LX L
L

     
       

Eq. 4-40 

4.1.1.5 Relationship between internal phase angle of voltage behind 

transient reactance and phase angle of terminal voltage  

In the SMIB model, replacing synchronous generator by induction generator, the 

simulation result using PSCAD can reveal the relationship between internal phase angle of 

voltage behind transient reactance and phase angle of terminal voltage as follows.  

 

 

 
Figure 4.2 Single-line diagram of power test system in PSCAD 

 

Where XT is transformer reactance and XLN is line reactance, wind speed is 8, 9, 10 m/s. 

Assuming that a ak c    , from the above figure we found that ka> 0. For the 

linear relationship between internal phase angle (IntA,   ) and angle of internal voltage 

(AoIV,  ) during the time 0.3 – 10.0 seconds, ka is about 0.624 and ca is -0.048. 

From the result of simulation, ka (positive) and ca (negative) have small increases 

with increasing wind speed. This is due to an increasing wind power resulting in rotor 

speed deviation acceleration and finally causes an angle of voltage behind transient 

reactance ( ) to increase. The relationship between deviation of   ,  and  are as follows 

    , a ak c         Eq. 4-41 

the above equation becomes 

ak   
 and            Eq. 4-42 
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Table 4.1 The slope (ka) and offset (ca) of the linear relationship between internal phase 

angle of voltage behind transient reactance and phase angle of terminal voltage during the 

time 0.3 – 2.0 seconds. 
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Figure 4.3 The relationship between internal phase angle (IntA,   ) and angle of internal 

voltage (AoIV,  ) and phase angle of terminal voltage (PHA, v ) 

 

4.1.2 Wind power modeling using DFIG wind turbine  

This report focuses on the variable speed wind turbine using DFIG which has the 

largest share in the market. The DFIG third-order model is represented for a study on the 

small signal stability analysis.  

      4.1.2.1 Steady state characteristics 

If we neglect iron losses (from stator and rotor) and air gap loss, the power balance 

of DFIG can be represented using the following equation 

m s rGP P P P       Eq. 4-43 

Where Pm is mechanical input power, Pm is power generation to the grid, Ps is electrical 

power on stator and Pr is electrical power on rotor (per unit). 

 

 

 

 Wind speed ka ca 

8 m/s 0.613 -0.053 

9 m/s 0.614 -0.051 

10 m/s 0.622 -0.049 
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Equation of motion: 

The equation of motion (relationship between torque balance and the deviation of 

frequency) of DFIG is similar to the general induction generator (IG), except for the power 

on rotor (Pr). This equation becomes [45]: 

   d d d 1 1

d d d
r

r w m s r m G
s

P P P P P
t t t M M

s
 

 

        
 

   Eq. 4-44 

Where r and s are angular speed of rotor and of electrical field at stator (electrical 

radians per second). Pm is mechanical input power and Ps is electrical power on stator (per 

unit). M = 2H is inertia constant of generator (second). sw is slip ((r – s) / s). The over 

bar represents per unit value and p is the derivative over time operator. 

The Ps can be represented in the following equations:  

 1 w

G
s rG

P
P P P

s
  


      Eq. 4-45 

wr rq rq srd rdP I V I V s P     [45] Eq. 4-46 

 
1

sin
n

ew j wj w jG
j

wEP P V B  


        Eq. 4-47 

Where Pe is electrical power generation of machine, Pr is electrical power on rotor,  is an 

angle of voltage behind transient reactance (E’),   is angle of voltage (V0) at reference 

point, ’ is an angle between E’ and V0, XT is line reactance, Bwj is susceptance between 

internal bus w and network bus j. The other variables are described below. 

  

Figure 4.4 Single machine infinite bus power system for wind power modeling 

 

For synchronous generators, the damping power decreases with increasing line 

reactance [44]. For SCIG, the damping power due to the current flow in the rotor circuit 

(i2r) is very small. For DFIG, however, its damping power may larger than that of SCIG 

due to the rotor voltage (Vr) which is in-phase with E’. Therefore, Eq. 4-47 is used to relate 

the effect of line reactance on the damping power and is replaced into Eq. 4-46, yields 

 ww mw ewP PpyM        Eq. 4-48 

Where yw = -sw is state variable which represent speed deviation. 
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      4.1.2.2 Equation of voltage behind transient reactance 

The deviation of voltage behind transient reactance, E’, of DFIG in x-y reference 

axis (system reference) can be represented as follows [45]: 

 
0

d 1

d
xy m

xy xy w s xy s r
rr

L
j X X js j

t T L
 


         

E
E I E V

 
  Eq. 4-49 

If representing Eq. 4-49 in the form of magnitude and angle separately, the new 

forms in d-q axis reference are 

   
0

dE 1
E

d
m

sd s rd
rr

L
X X I V

t T L

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  Eq. 4-50 

 
0

d

d E E
sq m

w s s rq
rr

X X I L
s V

t T L

  


   
    

  Eq. 4-51 

Where Is is stator current,   is phase angle of E’xy, T0 is the transient open circuit time 

constant of induction machine (seconds), X is open circuit reactance, X’ is transient short 

circuit reactance. Vr, Vs are rotor and stator voltage, respectively. Lm is mutual inductance 

and Lr (when Lrr = Lr + Lm) is rotor circuit inductance. Exy is assumed in-phase with q-axis 

and following equations are also stated: 

 2
j

j j

xy dq q d Ee E jE e e



 

 
 
       E E      Eq. 4-52 

 2
j

j j

xy dq q dV V Ve j e e



 

 
 
    V V      Eq. 4-53 

 2
j

jj

xy dq q d
cI I Ie j e e





 

 
    I I      Eq. 4-54 

The steady state voltage balance of stator can be represented as follows:  

 sq sd sq sqV E I X I r          Eq. 4-55 

sd sq sd sdV E I X I r          Eq. 4-56 

1
sd sq rd

m

s ss ss

I V I
L

L L
         Eq. 4-57 

sq rq
m

ss

I I
L

L
         Eq. 4-58 

Assuming pE’ in Eq. 4-50 and the terms with rs in Eq. 4-55 and Eq. 4-56 are very 

small and can be neglected and Vr has only q-component. Replace Isq from Eq. 4-56 into 

Eq. 4-51. Finally, Eq. 4-51 becomes 
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 
0

d

d E
sd rqm

w s s

rr

X X V VL
s

t T X L
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

   
    

  Eq. 4-59 

Eq. 4-59 reveals the relationship between Vrq, sw, E’, and p while Vrd in Eq. 4-50 is 

very small and not affect to E’. These assumptions are necessary for the following topics.    

The dynamic control of this DFIG model is applied using current-mode control 

technique [45]. For the study of small signal stability, only torque and voltage control 

models is discussed.  

From Eq. 4-56, if r less than 0.7 p.u., then Tsp will be zero, but if r is larger than 

1.2 p.u., the Tsp will remain at 0.81 p.u. until r reach the shut down speed at 1.33 p.u. 

which Tsp becomes zero, where [45] 

0
0 0

r mrr

r r

L LL
T

r r 


 
     

Eq. 4-60 

 s ss s s mX L L L   
    

Eq. 4-61 

2
m

s ss
rr

LX L
L

     
       

Eq. 4-62 

      4.1.2.3 Torque control model 

From Eq. 4-51 and Eq. 4-59, we have found that speed (p) and terminal voltage 

(Vsq) can be controlled by adjusting Vrq and Vrd , respectively. Therefore, the torque control 

model has a purpose to regulate torque by adjusting Vrq automatically. The following 

equations, Eqs. 4-63 – 4-71, are used as follows: 

limit

shutdown

limit limit

2

0 ,

sp op cut in r

sp r cut in r

sp r

rT K

T

T T

  
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 

 



 

 















    Eq. 4-63 

_rq ref
s ss

sp
m sq

I
L

T
L V


       Eq. 4-64 

_I rq ref rqp I IZ         Eq. 4-65 

 _rq P rq ref rq I IV K I I K Z        Eq. 4-66 

 _rq c w s rr rd m sdV s L I L I       Eq. 4-67 

Ird can be calculated using Eq. 4-55 and Eq. 4-57 to be 
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    Eq. 4-68 

Irq can be calculated using Eq. 4-56 and Eq. 4-58 to be 

rq sd
ss

m

I V
L

L X



       Eq. 4-69 

where 

2 2
s sd sqV VV          Eq. 4-70 

_rq rq rq cV V V         Eq. 4-71 

Where Tsp is an optimum torque (set point torque, p.u.), Kop is an aerodynamic performance 

constant from manufacturer, Irq_ref  is q-axis rotor current reference value, Vrq_c is 

compensator value of q-axis rotor voltage, and W1 and  V'rq are any variables.  

Replacing Ird in Eq. 4-68 and Isd in Eq. 4-57 into Vrq_c in Eq. 4-67, we have:  
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 Eq. 4-72 

Or    _ 1 2rq c w sqc cV Es k k V      Eq. 4-73 
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2

1

2

2

1

m ss
c s rr

ss m

m ss
c s rr

ss s m m s

m

ss

L L
k L

L L X

L L
k L

L L L X

L
L




 

  
      


               



   Eq. 4-74 

The V’rq in Eq. 4-66, in order to be used in the torque-speed control (PVrq) scheme, can be 

represented as follows: 

P I I
s ss ss

sp sd
m sq m

rqV K K Z
L L

T V
L V L X


 
  

 



    Eq. 4-75 

Where Tsp is the set-point torque at any generator speed () and can be represented using 

Eq. 4-60. The function with KP and KI are the PI control parameters. 
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However, for the simulation purposes, instead of using I’rq – Irq , we can use Tsp - Ts 

(the latter is per unit torque output) for the simplified control function to avoid the difficult 

task but still remain the same purpose. In per-unit base, Ts is equal to Ps (per unit electrical 

power output on stator). Therefore, we can develop a new V’rq as follows 
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E X
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Placing the above equation into Eq. 4-75 yields 
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From Eq. 4-45 – 4-47, 
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  Eq. 4-77 

Where KP and KI are constants. The parameter kP and kI are provided to represent the new 

convenient form of PI control. The P’s is a modified value of Ps. 
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  Eq. 4-78 

Where kn is a constant using to adjust P’s to be equal to Tsp when reach the maximum 

value.  

   1 2 P sp s I Irq w sqc cE T P ZV s k k V k k        Eq. 4-79 

Eq. 4-79 will be used in the state space equations formulation. However, for an 

energy function formulation, the Tsp is assumed to operate under normal conditions for 

which rotor speed is not beyond the rated value and not less than the lower limit. 

      4.1.2.4 Voltage control model 

The voltage control model has a purpose to regulate voltage by adjusting Vrd 

automatically. The following equations will describe voltage control and are stated as 

follows: 
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_2 rd ref rdpW I I         Eq. 4-83 
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      Eq. 4-85 

_rd rd rd cV V V          Eq. 4-86 

Where KVC is a constant, Ird_ref is d-axis rotor current reference value, Ird_mref  is a 

magnetizing component of generator, Ird_gref  is a terminal voltage control (grid) component, 

Vrd_c is compensator value of d-axis rotor voltage, W2 and  V'rd are any variables. 

4.1.2.5 Relationship between internal phase angle of voltage behind 

transient reactance and phase angle of terminal voltage  

To simplify the DFIG model, the Vsd and Vsq can be represented in the form of 

trigonometric functions:  

  sin sinsd s s vV V V          Eq. 4-87 

 cos cossq s s vV V V          Eq. 4-88 

Where  is angle of internal voltage or voltage behind transient reactance (E’), v is angle 

of stator voltage (Vs) and ’ is an internal phase angle (different angle between  and v). 

From the DFIG wind turbine model in PSCAD, the simulation result can reveal the 

relationship between  and v as follows.  
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B Ref 

ZLN= RLN + jXLN

c jx’d

s v

 
Figure 4.5 Single-line (left) and phasor (right) diagrams of induction generator 
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Where XT is transformer reactance and XLN is line reactance, wind speed is sinusoidal 

signal of magnitude 11±2 m/s with period of about 6 seconds. 
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Figure 4.6 Variation of internal phase angle (Deltai,   ) and angle of internal voltage 

(Delta,  ) and angle of stator voltage (PAdfig, v ) when wind power is 1.0 p.u. 
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Figure 4.7 The relationship between internal phase angle (Deltai,   ), angle of internal 

voltage (Delta,  ), and angle of stator voltage (PAdfig, v ) at four wind powers (WP) 

The above figure shows the linear relationship between the internal phase angle 

(Deltai,   ) and angle of internal voltage (Delta,  ). We find that ’ increase with 

increasing  and vice versa. The slope (ka) and offset (ca) of the linear relationship are 

computed by varying wind power and the result is shown in next table. 
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Table 4.2 The slope (ka) and offset (ca) of the linear relationship between internal phase 

angle (Deltai,   ) and angle of internal voltage (Delta,  ) of DFIG 

Wind 
Power (p.u.) 

a v ak c     a ak c     

k’a c’a R2 ka ca R2 

0.3 1.698 0.002 0.996 0.413 0.0012 0.993 

0.5 2.004 -0.014 0.998 0.502 -0.007 0.998 

0.8 2.363 -0.034 0.998 0.577 -0.0144 0.999 

1.0 2.539 -0.037 0.993 0.608 -0.0146 0.997 
 

From the result of simulation, ka increases while ca decreases with increasing wind 

power. This is due to increasing wind power resulting in rotor speed deviation acceleration, 

finally causing the angle of voltage behind transient reactance ( ) to increase. The 

relationship between deviation of   ,  and  are as follows: 

     , a ak c        Eq. 4-89 

The above equation becomes 

ap k p    and  vp p p        Eq. 4-90 

It has to be mentioned that, in the case of a generator,  must not less than zero. If 

the angle  is less than zero (such as when import power from the infinite bus), the Eq. 4-

89 is invalid and has to be modified to let ’ not be negative. Therefore, the reference angle 

of DFIG wind turbines for the computation of ’ should be the phase angle of the main bus 

for which the branch of wind turbines is first connected. As a result, the new equation of ’ 

should be 

a ref ak c           Eq. 4-91 

Moreover, ka and ca can be approximated using a linear relationship with wind 

power (WP), as follows: 

ka = 0.274WP + 0.346     Eq. 4-92 

ca = -0.022WP + 0.006     Eq. 4-93 

The slopes and offsets are from the simulation result using PSCAD. 
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Figure 4.8 Linear relationship between ka (left) and ca (right) with DFIG wind power. 

 

4.1.3 Synchronous generator modeling  

For electrical models of synchronous generator for power system stability, only 

swing equations (equation of motion) and power flow equations are applied to represent 

only the synchronous stability parameters (rotor angle and speed) due to small disturbances 

and to reduce the complexity of solutions to focus only on the physical meaning as a 

concept. Therefore, for synchronous generator, the dynamics of voltage and current are 

neglected. 

0r st t              Eq. 4-94 

d

d r s rt

                     Eq. 4-95 

2

2

dd

d d
r

t t

 
       Eq. 4-96 

 0

d

d rt

      [52]    Eq. 4-97 

Where is rotor angle (electrical radians) of generator at bus i, r is electrical 

angular velocity of rotor of generator at bus i and s is synchronous speed at its rated value 

( 02 f , electrical radians / second), and 0 is the initial rotor angle of generator at time 

t=0.The over bar represents the per unit value. 

In per unit system, mechanical (and electrical) torque is equal to mechanical (and 

electrical) power [52]. 

mi miT P and gi gi di qi qi diT P I I     i = 1, 2,…, m  Eq. 4-98 
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Where miT  is mechanical torque and giT is electrical torque in per unit base at bus i, 

,di qi  are flux linkage in d- and q-axis, and ,di qiI I are stator current in d- and q-axis, 

respectively. 

From the above equations, in per unit system, state space equations are [52] 
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  i = 1, 2,…, m  Eq. 4-100 

Where ,di qiV V
 
are stator voltage in d- and q-axis, respectively. 

The simplified voltage equations on the stator circuit (two-axis model) are: 

   E E V V I Id q d q q dj j X j      
   

Eq. 4-101 
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d d q

q q d

X

X

    


        
Eq. 4-102 

Where ,di qiE E  are the voltages behind transient reactance in d- and q-axis, respectively. 

This voltage equation can be shown in the figure below. 
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Figure 4.9 Single-line (left) and phasor (right) diagrams of synchronous generator  

 

4.1.4 Dynamic load modeling  

For a load model, static constant power load and frequency dependent load model 

are applied. The frequency dependent load model is used according to the assumption that 

real power changes nearly linear with frequency [9].   

 1
k lk ek

i

P P
c

         Eq. 4-103 

Where ci is frequency coefficient of load bus i and k is phase angle of voltage (V) at bus k. 
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For a static constant power load, lkP and lkQ are constant values. The power load Plk 

can be modeled depending on voltage. For the constant impedance load, Plk = Pl0k(Vk)
2. 

For voltage stability analysis, the voltage on the load bus can be formulated as 

follows: [11] 

 1
k lk ek

k k

V Q Q
V

        Eq. 4-104 

Where lkQ is reactive power load, Vk is voltage on load bus, k is reciprocal of the 

convergence speed of the voltage magnitude to its equilibrium value. 

 
1

cos
n

j jek k kj k
j

Q V V B x x


       Eq. 4-105 

 00

ak

klk kQ Q V V       Eq. 4-106 

For the constant impedance load, ak = 2, for constant power load, ak = 0, and for 

constant current load, ak = 1 .  

4.1.5 Network modeling  

The network equations assume a structure-preserving model for which both active 

and reactive power neglect transferred conductance terms (terms with Gij = 0 for simplicity 

in calculation but not overlook the main purpose). The network equations (per unit) can be 

represented as follows. 

For the active power generation, 

1

Re Re
n

gi i i i ij j
j

P   



 
       

 
E I E Y E     Eq. 4-107 

where    Y Yij

ij ij ij ij ij ijG jB e     Y    Eq. 4-108 

Where ij
i i iE e E    , Y cosij ij ijG  is conductance, Y sinij ij ijB  is susceptance 

(imaginary part of admittance) and ij is angle of admittance linking between bus i and j.  

If placing Eq. 4-108 into Eq 4-107, yields [44]: 
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 Eq. 4-109 

Eq. 4-109 can be used for all generator buses (both synchronous and induction 

generators). From this equation, assuming zero conductance, it becomes: 
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For the load bus: 
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when assuming zero conductance, Eq. 4-113 becomes: 
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4.1.6 Dynamic power system equations  

The power system equations in this section are the structure-preserving model for 

multi-machine infinite bus power systems. Given i = 1, …, (m-p) and w = (m-p)+1, …, m 

and k = m+1, …, n. and approximate s by using 0 . These power system equations are 

applied from the previous section and can be represented as follows: 

      4.1.6.1 For SCIG, included in the power system 
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For reasons of simplicity and convenience in mathematical modeling, several 

assumptions can be made as follows: 

A1) In the case of the generator bus, replace Ei and Ew by Vi and Vw, respectively.  

The transient reactance are included into Bij and Bwj. Therefore, Eq. 4-123 and Eq. 4-124 

become: 
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A.2) For the load bus, just replace angles k and j by k and j, respectively. 

A.3) Generator bus no.1 can be set as a reference bus and new variables (x and y) 

(relative on reference bus) can be stated as follows 

1i ix    ,
1w wx     ,

1k kx     ,
i riy   ,

w rwy     Eq. 4-128 

A.4) The reference angle is assumed and therefore, the deviation of Eq. 4-128 is  

 1 0 1i i ix y y       ,
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w rwy     Eq. 4-129 

A.5) Furthermore, the deviation of magnitude of internal voltage in Eq. 4-119 is 

assumed to be very small and can be neglected. Furthermore, both internal voltage 

(E’) and terminal voltage (V) are assumed to be constants of around one. Therefore, 

from Eq. 4-117 to Eq. 4-122, the simplified results are:   
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the results are: 
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Where i = 1, …, (m-p) and w = (m-p)+1, …, m and k = m+1, …, n. 1b a ac k c  , bk is 

normally positive with   0 Eb w w w wk X X T X     

In many cases, the mechanical power of an induction generator wind turbine can be 

approximated using the value of wind speed and power coefficient from the manufacturer 

as follows: 

31

2mw p ws
base

P c AV
S

      Eq. 4-139 

The  is air density (kg/m3), A is the swept area of the turbine, pc is power 

coefficient (provided by manufacturer), and wsV is wind speed at hub height. 

      4.1.6.2 For DFIG, included in the power system 

From the assumptions of A.1 to A.5, the power system equations incorporating 

DFIG become: 
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0.274 0.346a mwk P    and  0.022 0.006a mwc P       Eq. 4-154 

Where n is the number of network buses, w is wind power bus, k is load bus, V is terminal 

voltage, Bij is susceptance component between bus i and j, Plk is a constant power load,  

Pew ,and Pek are electrical power at wind power bus and load bus, respectively. ck is 

frequency dependent coefficient of load. 

4.1.7 Dynamic power system equations for voltage stability analysis 

For the power system incorporating DFIG wind turbines, the dynamic power 

system equations for voltage stability analysis are represented as follows: 
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0.274 0.346a mwk P    and  0.022 0.006a mwc P       Eq. 4-172 

Where n is the number of network buses, w is wind power bus, k is load bus, V is terminal 

voltage, Bij is susceptance component between bus i and j, Plk is a constant power load,  

Pew ,and Pek are electrical power at wind power bus and load bus, respectively. ck is the 

frequency dependent coefficient of load. Q0, V0k, and ak are constant reactive load, initial 

voltage and exponential component representing characteristic of load, respectively.   

4.2 Power System Simulation 

4.2.1 Power system simulation using PSCAD 

In this part, an overview of PSCAD/EMTDC is given first. After that, the six main 

components of power system models in PSCAD/EMTDC are explained. These components 

are generator model, power line model, transformer model, load model, excitation system 

model, and turbine and governor model.  

      4.2.1.1 Overview of PSCAD/EMTDC 

The PSCAD is the graphical user interface linking to the EMTDC (Electromagnetic 

Transients including DC) solution engine. The PSCAD was first known in 1988 and was 

first commercialized in 1994. The EMTDC was first written in 1975 to solve differential 

equations in a time domain based on fixed time steps.  

EMTDC, which differs from many other programs, can serve all frequencies not 

only fundamental frequency. This tool can represents electrical circuits using steady-state 

equations, which represent machine mechanical dynamics using actual differential equation 

solutions.  Its network solution is solved using LU decomposition method, which can 
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reduce the size of the sparse conductance matrix. Moreover, user-defined EMTDC code 

can be written in Fortran, C and MATLAB languages.   

      4.2.1.2 Generator model 

PSCAD represents four rotating machine types: a Synchronous Machine, a Squirrel 

Cage Induction Machine, a Wound-Rotor Induction Machine and a DC Machine. This 

report describes only synchronous and squirrel cage induction machines because they are 

major parts concerning the wind power system. 

1) Synchronous generator  

There are two types of synchronous generator (SG), round rotor (high speed) 

represents only one damper winding and salient pole rotor (low speed) represents second 

damper winding. Mathematical models of SG are represented in the previous section.  

For the simulation of rotating machines, the initialization conditions must be 

specified. Machine initialization in PSCAD consists of  

 Initialisation for Load Flow (start with generator mode when de-energized 

condition is investigated),  

 Starting as a Voltage Source (to shorten starting time into a steady-state 

condition and then can switch to a generator mode),  

 Locked Rotor Operation (Rotor dynamics is disabled when applied to enhance 

start-up speed disregarding mechanical dynamics after switching from voltage 

source modes), and  

 Free Running Rotor (The mechanical dynamics from torque and windage, and 

friction losses are considered in this case). 

The following topics describe the parameters and configuration options of SG, 

which consists of six main parts, B1 – B6, as shown in the next figure. 

 

B1

B2

B3

B4

B5

 

Figure 4.10 Block of synchronous generator model in PSCAD 



172 
 

   
 

B1 : Rotating machine parameters 

 Basic data (for example rated rms VLN, rated rms IL, Base angular frequency, 

inertia constant, number of coherent machine) 

 No. of Q-axis damper winding (one is for round rotor, two for salient pole 

rotor) 

 Data entry format (Generator data from manufacturer provided with per unit 

d- and q- axis reactance and time constants, equivalent circuit data base on 

d- and q- axis synchronous machine equivalent circuits)  

 Initial conditions (when starting as generator and as voltage source) 

 Output variable name (active and reactive power, neutral voltage and 

current to ground, load angle, rotor mechanical angle, internal phase A 

angle, steady electrical torque) 

B2 : Input/Output multi-mass shaft model interface 

 Rotor angular speed (w) signal from multi-mass shaft model can be a direct 

input with positive value  

 Electrical torque (Te) and mechanical torque (Tm) output are used for the 

multi-mass shaft model 

B3 : Input/Output excitation system parameters 

 The initial output field voltage (Ef0) 

 The input field voltage (Ef) from excitation system under operating 

conditions 

 The output field current (If) to excitation system under operating conditions 

B4 : Terminal voltage and current feedback parameters 

 The three phase terminal voltage and current signal can be supplied to the 

exciter model to set the terminal constraints 

B5 : Input/Output turbine and governor parameters 

 Rotor angular speed (w) signal from turbine and governor model can be as 

direct inputs with positive values  

 Mechanical torque (Tm) outputs are used for the turbine and governor 

model 
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2) Squirrel cage induction generator (SCIG) 

 

Figure 4.11 Block of 

SCIG model in 

PSCAD 

 The input of squirrel cage induction generator can be either 

from rotor angular speed (W, rad/s) signal or from mechanical 

torque (T, kW-rad/s) signal. The switch signal (S, speed or torque 

control) is used to switch between torque and speed input. Its 

output is single or three phase wires with electrical parameters. 

Configuration data are similar to rotating machine parameters of 

synchronous generators. 

Configuration data 

 Rated RMS Phase Voltage [kV] (from design) 

 Rated RMS Phase Current [kA] (from design) 

 Base Angular Frequency [rad/s] (from design) 

 Data Generation/ Entry (as follows) 

 Multi-mass Interface (when sub-synchronous oscillation is considered) 

 The saturation condition can also be modeled 

Data Generation/Entry 

Data generation or data entry is the method of specifying the electrical components 

of the generator.  There are 3 methods as follows: 

 Typical : Specify horse power of the generator in case no other information is 

available. 

 Explicit : Specify winding resistances, reactance, polar moment of inertia (J=2H), and 

mechanical damping in the case that information is available (recommended). 

 EMTP type 40 : Specify characteristics of Torque-Slip Curves from the manufacturer, 

such as power factor and efficiency at rated load, slip at full load, starting current, 

starting torque, maximum torque, number of pole, polar moment of inertia (J=2H), and 

mechanical damping. 

Internal Output Variables 

When electrical outputs data are required, the names of the following variables are 

listed.  

Real Power (+=in) (p.u.) Reactive power (+=in) (p.u.) output rotor angle (rad)

Output Mechanical Torque (p.u.) output speed (p.u.) Electrical Torque (p.u.)

Torque Angle (rad) Slip Angle (rad)  
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Explicit Information 

Figure 4.12 Equivalent circuit of SCIG in PSCAD 

1) Stator Resistance (Rs) 

2) First Cage Resistance (R’r) 

3) Second Cage Resistance(R’r(1-s)/s) 

4) Stator Unsaturated Leakage Reactance (Xls) 

5) Unsaturated Magnetizing Reactance (Xm) 

6) Rotor Unsaturated Mutual Reactance (X’lr) 

7) Second Cage Unsaturated Reactance (X’r2)  

 

EMTP type 40 Information (Example) 

  

Figure 4.13 Torque-Slip Characteristics Figure 4.14 Variation of starting torque with 

rotor resistance 

  

Figure 4.15 Variation of torque and stator 

current with slip 

Figure 4.16 Performance curves of 3-phase 

squirrel cage induction generator 

 

        4.2.1.3 Transmission line model 

There are two types of power line models described: the PI section model and 

distributed transmission line model. The underground transmission line model and 

mutually electrical wires are also provided, but not used in this thesis, therefore, 

unexplained.  

X’r2 

R2 is rotor resistance 
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1) PI section model 

There are two types of PI section line model, the nominal PI section and the 

coupled PI section components. Nominal PI section model represents voltage measured to 

local ground. The coupled PI section model represents voltage, which always measured to 

earth (true ground). 

 

 
 

Figure 4.17 Schematics of nominal PI section (left) and coupled PI section (right) models 

2) Distributed transmission line model 

The three models of distributed transmission lines are provided in PSCAD: the 

Bergeron model, Frequency Dependent (Mode) model, and Frequency Dependent (Phase) 

model, depending on increasing accuracies. 

The Bergeron model represent the transmission line with lumped R, and distributed 

L and C components. It is useful when requiring the correct steady state 

impedance/admittance at fundamental frequency. This model has computational time faster 

than the other two. 

The Frequency Dependent (Mode) model is useful for studies of behaviors 

involving transients or harmonics. It uses curve fitting to represent the frequency response 

of the line. It works very well with the transposed lines but should not be used for 

untransposed lines or when the multiple towers are modeled in the same right of way. 

The Frequency Dependent (Phase) model represents the full range of the frequency 

responses of the lines. It is useful for study behaviors involving transients or harmonics. It 

is the most advanced time domain transmission line model and is used for most studies. 

Five steps of distributed transmission line modeling are described. 

Step#1: Enter a line name and numbers of conductors by double-clicking on the Tline (1) 

interface components. This name must be unique for this circuit. 

Step#2: Double-click on the TLine (T) component and enter the same name as in STEP 1. 

Then enter the line length, steady state frequency and number of conductors. 
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Step#3: Open the TLine configuration by double-click on "Edit Configuration" or 

"Edit…."  and then copy desired line constants components onto the sub-page. 

Step#4: Select only one line model (Bergeron model, Frequency Dependent (Mode) model, 

Frequency Dependent (Phase) model) and give conditions.  

 

 

 

Figure 4.18 Tline and TLine 

components 

Figure 4.19 The conductor geometry method 

 

 

 

Figure 4.20 Bergeron, Frequency Dependent (Mode and Phase) models and options 

 

Step#5: Select the data entry method. The manual entry is used only for Bergeron model 

by providing R, XL, and XC. The conductor geometry with ground and tower 

components methods is suitable for Frequency Dependent (Mode) model and 

Frequency Dependent (Phase) model. 

      4.2.1.4 Transformer model  

  The transformer models in PSCAD are 3-phase 2- winding, 3-

phase 3-winding, and 3-phase 4-winding transformer models. For 

these models, the two different core geometries are provided, which 

are the Classical transformer model and the Unified Magnetic 

Equivalent Circuit (UMEC) transformer model. The classical model 

normally considers the magnetic coupling between winding of the 

same phase while the UMEC transformer model additionally 

considers the magnetic coupling between winding of different phase. 
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The transformer core structures which can be modeled using UMEC are, for 

example, single phase 4-winding, 3-phase 3-limb unit, and 3-phase 5-limb unit. 

 

 

Figure 4.21 Example of 3-phase 3-limb transformer schematic 

 

     

AC exciter models 

Input: 

Vref is reference voltage 

Ef0 is initial field voltage 

If is field current 

[VT/IT] is 3-element of terminal 

voltage and current  

Output: 

Vref0 is initial reference voltage 

Ef is field voltage 

 

DC exciter models 

Input: 

Vref is reference voltage 

Ef0 is initial field voltage 

[VT/IT] is 3-element of terminal 

 

Output: 

Vref0 is initial reference voltage 

Ef is field voltage 

 

Static exciter models 

Input: 

Vref is reference voltage 

Ef0 is initial field voltage 

If is field current 

[VT/IT] is 3-element of terminal 

voltage and current 

Output: 

Vref0 is initial reference voltage 

Ef is field voltage 

Figure 4.22 AC exciters (top), DC exciters (middle), and Static exciters (bottom) in 

PSCAD. 
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      4.2.1.5 Excitation system model 

PSCAD provides 8 standard AC exciter models, 3 standard DC exciter models, and 

5 standard Static exciter models. AC exciter models use an alternator, and either stationary 

or rotating rectifiers to produce the direct current needed for the synchronous machine 

field. DC exciter models use a direct current generator with a commutator as the source of 

excitation system power. Static exciter models have no rotating parts, but excitation power 

is supplied through transformers or auxiliary generator windings and rectifiers. 

      4.2.1.6 Turbine and Governor model 

PSCAD provides 4 hydro turbine models, 4 hydro governor models, 2 steam 

(thermal) turbine models, and 5 steam (thermal) governor models as shown in Figure 4.23. 

 

 

 

Figure 4.23 Hydro and steam turbine and governor model descriptions in PSCAD 
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These models have inputs and outputs as follows.  

 

hydro turbine 

Input: 

w is per-unit speed 

Wref is per-unit speed reference 

z is gate position 

Output: 

Tm is mechanical torque (which is input 

to the Synchronous Machine) 

zi is initial gate position (which is input 

to the Hydro Governor for initialization 

 

hydro governor 

Input: 

w is per-unit speed 

Wref is per-unit speed reference 

z0 is gate position during 

initialization 

Output: 

z is gate position 

 

steam turbine 

Input: 

Cv is per-unit control valve 

position  

Iv is per-unit intercept valve 

position from the corresponding 

Thermal (Steam) Governor. 

Output: 

Tm1 and Tm2 and are output from the 

HP and LP turbines respectively 

 

steam governor 

Input: 

w is per-unit speed 

Wref is per-unit speed reference 

 

Output: 

Cv is per-unit control valve position  

 

Figure 4.24 Hydro turbine (top), hydro governor (upper middle), steam turbine (lower 

middle), steam governor (bottom) models with input and output in PSCAD 

 

      4.2.1.7 Load model 

However, PSCAD represents only fixed P and Q loads and passive R, XL, and XC 

load as presented in the figure below. 

 

Figure 4.25 Fixed P and Q load and passive R, XL, and XC load model 
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      4.2.1.8 Wind Source, Turbine and Governor model 

- Wind source model 

The wind source model generates wind speed with 4 different signal patterns, mean 

wind speed, gust wind, ramp wind, and noise wind. There are four parameters to define 

gust wind and ramp wind. These are the peak or maximum velocity, gust or ramp period, 

start time, and number of gust or ramp. The gust and ramp are described in Section 2.2. 

For noise wind speed (Vn), seven parameters are defined as [46]: 

Number of noise component (N): this number is a probability density function 

counter limit.  

Noise amplitude controlling parameter (): controlled values in range 0.5 – 2.0 . 

Surface drag coefficient (cd): the ratio between drag force and incident force (or 

kinetic energy) of fluid on the surface, in this case cd = 0.004 . 

Turbulence scale (L): the length scale that the turbulence is important, and L = 2000 

feet. 

Random seed number (k): an initial number 1 – 99 using for generate N random 

number () of the interval 0 to 2 .  

Time interval for random generation: a new set of N random number will be 

generated after the end of this time . 

Mean wind speed at reference height (u): this number is previously defined with 

internal or external conditions. 

The noise wind speed is generated using the following equations. 

    
1

2 cos
N

n i i i
i

V S t   


    
 
    Eq. 4-173 

 0.5i i         Eq. 4-174 

 
2 2

4 4
2 23 3

2 2

2 2 0.004 2000
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2000
1 1

d i i
i

i i

c L
S

L

u u

 


  
 

 


      
       

         

  Eq. 4-175 

Where S(i) is spectral density function at frequency i . 

- Wind turbine model 

The wind speed (Vw, m/s), mechanical speed of generator (W, rad/s), and pitch 

angle (Beta, ) are input while the mechanical torque (Tm) and the power of the turbine (P) 

are output. The wind turbine has torque-W characteristics (or equation of power 
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coefficient) varies with Vw using standard model called MOD 2 wind turbine-generator 

system. This standard model is developed by Purdue University. 

Input parameters are Rated power of the wind turbine (MVA), Rated MVA of the 

machine (MVA), Rated mechanical speed of the machine (rad/s), Radius of the wind 

turbine blades (m), Rotor blade area (m2), Air density (kg/m3), Efficiency of the turbine 

gearbox (p.u.), Gearbox speed ratio, and equation of power coefficient (MOD 2 for three-

blade and MOD 5 for two-blade wind turbine). 

- Wind turbine governor model 

The inputs are mechanical speed of the machine (Wm, rad/s) and the power output 

of the machine based on the machine rating (Pg, p.u.). The output is pitch angle (Beta, ). 

 

 

Figure 4.26 Transfer function of wind turbine governor model 

 

Where Wref is reference speed (rad/s), Pref is power demand (MW), KS is gain (°/p.u.), KP is 

proportional gain (°/p.u.), KI is integral gain (°/p.u.), GM is gain multiplier (°/p.u.), and K4 

is blade actuator integral gain (s). 

The wind speed, wind turbine, and governor models are presented in following figure. 

 

 

Figure 4.27 Schematic of wind source, turbine and governor model 
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4.2.2 The power test system 

Many small signal stability studies use the test system from the Power System 

Stability and Control by P. Kundur (1998). These test systems can represent the stability 

problems with the simplicity designed by using fundamental concept and can clearly reveal 

the small signal stability problems. Two types of interesting test system are single machine 

infinite bus (SMIB) system and Four machine power system (FMPS) system. 

      4.2.2.1 Single Machine Infinite Bus (SMIB)  

This system can represent problem of small signal disturbance using eigenvalue 

analysis method, for example, by P. Kundur (1998). Eigenvalue can describe the damping 

and oscillation characteristics of the system. The mode of oscillation involving only one 

machine is called local area oscillation mode. Present technology of stabilizer can control 

and eliminate this kind of oscillation efficiently.   

The test system is used to give an example of small signal and transient stability. 

The single machine can represent the only local oscillation mode of generator interacting 

with the rest of power system (or infinite bus). The base voltage and power of the system 

are 24kV, 100MVA. The wind power and load buses, with line reactance 0.04 p.u., are not 

previously presented in the original test system.   

Wind power is latter designed to have rated power of 5% of generator (Total 

capacity 2,000MVA). The 2MW wind turbine is selected because it has the largest share of 

40% of total as by GL Garrad Hassan (one of the world's leading wind energy consultants) 

and posted on the Website: www.wind-energy-the-facts.org .  Load power can vary to 

assess the power system performance.  

The test system is based on SMIB test system by P. Kundur except the wind power 

and load of circuit CT3. This model neglects the resistance (very small part) and represents 

only reactance. The transmission line reactance (xL = jL/ ZC) is in per unit. 

 

Figure 4.28 Single machine infinite bus (SMIB) system including wind power and load 
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The line reactance can be implied to line length using the base impedance of the 

system, that is, characteristic impedance Zc = sqrt(z/y) ohms. If the line has series 

impedance per unit length (z) is 0.35 ohms/km and shunt admittance per unit length (y) is 

4.8x10-6 ohms/km, therefore, Zc is 270 about ohms. These per unit length values can be 

found in Matlab Simulink SimPowerSystem. The line length can be computed from 

CZ Z L    or 
1

C

Z
L

Z 
     Eq. 4-176 

where Z/Zc is per unit impedance (neglect line resistance) ,  = sqrt(zy) is phase velocity, 

L is line length (km). 

However, this test system will be modified to suit the objectives and scope of each section. 

      4.2.2.2 Four Machines Power System (FMPS)  

This system can additionally represent oscillatory interaction between machine and 

group of machines or so called inter-area oscillation mode, for example, by P. Kundur [52]. 

However, it is still difficult to control and eliminate this kind of oscillation. 

This test system is used to give en example of small signal and voltage stability. 

The generator in this case is the equivalent sum of coherency generators to have totally 

4x900MVA rated group capacity. The four machines can represent the both local mode of 

generator and inter-area mode of oscillation interacting between area 1 and 2. 

The base voltage and power of the system are 230kV, 100MVA. The active and 

reactive loads at buses 7 and 9 have capacitive impedance compensators, as shown in the 

figure below. The wind power is not previously presented in the original test system.  The 

180 MW wind power is latter designed to has rated power of 5% of generator (Total 

capacity 3,600MVA) connecting on bus 9. Load power can be varied to study the effects. 
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Figure 4.29 Four machine power system (FMPS) including wind power and load 

 

The test system provides line length and r-l-c impedance per unit length. To 

represent line impedance in per unit value, multiply z = r+jl ohms/km with the line length 

to result per unit impedance. In this case, resistance can be neglected. The system data are 

shown in next table. 

 

Table 4.3 System data of FMPS test system 

No. System Data Vaule Unit 
1 Line base power 100 MVA 
2 Line base voltage 230 kV 
3 System Frequency 60 Hz 
4 The Number of Bus (Nodes): Load bus : Generators 11:2:4 - 

5 Sum of the Generator Rated Capacity 3600 MVA 

6 Sum of the Generator Output (Active power) 2819 MW 

7 Sum of the Generator Output (Reactive power) 798 MVAr 

8 Sum of the Load (Active power) 2734 MW 

9 Sum of the Load (Inductive power) 200 MVAr 

10 Sum of the Load (Capacitive power) 550 MVAr 
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Table 4.4 Parameters of four machine power system 

Generator
Generator rated capacity 900 MVA
Generator base voltage 20 kV
Step-up transformer impedance 0+j0.15 pu
Step-up transformer voltage 20/230 kV
Sum of the Generator Rated Capacity 3600 MVA
Sum of the Generator Output (Active power) 2819 MW
Sum of the Generator Output (Reactive power) 798 MVAr  

Parameters Value Parameters Value Parameters Value
Xd 1.8 Xq'' 0.25 Asat 0.015
Xq 1.7 Ra 0.0025 Bsat 9.6
Xl 0.2 Td0' (s) 8 yT1 0.9
Xd' 0.3 Tq0' (s) 0.4 H (G1,G2) s 6.5
Xq' 0.55 Td0'' (s) 0.03 H (G3,G4) s 6.175
Xd'' 0.25 Tq0'' (s) 0.05 KD 0  

 

Trnasmission system
Line base power 100 MVA
Line base voltage 230 kV
Base line impedance 529 ohm     

Parameters Value unit
r 0.0001 pu/km

xL 0.001 pu/km
Bc 0.00175 pu/km  

 

Load
Sum of the Load (Active 2734 MW
Sum of the Load (Inductive 200 MVAr
Sum of the Load (Capacitive 550 MVAr  

P (MW) QL(MVAr) Qc(MVAr)
Load Bus7 967 100 200
Load Bus9 1767 100 350

 

Excitation system KA TA KF TF TE Aex Bex TR TB
Self-excited dc exciter 20 0.055 0.125 1.8 0.36 0.0056 1.075 0.05 -
Tyristor exciter with high transient gain 200 - - - - - - 0.01 -
Tyristor exciter with transient gain reduction (TGR) 200 1 - - - - - 0.01 10

KA Kstab TW T1 T2 T3 T4 TR
Tyristor exciter with high transient gain and PSS 200 20 10 0.05 0.02 3 5.4 0.01  

 

Wind Power
Wind Farm Rated Power 180 MW
Number of wind turbine 90
Wind Turbine Rated Power 2 MW
Type of Wind turbine Fixed speed
Generator model of wind turbine SCIG
Wind speed mean value 3,5,10,15 m/s
Wind speed characteristics Rayleign  

 

 

 

Transmission system 
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4.3 Noise Modeling and Stochastic Differential Equations Formulation 

4.3.1 SDE of the power system incorporating SCIG wind turbines  

From power system equation in Section 4.1, if we apply stochastic part ( 1 wW   , 

W is white noise, w is noise intensity = standard deviation / mean value) into mechanical 

wind power (Pmw), we will get stochastic differential equations as follows 

  1
1w mw w ew

w

y P W P
M

         Eq. 4-177 

 1 1
w mw ew mw w

w w

y P P P W
M M

         Eq. 4-178 

If we use noise scaling factor () for the above equation as: 

inf 0
2

mw
l

w

P

M

 


    
  

 and 
2
mw

w

w l

P

M




    Eq. 4-179 

Where w is wind power bus = 1, … , g.  i iD M 
 
is damping coefficient which is the 

same for all generators and is used to rescale intensity of noise.  

Since D of SCIG is very small as compared to the synchronous generator, the 

parameter  is presented here to scale D of SCIG. Therefore, we will get the standard form 

of the stochastic differential equation of SCIG as: 

  1
2w w mw ew l w

w

y y P P W
M

             Eq. 4-180 

From Eqs. 4-131 – 4-138, if wind power is applied on one bus (bus w=2), the 

matrix form of the state space equation, including noise term, is represented as follows: 
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   Eq. 4-181 
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Or 

   d d df t g W x x x

     

Eq. 4-182 

If we define    , 3 3
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     Eq. 4-183 

Where  2 2 1y a y    , 
2

2

2 22 e r

pV
a

P R
 ,  and Qw is m+n  1 matrix with q71= w . 

4.3.2 SDE of the power system incorporating DFIG wind turbines  

      4.3.2.1 White noise model 

From the state space equation in Section 2.1, if we apply stochastic part ( 1 wW   , 

W is white noise, αw is noise intensity which is the standard deviation divided by mean 

value) into mechanical wind power (Pmw), we will get stochastic differential equations [74] 

as follows 

  1
1w mw w ew
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y P W P
M

         Eq. 4-184 

 1 1
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w w
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         Eq. 4-185 
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   Eq. 4-187 

Where lw is the noise scaling factor of wind power bus which has the lowest value and w 

is the noise scaling factor of wind power bus w. β is a parameter to rescale the intensity of 

noise for mathematical convenience.  
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Furthermore, when the load fluctuation is represented, the stochastic differential 

equation of the dynamic load is: 

 4 4 0 0

1 1
k l e k lk

k k

x P P y P W
c c

           Eq. 4-188 
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          Eq. 4-189 
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   Eq. 4-190 

Where lk is the noise scaling factor of load which has lowest value and k is the noise 

scaling factor of load bus k.  

Therefore, the matrix form of stochastic differential equations will become the 

dynamic perturbed system in a matrix form as follows: 
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Eq. 4-192 

where βi = Di/Mi . The above equation can be represented in the standard stochastic 

differential equation as: 

   d d df t g W x x x

     

Eq. 4-193 

Where f is a nonlinear drift function, the matrix g is the diffusion function, and matrix x is 

the state variable matrix. 

      4.3.2.2 Colored noise model 

The colored noise represents the normal distribution signal which has limited 

bandwidth. From the state space equation in Section 4.1, if we apply the stochastic part into 

the mechanical wind power (Pmw), we will get stochastic differential equations [74] as 

follows: 
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 1mw ms w wP P          Eq. 4-194 

w w w w wp pW            Eq. 4-195 

Where Pml = αPms, w represents colored noise applying to wind power, αw and w are 

noise intensity (the standard deviation divided by mean value) and bandwidth of low 

frequency component of wind power. γw is scaling factor of wind power noise which is 

formulated using the method in [11] as follows: 
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   Eq. 4-197 

Where lw is the noise scaling factor of the wind power bus that has the lowest value and w 

is the noise scaling factor of wind power bus w. β is a parameter to rescale the intensity of 

noise for mathematical convenient.  

For power load, when the load fluctuation is represented, the stochastic differential 

equation of dynamic load is 

  0 0
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c c

            Eq. 4-198 

k k k k kp pW            Eq. 4-199 

Where Plk (1- αkk) is stochastic power load, k represents colored noise applying to power 

load, αk and k are noise intensity and bandwidth of power load, γk is scaling factor of 

power load which is formulated using the method in [11] as follows: 
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   Eq. 4-201 

Where lk is the noise scaling factor of the load bus that has the lowest value and k is the 

noise scaling factor of load bus k. β is a parameter to rescale the intensity of noise for 

mathematical convenient. 

Furthermore, it is assumed that 

 lw ww wm w k w k
wk wm

k lk k w k wlk k

P c c
P

P M M

   
   

      Eq. 4-202 
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The system equations will become the dynamic perturbed system in a matrix form 

as follows: 
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Eq. 4-204 

where βi = Di/Mi . The above equation can be represented in the standard stochastic 

differential equation as 

   , ,p t t pW X f X g X   ,  0 0
x xt   ,

0
t t      Eq. 4-205 

where f(X,t) is a nonlinear drift function, g(X,t) is a diffusion function in matrix form. 

4.3.3 SDE of the power system incorporating DFIG wind turbines for voltage 

stability analysis 

From the state space equation in Section 2.1, if we apply the stochastic part into the 

mechanical wind power (Pmw), we will get stochastic differential equations [74] as follows: 

 1mw ms w wP P          Eq. 4-206 

w w w w wp pW            Eq. 4-207 

Where Pml = αPms, w represents colored noise applying to wind power, αw and w are 

noise intensity (the standard deviation divided by mean value) and bandwidth of low 

frequency component of wind power. γw is scaling factor of wind power noise which is 

formulated using the method in [11] as follows: 

2ms w
w lw w

w

P
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         Eq. 4-208 
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   Eq. 4-209 
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Where lw is the noise scaling factor of wind power bus which has lowest value and w is 

the noise scaling factor of wind power bus w. β is a parameter to rescale the intensity of 

noise for mathematical convenience.  

For the active power load, when the load fluctuation is represented, the stochastic 

differential equation of the dynamic load is: 

  0 0

1 1
k lk ek lk pk pk

k k

x P P yp P
c c

            Eq. 4-210 

pk pk pk pk pkp pW            Eq. 4-211 

Where Plk (1- αpkpk) is stochastic power load, k represents colored noise applying to 

power load, αpk and pk are noise intensity and bandwidth of power load, γpk is scaling 

factor of power load which is formulated using the method in [11] as follows: 
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         Eq. 4-212 
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
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   Eq. 4-213 

Where lk is the noise scaling factor of the load bus that has the lowest value and k is the 

noise scaling factor of load bus k. β is a parameter to rescale the intensity of noise for 

mathematical convenience. 

For reactive power load, when the load fluctuation is represented, the stochastic 

differential equation of dynamic load is: 

      1 1 1
1k k k lk qk qk ek lk ek lk qk qk

k k k k

pV V Q Q Q Q Q
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    
 


         Eq. 4-214 

qk qk qk qk qkp pW            Eq. 4-215 

Where Qlk (1- αqkqk) is stochastic reactive power load, qk represents colored noise 

applying to Qlk, αqk and qk are noise intensity and bandwidth of reactive power load, γqk is 

scaling factor of power load using the method in [11] as follows: 
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Furthermore, it is assumed that 
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The system equations will become the dynamic perturbed system in a matrix form 

as follows: 
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Eq. 4-220 
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Eq. 4-221 

where βi = Di/Mi . The above equation can be represented in the standard stochastic 

differential equation as: 

   , ,p t t pW X f X g X   ,  0 0
x xt   ,

0
t t      Eq. 4-222 

where f(X,t) is a nonlinear drift function, g(X,t) is a diffusion function in matrix form. 

4.4 Well-defined Energy Function Formulation 

4.4.1 Well-defined energy function preparation 

The stochastic stability index is developed for the study of the impact of wind 

power on the power system stability. Energy function method, basing on Lyapunov’s 
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theory, is used to determine the region of attraction of stable equilibrium points and the 

critical values which beyond these values, system become unstable.  

The cumulative effect of continuous small disturbances on the power system (such 

as load and wind power) can finally make the system reach the critical values and become 

unstable. An important step for energy function construction is to ensure that this function 

is a type of Lyapunov function. If then, this is called well-defined energy function which 

the theory of system stability of Lyapunov can be described. However, since now, there is 

no complete or exact solution of energy function. Carefully checking the existence of an 

energy function ( W(xt) ) should be considered by using the following conditions [9][30]. 

C.1   0tU x   when operating points are the stable equilibrium points ( xt = xs ) 

C.2   0tU x    when trajectories of operating points are within the region of 

attraction and asymptotically moving to equilibrium points 

C.3  tU x is bounded, which means tx is also bounded. 

There are two methods to construct an energy function: the two-step procedure and 

the first-integral method [30]. This thesis uses well-known first integral method to 

construct the energy function. 

To construct a well-defined energy function of the induction generator, a new 

method was developed in this study.  

The well-defined energy function can start from the power balance equations of the 

power system without loss (neglect conductance terms). These equations consist of the 

power flow, load, and generation terms. The generation terms can be separated to be 

generation from synchronous generator and induction generator.  

      4.4.1.1 Energy function of synchronous generator 

For synchronous generators, if the reference bus is an infinite bus (y1 = 0), the terms 

of power (from equation of motion) will be integrated to be the energy balance as follows: 

i i mi ei i iM y P P D y         Eq. 4-223 

multiply by 
iy  ,   2

i i i mi i ei i i iM y y P y P y D y      Eq. 4-224 

Replace 0 0i iy x y   into the right side of the above equation except for the last 

term yields: 

 2
0 0 0 1i i i mi i ei i i i mi eiM y y P x P x D y y P P            Eq. 4-225 

The electrical power of a synchronous generator can be stated as follows 
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n

ei i j ij i j
j

P V V B x x


       Eq. 4-226 

Placing Eq. 4-226 into Eq. 4-225, and summing all the machines, we will get 

  2
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1 1 1 1 1 1 1

sin
m p m p m p m p m p m pn

i i i mi i i j ij i j i i i mi ei
i i i j i i i
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      

 
       

 
        Eq. 4-227 

      4.4.1.2 Energy function of induction generator 

For induction generator, the speed of the rotor is faster than the synchronous speed, 

which is called the slip. If the slip is constant, the rotor angle increases continuously with a 

fixed rate. Therefore, the rotor angle is generally not defined for induction generator.  

 Since the torque-slip characteristics of induction generator is important for the 

power and energy balance, the speed of rotor (and/or slip) should be state variables for the 

energy function instead of the angle. Consequently, the power flow equations cannot be 

included in the swing equations as the same with the case of synchronous generator and the 

energy function of power flow equations at induction generator bus is also different. This 

study proposes a new method to construct energy function of induction generator as 

follows: 

1) For SCIG with colored noise, the swing equation of the induction 

generator is represented in the form 

 1w w mw w w ewM y P P          Eq. 4-228 

multiply above equation by 
wx   

 0 0 0sinw w b sw a w ax y k V k x c y    
  

  Eq. 4-229 

Replace above wx into the term on the left of Eq. 4-229, yields 

   0 0 0sin 1w w w w w b sw a w a mw w w w ew w w wM y y M y k V k x c P x P x y M y                

Replace w wM y on the right with Pmw – Pew and multiplying above equation by d t  

we will have  

     0 0 0sin 1w w w w w b sw a w a mw w w w ew w mw ewM y y M y k V k x c P x P x y P P            
 
Eq. 4-230 

The electrical power of induction generator can be stated as follows 
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n
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j

P V V B x x
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       Eq. 4-231 

Replace Eq. 4-231 into Eq. 4-230, and summing all machines, we will get 
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For white noise model, the w is zero, the above equation becomes 
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Eq. 4-233 

2) For DFIG with colored noise, the swing equation of the induction 

generator is represented in the form 

 1w w mw w w ewM y P P         Eq. 4-234 

multiplying above equation by 
wx  and sum all terms of induction machines to get 

 1w w w mw w w w ew wM x y P x P x           Eq. 4-235 

  0 0 0 0sinw b w refw sw a a d rqkVx y y k x x Vk c      
  

 Eq. 4-236 

Replace above wx into the term on the left of Eq. 4-235, yields 

    0 0 00sin 1w w w w w b sw a w ref a mw w w w ew w w w w wd rqkM y y M y k V k x x c P x P x M y y M yV               

 Eq. 4-237 

Replace w wM y on the right with Pmw – Pew we will have  

      0 0 00sin 1w w w w w b sw a w ref a mw w w w ew w w w mw ewd rqkM y y M y k V k x x c P x P x M y y P PV               

 Eq. 4-238 

       2

2 1, cos 1w c sw a w ref a c w P op P swrq w w wV x k V k x x c k V k k k Py y y         

 1sw m ew wP k P y      

Where  2
m m ss rrk L L L  is a constant and Bwr is the susceptance including transient 

reactance of stator and susceptance connecting between terminal of stator and the reference 

bus (in this case is load bus). 

The electrical power of induction generator can be stated as follows 
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Replace Eq. 4-239 into Eq. 4-238, and summing all machines, we will get 
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Eq. 4-240 

For white noise model, the w is zero, the above equation becomes 
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Eq. 4-241 

      4.4.1.3 Energy function of load [8] 

  1) For load equations with colored noise  

The active power load is         

  0 01 pk pkk k lk ek kc x P P c y          for m load bus    Eq. 4-242 

multiply by kx  and sum all terms of load and rearrange to yields 
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Rearrange above equation   

    0 0
2

1 1 1 1 1

1 sin
n n n n n

j jlk pk pk k k kj k k k k k k
k m k m j k m k m

yP x V V B x x x c x c x 
        

               Eq. 4-244 

The power load Plk can be modeled depending on voltage. For the constant 

impedance load, Plk = Pl0k(Vk)
2. 

   2

0 0

0
1 1 1

2

1 1

1 sink

n n n

j jl k pk pk k k kj k k
k m k m j

n n

k k k k
k m k m

y

P V x V V B x x x

c x c x

 
    

   

  

  

  

 

 

    
Eq. 4-245 

For white noise model, the pk is zero, above equation become  
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2) The voltage dynamic of load with colored noise  

It can be formulated as follows: 

    1
1k k k lk qk qk ekV V Q Q  


     for m load bus  Eq. 4-247 

multiply by kV  and sum all terms of load and rearrange to yields 
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          Eq. 4-248 

Qlk is modeled depending on voltage. For the constant impedance load, Qlk = Q0k(Vk)
2. 

For white noise model, the qk is zero, above equation become 
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           Eq. 4-249 

      4.4.1.4 Colored noise parameters 

If the colored noise model is applied to both wind power and load, its derivative 

equations are  

w w w          Eq. 4-250 

pk pk pk          Eq. 4-251 

qk qk qk          Eq. 4-252 

multiplying by mw w wP    , 0l k pk pkP    and 0k qk qkQ    to Eqs. 4-250 – 4-252, respectively, 

rearranging to yield: 

2
mw w w w mw w w wP P            Eq. 4-253 

2
0 0l k pk pk pk l k pk pk pkP P           Eq. 4-254 

2
0 0k qk qk qk k qk qk qkQ Q           Eq. 4-255 

4.4.2 Well-defined energy function of the power system incorporating SCIG 

wind turbines  

From Section 4.4.1, the involved equations are 

      4.4.2.1 Energy function and its derivative with white noise model  

Combining and rearranging the equations in Section 4.4.1, yields 
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   Eq. 4-256 

When expressing the above equation in the form of differential equation (first 

integral method), we will get an energy function derivation: 
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The term in the bracket is the energy function of the power system (U) where a 

constant K is defined in which U will equal zero at the equilibrium point ( s
j jy y and 

s
j jx x ), therefore: 
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  Eq. 4-258 

The integral terms in the above equations can be approximated using the trapezoidal 

rule. The term with yi
s is close to zero and can be neglected. Therefore, the energy function 

(U) of the power system including SCIG wind turbines with white noise can be stated as 

follows: 
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  Eq. 4-259 

The derivation of the energy function can be stated as 
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The last term on the right of Eq. 4-260 is diminished as proven by [9]. The 

derivation of the energy function is 
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4.4.3 Well-defined energy function of the power system incorporating DFIG 

wind turbines  

From Section 4.4.1, the involved equations are 

      4.4.3.1 Energy function and its derivative for colored noise model  

Combining and rearranging the equations in Section 4.4.1 to yield: 
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 Eq. 4-262 

Rearranging the above equation, we will get 
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 Eq. 4-263 

When expressing the above equations in the form of differential equations (first 

integral method), we will get the energy function derivation 
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  Eq. 4-265 
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The terms in the brackets is the energy function of the power system (U) where a 

constant K is defined in which  U will equal to zero at equilibrium point ( s
j jy y and 

s
j jx x ), therefore 
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  Eq. 4-266 

If w does not relate to xw, the following solution is acceptable. 
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Eq. 4-267 

The integral terms in the above equation can be approximated using the trapezoidal 

rule. The term with yi
s is close to zero and can be neglected. Therefore, the energy function 

(U) of the power system including DFIG wind turbines with colored noise can be stated as 

follows: 
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Eq. 4-268 

The derivation of the energy function can be stated as: 
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 Eq. 4-269 

The last term on the right of Eq. 4-269 is diminished as proven by [9] where j 

denotes both synchronous and induction generators. The derivation of the energy function 

is 
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      4.4.3.2 Energy function and its derivative for the white noise model 

For the white noise model, all the terms with  are zero, the well-defined energy 

function becomes: 
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Eq. 4-271 

The derivation of energy for the white noise model can be stated as 
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4.4.4 Well-defined energy function of the power system incorporating DFIG 

wind turbines for voltage stability analysis 

From Section 4.4.1, the equations involved in voltage stability analysis are:  

4.4.4.1 Energy function and its derivative for voltage stability analysis 

applying colored noise  

Combining and rearranging the equations in Section 4.4.1, we will get 
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Therefore 
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When expressing the above equations in the form of differential equations (first 

integral method), we will get the energy function derivation 
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Where 
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  Eq. 4-280 

The terms in the brackets are the energy functions of the power system (U) where a 

constant K is defined in which U will equal to zero at the equilibrium point ( s
j jy y and 

s
j jx x ), therefore 
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  Eq. 4-281 

The integral terms in the above equation can be approximated using the trapezoidal 

rule. The term with yi
s is close to zero and can be neglected. Therefore, the energy function 

(U) can be stated as follows: 
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Eq. 4-282

 

The derivation of the energy function can be stated as 
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  Eq. 4-283 

The last term on the right of Eq. 4-283 is diminished as proven by C.O. Nwankpa 

where j denotes both synchronous and induction generators. The derivation of the energy 

function is 
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   Eq. 4-284 
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4.4.5 Existence of Lyapunov function candidate 

From Sections 4.4.2 – 4.4.4, three conditions are needed for well-defined energy 

function to be suitable for power system stability analysis are 

I. U 0  when operating points are at the stable equilibrium points  

From Eq. 4-282, if sx x  , yi = 0 and yw = s
wy , every term is exactly zero, which is 

defined already using Ksg , Kig and KPF. Therefore, energy function is zero (U = 0) when 

reach stable equilibrium state.  

II. U 0   (negative-definite) when trajectories of operating points are within the 

region of attraction and asymptotically move to stable equilibrium points 
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   Eq. 4-285 

In normal operations when U is not larger than the critical energy, Di , ck and Psw 

are normally positive. Since 2
iy  

2
wy  and 2

kx  are always greater than or equal to zero, 

therefore, the term terms on the right are negative except at the stable equilibrium points 

(which U is zero). Consequently, U is negative-definite and is satisfied for this case. 

Therefore, the energy of this system is always dissipated [8]. The disturbance can cause the 

energy of the system to increase which, if not larger than critical energy, the energy will 

decrease until reaching zero at steady state condition. However, if energy increases to reach 

critical value, sign of Di or ck or Psw can be changed, the energy become increase 

continuously which means the system is unstable.   

III.  U tx is bounded which means tx are also bounded. 

From the function of U, it always bounded whenever state variables are not 

approach to infinity (or U is not larger than critical energy) and vice versa. Since 0U   at 

the stable equilibrium points and U 0  for the other operating points, it can be concluded 

that the energy of the system is bounded and state variables tx are also bounded [30].  

For summary, an energy function (U) of this system, when apply structure-

preserving model by neglecting transferred conductance terms, is an acceptable well-

defined energy function in the sense of Hsiao-Dong Chiang (2011) and can be used for the 

voltage stability analysis. 
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4.5 Critical Energy Estimation 

The critical energy is used in this study to evaluate the limit of the power system to 

gain energy when perturbed by any disturbances. For convenience, it can be estimated 

using method of M. Ribbens-Pavella and B. Lemal (1976) which requires the 

determination of energy function, stable equilibrium points, and unstable equilibrium 

points. Energy function can be determined using methods in Section 4.4 . The stable 

equilibrium points can be determined using the power system simulation software or by 

solving the power flow problems. Basing on power-angle characteristic of generator, 

unstable equilibrium points of angle can be approximated using the value  - xs where xs 

is the stable equilibrium point. 

Four cases of approximation of unstable equilibrium points are represented as 

follows:  

Case 1: For m machines, only one machine is loss of synchronization and its angle 

of internal voltage is approximated by  - xs where xs is the stable equilibrium point before 

unstable. Therefore, Case 1 has totally m sub-cases.   

Case 2: For m machines, only one machine is loss of synchronization and its angle 

of internal voltage is approximated by - - xs. Therefore, Case 2 has totally m sub-cases. 

Case 3: For m machines, all machines are loss of synchronization and their angles 

of internal voltage are approximated by  - xs. Therefore, Case 3 has no sub-cases. 

Case 4: For m machines, all machines are loss of synchronization and their angles 

of internal voltage are approximated by - - xs. Therefore, Case 4 has no sub-cases. 

These unstable equilibrium points are called interested unstable equilibrium points. 

When replace these stable equilibrium points and interested unstable equilibrium points of 

Case 1-4 into the well-defined energy function, totally 2m+2 values of energy of the 

system will be determined. The lowest energy from 2m+2 values is used as a critical 

energy.  

4.6 Eigenvalues Determination 

4.6.1 Eigenvalues of single machine power system  

The eigenvalue method is the conventional and well-known method for the small 

signal stability analysis in power industry. For the system equations in this section, wind 

power is modeled using squirrel cage induction generator (SCIG) and doubly-fed induction 
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generator (DFIG). The swing equation and voltage behind the transient reactance are 

focused regarding the synchronization stability problem.  

      4.6.1.1 Squirrel cage induction generator (SCIG) wind turbine 

To analyze the small signal stability of a SCIG wind turbine, the linearization of the 

system equations is formulated as follows: 

   10 sinbw w s a w aVp y y kx k x c          Eq. 4-286 

 w mw eww P PpyM          Eq. 4-287 

   0 sin w
w

ew

w T

V V
P x

X X


 
      Eq. 4-288 

   0b w w w wk EX X T X          Eq. 4-289 

0
0 0

r mrr

r r

L LL
T

r r 


 
 

       Eq. 4-290 

 s ss s s mX L L L           Eq. 4-291 

2
m

s ss
rr

LX L
L

     
   

       Eq. 4-292 

Where w w refx x x   , xref is the reference angle. For example, an angle of infinite bus 

voltage. In the following details,  wx will be replaced by only wx . 

Linearization of Eq. 4-286 and Eq. 4-287 are represented in the form: 

 0 cos
d

d b

sw
w sw a a w a wVk

x
y k k x c x

t
 


        Eq. 4-293 

 d 1 1

d
w

mw ew mw S w D w

y
P P P K x K y

t M M


            Eq. 4-294 

If we represent the above equations in the form of matrix:  

 X AX BU  

We will get 

0 0

1
w E w

mw
w S D w

x K x
P

y K K y M




        
                  




    Eq. 4-295 

Where KS is synchronizing power coefficient, and KD is damping power coefficient of 

induction generator.  

 
1,

1 1
cos

n
s se

S w j wj w j
j j ww

P
K V V B x x

M Mx  


  

   and  
1

0e
D

P
K

M y


 


  Eq. 4-296 
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 cosb

s
E sw a a w aVkK k k x c         Eq. 4-297 

magnitude of damping power coefficient (KD) and synchronizing power coefficient (KS).  

Eq. 4-296 and Eq. 4-297 can be represented using block diagrams as in the 

following figure. 
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Figure 4.30 Block diagram representing state space equation of the SCIG wind turbine 

 

Take Laplace transformation, yields  

1(s)=(s  - ) (s)X I A BU         or 

 
   
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
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    Eq. 4-298 
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

  
        

X             Eq. 4-300 

The determinant of matrix (sI – A) can be used to find eigenvalues using the 

following equation 

  2
0det 0E Ss s sK K    I A      Eq. 4-301 

Eq. 4-301 is called the characteristic equation of this state space equation and can 

be represented in the following form 

                             2 22 0n ns s                                                  Eq. 4-302 

where  is damping ratio and n is natural frequency. 

0n SK    and  
2

E

n

K


     Eq. 4-303 

Identify s, 
2 22 (2 ) 4

2
n n ns

    
     or    2 1n ns                Eq. 4-304 
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If 2 1  ,  2E nK  , therefore  s      where  n     and  2 1n     

If 2 1  ,  2E nK  , therefore  2( ) 0s     where  n     and  0   

If 2 1  , 2E nK  , therefore js      where  n     and  21n     

If 2 0  ,  2E nK  , therefore  js     where  0    and  n   

      4.6.1.2 Wind turbine with doubly-fed induction generator (DFIG) 

To analyze the small signal stability of the DFIG wind turbine, the linearization of 

the system equations is represented as follows. 

   00 0sinbw w sw a w a d rqkVp y y k Vx k x c          Eq. 4-305 

 w mw eww P PpyM          Eq. 4-306 

   0 sin w
w

ew

w T

V V
P x

X X


 
      Eq. 4-307 

    1 2 cosc w c sw a w a P sp swrq wV k V k V k x c k T Py         Eq. 4-308 

 1sw m ew wP k P y          Eq. 4-309 

 2
1sp op wT k y         Eq. 4-310 

 d m rrk L L E   and     0b w w w wk EX X T X      Eq. 4-311 
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   Eq. 4-312 

0.274 0.346a mwk P    and  0.022 0.006a mwc P       Eq. 4-313 

Where w w refx x    , ref is the reference angle. For example, an angle of infinite bus 

voltage. In the following details,  wx will be replaced by only wx . 

Linearization of Eq. 4-305 and Eq. 4-306 are represented in the form 

  0 1 20 0cos
d

d b

rq rqsw
d sw a a w a w d w E w E w

w w
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k k x c x y K x K y
t x y

 
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Eq. 4-314 
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    Eq. 4-315 

Where KS is synchronizing power coefficient, KD is damping power coefficient of 

DFIGURE 
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   Eq. 4-321 

If we represent the above equations in the form of a matrix,  

 X AX BU  

We will get 
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    Eq. 4-322 

Eq. 4-322 can be represented using block diagram as in the following figure. 
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Figure 4.31 Block diagram representing state space equation of the DFIG wind turbine 

 

From Eq. 4-322, rearranging using the following form and taking Laplace 

transformation, yields  

1(s)=(s  - ) (s)X I A BU        or 
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             Eq. 4-324 

The solutions of det(sI-A) = 0 are the eigenvalues of this state space equation, therefore 

     1 2det s  - 0E D S Es K s K K K    I A     Eq. 4-325 

4.6.2 Eigenvalue method for multi-machine power system including wind 

power 

      4.6.2.1 Power system equations  

In this section, wind power is modeled using a doubly fed induction generator 

(DFIG) which the swing equation and voltage behind transient reactance are focused 

regarding the synchronization stability problem. The system equations are rewritten as 

follows: 

 00i ipx y y          Eq. 4-326 
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0.274 0.346a mwk P    and  0.022 0.006a mwc P        Eq. 4-340 
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   Eq. 4-341 

However, the kI in Eq. 4-332 is very small compared with the other terms. Therefore, kIZ’I 

is neglected for convenient. 

      4.6.2.2 Linearization of power system equations 

To analyze the small signal stability of the power system, including induction 

generator wind turbine, the state space equation will be represented in a new form as 

follows. 

Linearization of Eq. 4-326 to Eq. 4-330 are represented in the following form 
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   Eq. 4-346 

Where 0refrqV x   .  KS is synchronizing power coefficient.  

From Eq. 4-343 and Eq. 4-346, we can represent in the following form 
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Eq. 4-347 
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   Eq. 4-348 

d 1

d

1

i i
mi i k w i

i i k w i

mi Sii i Sik k Siw w Di i
i

ei ei eiP P P Dy
P x x x y

t M x x x M

P K x K x K x K y
M

   
             

         

  Eq. 4-349 

d 1 1 1 1

d

1

w w
mw w i k w

w i k w

mw Sww w Swk k Swi i Dw i

ew ew ewP P P Dy
P x x x y

t M M x M x M x M

P K x K x K x K y
M

  
         

  

         

     Eq. 4-350 

  1 0 cosb

rq
Ew d a sw a w ref a

w

k V
V

kK k k x x c
x




   


       Eq. 4-351 

  2 0 cosb

rq
Ew d a sw a w ref a

ref

k V
V

kK k k x x c
x




   


       Eq. 4-352 

3 0 0
rq

Ew d
w

k
V

K
y

 


 


          Eq. 4-353 

    2

1
sin

1
rq ew

a c sw a w ref a P m
w w w

w

V P
k k V k x x c k k

x x y
y

 
   

  
     Eq. 4-354 

    2

1
sin

1
rq ew

a c sw a w ref a P m
ref ref w

w

V P
k k V k x x c k k

x x y
y

 
    

  
     Eq. 4-355 

       1 2 2

1
2 1 cos

1
rq

P op c w c sw a w ref a P m ew
w w

w

V
Pk k k V k V k x x c k k

y y
y


      

 
Eq. 4-356 

 1 1
cosew

Sww w j wj w j
w w w

P
K V V B x x

M x M


  

      Eq. 4-357 

 1 1
cosew

Swi w i wi w i
w i w

P
K V V B x x

M x M


   

      Eq. 4-358 



219 
 

   
 

 1 1
cosew

Swk w k wk w k
w k w

P
K V V B x x

M x M


   

      Eq. 4-359 

 1 1
cosei

Sii i j ij i j
i i i

P
K V V B x x

M x M


  

       Eq. 4-360 

 1 1
cosei

Siw i w iw i w
i w i

P
K V V B x x

M x M


   

       Eq. 4-361 

 1 1
cosei

Sik i k ik i k
i k i

P
K V V B x x

M x M


   

       Eq. 4-362 

 1 1
cosek

Skk k j kj k j
kk k

P
K V V B x x

xc c


  
       Eq. 4-363 

 1 1
cosek

Ski k i ki k i
ik k

P
K V V B x x

xc c


   
       Eq. 4-364 

 1 1
cosek

Skw k w kw k w
wk k

P
K V V B x x

xc c


   
       Eq. 4-365 

      4.6.2.3 Eigenvalue computation 

If we represent the above equations in the form of the matrix,  

 X AX BU        Eq. 4-366 
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  Eq. 4-367 

From Eq. 4-367, rearranging and taking Laplace transformation, yields  
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   Eq. 4-368 

     1 T1
s  - s  - 

det s  - 
 I A I A

I A
             Eq. 4-369 

The solutions of det(sI-A) = 0 are the eigenvalues of this state space equation, therefore 
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Eq. 4-370 

4.7 Mean First Passage Time (MFPT) Determination 

The mean first passage time (MFPT) is used as an index to evaluate the stability of 

the power system when perturbed by any small signal. This section applies methods of [9] 

to formulate the stochastic differential equations (SDE) and compute MFPT of power 

system incorporating stochastic wind power.  

4.7.1 Formation of stochastic differential equations 

From the state space equation in Section 4.1.7, if we apply stochastic part ( 1 wW   

, W is white noise, w is noise intensity = standard deviation / mean value) into mechanical 

wind power (Pmw), we will get stochastic differential equations as follows: 
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         Eq. 4-371 
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         Eq. 4-372 

If we use noise scaling factor () for the above equation as: 
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  g    Eq. 4-373 

Where w represent wind power bus = 1, … ,  and i iD M 
 
is the same for all generators 

and use to rescale intensity of noise. Since D of SCIG is very small comparing with 

synchronous generator, the parameter  is presented here to scale D of SCIG. Therefore, 

we will get standard form of stochastic differential equation of SCIG as: 

  1
2w w mw ew l w

w

y y P P W
M

             Eq. 4-374 

From Eqs. 4-131 – 4-138, if wind power is applied on one bus (bus w=2), the 

matrix form of the state space equation, including the noise term is represented as follows: 



221 
 

   
 

 

 

 

 

 

 

1 3

2
2

2 3
2 2

1

2

4 4 3
3 4

4
5 5 3

5 5

1
1 1 1

12

3
2 2 2

2

3 3 3
3

1
2

00
01

1
2

1

1

1

e r

l e

ll e

m e

m e

m e

y y

pV
y y

P R
x

x
P P y

x c
x

P P y
x c

y
y P P

My

y
y P P

M

y P P
M









 
 
  
 
                                               
 
 
   
  










0

0

0

0

0
w

W



 
 
 
 
 
 
 
 
 
 
 
  

    Eq. 4-375 

If we set    , 3 3

1
,l k lk ek

k

y P P y
c

   X and    ,

1
m i mi ei

i

P P
M

  X . Then  

 
 

 
 
 

1 31

2 32

3

,4 34

,5 35

1 ,61

2 ,72

3 ,83

0

,
2

,
l

l w
l

m

m

m

y yx

y yx

x

yx
Q W

yx

yy

yy

yy





 
 
 

  
      
  
          
  
   

    
  
      

X

X

X

X

X




 





     Eq. 4-376 

Where  2 2 1y a y    , 
2

2

2 22 e r

pV
a

P R
 ,  and Qw is m+n  1 matrix with q71= w . 

4.7.2 Asymptotic solution to MFPT 

The MFPT () is defined as follows: 

          inf : , 0 , 0CE t W t t W    x y x x y y    Eq. 4-377 

The MFPT is known to be a solution of following boundary value problem which is 

based on the Backward Kolmogorov Equation (BKE). 
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To solve this problem, the asymptotic method is applied. Using this method, the 

second order differential equation is reduced to a first order differential equation and then 

the asymptotic expansion of  can be computed more easily:  

Firstly,  is expanded as a function of  
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         Eq. 4-379 

Replace  in Eq. 4-379 into Eq. 4-378 while D2 is zero for induction generator. 
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Eq. 4-380 

For the terms with the coefficient -1 , a homogenous first order differential 

equation is a result as follows: 
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  Eq. 4-381 

From Eq. 4-381, its characteristic equations are [21]: 
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We will see that Eq. 4-383 is similar to Eq. 4-376 when  is set to zero. This means 

that the system has no damping force of generator and has no perturbation part. The system 

in this case does not converge to its equilibrium points but across the surface (s) which is 

the solution of Eq. 4-383 .  

Since the trajectories in the region of attraction following Eq. 4-376 is bounded by 

the critical energy (WC) which has the same boundary of Eq. 4-383. Therefore, we can 

conclude that 0 is a function of W or  

0 = 0(W)       Eq. 4-384 

Therefore, on the boundary of the surface (s) or energy contour, the 0 is constant. 

For the terms with coefficient 0, an inhomogenous first order differential equation 

is as follows: 
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Eq. 4-385 

If the integration along time is the same with the integration along the energy 

contour, then the solution of the above equation is 
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Where   d cW
T W s  and sc is the surface element in a Cartesian coordinate system. T(W) 

is defined here to form the solvable boundary value problem. 

Since 0 is a function of W, thus 
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   Eq. 4-387 
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   Eq. 4-388 

Substituting Eq. 4-388 and Eq. 4-387 into Eq. 4-386, yields 
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Eq. 4-389 can be represented as the boundary value problem as follows 
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Since the energy function cannot be used directly for the solution of the problem in 

Eq. 4-391, thus an approximate energy function based on the ellipsoidal surface is 

represented instead. This takes [9] 

     
1 2 2

1 1

1 1
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n m n m
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 
     

 
     Eq. 4-393 

where 
1

n

T i
i

M M


  and s
i i iz x x   if  i = 1, 2, … , n+m 

This form of energy function can be used to find coefficients 1C , C2, 3C  which are 

occur in the MFPT solution as follows:  
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Where critical energy (WC) computation technique is presented in the previous Progress 

Report II and coefficients 1C , C2, and 3C are stated in Appendix A. 

4.7.3 Computation of MFPT 

From Sections 4.7.1 – 4.7.2 and Appendix A, MFPT can be calculated using the next 

process 

(S1) Stable equilibrium points and critical energy are computed as represented in the 

previous topics. 

(S2) Matrix H can be constructed using Eqs. A-3 to A-6 in Appendix A.  

(S3) Find eigenvalues and eigenvectors of matrix H. After matrix H is constructed 

explicitly, software Matlab can possibly be used to find eigenvalues and 

eigenvectors. 

(S4) Construct set of matrix D and matrix F using e Eqs. A-29 to A-33 in Appendix A. 

These matrixes will be used in the formulation of MFPT. 

(S5) Compute C coefficient using Eqs. A-25 to A-28 in Appendix A. 
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(S6) Compute MFPT using Eq. 4-396. Every steps from (S1) – (S5) is done 

completely. 

(S7) Change conditions of wind power, such as wind speed and noise intensity and 

repeat (S1) – (S6) again to see the variation of MFPT. 

4.8 Stochastic Stability Index (SSI) Determination 

The new method is developed in this study based on the theory of stochastic 

stability. The following list is the processes to formulate stochastic stability index as a new 

method.  

P1. Formulate the stochastic differential equations of the power system 

incorporating wind power using power system dynamic equations from 

Sections 4.1 – 4.3.   

P2. Find steady state values of state variables at different conditions such as 

different wind power and its noise intensity, different exchange power. It 

can be done by using simulation software or by solving the power flow 

problem using Newton-Raphson’s method. 

P3. Formulate stochastic well-defined energy function which is described in 

Sections 4.3 and 4.5 

P4. Compute critical energy using method of Ribbens which is described in 

Section 4.5 

P5. Find the derivative of mean of stochastic well-defined energy function 

and formulate a new stability index and compute.  

P6. Evaluate the results of new stability index under different testing 

conditions. 

Since the processes P1 to P4 are described in the previous Sections 4.1 – 4.5, this 

section will give the detail of how to formulate the derivative of stochastic well-defined 

energy function or the derivative of stochastic energy (DSE).     

For deterministic differential equation,  

 x f x   ,  0 0x xt    , 0t t    Eq. 4-397 

If there exists a positive-definite function U(x) (U(x0) = 0 and U(x)>0 for all x  x0) 

such that 

   
1

d U x, U U
f x, 0

d

d

i
i i

t
t

t t x

 
  

       Eq. 4-398 
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The equilibrium of this system is called stable. A function U which satisfies these 

conditions is called the Lyapunov function.  

For probabilistic or stochastic differential equations, 

   d x f x, d g x, d Wt t t  ,   0 0x xt    , 0t t   Eq. 4-399 

Where  f x, t is nonlinear function,  g x, t is diffusion function, and d W is Weiner 

process. 

If there exists a positive-definite function with continuous partial differentials, 

 u x, Ut  , such that the expectation of its differentiation less than or equal to zero. 

 d U 0E    for all  0t t     Eq. 4-400 

This condition will be used for a stochastic system stability analysis in the sense of 

Lyapunov. The function  u x, t is called the Lyapunov function belonging to the particular 

equilibrium state of the stochastic differential equation [26].  

The differentiation of U of the stochastic system becomes: 

        
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
 

    Eq. 4-401 

The  u x,L t is a stochastic differential operator according to Ito’s sense. 
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Eq. 4-402 

The stability condition  d U x, 0t  cannot be applied directly since the indefinite 

sign of the stochastic term. Therefore, the expectation of the function assumes the 

trajectory of x stay around equilibrium points radially.  Therefore, the above stability 

condition becomes  

    d U u x, d 0E E L t t     for all  0t t    Eq. 4-403 

which finally yields the stochastic stability condition 

 u x, 0L t       for all  0t t    Eq. 4-404 
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Eq. 4-405 
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 Eq. 4-407 

The stochastic stability condition equation becomes 
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    Eq. 4-408 

 

4.8.1 The derivative of stochastic energy (DSE) for small signal stability 

analysis 

To find the stochastic stability of the power system incorporating SCIG wind 

turbines, it can be started with the power test system as follows: 

 

 

Figure 4.32 Test power system including wind power and load for DSE determination 

SCIG WT
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For bus 1, x1 is a reference angle of infinite bus generator and y1 is reference speed 

deviation  1 0r s    which is close to zero. The matrix form of stochastic differential 

equations of the test system becomes: 
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Eq. 4-409 

The next step is to find partial derivative functions of the energy function U as follows: 
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Therefore, from the stochastic stability condition,  u x, 0L t  , the above equations 

can be summarized to have 

 

       

        
      

2 22 0
0 2 2 4 4 0 1 2 2 4 4 3 3

3

3 3 3 3 3 0 3 1 3 3

3 3 3 3 3

u x,

1

2

1
cos sin

2
1

sin sin 0
2

l e m e l e m
k

s
a b a b b a b

s
b m e a b a b

L t

D y P P y P P P P P
c M

M k k V y y k x c y y k V k x c

k V P P k x c k x c

  





         

     

     

   Eq. 4-430 

Simplifying the power balance terms to yields 
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Where 4 4 4e lP P P   , 2 2 2m eP P P   , 3 3 3m eP P P    
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This equation is the stability condition of this stochastic system, but it is still too 

complicated to analyze, therefore, the following two assumptions are applied 

1) Trajectories of x3 and y3 are around and close to their equilibrium points. 

2) The last two terms are very small (due to reason in 1)) when compared to the others 

and can be neglected. 

The above condition becomes 
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This equation is the stability condition of this test system but it is not convenient for 

analysis. Therefore, the following assumptions are stated. The trajectories of x3 and y3 are 

around and close to their equilibrium points. The last two terms in Eq. 4-432 are very small 

when compare to the other terms and can be neglected. The speed deviation of SG is very 

small and can be neglected. Accordingly, the derivative of stochastic energy (DSE) can be 

formulated from Eq. 4-432 as follows 
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If considering the effects of fluctuations of wind power on the stability of the power 

system, the above equation can be represented in the form of the limitation of 3 as 
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   Eq. 4-434 

Furthermore, if we assume a constant angle of load bus ( 4 4 40 , l ex P P  ) and 

1 1 0r sy     , the limitation condition of 3 is only 
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4.8.2 The Stochastic Stability Index (SSI) for small signal stability analysis 

This sub-section focuses on the study of the effects of stochastic wind power using 

the new stability performance index which is called the stochastic stability index (SSI). The 

following conditions are used to formulate SSI. 
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The power test system incorporating doubly-fed induction generator (DFIG) wind 

turbines is represented as follows: 

 

 

Figure 4.33 Test power system including DFIG wind turbine and load  

 

For bus 1, x1 is a reference angle of infinite bus generator and y1 is reference speed 

deviation  1 0r s   , which is close to zero.  

      4.8.2.1 For DFIG wind turbine applying Gaussian distribution white noise  

1) The well-defined energy function 

From the well-defined energy function of the power system including DFIG WT: 
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  Eq. 4-436 

2) The partial derivative components of the energy function are 

0
U

t





          Eq. 4-437 

 2 2 4 24 2 4 2 2
2

sinm m e

U
P V V b x x P P

x


      


     Eq. 4-438 



234 
 

   
 

 

  

  

  

 
3 4

3 3 4 34 3 4
3

2
3 2 3 3 4 3

2
3 3 4 34 3 4 3 3

3 3 3

3 3 1 3 4 3

0

0

sin

1
sin

2
1

cos 3 2
4
3

cos
4

, ,

m

a c s a a

P m

a b s

m e

d

d

a a

k

k

x

k x x c

x x

U
P V V b x x

M k k V k x x c y

M k k V V b x x y y

M k k V y

P P f y








   



  

  



   



     Eq. 4-439 

     

  

  

  

 
3 4

4 1 4 14 1 4 2 4 24 2 4 3 4 34 3 4
4

2
3 2 3 3 4 3

2
3 3 4 34 3 4 3 3

3 3 3

4 4 1 3 4 3

0

0

sin sin sin

1
sin

2
1

cos 3 2
4
3

cos
4

, ,

l

a c s a a

P m

a b s

l e

d

d

a a

k

k

k x x c

x x

U
P VV b x x V V b x x V V b x x

x

M k k V k x x c y

M k k V V b x x y y

M k k V y

P P f y








      



  

  



  


 

Eq. 4-440 

0 2 2
2

U
M y

y





          Eq. 4-441 

    

   
  

2

0 3 3 3 3 3 3 4
3

3 2 3 3 4 1 3 3

3 3 4 34 3

30

0

3 40

3
1 sin

4

cos

1
sin 3 4

4

P op b s a a

c s a a c

P m

d

d

d

k

k

k

U
M y M k k M k V k x x c

y

M k V k x x c k V y

M k k V V b y

y

x x

 






     



   

 
 

Eq. 4-442 

 
2

2 4 24 2 42
2

cos
U

V V b x x
x


 


         Eq. 4-443 

 

  

  

  3 4

2

3 4 34 3 42
3

2 2
3 2 3 3 4 3

2
3 3 4 34 3 4 3 3

2
3 3 3

0

0

cos

1
cos

2
1

sin 3 2
4
3

sin
4

a c s a a

P m

a b s

d

d

a a

k

k

k x x c

U
V V b x x

x

M k k V k x x c y

M k k V V b x x y y

M k k V y








 



  

  

 

     Eq. 4-444 



235 
 

   
 

     

  

  

  3 4

2

1 4 14 1 4 2 4 24 2 4 3 4 34 3 42
4

2 2
3 2 3 3 4 3

2
3 3 4 34 3 4 3 3

2
3 3 3

0

0

cos cos cos

1
cos

2
1

sin 3 2
4
3

sin
4

a c s a a

P m

a b s

d

d

a a

k

k

k x x c

U
VV b x x V V b x x V V b x x

x

M k k V k x x c y

M k k V V b x x y y

M k k V y








     



  

  

 

   Eq. 4-445 

2

0 22
2

U
M

y





           Eq. 4-446 

   

   

2

0 3 3 3 3 4 342
3

3 2 3 3 4 1 3

3 3 40 0

0

2 1 sin

cos

P op P m

c s a a c

d d

d

k k

k

U
M M k k M k k V V b

y

M k V k x x c k V

y x x  




   



   


   Eq. 4-447 

2 2

2 3 3 2

0
U U

x x x x

 
 

   
          Eq. 4-448 

 
2 2

2 4 24 2 4
2 4 4 2

cos
U U

V V b x x
x x x x

 
   

   
       Eq. 4-449 

 

  

  

  3 4

2 2

3 4 34 3 4
3 4 4 3

2 2
3 2 3 3 4 3

2
3 3 4 34 3 4 3 3

2
3 3 3

0

0

cos

1
cos

2
1

sin 3 2
4
3

sin
4

a c s a a

P m

a b s

d

d

a a

k

k

k x x c

U U
V V b x x

x x x x

M k k V k x x c y

M k k V V b x x y y

M k k V y







 
   

   

  

  

 

    Eq. 4-450 

  

  

  3 4

2 2

3 2 3 3 4 3
3 3 3 3

3 3 4 34 3 4 3

3 3

0

0

sin

1
cos 3 4

4
3

cos
4

a c s a a

P m

a b s

d

d

a a

k

k

k x x c

U U
M k k V k x x c y

x y y x

M k k V V b x x y

M k k V







 
   

   

  

 

     Eq. 4-451 

  

  

  3 4

2 2

3 2 3 3 4 3
3 4 4 3

3 3 4 34 3 4 3

3 3

0

0

sin

1
cos 3 4

4
3

cos
4

a c s a a

P m

a b s

d

d

a a

k

k

k x x c

U U
M k k V k x x c y

y x x y

M k k V V b x x y

M k k V







 
    

   

  

 

    Eq. 4-452 



236 
 

   
 

 

2 2 2 2 2 2 2 2

2 2 2 2 2 3 3 2 2 4 4 2 2 3 3 2

0
U U U U U U U U

x y y x y x x y y x x y y y y y

       
       

               
  Eq. 4-453 

3) Find  f x
x

U


 

 

 
   

 

 

 

0

0 2 0

0 3 3 3 4 0

4 4 0 0

2 3 4 2 3
2

2 2 2
2 2

3 3
3

sin

1

f x
x 1

1

b s a a d rq

l e
k

m e

m e

kVy y k k V

y y

x x c

P P yU U U U U U c
x x x y y D

P P y
M M

P P
M

 





  

  
 

  
 
                         
 
   

  

Eq. 4-454 

     

    
   

0

2
0 2 0 2 3 3

2 2 2 3 3

0 3 3 3 4 0
3

4 4 0 1 2 2
4 4 2 2

sin

1
f x

x

1 1

b

m e

s a a d rq

l e m e
k

kVy y k k V

DU U U U
y y y P P

x y M y M

U
x x c

x

U U U
P P y P P

x c x y M

 





  

   
    

   


  

  

    
  

   Eq. 4-455 

     

  
 

 

       

     

 

0

2 2 0 2 0

0 3

3 3 1 3 4 3 3 3 4

0

4 4 1 3 4 3 4 4 4 4 1 3 4 3 0 0

2
0 2 2 2 2 0 2 2 2

2 2

2

0 3 3 3 330

sin

f x
x

, ,

1
, , , ,

1

3
1

4

b

m e

m e s a a

d rq

l e l e l e
k

m e

P opd

k

V

k

y y

x x k k

V

x x x x

U
P P y y

P P f y x x c

P P f y P P P P f y y
c

D
M y P P M y y

M M

M y M k k M ky









 

 








   


 
 
      
 
 
 

      

  

  



  
   

  

 
3 3 4

3 2 3 3 4 1 3 3 3 3
3

3 3 4 34 3

0

3 40

sin

1
cos

1
sin 3 4

4

b s a a

c s a a c m e

P m

d

d

k

k

V k x x c

M k V k x x c k V y P P
M

M k k V V b yx x





   
 
     
 
   
 

  

 Eq. 4-456 



237 
 

   
 

If y0 is close to zero, it can be neglected, 
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Eq. 4-459 

Where  
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5) The derivative of well-defined energy functions 

Therefore, from the stochastic stability condition,  u x, 0L t  , the above equations 

can be summarized to have 
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It can be noticed that the first two terms on the right of Lu are the same as the 

derivative of the energy function of the deterministic system (pU). Therefore, the Lu is the 

derivative of stochastic energy function and has the stability condition the same as the pU 

in deterministic system. However, it can definitely prove that the pU is less than or equal to 

zero but not for Lu. If we multiply Lu by the scaling factor  = (1/Plk)
2 ,the Lu becomes 
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   Eq. 4-466 

Where P’m3 = Pm3 / Pl4 is the penetration ratio of wind power compared with the load. 

Conceptually, the derivative of the energy function is the rate of change of energy 

when perturbed by small or large disturbances. Its negative value is the stable condition in 

which the energy of the system is dissipative. After disturbance in such condition, this total 

energy will reduce and be zero when the state variable reaches its equilibrium point. In 

contrast, the positive value of the derivative of energy will result in an increasing of energy 

until beyond the critical value and the system becomes unstable. 

The Lu, compared with the derivative of the deterministic energy function (pU), is 

possibly the same concept as pU and can be used to formulate the stochastic stability index 

as follows. 

      4.8.2.2 For DFIG wind turbine applying Gaussian distribution colored noise 

1) The well-defined energy function 

From the well-defined energy function of the power system, including DFIG WT: 
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2) The partial derivative components of the energy function are  
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The next step is to find a partial derivative function of the energy function U as follows: 
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If y0 is close to zero, it can be neglected, and the 2 conditions are assumed 

differently,  

 Operating points are near and around the steady state values. 

 Operating points are not close to the steady state values. 

For the first condition, when operating points are near and around the steady state 

values 
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5) The derivative of well-defined energy function 

Therefore, from the stochastic stability condition,  u x, 0L t  , the above equations 

can be summarized to have 
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 Eq. 4-511 
The first four terms on the right of Eq. 4-511 are in the form of the dissipative 

derivative of the energy function. The last five terms on the right are additional terms that 

represent the variation of power on bus 3 (wind power bus) and bus 4 (load bus). 
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 Eq. 4-512 

If only wind power is perturbed by stochastic wind, the load is assumed to be 

constant during the studied period. Eq. 4-512 becomes 
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 Eq. 4-513 

If only the electric load is perturbed by stochastic variation, the wind power is 

assumed to be constant during the studied period, Eq. 4-512 becomes 
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 Eq. 4-514 

 

For the condition when operating points are not close to the steady state values: 
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Eq. 4-515 
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Eq. 4-516 
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Eq. 4-517 

 

The Lu of condition two, when operating points are not close to the steady state value, is  
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  Eq. 4-519 

Therefore, the difference between these two conditions are the existence of the 

function f2(x, y). It can be noticed from Eq. 4-511, Eq. 4-512, Eq. 4-513, Eq. 4-514, and Eq. 

4-518 that the first two terms on the right of Lu is the same with the derivative of the 

energy function of the deterministic system (pU). Comparatively, the Lu has concept 

similar to the derivative of stochastic energy function. However, it can definitely prove that 

the pU is less than or equal to zero but not for Lu. Clearly, the Lu relationship describes 

similar meaning of the average rate of change of energy. When Lu is negative, after 

disturbance, the system energy will decrease and the state variables will move toward 

equilibrium point. When Lu is positive, the energy may increase beyond the critical energy 

and the system become unstable. 

Since Lu in Eq. 4-518 is quite complicated, it is assumed that the system is started 

from the equilibrium state in which the derivative terms are small enough and can be 

neglected. Therefore, Lu will be diminished by focus only on the non-derivative terms and 

becomes Lu’. 

By dividing the critical energy (Uc) with the Lu’, the time that the energy takes to 

reach the critical value can be perceived. This conceptual time is then called the Stochastic 

Stability Index (SSI). This SSI is improved from the previous section (DSE) and has the 

same concept with the mean first passage time (MFPT) which is the performance index to 

quantify the average time a state-space trajectory takes to change from a given operating 

point to the boundary of its domain of attraction (the set of all possible trajectories which 
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converge to equilibrium points) under the influence of small perturbations. 

Compared to DSE in the previous section, Lu’ is always positive while DSE can 

probably be positive or negative. Theoretically, without corrective action, any continuously 

perturbed system will surely be unstable within a definite time even under an influence of 

small perturbation [74]. The larger Lu means the faster the energy increases and reaches the 

critical value. Therefore, the Lu’ is the term which has negative effect on the power system 

stability or can cause the system become less stable. 

4.8.3 The Stochastic Stability Index (SSI) for voltage stability analysis  

To study the effect of wind power on the voltage stability of the power system using 

SSI, the following conditions are applied. 

      4.8.3.1 The well-defined energy function 

The energy function of the power system can be represented as follows 
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Eq. 4-520 

      4.8.3.2 The partial derivative components of the energy function  

The partial derivatives of the energy function to state variables are: 
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Eq. 4-521 
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Eq. 4-522  
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Next step is to find partial derivative function of energy function U as follows 

0
U

t





          Eq. 4-531 

 2 2 4 24 2 4 2 2
2

sinm m e

U
P V V b x x P P

x


      


     Eq. 4-532 

 

   
 
    

    
   

3 3 4 34 3 4
3

3 3 3 4 3 4

3 3

3 3 4 34 3 4

3 2 3 3 4 3 3 3 3 3

3 3 3 3 1 3 4 3

0
3

30

sin

1
cos

2

1
cos

2 1

1
sin

2
1 , ,

m

s
b s a a a

s

P m

s
c s a a a m

m e

d

d

k

k

x

x x

U
P V V B x x

M k V k k x x c y y

y y
M k k V V B x x

M k V k k x x c y y P

P P f y

y

y



 

 


   



   


 



    

    

     

 Eq. 4-533 



254 
 

   
 

        

   
 
    

    
 

2 2

04 4 4 4 4 1 4 14 1 4 2 4 24 2 4 3 4 34 3 4
4

3 3 3 4 3 4

3 3

3 3 4 34 3 4

3 2 3 3 4 3 3

4 4 4 4

0
3

30

1
1

2
sin sin sin

1
cos

2

1
cos

2 1

1
sin

2

1

s

l p p

s
b s a a a

s

P m

s
c s a a a

l p p e

d

d

k

k

P V V
U

VV b x x V V b x x V V b x x
x

M k V k k x x c y y

y y
M k k V V B x x

M k V k k x x c y y

P P

y

y

 





 

 


      


   


 



   

     1 3 4 3, ,x xf y

 
Eq. 4-534 

0 2 2
2

U
M y

y





          Eq. 4-535 

        

  
 

 
 

      

0 3 3 3 1 3
3

2

3 3 3 4 3 4 3

4 3 4 3 4 3 4

3 3 34 2
3

3 2 3 3 4 3 3 3 4 3

30

30

0
3

0

1
sin sin 1

2

sin 1 sin1

2 11

1
cos 2 cos

2

c

s s
b s a a a a P op

s s s s

P m s

s s s
c s a a a a

d

d

d

d

k

k

k

k

U
M y M k V

y

M k V k x x c k x x c M k k

V x x y V x x
M k k V B

y

M k V k x x c y y k x x c y

y

y

y

 








 



       

   
  
  

       s

 

   
Eq. 4-536 

 
   

     

3 3

04 4 3 3 34 3 4 04 4 4 4
4

1 14 1 4 2 24 2 4 3 34 3 4 44 4

0
3

1
sin

2 1

cos cos cos

s

P m q qdk
y yU

Q V M k k V B x x Q V
V

V B x x V B x x V B x x B V

y
 


   

 

      

   Eq. 4-537 

 3 3 3 3 3 3 3
3

s
m m

U
P x x P  




   


       Eq. 4-538 

 4 4 4 4 4 4 4
4

s
l p l p p

p

U
P x x P  




   


       Eq. 4-539 

 2 2
04 4 4 4 04 4 4

4

1

2
s

q q q
q

U
Q V V Q  




   


      Eq. 4-540 

2

3 32
3

m

U
P 







 ,  
2

4 42
4

l p
p

U
P 







 , 
2

4 42
4

l q
q

U
Q 







   Eq. 4-541 

 

    



255 
 

   
 

1) Find  f x
x

U


 

 

 
   
 

 
 

   

0

0 2 0

0 3

4 4 4

2 2

3 3 3 3

2 3 4 2 3 4 3 4 4
4 4 4

3 3

4 4

4 4

4

,

,

,

,f x
x

,

df

xk l p p

i

w m

p q
vk l q q k

p p

q q

k

y y

y y

P

y
U U U U U U U U U U P M

x x x y y V
Q

c

V






  
 

  
  

  

 
 
 



 

 
 
 
 
 

 
                             

 
 

  
  

V x

V x

V x

V x

V x

   Eq. 4-542 

               
            

        

02 2 0 2 0 3 3 3 3 1 3 4 3 0 3

4 4 4 4 1 3 4 3 4 4 4 0 2 2 2 2

0 3 3 3 1 3

3 3 3 4 3 4 3

30

30

f x 1 , , ,
x

1 , , , ,

1
sin sin 1

2

m e m e df

l p p e xk l p p i

c

s s
b s a a a a P op

k

d

d

k

k

x x y y

x x

U
P P y y P P f y

P P f y P M y y

M y M k V

M k V k x x c k x x c M k k

c

y

y

   

       

 



 


        


      



       



V x

V x V x

  
 

 
 

   
  

 

2

4 3 4 3 4 3 4

3 3 34 3 3 32
3

3

3 4 3 3

3 2 3

3 4 3

3

04 4 3

0
3

0

0

,
sin 1 sin1

2 11

cos 21

2 cos

1

2

ws s s s

P m ms

s
a a

c s s s s
a a

P m

d

d

d

k

k

k

V x x y V x x
M k k V B P

y
M

k x x c y y
M k V

k x x c y

y
Q V M k k

y


  





 
 
 
 
                                 




V x

 
   

     
 

     
 

3

3 34 3 4 04 4 4 4 4 4 4

1 14 1 4 2 24 2 4 3 34 3 4 44 4

3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4

2 2
04 4 4 4 04 4

3
4

sin
,1

cos cos cos

1

2

s

q q l q q
vk

k

s s
m m l p l p p p p

s
q q q

y
V B x x Q V Q

V B x x V B x x V B x x B V

P x x P P x x P

Q V V Q

y
V

   


         

  



 
   

              

     

  

V x

4 4 4q q  
 
 

  Eq. 4-543 

 

 



256 
 

   
 

     

    

 

 
  

   

      

0

2 2 0 2 0

0 3

3 3 4

3 3 3 3 1 3 4 3

2 3 3 4 1 30 0

2

30 0

4 4 4 4 1 3 4 3 4 4 4

3 3

3 3

sin

f x
x

1 , ,
cos

1 1

1
1 , , 1

b

m e

s a a

m e

d c s a a d c

d P op d P m e

l p p e l p p
k

k k

k k

V

y y

k k
x x

x x

U
P P y y

x x c
P P f y

k V k x x c k V

k k k k P

P P f y P
c

y y

y y



 

 



 

   








   


 
 

  
    

   
 
     

      

     

  
    

  
 

 
 

4

2
0 2 2 2 2 0 2 2 2

2 2

0 3 3 3 1 3

3 4 2

3 3 3

3 4

4 3 4 3 4 3 4

3 3 34 2
3

3 2 3

30

30

0
3

0

1

sin1
1

2 sin

sin 1 sin1

2 11

co1

2

e

m e

c

a a

b s P ops s
a a

s s s s

P m s

c s

d

d

d

d

k

k

k

k

P

D
M y P P M y y

M M

M y M k V

k x x c
M k V M k k

k x x c

V x x y V x x
M k k V B

y

M k V

y

y

y

 

 







  



  
   
    

   
  
  


   
  

 

 
   

     

3 3 3

3 3

3 4 3 3

3 4 3

3 3

04 4 3 3 34 3 4 04 4 4 4

1 14 1 4 2 24 2 4 3 34 3 4 44 4

0
3

11

s 2

cos

1
sin

2 1

cos cos cos

m

e

s
a a

s s s
a a

s

P m q qdk

P

M P

k x x c y y

k x x c y

y y
Q V M k k V B x x Q V

V B x x V B x x V B x x B V

y

 

 

 
 
 
 
 
           
 
    
  
      
 

  
 

      

 

     
 

4 4 4

4 4

3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4

2 2
04 4 4 4 04 4 4 4 4

11

1

2

l q q

k e

s s
m m l p l p p p p

s
q q q q q

Q

V Q

P x x P P x x P

Q V V Q

 


         

    


  
        

 

     

    
 

  Eq. 4-544 

If y0 is close to zero, it can be neglected, and 2 conditions are assumed differently.  

For the case when operating points are near and around the steady state values: 
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Eq. 4-547 
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 Eq. 4-548 

If y0 is close to zero, it can be neglected: 
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 Eq. 4-549 
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Eq. 4-550 
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Eq. 4-551 
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For the case when operating points are not close to the steady state values: 
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      4.8.3.3 The derivative of well-defined energy function 

Therefore, from the stochastic stability condition,  u x, 0L t  , the above equations 

can be summarized to have: 
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   Eq. 4-567 
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   Eq. 4-571 

Since the first two terms on the right of Lu are the same with the derivative of the 

energy of the deterministic system (pU), the Lu has the concept similar to the derivative of 

the stochastic energy function. However, it can definitely prove that pU is less than or 

equal to zero but not for Lu.  

 

 



CHAPTER 5 

RESULTS AND DISCUSSION PART 1 

 
From the scopes and methodologies, the results have 2 parts. The first part consists 

of the characteristics of wind power, characteristics of power system incorporating wind 

power, effects of wind power on the small signal stability using eigenvalue method, and 

effects of wind power on the small signal stability using stochastic stability method: the 

mean first passage time (MFPT). 

The second part focuses on the stochastic stability, which consists of the study of 

the effects of wind power on the small signal stability using new stochastic stability 

method: the stochastic stability index (SSI), the study of effects of wind power on the 

voltage stability using new stochastic stability method, the study of effects of wind power 

on voltage variation using probabilistic method. 

This chapter focuses only on the first part of the results. 

5.1 The characteristics of wind speed and wind power 

The wind speed data, which is used in this section, is collected from the monitoring 

stations in Thailand and from modeling. The wind power is estimated using power curves 

from the manufacturers and the provided wind speed. There are two main types of 

characteristic of wind speed, which are, the slow variation and the fast variation 

characteristics.  

Slow and fast variation components of wind speed can be determined using spectral 

analysis of measurement wind data. They can be separated at a cycle time about 10 minutes 

or 1.67 mHz. Faster than 10 minutes is a type of fast variation and slower is for slow 

variation wind speed [42]. 

For wind data from two monitoring stations in Thailand, the first station is located 

in Chumporn Province (CHMP1) in the South of Thailand, and the other station is located 

at Bangkhuntian Campus (BKT1) of King Mongkut’s University of Technology Thonburi 

(KMUTT) in Bangkok. Wind speed data is recorded every minute during October 2011 – 

March 2012. The power spectral density (PSD) of wind speeds are shown in the following 

figures.  
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Figure 5.1 PSD of wind speed data from BKT1 station with frequency range of  

0 - 8.3 mHz or 2 minutes/cycle (left) and  0 - 0.14 mHz or 120 minutes/cycle (right)  

Figure 5.2 PSD of wind speed data from CHMP1 station with frequency range of  

0 - 8.3 mHz or 2 minutes/cycle (left) and  0 - 0.18 mHz or 92 minutes/cycle (right) 

 

In the above figures, significant parts of wind speed occur at frequency about 0.012 

mHz (about 24 hours per cycle), 0.023 mHz (about 12 hours per cycle), and 0.035 mHz 

(about 8 hours per cycle). These cycles are influenced from the diurnal effect. Higher than 

1 mHz, PSD decrease slowly and quite flat at frequency higher than 8.4 mHz (about 120 

seconds per cycle). The 0 mHz component is neglected due to there is no data exist at that 

frequency. The fast variation components of wind speed have quite the same power and 

can be called turbulence wind speed. 
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5.1.1 Variation of wind speed 

      5.1.1.1 Slow variation wind speed 

Slow variation wind speed can be considered the when wind speed has a cycle 

slower than 10 minutes. Therefore, 10-min data is an averaging interval which is used 

generally to record wind speed data [42]. Generally, slow variation wind speed 

characteristics can be characterized using variation and probabilistic behaviors in the long 

term. For time variation characteristics, wind speed can change slowly due to diurnal 

effects and seasonal effects. For example, hourly average and monthly average of wind 

speed of BKT1 and CHMP1 stations.  

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

6Months@90M

 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

 

Figure 5.3 Hourly average (left) and monthly average (right) of wind speed of BKT1 

station 
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Figure 5.4 Hourly average (left) and monthly average (right) of wind speed of CHMP1 

station 

 

For probabilistic behaviors of long term wind speed, the distribution function of 

wind speed is generally determined. The level of fluctuation of wind speed can be 
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determined by the standard deviation of wind speed. The distribution data of standard 

deviation can also be considered to represent the long term deviation of data. The following 

figures show an example of the distribution of wind speed and standard deviation.  

 

Figure 5.5 Distribution of wind speed (left) and standard deviation (right) of 1-min data of 

130,000 samples at CHMP1 station at 90 m-height 

 

This wind speed distribution can be approximated using the Weibull distribution 

function with scale parameter is 4.77 and shape parameter is 1.96 . For these samples, 

maximum standard deviation of wind speed can reach about 1.94. The standard deviation 

of 1-min wind data varied between 0.1 – 2.0 . The standard deviation within a range 0.5 – 

2.0 will be used in the power system modeling of this thesis. 

The formation of the probability distribution of wind speed is also investigated in 

this section. The frequency distribution of measured wind speed data are estimated using 

Matlab. To understand its distribution type, one-sample Kolmogorov-Smirnov method is 

used to compare the measured wind speed data with the six types of distribution. This is 

called hypothesis test. The six distribution types are Weibull distribution, Exponential 

distribution, Normal distribution, Log-normal distribution, Generalized-extreme value 

distribution, and Extreme value distribution. The resulting p-value which greater than 

significant value of 0.05 is an acceptable case or can be said that it cannot reject the 

hypothesis that this data is such kind of distribution function. 

The sample wind data consist of three cases. The 1-sec data run from 10 to 900 

seconds which the hypothesis is computed every 10 seconds. The 1-min data run from 10 

to 800 minutes which the hypothesis is computed every 10 minutes. The 1-hour data run 
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from 10 to 800 hours which the hypothesis is computed every 10 hours. For each step of 

computation, the p-value was reported and compared. 

For the 1-sec wind speed, the hypothesis test result is presented in Figure 5.6. From 

the result, when time increase with increasing sample, the p-value seems high for the 

starting run but all fall to zero after 350 seconds. Therefore, it is possible to reject the 

hypothesis that the distribution function matches with the measured wind speed data.  

For the 1-min wind speed, the result of hypothesis test shown in Figure 5.7 is the 

same with the 1-sec data. The p-value seems high for the starting run but most cases fall to 

zero after 350 minutes except the case of Generalized-extreme distribution which fall after 

600 minutes. 

For the 1-hour data, the result of the hypothesis test is shown in Figure 5.8 is 

different from the previous two cases. The p-value seems high for the starting run but most 

cases fall to zero after 350 minutes, except for the case of Generalized-extreme distribution 

and Weibull distribution which increases continuously. Therefore, for this case, it cannot 

reject the hypothesis that the 1-hour data distribution can be approximated by Generalized-

extreme distribution and Weibull distribution. The number of sample of 1-hour wind speed 

which is enough to represent Weibull distribution should be larger than 100 hours. 

 

‐0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400

p
  v
al
u
e

Time (seconds)

Hypotesis Test of Wind Speed from  second 10 ‐1000

WB1

EXP1

NM1

LN1

GEV1

EV1

significant value is > 0.05

 

Figure 5.6 Hypothesis test of every second wind speed data 
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Figure 5.7 Hypothesis test of every minute wind speed data 
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Figure 5.8 Hypothesis test of every hour wind speed data 
 

      5.1.1.2 Fast variation wind speed 

The fast variation characteristics of wind speed are from the interactions between 

wind speed, terrain, land cover and other obstacles. Generally, fast variation characteristics 

are studied with a short time scale from a millisecond to several ten minutes. 

Examples of wind speed at time scale in seconds and minutes are represented in 

Figure 5.9 and 5.10. For Figure 5.9, a short term wind speed data is recorded every second 

for about one day and represented here only 600 samples. This 1-sec data is averaged every 

60 samples (or 1 minute) to show as mean parts surrounding by fluctuating parts.  
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Figure 5.9 Wind speed at 90 m heights of BKT1 station with second (left)  

and minute (right) time scale. 

 

In Figure 5.10, the fast variation data is represented in the long term period. The 1-

minute data for 10,000 samples show highly fluctuation both wind speed data and standard 

deviation data. The cycle of deviation data occurs obviously due to diurnal effects.  

 

Figure 5.10 Wind speed (left) and its standard deviation (right)  

at 90 m heights of CHMP1 station 

 

It is well known that fast variation wind speed, which is called turbulence, can be 

approximated using zero average normal distribution [42]. However, we found that 

measurement data of turbulence wind speed is quite different. Figure 5.11 shows the PSD 

and data distribution of 1-sec wind speed at 90 m heights of BKT1 station for 2000 

samples. Since it is too short a time, the wind speed cannot approximated by the Weibull 

distribution. At this level of frequency, the PSD is very small with less than zero dB.  



271 
 

   
 

Figure 5.11 PSD (left) and histogram (right) of 1-sec wind speed at 90m heights  

of BKT1 station for 2,000 samples 

To represent the turbulence more clearly, the 1-sec wind speed data is subtracted by 

60-sec average wind speed to reveal only the turbulence part. The results are noise wind 

speed and its distribution, which are shown in Figure 5.12.  

Noise wind speed (turbulence) = wind speed – average wind speed every 60 samples    

Eq.5-1 
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Figure 5.12 Noise wind speed 1-sec data 2,000 samples (left) and its histogram (right) 

Figure 5.13 represent the turbulence term of wind speed but with 1-min data for 

26,000 samples. For this figure, turbulence term seems not a type of zero average normal 

distribution, but look like Generalized Gaussian Distribution (GGD) instead. Therefore, the 

modeling of turbulence wind speed using Gaussian distribution may stimulate significance 

error. 
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Figure 5.13 Wind speed distribution (left) and turbulence or noise wind speed distribution 

(right) of 1-min data for 26,000 samples at CHMP1 station (upper) and BKT1 station (lower) 

 

Figure 5.14 Example of gust wind speed of 1-min data for 10,000 minutes at BKT1 station 

(left) and CHMP1 station (right) 
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Figure 5.15 Wind speed (left) and its standard deviation (right) of 1-min data for 10,000 

minutes at BKT1 station (upper) and CHMP1 station (lower) 

 

The other case of fast variation of wind speed is the transient characteristic from 

gust wind speed, which is an abrupt change of wind speed within a short time. Gust wind 

speed can be estimated by the difference between maximum and average wind speed 

within 1 minute or less. The level of gust wind power can be estimated by the different of 

maximum and average power of wind (W/m2) at standard air density (1.225 kg/m3) within 

1 minute or less. Examples of gust wind speed and wind power are represented in above 

figures. 

For example, if the 1.6MW wind turbine (with swept area about 2,000 m2) has an 

alert level of wind power change at 50% of rated within 1 minute. Therefore, the serious 

level of gust wind power should be within a range of 600 – 800 W/m2 or larger. However, 

the transient phenomena are not considered yet because it is out of the scope of the thesis 

and does not occur frequently in nature. 
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5.1.2 Variation of wind power 

In this section, characteristics of wind power are studied, which consider three main 

affecting factors, namely wind speed, wind farm modeling, and power system conditions. 

The wind turbine technology is the other important factor. However, since the 

measurement wind power data is not available, the simulation or modeling wind power will 

be used instead for every cases of study. 

      5.1.2.1 Characteristics of estimated wind power 

From the previous section, wind speed can be considered to have slow and fast 

variation characteristics. Therefore, wind power in this case should be studied in term of 

slow and fast variation too.  

For slow variations of wind speed and without dynamic behaviors, the output wind 

power (Pw) is calculated using Eq.3-1 to Eq.3-4 . 

For example, hourly average wind data for 7,000 hours during August 2008 – July 

2009 at coastal site in the South of Thailand are represented in Figure 5.16.  

From this figure, the maximum, minimum, and fluctuation of wind power can be 

noticed. More than a half of time, wind power normally varies within a range 100 – 800 

kW. However, it can reach as much as 1,000 – 1,200 kW (rated of wind turbine) during the 

stormy season in the South of Thailand. 

The distribution of wind speed and wind power data at the coastal site in the South 

of Thailand are represented in Figure 5.17. These results can be used to compare with wind 

speed and wind power data at BKT1 station as shown in Figure 5.18 – 5.20. 

 

  

Figure 5.16 Hourly average wind speed (left) and wind power (right) from Eq.3-3 and 3-4  

at the coastal site in the South of Thailand 
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Figure 5.17 Histogram of 7,000 hours wind speed (left) and calculated wind power (right) 

at the coastal site in the South of Thailand 

 

 

Figure 5.18 Hourly average wind speed (left) and calculated wind power (right) at BKT1 

station 
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Figure 5.19 Hourly average wind speed (left) and calculated wind power (right) at BKT1 

station 

 

Figure 5.20 PSD of 800 hours wind speed (left) and calculated wind power (right)  

at BKT1 station 

 

For Figure 5.20, at frequencies of about 12 uHz and 22 uHz show significant level 

of PSD. These frequencies refer to the time cycle of about 24 hours and 12 hours 

respectively. Therefore, it is again an influence of diurnal effect. 

The following figure can represent the formation of probability distribution of wind 

power for 800 hours samples. From this figure, it is possible to approximate probability 

distribution of wind power by Weibull distribution and generalized extreme value 

distribution. 



277 
 

   
 

‐0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700 800

p
  v
a
lu
e

Time (hours)

Hypotesis Test of Wind Power from  hour 10 ‐ 800

WB2

EXP2

NM2

LN2

GEV2

EV2

significant value is > 0.05

 

Figure 5.21 Hypothesis test of hourly averaged wind power 

 

5.1.3 The probability distribution function of wind power 

The study of probability distribution characteristics of wind power can be influenced 

by many factors, such as wind turbine model, power system model, wind speed model and 

noise model. Therefore, testing with many conditions is listed in Table 5.1. 

 

Table 5.1 Testing conditions for the study of probability distribution of wind power 

 
Wind turbine 

model 
Power system 

model 
Wind speed model 

Other conditions 

Case 
A1 

1x2MVA SCIG 
1 AC source 
without load 

Weibull distribution using 
inverse CDF 

2 values of Weibull scale 
parameter, 100x2 runs  

Case 
A2 

2x2MVA 
SCIGs 

1 AC source 
without load 

Independent 2 wind sources 
with Weibull distribution 

Weibull scale parameter = 10, 
for 10,000 runs 

Case 
A3 

5x10x2MVA 
SCIGs 

1 AC source 
without load 

Independent 5 wind sources 
with Weibull distribution 

Weibull scale parameter = 10, 
100 runs 

Case 
A4 

2x2MVA 
SCIGs 

1 AC source 
without load 

The same wind source with 
Weibull distribution 

Add Gaussian random noise to 
WT2, 100 runs 

Case 
A5 

2x2MVA 
SCIGs 

1 AC source 
without load 

Constant wind speed = 6, 9, 
and 10 m/s for both WT 

Add Gaussian random noise to 
WT2, 400, 1600 runs 

Case 
A6 

1x50x2MVA 
SCIG 

SMIB system 
with load 

Weibull distribution using 
inverse CDF 

2 values of Weibull scale 
parameter, 200x2 runs 

Case 
A7 

1x50x2MVA 
SCIG 

SMIB system 
with load 

Weibull distribution using 
inverse CDF  

WS noise using inverse CDF 
numerical method , 100 runs 

 

Case A1 Single wind turbine connecting AC voltage source power system without 

noise 

The one-line diagram of case A1 is represented in Figure 5.22. In this case, wind 

speed signal is generated from the inverse CDF method considering Weibull distribution.  
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Figure 5.22 One-line diagram of test system of case A1 

 

Where Uw is the uniform random number between 0 – 1 and Cparam is the scale parameter. 

In this case, the Weibull shape parameter = 2 or called Rayleigh distribution.  

 

Figure 5.23 Wind speed (left) and wind power (right) of case A1 (WS1 and WP1 use  

Cparam = 5, WS2 and WP2 use Cparam = 10) 
 

  

Figure 5.24 Histogram of wind speed (left) and wind power (right) of  

case A1 (Cparam = 5) 
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Figure 5.25 Histogram of wind speed (left) and wind power (right)  

of case A1 (Cparam = 10) 

It can be noticed in Figure 5.23 that at Cparam = 5, wind power is very low or 

cannot generate electrical power. In Figure 5.24, the wind power distribution is again reveal 

that wind speed is too low to start generate power. When Cparam increase to be 10 in Figure 

5.25, the wind power distribution show large share of wind power greater than 0.3 pu.  

Case A2 Two wind turbines connecting AC voltage source power system without 

noise 

The one-line diagram of case A2 is represented in Figure 5.26. Wind speed is 

generated from the inverse CDF method considering Weibull distribution for both wind 

turbines. Wind speed and wind power of case A2 are represented in Figure 5.27. Figures 

5.28 and 5.29 reveal that wind speed with large samples can be exactly approximated by the 

Weibull distribution, but wind power cannot. It can be concluded from these figures that, the 

data distribution of wind power of single wind turbine cannot be approximated using 

general probability distribution functions. It depends on the characteristics of wind speed 

and the power curve of wind turbine including cut-in speed and rated speed. 

 

 

Figure 5.26 One-line diagram of test system of case A2 

 

C

C 
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Figure 5.27 Wind speed (left) and wind power (right) of case A2 (WS1 and WP1 from 

WTG1, WS2 and WP2 from WTG2) 
 

Figure 5.28 Histogram of wind speed (left) and wind power (right) of case A2 (from WTG1) 
 

Figure 5.29 Histogram of wind speed (left) and wind power (right) of case A2 (from WTG2) 
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Case A3 Five aggregated wind farms connecting AC voltage source power system 

without noise 

The one-line diagram of case A3 is represented in Figure 5.30. Wind speed is 

generated from the inverse CDF method considering Weibull distribution for all five 

aggregated wind farms. Each wind farm represent 10 coherently wind turbines of capacity 

2MVA each. The total wind power (Pwind) is then compared with the individual wind 

power from each windfarm. 

 

 

Figure 5.30 One-line diagram of test system of case A3 
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Figure 5.31 Sample of wind speed (left) and wind power (right) of case A3 

 

Pwind 
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Figure 5.32 Histogram of wind power of WTG1 (left) and total wind power (right) 

of case A3 

 

In Figure 5.31, for random and independent wind speed, total wind power seems 

smoother than individual wind power. Moreover, Figure 5.32 reveals that the total wind 

power can be approximated by normal distribution while the individual wind power cannot. 

  

Figure 5.33 PSD of wind power of WTG1 (left) and total wind power (right) of case A3 

 

In Figure 5.33, the normal probability plot represents again that the total wind power 

can be approximated by the normal distribution. This is because when the random signal 

mixing together, the convolution of many sources can results to converge to normal 

distribution.   



283 
 

   
 

Case A4 Two wind turbines connecting AC voltage source power system with 

normal random noise wind speed for one wind turbine 

The one-line diagram of case A4 is represented in Figure 5.34. Wind speed is 

generated from the inverse CDF method considering Weibull distribution for both wind 

turbine (Cparam1 = 10). However, wind turbine number two has normal random noise wind 

speed add.   

 

Figure 5.34 One-line diagram of test system of case A4 

 

Since the wind power distribution cannot be approximated by any standard 

probability distribution, the noise wind power is then considered. The noise wind power is 

calculated by the difference between wind power from wind turbine number one and 

number two. Figure 5.35 shows that noise wind power have close to zero mean distribution. 

In Figure 5.36, the noise wind speed seems like normal distribution. In Figure 5.37, noise 

wind power distribution is very different from normal distribution. The result of normal plot 

in Figure 5.38 reveals that noise wind speed distribution is close to normal distribution, but 

noise wind power is not. 

 

  

Figure 5.35 Wind speed (left) and different wind speeds (WS2-WS1) (right) of case A4 
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Figure 5.36 Histogram of wind speed (left) and different wind speeds (WS2-WS1) (right)  

of case A4 

  

Figure 5.37 Histogram of wind power of WTG2 (left) and different wind powers (WP2-

WP1) (right) of case A4 

  

Figure 5.38 Normal probability plot of different wind speeds (WS2-WS1) (left) and  

different wind power (WP2-WP1) (right) of case A4 
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Case A5 Two wind turbines connecting AC voltage source power system with 

constant mean wind speed and add normal random noise wind speed for one wind turbine 

The one-line diagram of case A5 is represented in Figure 5.39. Wind speed in this 

case is fixed for both wind turbine (k = 6, 9, 10 m/s). However, wind turbine number two 

has normal random noise wind speed added. 

 

 

Figure 5.39 One-line diagram of test system of case A5 

 

This testing condition interests an influence of mean wind speed on the distribution 

characteristics of wind power. Figure 5.40 represent that there is specific mean wind speed 

that can make wind power distribution symmetry. In this case is 9 m/s.  

This is true also in the case of noise wind power as presented in Figure 5.41. For 

both wind power and noise wind power, at mean wind speed fix at 9 m/s, the normal 

distribution can be used to approximate its distribution. Figure 5.42 can confirm this 

agreement.  

It can be noticed that the distribution characteristics of noise wind power in this case 

is different from the case A4. The difference between these two cases is the wind speed 

model. However, wind speed model of case A4 is more close to the nature of wind speed. 
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Figure 5.40 Histogram of wind powers for the case wind speed, k = 6m/s (upper left),  

9m/s (upper right), and 10m/s (lower) 
 

  

 

Figure 5.41 Histogram of different wind powers (WP2-WP1) for the case wind speed,  

k = 6m/s (upper left), 9m/s (upper right), and 10m/s (lower) 
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Figure 5.42 Normal probability plot of different wind powers (WP2-WP1) for the case of 

wind speed, k = 6m/s (upper left), 9m/s (upper right), and 10m/s (lower) 
 

Figure 5.43 Different wind speed (WS2-WS1) for all k 

 

Case A6 Aggregated wind farm connecting Single Machine Infinite Bus (SMIB) 

power system without noise 

The one-line diagram of case A6 is represented in Figure 5.44. Wind speed is 

generated from the inverse CDF method considering the Weibull distribution. However, the 

power system is different from the previous cases. The single machine infinite bus system is 
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used to represent an influence of more complex power system on the distribution 

characteristics of wind power.  

In Figure 5.45, the Cparam = 5 is the case that wind power cannot be generated. The 

distribution data in Figure 5.47 is in agreed with this conclusion.  For Cparam = 10, the 

results from Figure 5.47 can be compared with Figure 5.24 and 5.25 of the case A1. It can 

be noticed that the distribution characteristics of wind power is very similar for these two 

cases. For this condition, the power system may has less influence on the distribution of 

wind power. 

 

Figure 5.44 One-line diagram of test system of case A6 

 

 

Figure 5.45 Wind speed (left) and wind power (right) of case A6 

 (WS1 and WP1 use Cparam = 5, WS2 and WP2 use Cparam = 10) 
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Figure 5.46 Histogram of wind speed of case A6 for Cparam = 5 (left)  

and Cparam = 10 (right) 

 

  

Figure 5.47 Histogram of wind power of case A6 for the case Cparam = 5 (left)  

and Cparam = 10 (right) 

 

Case A7 Two aggregated wind farm connecting Single Machine Infinite Bus (SMIB) 

power system with constant mean wind speed and add normal random noise wind speed for 

one wind turbine 

The one-line diagram of case A7 is represented in Figure 5.48. Wind speed is fixed 

at 10 m/s with normal random noise is added and the power system is SMIB system. 
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Figure 5.48 One-line diagram of test system of case A7 

 

Figure 5.49 Noise wind speed (left) and noise wind power (right) of WTG2 of case A7  

 

  

Figure 5.50 Histogram of noise wind speed (left) and wind power (right)  

of WTG2 of case A7 
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Figure 5.51 Normal probability plot of noise wind speed (left) and  

noise wind power (right) of WTG2 of case A7 

 

In Figures 5.50 and 5.51, both noise wind speed and noise wind power can be 

approximated by normal distribution. This result agrees with the result of case A5. 

5.1.4 The stochastic wind power simulation 

The DFIG wind turbine model is simplified and represented by the two-order model 

consisting of two differential equations. From the rotor dynamic equation, when applying 

colored noise into the mechanical wind power (Pm), we will get the stochastic differential 

equation (SDE) as follows: 

 1 1
w ms e ms w wps P P P

M M
          Eq.5-2 

w w w w wp pW            Eq.5-3 

where pW is a zero-mean Gaussian distributed white noise [9], and αw is noise intensity of 

the wind power with its standard deviation divided by mean value. w is colored noise 

parameter. γw and w are scaling parameter and bandwidth of wind power, respectively. 

The power test system is a single machine infinite bus power system (SMIB). The 

system parameters and equations are provided in Section 4.2. The single line diagram of the 

power test system is represented in Figure 5.52. The simulation is done using Matlab to 

characterize the variations in wind power and the state variables (speed and angle) when 

applying colored noise. The stochastic wind power is simulated by vary bandwidths, noise 

intensities, and scaling parameters. Furthermore, the probability distributions of wind power 
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at different conditions are also determined. The results of the simulation are represented in 

following figures. 

 

Figure 5.52 Single line diagram of SMIB with DFIG wind turbine 

 

 

 

 

Figure 5.53 The variation of wind power (left) and its power spectral density (right) when 

varying bandwidth (upper), scaling factor (middle), and noise intensity (lower) 
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Figure 5.54 The normal curve of wind power when varying bandwidth (left), scaling factor 

(middle), and noise intensity (right) 

 

 

 

 

Figure 5.55 The data distribution of wind power when varying bandwidth (upper), scaling 

factor (middle), and noise intensity (lower) 

 

The simulation results using Matlab can be represented in the following figures.  
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Figure 5.56 The variation (left) and data distribution (right) of wind power 

 
Figure 5.57 The variation (left) and normal curve (right) of angle and 

 speed deviation (-slip) 
 

 
Figure 5.58 The data distribution of angle (left) and speed deviation or –slip (right) 

 

5.2 The characteristics of power system incorporating wind power 

5.2.1 Power-Angle and Power-Load on Steady State Analysis 

      5.2.1.1 Power-Angle Characteristic Analysis 

The single machine infinite bus system (SMIB) is used in this section. The infinite 

bus voltage is fixed at 1.0. To investigate the power-angle characteristics of the generator, 

two assumptions should be considered. First is the active/reactive power-angle 

characteristic of the single machine power system with varying voltages and second is the 
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active/reactive power-angle characteristic of the single machine power system with varying 

line reactance. Both cases use equations in Section 3.2 (Eqs. 3-7 – 3-8) to model using 

Matlab. Models and equations for this case study are stated again in the following figures: 

 

  
Figure 5.59 Schematic diagram of SMIB and equations 

 

From the above figure, total impedance ZTot = j0.3 + j0.15 + j0.5 = j0.95. The results 

are presented as follows.  

1) Active/reactive power-angle characteristic with varying voltage  

 

Figure 5.60 Active power-angle characteristics of  

SMIB system when varying voltage 

0 
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Figure 5.61 Reactive power-angle characteristics of 

SMIB system when varying voltage 

 

2) Active/reactive power-angle characteristic with varying line reactance  

 

Figure 5.62 Active power-angle characteristics of SMIB system when varying total 

impedance 

 

0 

0 
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Figure 5.63 Reactive power-angle characteristics of SMIB system when varying total 

impedance 

In Figure 5.60, since the equation has the sine function of angle varying between 0 

to , that is the reason for the shape of active power-angle characteristic having such a 

form. The peak value of power is when angle is 0.5 or sin0.5 is equal to 1.0 . This point 

is called critical point. Beyond this point, generator cannot control power by normal 

operation and lost synchronization finally. Furthermore, if infinite bus voltage is fixed, the 

higher internal voltage, the larger active power can generate from machine.  

In Figure 5.61, the reactive power-angle characteristic has a different shape from 

the active power. However, it is clear that reactive power always has negative value. This 

is due to the stator winding of generator is an inductive element. The larger angle, more 

power is generated with increasing current, and therefore, the larger minus reactive power. 

Before critical point is reached, the higher internal voltage causes the smaller minus 

reactive power. But inversely, away from critical point, the higher internal voltage causes 

the larger minus reactive power. 

In Figure 5.62, if internal voltage is fixed, active power increases with decreasing 

total impedance. For example, shorter transmission line (smaller impedance) can improve 

power transfer from generator to the grid.  

In Figure 5.63, when internal voltage is fixed at 1.2 (larger than infinite bus 

voltage), reactive power is positive when power angle less than 0.5 radians. Reactive 

0 
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power is a little bit larger with smaller total impedance. If power angle larger than 0.5 

radians, reactive power is negative and decrease with decreasing total impedance. 

3) Reactive power-voltage characteristics  

 

 

Figure 5.64 Reactive power-voltage characteristics of SMIB system  

with varying active power  

 

 

Figure 5.65 Reactive power-voltage characteristics of SMIB system  

with varying line reactance  

 

In Figure 5.64, at voltages less than the locus of critical operating point (LCOP) and 

larger than the limit curve, voltage decreases with increasing absolute reactive power. If 

higher than LCOP, voltage increases with increasing reactive power. This power-voltage 

Locus of critical 
operating point 

Limit curve 
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characteristic is used for regulating voltage of the power system. Normal operating 

condition always set voltage to larger than LCOP for the reactive power compensators can 

control the system voltage possibly.  The voltage drop, loss of compensators, and/or excess 

negative reactive power will reduce capability of the system to control system voltage. This 

is called voltage instability. With increasing active power, the system voltage (for example 

at 1.5 p.u.) is closer to LCOP and become instability finally.  

In Figure 5.65, when active power is fixed while total impedance varies, the larger 

total impedance cause voltage closer to the LCOP and instability state. Beside, the limit 

curves are different for different total impedance.  

      5.2.1.2 Power-Load Characteristics Analysis 

The Power-Load Characteristics of power systems lead to understanding in 

constraints of the system influenced by the load impedance, line impedance, load angle, 

and line angle. Following section is the result of analysis basing on simple one machine 

power system with one load and one line impedance. Testing conditions are listed in Table 

5.2 . 

I ZLN

VR = I ZLD



ES




 

Figure 5.66 Phasor diagram, circuit diagram, and equations of power test system 

 

Table 5.2 Testing conditions for power-load characteristic analysis 

Power vs Load Theta () Phi () -  Load (ZLN / ZLD) 

Case1 (PRn, QRn) 65:5:90 0 65:5:90 0.1:0.02:10 

Case2 (PRn, QRn) 65:5:90 0:5:25 65 0.1:0.02:10 
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        1) Active/Reactive power-Load characteristics when varying Theta and fix Phi 

 

Figure 5.67 Active power-load characteristics when varying Theta and fix Phi 

 

 

Figure 5.68 Reactive power-load characteristics when varying Theta and fix Phi 

In Figures 5.67 and 5.68, active power and reactive power-load characteristics have 

the same shape of the curve, but with different magnitudes. For ZLN / ZLD < 1 which is 

normal operating condition, increasing ZLN/ZLD can increase both active and reactive 

power. At ZLN / ZLD = 1, active and reactive power reach the maximum or critical value. 

For ZLN / ZLD > 1, increasing of ZLN / ZLD result in decreasing of active and reactive power. 

The larger Theta-Phi, the higher active and reactive power to be consumed. 
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2) Active/Reactive power-Load characteristics when varying Phi and fix 

Theta –Phi 

 

Figure 5.69 Active power-load characteristics when varying Phi and fix Theta –Phi  

 

 

Figure 5.70 Reactive power-load characteristics when varying Phi and fix Theta –Phi 

In Figures 5.69 and 5.70, when varying load angle (Phi) and fix Theta –Phi, 

increasing Phi causes decreasing of active power, but in contrast, increasing of reactive 

power. Active and reactive power reach the maximum or critical value when line 

impedance is equal to load impedance or ZLN = ZLD. It is important that, the reactive power 

is strongly depends on load angle (Phi). An increasing of load angle for 5 degrees can 

increase reactive power nearly 5% of base value. 
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Moreover, it was found that the load voltage was influenced by Theta-Phi, not by 

only Phi as shown in Figure 5.71. 

 

Figure 5.71 Voltage-Load characteristics when fix Phi varying Theta-Phi (left) and 

when fix Theta-Phi varies Phi (right) 

 

5.2.2 Power-angle and speed characteristics of simple power system 

      5.2.2.1 Steady state modeling with conventional generators 

Using the SMIB model and steady state models, we can draw simple schematic 

diagrams and phasor diagrams, as presented in Figure 5.72.  

  

 

Figure 5.72 One line diagram and testing equations of SMIB power system 

  

This simple model is used, coupled with the mathematical models in Section 3.2, to 

explain the relationship between electrical power and power angle, electrical power and 

voltage, and electrical power and load. In case of round rotor machine SMIB system, EB is 

assumed constant at 1.0 p.u.  

Pe and Qe strongly depend on the internal voltage of the generator and power angle. 

For convenience, the external dynamic sources (from wind power and load) are not directly 

modeled because these effects are included in the generator voltage and power angle 
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variation.  Therefore, different characteristics of generator voltage and power angle are 

modified to represent different kind of external dynamic sources.  

The linearly or low frequency increase of the power angle is due to linear or slow 

variation increasing of load. Variations of both generator voltage in term of sinusoidal 

signal are caused from there are inductive and capacitive load of the system including line 

impedance. The band-limited white noise characteristics are caused from the stochastic 

nature of the load, wind power, and etc.The power-angle equation of machine is modeled 

using Matlab as follows 

 

 

Figure 5.73 Block diagram (left) and function representing power-angle equation (right) of 

active (upper) and reactive power (lower) 

 

In Eq.3-30, by varying  and Es , the power-angle characteristics can be analyzed 

using following conditions. 
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Table 5.3 Testing conditions for power-angle characteristic analysis 

Pe& Qe Power angle,   (rad) Voltage of Generator, Es (p.u.) 
Case 1 linearly increase 0.0314 rad/s from 0 to Pi 

within 100 seconds 
constant 0.95 p.u. + sin signal 7rad/s +/- 0.05 
p.u. 

Case 2 linearly increase 0.0314 rad/s from 0 to Pi 
within 100 s 

constant 0.9 p.u. + sin signal 7rad/s +/- 0.1 
p.u. 

Case 3 linearly increase 0.0314 rad/s + sin  0.1 rad/s  
+/- 0.5 rad within 100 s 

constant 0.9 p.u. + sin signal 7rad/s +/- 0.1 
p.u. 

Case 4 linearly increase 0.0314 rad/s + sin 0.2 rad/s 
+/- 0.5 rad within 100 s 

constant 0.9 p.u. + sin signal 7rad/s +/- 0.1 
p.u. 

Case 5 linearly increase 0.0314 rad/s + sin 0.1 rad/s  
+/- 0.5 rad within 100 s 

constant 0.9 p.u. + Band-limited white noise 
PSD 0.1, sample time 0.1s 

Case 6 linearly increase 0.0314 rad/s + sin 0.2 rad/s 
+/- 0.5 rad within 100 s 

constant 0.9 p.u. + Band-limited white noise 
PSD 0.3, sample time0.1s. 

 

The results of the simulation are represented in Figures 5.74 – 5.76. Figure 5.74 

shows Power angle,   and Voltage of Generator, Es for 6 cases of testing condition. 

Figures 5.75 and 5.76 represent active and reactive power-angle characteristics, 

respectively. 

 

 

Figure 5.74 Electrical power (p.u.) and power angle (rad) of the case 1 (upper left) to case 

3 (upper right) and case 4 (lower left) to case 6 (lower right). 
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Figure 5.75 Active Power-angle characteristics for case 1 (upper left) to case 3 (upper 

right) and from case 4 (lower left) to case 6 (lower right). 

 

Figure 5.76 Reactive Power-angle characteristics for case 1 (upper left) to case 3 (upper 

right), and from case 4 (lower left) to case 6 (lower right). 

 

In Figure 5.75, Case 1 and Case 2 represent power-angle change with variation of 

voltage but power angle is fixed. Interesting characteristics are Case 3 – Case 6 when power 

angle is varied sinusoidal. The dark-blue strip occurs when the slope of power angle is 
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negative. Therefore, higher frequency of power angle causes more dark- blue strips on 

power-angle curve (for example, Case 4 and Case 6 have negative slope of power angle for 

three ranges).  

For all cases, Case 6 is closest to the real situation in the power system when 

operating under wide range of power angle. For the occurring of dark-blue strip, if we 

slowly replay the simulation, we will see the slowly increase and decrease of power when 

the slope of power angle is positive and negative, respectively. 

The same description is used for reactive power but with the different shape of 

power-angle curve as shown in Figure 5.76. 

For the real situation, operating point is fluctuated at some range when power angle 

is quite far from the critical point to avoid instability occurring in the system. Therefore, 

the generator is fixed to operate at some range, but not reach the maximum capacity. 

      5.2.2.2 Dynamic modeling with wind turbine generator 

This section represents the result of simulation of power system using dynamics 

models when includes small signal from external sources such as wind power. The 

schematic diagram and one line diagram of power test system is represented in Figure 5.77.  

The model is simulated using PSCAD as described in Section 4.2. 

 

 

Figure 5.77 Schematic diagram and one line diagram of power test system connecting to 

an infinite bus and including wind power and load 

 

There are two cases for the simulation conditions. First is the case when wind speed 

is zero at the first 30 seconds and is increased to be constant 10m/s for next 30 seconds. 
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Second is the case when constant wind speed 10m/s has ramp winds of 1m/s 4Hz to be as 

small signal. 

For both cases, load is set as resistive load to fix value at 50% of rated capacity of 

synchronous generator. Wind power is injected to the grid starting at the 30th second. 

Therefore, it can be seen that, for the first 30 seconds, the state parameters of the 

system reach the steady state since 20 seconds.   

For the first case with constant wind speed, the value of wind speed, power load 

angle, rotor speed, active/reactive power, and voltage of generator bus are represented in 

Figures 5.78, 5.80, 5.82, 5.84, 5.86, and 5.88, respectively. For the second case with ramp 

wind speed, the value of state parameters are represented in Figures 5.79, 5.81, 5.83, 5.85, 

5.87, and 5.89, respectively. 
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signal 
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Figure 5.88 Voltage of constant wind Figure 5.89 Voltage of case small signal 

 

In Figures 5.78 to 5.89, for the first 30 seconds, the steady state values of power 

angle, rotor speed, active power, and reactive power are 20.525 degrees, 1.0 p.u., 980.2 

MW, and -298.8MVAr, respectively. 

The power angle of generator without and with wind power is considered, 

respectively. The power angle of base case swings at first 20 seconds and then reaches the 

steady state at 20.525 degrees. For wind power case, the power angle swing seems to cease 

before 20 seconds but replacing by decrease of power angle continuously. 

5.2.3 Characteristics of the power system under different testing conditions 

In this section, the single machine infinite bus power system is used. The power 

system, including fluctuating wind power, leads to the higher degree of complexity. This 

situation may affect the ac power system synchronization differently depending on 

characteristics of wind power. Therefore, the power angle and rotor speed of synchronous 

generator with various characteristics of wind power are investigated. 

The system voltage is 500kV with load power 50% of 2220 MVA synchronous 

generator. The simulation duration time is 100 seconds, which is enough for the system to 

reach a steady state at about 20 seconds (without wind power). The time step of the 

simulation is 50 micro seconds.  

The synchronous generator model is IEEE generic steam turbine model supported 

by PSCAD (www.pscad.com). The wind power model consists of wind source model and 

wind turbine model with pitch control. The wind source model generates mean wind speed 

with noise. For wind turbine model, the 50x2 MVA squirrel cage induction generator 

(SCIG) is used in this study. For noise wind speed (Vn) model, seven parameters are used 

to define its characteristics, which are [46]: 
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Figure 5.90 Test power system including wind power and load 

 
 

The PSCAD provides the 2MW wind turbine model (separate from 2 MVA squirrel 

cage induction generator), as presented in Figure 5.90. 

 

 

Figure 5.91 Wind turbine model in PSCAD 

 

For the wind turbine model, the wind speed (Vw, m/s), mechanical speed of 

generator (, rad/s), and pitch angle (, ) are input while mechanical torque (Tm) and 

power of turbine (P) are the output. The wind turbine has torque- characteristics (or 

equation of power coefficient) vary with Vw using standard model of wind turbine. 

For synchronization system stability, important parameters to be studied are rotor 

speed and power angle (use power angle, , instead of actual rotor angle). The sources of 

small signal are from the different characteristics of wind speed. The 11 testing conditions 

with different characteristics of wind speed are represented in Table 5.4. 
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Table 5.4 Testing conditions for the study of characteristics of the power system 

incorporating wind power 

 Wind turbine Wind speed Noise conditions Load Base voltage 
CaseB1 No wind power 10 m/s - 1100 MW 500 kV 
CaseB2 50x2MVA 10 m/s - 1100 MW 500 kV 
CaseB3 50x2MVA 10 m/s - 1100 MW 230 kV 
CaseB4 50x2MVA 10 m/s Stdev 0.19 m/s, frequency 1 rad/s 1100 MW 500 kV 
CaseB5 50x2MVA 10 m/s Stdev 1.86 m/s, frequency 1 rad/s 1100 MW 500 kV 
CaseB6 50x2MVA 10 m/s Stdev 1.52 m/s, frequency 0.5 rad/s 1100 MW 500 kV 
CaseB7 50x2MVA 10 m/s Stdev 1.52 m/s, frequency 2 rad/s 1100 MW 500 kV 
CaseB8 50x2MVA 10 m/s Ramp 1 m/s, 0.5 Hz 1100 MW 500 kV 
CaseB9 50x2MVA 10 m/s Ramp 1 m/s, 0.75 Hz 1100 MW 500 kV 
CaseB10 50x2MVA 10 m/s Ramp 1 m/s, 1.0 Hz 1100 MW 500 kV 
CaseB11 50x2MVA 10 m/s Ramp 1 m/s, 4.0 Hz 1100 MW 500 kV 

 

 Case B1 Base case without wind power 

For the base case, the wind turbine does not generate power to the power system. 

The power angle and rotor speed are represented in Figure 5.92. The power angle reaches 

steady state of 23.14 degrees after 20 seconds. The steady state rotor speed is 1.0 pu. In this 

figure, PSD of both cases are quite flat for wide range except at frequency 0.75Hz which 

periodical fluctuation occurs and at very low frequency which the steady state component 

occurs.  
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Figure 5.92 The power angle and rotor speed for base case and PSD of power angle (black) 

and rotor speed (blue) for base case in dB/Hz 

Case B2 Aggregated wind farm with constant wind speed 

In Case B2, the wind power is applied. The power angle is used instead of different 

rotor angle for convenience and is presented in Figure 5.93. The rotor speed of generator 

during 40 seconds of simulation is presented also in this figure.  

 

Rotor speed 

Power angle 

Power angle 

Rotor speed 
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Figure 5.93 The power angle of generator for Case B2 in degrees (left) and the rotor speed of 

generator for Case B2 in per unit (right). 

In Figure 5.93, the oscillation ceases after 20 sec with decreasing power angle. 

However, the rotor speed is increase continuously which may reach the steady state 

depending on operating conditions. It is found that steady state can be reached after the 250 

seconds of simulation depending on the capacity and configuration setting of infinite bus.   

Case B3 Aggregated wind farm with constant wind speed incorporate in 230kV power 

system 

For Case B3, wind power 100MVA is connected to the power system with constant 

wind speed 10m/s, and the system voltage is reduced to be 230kV. The load resistance is 

the same with the other case. The power angle of synchronous generator is presented in 

Figure 5.94. The rotor speed of generator during 40 seconds of simulation is also presented 

in this figure. 

Figure 5.94 The power angle of generator for Case B3 in degrees and the rotor speed of the 

generator for Case B3 per unit 

In Figure 5.94, both power angle and rotor speed are oscillated and increase in 

magnitude continuously.  In terms of stability, this could be the undamped mode of 

oscillation or instability. This instability causes from the losses in the very long 
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transmission line with unsuitable system voltage. The i2R loss can reduce damping torque 

and cause oscillation while i2X loss can reduce synchronizing torque and causes 

continuously increase of rotor angle and speed [44]. 

For the cases B4 – B7, noise wind speed model is added into wind turbine model. 

The default of noise model consists of N = 50, cd = 0.0192, L = 600, k = 50, and time 

interval = 0.4 . The mean wind speed is 10 m/s which enough for the wind turbine to 

operate continuously.  

The standard deviation of case B5 is from the maximum of standard deviation of 

measured wind speed data.  The standard deviation of case B4 is set to be 10% of case B5 

for comparison. The standard deviations of case B6 and case B7 are the median values of 

measured wind data. For  , both case B4 and case B5 use the default value while case 

B6 and case B7 use the possible minimum and maximum value of 0.5and 2.0, respectively.  

For 100 seconds of simulation, before second 30th, the wind turbine generator is 

connected to the power system but with zero wind speed. After second 30th, the fluctuating 

characteristics of wind speed are defined by mean value, standard deviation, and noise 

amplitude, as shown in Table 5.4 . 
The simulation results are analyzed using Matlab to investigate how power angle 

and rotor speed changing with different testing conditions comparing Case B4 with Case 

B5, and Case B6 with Case B7. The modified periodogram or Thomson multitaper method 

(www.mathworks.com) is used to estimate the PSD in this thesis. 

CaseB4 Vs. CaseB5: Different fluctuation deviation, the same noise frequency 

amplitude 

For Case B4 and Case B5, with the same mean wind speed and the same frequency 

base noise amplitude, the standard deviations of wind speed are different. The results of 

wind power simulation are represented in Figure 5.95. From the simulation using PSCAD, 

the power angle and its PSD of the synchronous generator are represented in Figure 5.96. 
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Figure 5.95 The wind power (left) of Case B4 (case1) compared with Case B5 (case2) and 

its PSD (right) 

Figure 5.96 The power angle of synchronous generator of Case B4 (case1) compared with 

Case B5 (case2, left) and its PSD of Case B4 compare with Case B5 (right) 

Figure 5.97 The rotor speed of synchronous generator of Case B4 (case1)  compared with Case 

B5 (case2, left) and its PSD of Case B4 compare with Case B5 (right) 
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In Figure 5.96, the power angles are oscillated obviously with frequency about 

0.75Hz. The amplitude of oscillation is larger for Case B5 at frequency range from 0-5Hz. 

However, shapes of PSD curve are comparable for both cases. Power angle of both cases 

decrease with time which means wind power can share load from synchronous generator 

but excite oscillated fluctuation.  

From the rotor speed of the synchronous generator and its PSD in Figure 5.97, the 

rotor speed increases with time and with the oscillated fluctuation frequency about 0.75Hz. 

At frequency lower than 2.5Hz, rotor speed of Case2 has larger PSD than Case B4. 

Therefore, rotor speed is sensitive to the different deviation of small signal at frequency 

lower than 2.5Hz. 

Case B6 Vs. CaseB7: Different frequency base noise amplitude, the same 

fluctuation deviation  

For Case B6 and Case B7, the standard deviation of wind speed is the same but 

frequency base noise amplitudes are 0.5 rad/s and 2.0 rad/s, respectively. The results of 

wind power simulation are represented in Figure 5.98. The wind power varies in a range of 

0.2 p.u. 

 

Figure 5.98 The wind power (left) and its PSD (right) of Case B6 (case 3) and 

 Case B7 (case 4)  
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Figure 5.99 The power angle of synchronous generator of Case B6 (case 3)  compare with Case 

B7 (case 4, left) and its PSD of Case B6 compared with Case B7 (right) 

Figure 5.100 The rotor speed of synchronous generator of Case B6 (case 3)  compare with Case 

B7 (case 4, left) and its PSD of Case B6 compared with Case B7 (right) 

 

The simulation results of power angle and its PSD are represented in Figure 5.99. 

The power angle decreases with time and oscillatory fluctuates within a small range of 22.2 

- 23.7 degrees. In Figure 5.99 (right), PSD is almost the same for both cases. The small 

difference occurs at frequency about 0.3Hz, and 4.75Hz which Case 4 has more influence. 

Therefore, the power angle in this simulation is not sensitive for different frequency base 

noise amplitude.  

The rotor speed and its PSD from simulation results are represented in Figure 

5.100. The rotor speed increase with time and oscillatory fluctuate in extremely small range 

of 0.9994 -1.0006 per unit. From Figure 5.100 (right), PSD is the same for both cases. 

There is no significant different between these two cases. Therefore, the power angle in 

this simulation is not sensitive for different frequency base noise amplitude. 
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The standard deviation of fluctuating wind power has influence on power angle and 

rotor speed of synchronous generator more than frequency base noise amplitude. 

Fluctuating wind power cause power angle decrease, but increases rotor speed. For this 

case, power generation of synchronous generator is shared partially by wind power, 

therefore, its power angle reduce. An increasing of rotor speed is due to unbalance between 

mechanical torque and electrical torque.   

It is obvious that the deviation of wind power fluctuation has more influence to 

synchronous generator than frequency of fluctuation. However, for rotor speed, only 

frequency lower than 2.5Hz that deviation of wind power is significant.  

For the future studies in the effects of wind power on the power system, the results 

of the simulation should in agree with the measurement data. Many assumptions in 

mathematical modeling may stimulate high magnitude of error 
Case B8 – Case B11 Effects of ramp wind speed with different frequency 

For cases B8 – B11, noise wind speed model is replaced by ramp wind speed model 

to represent an influence of frequency of small signal on the power system parameters. The 

four cases have ramp wind speed with amplitude 1 m/s and ramp frequency 0.5, 0.75, 1.0, 

and 4.0 Hz for case B8 to B11, respectively. There are five variables which are compared: 

wind speed, active and reactive power of wind turbine, power load angle of synchronous 

generator, and rotor speed of synchronous generator. 

In Figure 5.101, the ramp wind speed is applied after the 30th second with the same 

magnitude. The mean wind speed is 10 m/s for all cases. 

In Figure 5.102, active and reactive powers of wind turbine are represented. The 

fluctuating signal or noise over the mean value is look different from the ramp wind speed. 

For the case 4 Hz of ramp frequency, active and reactive powers almost never see the noise. 

However, the mean values of active and reactive powers are the same for all cases. 
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Wind speed 

 

 

 

 

 

Figure 5.101 Wind speed (m/s) of the cases B8 – B11 

 

 

 

 

 

 

 

 

 

Ramp frequency = 0.5 Hz 

Ramp frequency = 0.75 Hz 

Ramp frequency = 1.0 Hz 

Ramp frequency = 4.0 Hz 
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Active and reactive power of wind turbine 

 

 

 

 

 

 

Figure 5.102 Wind power (per unit) of the cases B8 – B11 
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Power angle of synchronous generator  

 

 

 

 

 

 

Figure 5.103 Power angle (degrees) of synchronous generator of the cases B8 – B11 

 

In Figure 5.103, it can be noticed that the largest amplitude of oscillation occurs at 

the ramp frequency of 0.75 Hz. It can be concluded that around 0.75Hz is the natural 

frequency of the test system, because the largest response occurs at this frequency. The 

resonance phenomena will occur when wind power fluctuate with the same frequency as the 

natural frequency of the system represented by the state variables. 
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Rotor speed of synchronous generator 

 

 

 

 

 

 

Figure 5.104 Rotor speed (per unit) of synchronous generator of the cases B8 – B11 

 

In Figure 5.104, this result agrees with the power angle case in Figure 5.103. In 

terms of power system stability, if wind power has large share of this natural frequency 

components, the power system is possibly become unstable within a finite time. From the 

results of cases B4 – B7, the 0.75Hz frequency components of wind power are very small as 
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compared with its mean part. However, it has been found that PSD increases with increasing 

standard deviation of wind power. Therefore, understanding the characteristics of wind 

power is an important issue for the power system to incorporate large scales of intermittent 

power sources, such as wind power. 

5.2.4 Characteristics of energy and critical energy of the power system 

When applying approximated unstable equilibrium points (i.u.e.p.) using the 

method of Ribbens, the result of the energy values are represented in the next table. 

Table 5.5 Energy of the test system at interested unstable equilibrium points 

Case1 Energy at i.u.e.p. 

ܠ ൌ ሼߨ െ 1ݔ
,ݏ 2ݔ

,ݏ 3ݔ
,ݏ 4ݔ

,ݏ 5ݔ
 ሽ 2.3500ݏ

ܠ ൌ ሼ1ݔ
,ݏ ߨ െ 2ݔ

,ݏ 3ݔ
,ݏ 4ݔ

,ݏ 5ݔ
 ሽ 20.8935ݏ

ܠ ൌ ሼ1ݔ
,ݏ 2ݔ

,ݏ ߨ െ 3ݔ
,ݏ 4ݔ

,ݏ 5ݔ
 ሽ 8.9975ݏ

ܠ ൌ ሼ1ݔ
,ݏ 2ݔ

,ݏ 3ݔ
,ݏ ߨ െ 4ݔ

,ݏ 5ݔ
 ሽ 129.6840ݏ

ܠ ൌ ሼ1ݔ
,ݏ 2ݔ

,ݏ 3ݔ
,ݏ 4ݔ

,ݏ ߨ െ 5ݔ
 ሽ 157.7753ݏ

Case2  

ܠ ൌ ሼെߨ െ 1ݔ
,ݏ 2ݔ

,ݏ 3ݔ
,ݏ 4ݔ

,ݏ 5ݔ
 ሽ 61.4748ݏ

ܠ ൌ ሼ1ݔ
,ݏ െߨ െ 2ݔ

,ݏ 3ݔ
,ݏ 4ݔ

,ݏ 5ݔ
 ሽ 24.1985ݏ

ܠ ൌ ሼ1ݔ
,ݏ 2ݔ

,ݏ െߨ െ 3ݔ
,ݏ 4ݔ

,ݏ 5ݔ
 ሽ 15.9153ݏ

ܠ ൌ ሼ1ݔ
,ݏ 2ݔ

,ݏ 3ݔ
,ݏ െߨ െ 4ݔ

,ݏ 5ݔ
 ሽ 129.6840ݏ

ܠ ൌ ሼ1ݔ
,ݏ 2ݔ

,ݏ 3ݔ
,ݏ 4ݔ

,ݏ െߨ െ 5ݔ
 ሽ 89.7535ݏ

Case3  

ܠ ൌ ൜
ߨ െ 1ݔ

,ݏ ߨ െ 2ݔ
,ݏ

ߨ െ 4ݔ
,ݏ ߨ െ 5ݔ

ݏ ൠ 14.7185 

Case4  

ܠ ൌ ൜
െߨ െ 1ݔ

,ݏ െߨ െ 2ݔ
,ݏ

െߨ െ 4ݔ
,ݏ െߨ െ 5ݔ

ݏ ൠ 16.0443 

 

 Therefore, the minimum energy value is 2.35, which will be approximated to be the 

critical energy of the unperturbed system. This result can be implied that loss of 

synchronization of generator at bus 1 (G1) cause more serious than the other machines. It 

can be noticed that G1 share most of load at about 86.9% while infinite bus generator (at 

bus 3) and wind power (at bus 2) share only 10.2% and 4.9%, respectively.  

Since wind power is naturally inconsistent, fluctuations of wind power can lead the 

total energy of the system to vary. The critical energy also varies depending on level of 

small disturbance from wind power. The previous topic reveals characteristics of wind 

power when wind speed fluctuates with low and high frequency. In term of data 

distribution characteristics, the low frequency wind speed can be approximated by the 

Weibull frequency distribution. In the other hand, the high frequency wind speed can be 
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approximated by Gaussian normal distribution. Therefore, this topic will investigate the 

characteristics of total energy and critical energy of the system when incorporate wind 

power variations. 

      5.2.4.1 Initial relative energy of the power system 

The result of the base case is shown in Figures 5.105 and 5.106. In Figure 5.105, 

the total energy is close to zero when the system reaches steady state or stable equilibrium 

state. It is obvious that the system is larger than zero at the beginning and then reduces to 

be zero after a specific time. In Figure 5.106, the derivative of the total energy at the stable 

equilibrium state is very much close to zero. These two figures confirm an existence of the 

energy function, which is used in this study. The critical energy is shown in a previous 

table. 

  

Figure 5.105 Total energy of the test system Figure 5.106 Phase portrait plot of voltage 

phase angle (x-axis) and rotor speed (y-

axis) 

      5.2.4.2 The energy of the power system when varying wind speed 

When wind speed varies between 6 m/s, 8 m/s, and 12 m/s, the stable equilibrium 

points can be presented in Table 5.6. Shares of power of each machine to the load are 

shown in Table 5.7.  

In Table 5.7, when wind speed increases, shares of G1 have a small change, while 

share of infinite bus generator (at bus 3) decrease and wind power (at bus 2) increase. It 

can be implied that, wind power has significant impact on external infinite bus more 

influence than a nearby generator.  
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Table 5.6 Variables at stable equilibrium point of the test system with different wind 

speeds 

Case wind speed 6 m/s 
V1 = 0.998 p.u. 
V2 = 1.000 p.u. 
V3 = 1.002 p.u. 
V4 = 1.011 p.u. 
V5 = 0.992 p.u. 

x1=  0.330 rad 
x2= -0.454 rad 
x3=  0.000 rad 
x4= -0.073 rad 
x5= -0.455 rad 

Pe1= 9.410 p.u., 
Pe2 = 0.002 p.u., 
Pe3 = 1.606 p.u., 

Pe4 = 0 p.u. , 
Pe5 = 10.786 p.u. 

Qe1= -1.416 p.u. 
Qe2= -0.100 p.u. 
Qe3= -4.200 p.u. 

Qe4 = 0 p.u. 
Qe5 = 0 p.u. 

Case wind speed 8 m/s 
V1 = 0.998 p.u. 
V2 = 0.996 p.u. 
V3 = 1.002 p.u. 
V4 = 1.012 p.u. 
V5 = 0.995 p.u. 

x1=  0.340 rad 
x2= -0.375 rad 
x3=  0.000 rad 
x4= -0.066 rad 
x5= -0.440 rad 

Pe1= 9.410 p.u., 
Pe2 = 0.219 p.u., 
Pe3 = 1.436 p.u., 

Pe4 = 0 p.u. , 
Pe5 = 10.841 p.u. 

Qe1= -1.539 p.u. 
Qe2= -0.134 p.u. 
Qe3= -4.216 p.u. 

Qe4 = 0 p.u. 
Qe5 = 0 p.u. 

Case wind speed 12 m/s 
V1 = 1.001 p.u. 
V2 = 0.939 p.u. 
V3 = 1.005 p.u. 
V4 = 1.015 p.u. 
V5 = 0.988 p.u. 

x1=  0.366 rad 
x2= -0.194 rad 
x3=  0.000 rad 
x4= -0.063 rad 
x5= -0.418 rad 

Pe1= 9.410 p.u., 
Pe2 = 0.674 p.u., 
Pe3 = 0.866 p.u., 

Pe4 = 0 p.u. , 
Pe5 = 10.747 p.u. 

Qe1= -1.635 p.u. 
Qe2= -0.385 p.u. 
Qe3= -4.209 p.u. 

Qe4 = 0 p.u. 
Qe5 = 0 p.u. 

 

Table 5.7 Shares of generating power from synchronous generator, infinite bus generator, 

and wind turbine generator at different wind speeds 

Gen. to load share Generator 1 infinite bus generator wind power 
Case1 WS = 6 m/s 87.2% 14.9% 0.0% 
Case2 WS = 8 m/s 86.8% 13.2% 2.0% 
Case3 WS = 10 m/s 86.9% 10.2% 4.9% 
Case4 WS = 12 m/s 87.6% 8.1% 6.3% 

 

The total energy of the test system at interested unstable equilibrium points with 

different wind speeds are shown in Table 5.8. From this table, the critical energy can be 

estimated using the minimum value for each case of wind speed. As a result, the critical 

energy increases with increasing mean wind speed. When wind speed increase, the wind 

power can share more load from the other generator and make the system more stable. For 

wind speed 6 m/s and 8 m/s, total energy and its derivative are almost the same with 

5.2.4.1. 
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Table 5.8 The critical values at different wind speeds 

Unstable condition 1 
Energy 

(WS6m/s) 
Energy 

(WS8m/s) 
Energy 

(WS10m/s) 
Energy 

(WS12m/s) 

 2.0361 2.1734 2.3500 2.5761 

 21.3480 21.3974 20.8935 19.8076 

 7.3817 7.9341 8.9975 9.8015 

 127.6626 128.6871 129.6840 129.2386 

 154.9043 156.7525 157.7753 156.3999 
Unstable condition 2  

 61.1608 61.2982 61.4748 61.7009 

 21.3605 22.7734 24.1985 24.0425 

 17.4725 16.9568 15.9153 15.2427 

 127.6626 128.6871 129.6840 129.2386 

 87.1339 88.6365 89.7535 88.8745 
Unstable condition 3  

 
15.2953 15.0710 14.7185 14.9734 

Unstable condition 4  

 
16.7530 16.4784 16.0443 16.2489 

 

      5.2.4.3 The energy of the power system when varying noise wind speed  

Since wind speed consists of mean part (slow variation) and turbulence part (fast 

variation), the wind noise model is simulated to represent turbulence. Theoretically, 

turbulence or noise wind speed can be approximated using Gaussian distribution random 

noise. Two important parameters which will be varied are the standard deviation of noise 

and the sampling frequency of noise. 

An experiment assumes that mean part of wind speed is 10 m/s. This value is 

suitable for wind power in the model to be varied without limit. The noise wind speed is 

modeled using inverse probability distribution function method. The two conditions are 

examined. First, the standard deviation 0.5, 1.0, and 2.0 are applied with constant sampling 

frequency at 0.5Hz. Second, the sampling frequency is varied to be 0.1, 0.5, and 2 Hz with 

constant standard deviation at 1.0. For these two cases, the phase portrait of machine speed 

and voltage angle is investigated together with the total energy.  

To compute the total energy of the system, the stable equilibrium points from the 

previous study at wind speed 10m/s are used. The figure below shows noise wind speed 

model in PSCAD. 
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Figure 5.107 Block diagrams of wind speed model, including normal random noise wind 

speed 

1) Varying standard deviation 

The results of the standard deviations of wind speed of 0.5, 1.0, 2.0 are represented 

in Figures 5.108, 5.109, and 5.110, respectively.  In Figure 5.108, after 20th second, the 

total energy fluctuate varies around zero. The maximum energy is less than 0.1 after 20th 

second. Rotor speed and voltage phase angle vary within a particular region, which is 

called region of attraction. It can be concluded that this system is stable within the region 

of attraction whenever total energy is not beyond the critical value. 

In Figure 5.109, fluctuations of wind speed and total energy are larger than the case 

in Figure 5.108. The region of attraction is also larger than the case in Figure 5.108 due to 

the larger standard deviation of wind speed. 

In Figure 5.110, it can be noticed that after about the 48th second, total energy 

increase continuously. The phase portrait of wind turbine show the state variable goes out 

of the region of attraction. The wind turbine is unstable for this situation. However, since 

total energy is still less than the critical energy, the system still stable and can operate 

normally.  

If we extend the value of total energy, it will found that the maximum of total 

energy in this case is about 2 – 3. Therefore, since the critical energy for this case is about 

20.89, the system is still far from an unstable situation.  

2 x Sampling frequency 

Standard deviation 

Output wind speed 
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Rotor speed 

Voltage phase angle 

 

Figure 5.108 Total energy (upper left), wind speed (lower left), and phase portrait plot 

(right) of synchronous generator when the standard deviation of wind speed is 0.5 

 

Rotor speed 

 
Voltage phase angle 

 

Figure 5.109 Total energy (upper left), wind speed (lower left), and phase portrait plot 

(right) of synchronous generator when standard deviation of wind speed is 1.0 

 

 
 

 

Figure 5.110 Total energy (upper left), wind speed (lower left), and phase portrait plot 

of synchronous generator (upper right)  and phase portrait plot of wind turbine generator 

(lower right) when standard deviation of wind speed is 2.0 

relative energy 

Wind speed 

Relative energy 

Wind speed 

Relative energy 

Wind speed (m/s) 
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2) Vary sampling frequency 

The sampling frequency of noise wind speed is the measure of how frequently the 

signal changes. This experiment assumes that noise wind speed change (with the same 

standard deviation of 1.0) every 2 seconds (0.5Hz), 0.5 second (2Hz), and 10 seconds 

(0.1Hz) which are presented in Figures 5.111, 5.112, and 5.113, respectively.  

In Figure 5.111, the 2 seconds cycle of noise wind speed result in variation of total 

energy not beyond 0.2 and the system still stable. In Figure 5.112, when frequency 

increases, the total energy varies not beyond 0.15 which is smaller than the previous case.   

 

Figure 5.111 Total energy (upper left), wind speed (lower left), and phase portrait plot of 

synchronous generator (upper right)  and phase portrait plot of wind turbine generator  

(lower right) when sampling frequency of wind speed is 0.5Hz 

 

 

 

Figure 5.112 Total energy (upper left), wind speed (lower left), and phase portrait plot of 

synchronous generator (upper right)  and phase portrait plot of wind turbine generator  

(lower right) when sampling frequency of wind speed is 2.0 Hz 
 

Relative energy 

Wind speed (m/s) 

relative energy 

Wind speed (m/s) 
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Figure 5.113 Total energy (upper left), wind speed (lower left), and phase portrait plot of 

synchronous generator (upper right)  and phase portrait plot of wind turbine generator  

(lower right) when sampling frequency of wind speed is 0.1 Hz 

 

In Figure 5.113, when sampling frequency of noise wind speed is very low, the 

system becomes unstable after about 230 seconds. The rotor speed of wind turbine increase 

continuously and go out of the region of attraction. 

In conclusion, the stability of wind turbine generator is influenced by the standard 

deviation and sampling frequency of noise wind speed or turbulence. Larger standard 

deviations and lower sampling frequencies cause the state variables of wind turbine to go 

out of the region of attraction and become unstable. However, in this experiment, the 

system is robust enough to withstand such disturbances when wind power is lost from the 

system. 

5.2.5 The stochastic power system simulation 

When applying the colored noise wind power into the power test system, the system 

equations will become the dynamic perturbed system in a matrix form as follows: 
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Eq.5-5 

where βi = Di/Mi . It can be represented in the standard stochastic differential equation as 

   , ,p t t pW X f X g X   ,  0 0
x xt   ,

0
t t      Eq.5-6 

where f(X,t) is a nonlinear drift function, g(X,t) is a diffusion function in matrix form. 

From the one line diagram in the below figure, there are aggregated synchronous 

generators (G2) and aggregated DFIG wind turbines (G3), connecting on bus B2 and B3, 

respectively.  Bus B1 is an infinite bus and B4 is a load bus. The per unit base power is 100 

MVA. The system is assumed lossless which the line resistance can be neglected. X14 is a 

line reactance (tie line) connecting between bus B1 and B4. X24 and X34 are line reactances 

including transformer’s reactance. The electric load is a dynamic load which has ck at about 

0.05. The other values of system parameters and constants are listed in Table 5.9. 

Table 5.9 System Parameters and Constants 

M = 7.0 sec 0 = 314.2 rad/sec Lm = 3.95279 p.u. 

Lr = 0.09955 p.u. Ls = 0.09241 p.u. T0 = 2.343  p.u. 

X = 4.0 p.u. X’ = 0.1 p.u. XT = 0.5 p.u. 

kd = 0.8868 kb = 7.372 ka = 0.274Pm + 0.346 

kp = 1.0 kop = 0.56 ca = -0.022 Pm +0.006 

|E’| =Vw=1.05 p.u. kc1 = 0.97396 kc2 = 1.90308 

Vs = 1.0 (p.u.) V0 = 1.0 (p.u.) km = 1.017 

X14 = 0.75 p.u. X24 = 0.2 p.u. X34 = 0.2 p.u. 

 

When applying noise intensity 0.1, bandwidth 1.0, scaling factor 1.0, mean wind 

power 1.0, power load 4.0, power of G2 1.78 p.u., the simulation period is 60 seconds and 

4 trials, the results of simulation are represented in Figures 5.114 - 5.117 . 
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Figure 5.114 Wind power variation (left) and its distribution (right) of 4 trials of 

simulation 

 

Figure 5.115 Angular speed (left) of generator no.1-2 and phase angle (right) of bus no. 2-

4 of stochastic system simulation during 60 seconds of trial no.1. 

After 3600 seconds of simulation period for 10 trials, the first exit-times are 500, 

3542, 2589, 11, 2910, and 452 seconds. The mean first passage (or exit) time is 1544.5 

seconds. 

 

 

Figure 5.116 Example of wind power variation during 3600 seconds (left) and its 

distribution (right) of simulation trial no.1 
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Figure 5.117 Power spectral density of wind power variation  

during 3600 seconds of trial no.1 

 

5.3 A study of effects of wind power on the small signal stability using the eigenvalue 

method 

5.3.1 Eigenvalues of single machine power system 

      5.3.1.1 Wind turbine with squirrel cage induction generator (SCIG) 

To analyze the small signal stability of induction generator wind turbine, the state 

space equation will be represented in a new form as follows: 
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coefficient of induction generator.  
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 cosb

s
E sw a a w aVkK k k x c         Eq.5-9 

magnitude of damping power coefficient (KD) and synchronizing power coefficient (KS).  

Eq.5-8 and Eq.5-9 can be represented using a block diagram as in following figure. 
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Figure 5.118 Block diagram representing state space equation of the SCIG wind turbine 

 

  
Figure 5.119 Single machine infinite bus (SMIB) power system 

The induction machine parameters are as follows [45]. Given:  

M = 7.0 sec 0 = 314.2 
rad/sec 

Lm = 3.95279 p.u. Lr = 0.09955 p.u. Ls = 0.09241 p.u. 

X = 4.0 p.u. X’ = 0.2 p.u. T0 = 2.343  |E’| =Vw 
=1.05p.u. 

c = 0.95 

kd = 0.8868  kb = 7.372 ka = 0.61 ca = - 0.05 XT = 0.5 p.u. 
 

   11.05
cos s

S w

T

V
K x

X X


 
      Eq.5-10 

 4.497 cos 0.61 0.05E
s

sw wVK x        Eq.5-11 

Table 5.10 The testing conditions of SCIG wind turbine for SMIB power system 

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 
Variables Base case Reduce Vs Increase V0 Increase XT Increase xw 

Vs (p.u.) 1.00 0.50 1.00 1.00 1.00 
V0 (p.u.) 1.0 1.0 0.5 1.0 1.0 

|XT| (p.u.) 0.75 0.75 0.75 1.5 0.75 
s
wx  (rad) 0.5 0.5 0.5 0.5 1 
KS 0.970 0.970 0.485 0.542 0.597 
KE 4.352 2.176 4.352 4.352 3.810 

 

In this table, when wind speed increase, speed deviation, power output, current and 

power factor increase, but voltage decreases. These results agree with the torque-slip, 

voltage-slip, and reactive power-slip characteristics of the induction generator [45].  
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Figure 5.120 Results of simulation case 1. (base case) : Speed (left), angle (middle), and 

phase protrait of speed (y-axis) and angle (x-axis). 

 

 

Figure 5.121 Results of simulation case 2. (reduce stator voltage of SCIG) : Speed (left), 

angle (middle), and phase protrait of speed (y-axis) and angle (x-axis). 

 

 

Figure 5.122 Results of simulation case 3. (increase reference voltage) : Speed (left), angle 

(middle), and phase protrait of speed (y-axis) and angle (x-axis). 

 

 

Figure 5.123 Results of simulation case 4. (increase transmission reactance) : Speed (left), 

angle (middle), and phase protrait of speed (y-axis) and angle (x-axis). 
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Figure 5.124 Results of simulation case 5. (increase stator reactance of SCIG) : Speed 

(left), angle (middle), and phase protrait of speed (y-axis) and angle (x-axis). 

 

Table 5.11 The results of eigenvalue analysis of SCIG wind turbine 

 Parameters 
Variables 

Case 1 
Base case 

Case 2 
Reduce Vs 

Case 3 
Increase V0 

Case 4 
Increase XT 

Case 5 
Increase xw 

KS 0.970 0.970 0.485 0.542 0.597 

KE 4.352 2.176 4.352 4.352 3.810 

n (rad/s) 6.598 6.598 4.666 4.933 5.177 

 0.330 0.165 0.466 0.441 0.368 

 -2.18 -1.09 -2.18 -2.18 -1.91 

 (rad/s) 6.23 6.51 4.13 4.43 4.81 

s -2.18±j6.23 -1.09±j6.51 -2.18±j4.13 -2.18±j4.43 -1.91±j4.81 

Natural freq. 1.05 1.05 0.74 0.79 0.82 

Frequency (Hz) 0.99 1.04 0.66 0.70 0.77 

 
 
      5.3.1.2 Wind turbine with doubly-fed induction generator (DFIG) 

To analyze the small signal stability of an induction generator wind turbine, the 

state space equation is represented in a new form as follows: 
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Where KS is the synchronizing power coefficient and KD is the damping power coefficient 

of DFIG: 
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Eqs.5-21 – 5-24 can be represented using block diagrams as in following figure. 
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Figure 5.125 Block diagram representing state space equation of the DFIG wind turbine 

 

The induction machine parameters for computation are as follows [45] 

Given  

M = 7.0 sec 0 = 314.2 
rad/sec 

Lm = 3.95279 p.u. Lr = 0.09955 p.u. Ls = 0.09241 p.u. 

X = 4.0 p.u. X’ = 0.2 p.u. T0 = 2.343  p.u. 
|E’| =Vw 
=1.05p.u. c = 0.95 

kd = 0.8868 kb = 7.372 ka = 0.61 ca = - 0.05 XT = 0.5 p.u. 
kvrq = 0.0056 kop = 0.56 kc1 = 0.97396 kc2 = 1.90308  
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Table 5.12 The parameters of DFIG wind turbine under different conditions 

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Variables Base case Reduce Vs Increase V0 Increase XT Increase xw Increase yw 

Vs (p.u.) 1.00 0.50 1.00 1.00 1.00 1.00 
V0 (p.u.) 1.0 1.0 0.5 1.0 1.0 1.0 
|XT| (p.u.) 0.75 0.75 0.75 1.5 0.75 0.75 

s
wx  (rad) 0.5 0.5 0.5 0.5 1 0.5 
s
wy  (p.u.) 0.05 0.05 0.05 0.05 0.05 0.1 

 

For DFIG, when the controlled voltage on the q-axis of rotor (Vrq) is not dependent on the 

angle of internal voltage ( 0wrqV x   ), the results are represented in the following table. 

Table 5.13 The results of eigenvalue computations of DFIG wind turbine 

 Parameters 
Variables 

Case 1 
Base case 

Case 2 
Reduce Vs 

Case 3 
Increase V0 

Case 4 
Increase XT

Case 5 
Increase xw 

Case 6 
Increase yw 

KE1 -4.375 -2.187 -4.375 -4.375 -3.762 -4.375 

KE2 514.503 435.565 514.503 472.285 584.762 522.604 

KS 1.229 1.229 0.614 0.614 0.756 1.229 

n (rad/s) 9.503 8.743 6.720 6.438 7.949 9.577 

 0.230 0.125 0.326 0.340 0.237 0.228 

 -2.19 -1.09 -2.19 -2.19 -1.88 -2.19 

 (rad/s) 9.25 8.67 6.35 6.05 7.72 9.32 

s -2.19±j9.25 -1.09±j8.67 -2.19±j6.35 -2.19±j6.05 -1.88±j7.72 -2.19±j9.32

Natural freq. 1.51 1.39 1.07 1.02 1.27 1.52 

Frequency (Hz) 1.47 1.38 1.01 0.96 1.23 1.48 

wrqV x   0 0 0 0 0 0 

wrqV y   0.7188798 0.4355719 0.7188798 0.5673586 0.9710362 0.7479535 

 
In the above table, it is clear that the real part of eigenvalue increases (moves from 

negative to close to zero) with increasing angles of internal voltage and decreasing stator 

voltage. The imaginary part of eigenvalue decreases with increasing of reference voltage, 

transmission line reactance, and angle of internal voltage and decreasing of stator voltage.   

When Vrq depends partly on an angle of internal voltage ( 0.01wrqV x    ), the results are 

represented in the following table. 
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Table 5.14 The results of eigenvalue computation for DFIG when Vrq depends partly on xw 

 Parameters 
Variables 

Case1 
Base case 

Case2 
Reduce Vs 

Case3 
Increase V0 

Case4 
Increase XT

Case5 
Increase xw 

Case6 
Increase yw 

KE1 -7.161 -4.974 -7.161 -7.161 -6.548 -7.161 

KE2 514.503 435.565 514.503 472.285 584.762 522.604 

KS 1.229 1.229 0.614 0.614 0.756 1.229 

n (rad/s) 9.503 8.743 6.720 6.438 7.949 9.577 

 0.377 0.284 0.533 0.556 0.412 0.374 

 -3.58 -2.49 -3.58 -3.58 -3.27 -3.58 

 (rad/s) 8.80 8.38 5.69 5.35 7.24 8.88 

s -3.58±j8.80 -2.49±8.38 -3.58±5.69 -3.58±5.35 -3.27±j7.24 -3.58±j8.88

Natural freq. 1.51 1.39 1.07 1.02 1.27 1.52 

Frequency (Hz) 1.40 1.33 0.90 0.85 1.15 1.41 

wrqV x   -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 

wrqV y   0.7188798 0.4355719 0.7188798 0.5673586 0.9710362 0.7479535 

 
It was found that the eigenvalue of the base case increases with 

decreasing wrqV x  . The sensitivity of Vrq to xw (or wrqV x  ), which is influenced by the 

controlled parameters affecting the small signal stability significantly. If wrqV x  is 

positive, the eigenvalues become positive and the system is unstable as a result. However, 

sensitivity of Vrq to speed deviation ( yw) or wrqV y  is not affect to real part of eigenvalue 

but significantly influence to imaginary part or frequency.  

 

Table 5.15 The results of eigenvalue computation for DFIG when Vrq not depends on xw, yw 

Parameters 
Variables 

Case 1 
Base case 

Case 2 
Reduce Vs 

Case 3 
Increase V0 

Case 4 
Increase XT

Case 5 
Increase xw 

Case 6 
Increase yw 

KE1 -4.375 -2.187 -4.375 -4.375 -3.762 -4.375 

KE2 314.200 314.200 314.200 314.200 314.200 314.200 

KS 1.229 1.229 0.614 0.614 0.756 1.229 

n (rad/s) 7.426 7.426 5.251 5.251 5.827 7.426 

 0.295 0.147 0.417 0.417 0.323 0.295 

 -2.19 -1.09 -2.19 -2.19 -1.88 -2.19 

 (rad/s) 7.10 7.35 4.77 4.77 5.51 7.10 

s -2.19±j7.10 -1.09±j7.35 -2.19±j4.77 -2.19±j4.77 -1.88±j5.51 -2.19±j7.10

Natural freq. 1.18 1.18 0.84 0.84 0.93 1.18 

Frequency (Hz) 1.13 1.17 0.76 0.76 0.88 1.13 

wrqV x   0 0 0 0 0 0 

wrqV y   0 0 0 0 0 0 
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The real part of the eigenvalue () is used to describe the stability condition of the 

system. If the  is on the left side of complex plain (negative value), then the system is 

stable but if it is on the right side (positive value), then the system is unstable. The zero  

represents the critical condition of the system. From above table, conditions that can cause 

 move from the left side of complex plain to the right side are the reducing of terminal 

voltage, speed, and reference voltage and an increasing of angle of internal voltage and line 

impedance. 

When comparing between the eigenvalues of SCIG and DFIG, the real part of the 

eigenvalue of SCIG and DFIG are not much different, except when an angle of internal 

voltage increases. It is clear that imaginary parts of eigenvalue of DFIG are larger than of 

SCIG. 

5.3.2 Eigenvalues of multi-machine power system including wind power 

In this section, wind power is modeled using a doubly fed induction generator 

(DFIG) which the swing equation and voltage behind transient reactance are focused 

regarding the synchronization stability problem. The difference between the synchronous 

generator and induction generator is the slip (sw) which is the difference between the 

angular speed of the rotor and the electrical field at the stator of the induction generator.  

The system equations can be represented in the form of a matrix as follows:  
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  Eq.5-26 

For example, the two-machine infinite bus power system can be modeled as follows: 

 

 



340 
 

   
 

 

Figure 5.126 Two-machine infinite bus power system, including wind power and load 

 

The system equations become 
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  Eq.5-27 

5.3.2.1 Eigenvalue analysis of two-machine infinite bus power system, 

including wind power 

In Eq.5-27, rearranging using the following form and taking Laplace transformation, yields  

1(s)=(s  - ) (s)X I A BU       Eq.5-28 

Or   
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   Eq.5-29 

     1 T1
s  - s  - 

det s  - 
 I A I A

I A
             Eq.5-30 

The solutions of det(sI-A) = 0 are the eigenvalues of this state space equation, therefore 

 
 
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      

I A
   Eq.5-31 

Therefore, the results of eigenvalue analysis are represented in the following tables. 
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Table 5.16 Testing conditions and steady state values of speeds and angles 

Variables Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Power Load or PL (p.u.) 4 4 4 4 4 4 

Pm3 of G3 (p.u.) 1 1 1 0.4 0.6 0.8 

Pm2 of G2 (p.u.) 3 4 2 3.6 3.4 3.2 

Exchanged power (PmG) 0 -1 1 0 0 0 

x2s 0.64284 1.56986 -0.23281 0.79943 0.74450 0.69287 

x3s 0.28896 0.93253 -0.35487 0.10764 0.16780 0.22856 

x4s -0.00053 0.64301 -0.64434 -0.00469 -0.00302 -0.00138 

y2s 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

y3s 0.19987 0.19987 0.19988 -0.10627 0.02582 0.12358 

 

Table 5.17 The results of eigenvalue analysis for six testing conditions 

Conditions Eig 1 Eig 2 Eig 3 Eig 4 Eig 5 

Case 1 -860.1000 -101.9051 -0.6267 + 7.2810i -0.6267 - 7.2810i -0.3572 

Case 2 -857.5000 -77.9554 -0.6043 + 6.4559i -0.6043 - 6.4559i -0.3573 

Case 3 -860.6000 -106.1014 -0.7538 + 6.8096i -0.7538 - 6.8096i -0.3573 

Case 4 -1163.8000 -94.8657 -0.5632 + 7.1263i -0.5632 - 7.1263i -0.1969 

Case 5 -1017.4000 -97.4260 -0.5883 + 7.1882i -0.5883 - 7.1882i -0.2583 

Case 6 -926.2000 -99.7705 -0.6090 + 7.2388i -0.6090 - 7.2388i -0.3110 

 

In Table 5.17, it is found that eigenvalues Eig 5 are most significant due to they are 

closer to zero which represents the critical value of small signal stability. For Cases 4-6 

when wind power increase, the significant eigenvalues are decrease. For Cases 1-3, when 

exchanged power (PL – Pm2 – Pm3) are varied, the significant eigenvalues (Eig 5) are not 

different but the other eigenvalues (Eig 1 – Eig 4) are increase with decreasing of 

exchanged power. Furthermore, from Table 5.18 for all 6 conditions, it is found that the 

significant eigenvalues are most influenced by the speed deviation (or slip) of wind turbine. 

The subsequent significant eigenvalues (Eig4) are influenced by the speed deviation of 

synchronous generator.  
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Table 5.18 The participation factors 

Case 1 Eig1 Eig2 Eig3 Eig4 Eig5 Case 4 Eig1 Eig2 Eig3 Eig4 Eig5 

x2 0.000 0.235 0.005 0.000 0.000 x2 0.000 0.248 0.004 0.000 0.000

x3 0.008 0.023 0.001 0.000 0.000 x3 0.011 0.018 0.001 0.000 0.000

x4 0.616 0.153 0.005 0.000 0.000 x4 0.735 0.169 0.005 0.000 0.000

y3 0.362 0.087 0.036 0.000 1.000 y3 0.248 0.054 0.021 0.000 1.000

y2 0.014 0.503 0.954 1.000 0.000 y2 0.007 0.512 0.969 1.000 0.000

Case 2 Eig1 Eig2 Eig3 Eig4 Eig5 Case 5 Eig1 Eig2 Eig3 Eig4 Eig5 

x2 0.000 0.201 0.004 0.000 0.000 x2 0.000 0.240 0.004 0.000 0.000

x3 0.011 0.019 0.001 0.000 0.000 x3 0.010 0.020 0.001 0.000 0.000

x4 0.607 0.133 0.005 0.000 0.000 x4 0.684 0.161 0.005 0.000 0.000

y3 0.371 0.095 0.037 0.000 1.000 y3 0.297 0.067 0.026 0.000 1.000

y2 0.011 0.552 0.954 1.000 0.000 y2 0.010 0.513 0.964 1.000 0.000

Case 3 Eig1 Eig2 Eig3 Eig4 Eig5 Case 6 Eig1 Eig2 Eig3 Eig4 Eig5 

x2 0.000 0.246 0.004 0.000 0.000 x2 0.000 0.237 0.004 0.000 0.000

x3 0.009 0.022 0.001 0.000 0.000 x3 0.009 0.022 0.001 0.000 0.000

x4 0.614 0.153 0.006 0.000 0.000 x4 0.646 0.156 0.005 0.000 0.000

y3 0.359 0.083 0.042 0.000 1.000 y3 0.333 0.077 0.031 0.000 1.000

y2 0.017 0.496 0.948 1.000 0.000 y2 0.012 0.508 0.959 1.000 0.000

 

5.4 A study of effects of wind power on the small signal stability using stochastic 

stability method: the mean first passage time (MFPT) 

The mean first passage time (MFPT) is the performance index to quantify the 

average time a state-space trajectory takes to change from a given operating point to the 

boundary of its domain of attraction under the influence of small perturbations [9][2]. 

MFPT can be used to evaluate the small signal stability of the power system when 

incorporating stochastic wind power. This section represents the results of mean first 

passage time (MFPT) computation according to different testing conditions.  From Chapter 

3, the MFPT is a solution of the following problem  
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    Eq.5-35 

Where critical energy (WC) computation technique is presented in the previous Chapter and 

coefficients 1C , C2, and 3C are stated in Appendix A. 

Since the energy function cannot be used directly for the solution of the problem in 

Eq.5-34, thus an approximate energy function based on an ellipsoidal surface is represented 

instead. This takes [9]: 
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where 
1

n

T i
i

M M


  and s
i i iz x x   if  i = 1, 2, … , n+m 

From Chapter 3 and Appendix A, MFPT can be calculated using the following steps 

S1) Stable equilibrium points and critical energy are computed as represented in 

previous topics. 

S2) Matrix H can be constructed using Eqs. A-3 to A-6 in Appendix A.  

S3) Find eigenvalues and eigenvectors of matrix H. After matrix H is constructed 

explicitly, software Matlab can possibly be used to find eigenvalues and 

eigenvectors. 

S4) Construct set of matrix D and matrix F using Eqs. A-29 to A-33 in Appendix A. 

These matrixes will be used in the formulation of MFPT. 

S5) Compute C coefficient using Eqs. A-25 to A-28 in Appendix A. 

S6) Compute MFPT using Eq.5-34. Every step from S1 – S5 is done completely. 

S7) Change condition of wind power, such as, wind speed and noise intensity and 

repeat S1 – S6 again to see the variation of MFPT. 

To compute MFPT, several processes have to be done consisting of the 

determination of steady state variables, estimation of critical energy, and formulation of 

stochastic differential equations. Energy function method, based on Lyapunov function, is 
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used to determine the region of attraction of stable equilibrium points and the critical 

values. Beyond these values, the system become unstable. 

The critical energy can be estimated using the minimum value for each case of 

wind speed. As a result, the critical energy increases with increasing mean wind speed. 

When the wind speed increases, the wind power can share more load from the other 

generators and make the system more stable. At mean wind speeds of 6, 8, 10, and 12 m/s, 

the critical energies of the test system are 2.04, 2.17, 2.35, and 2.58, respectively. The total 

wind power from several wind farms can be comparable with white noise. Therefore, the 

Gaussian distribution of noise signal from wind power can be reasonably assumed for such 

case.  

The asymptotic method is applied to the solution of MFPT. Only the first order of 

scale factor () is used to estimate MFPT. Since energy function cannot be used directly 

for the solution of MFPT, therefore, an approximate energy function basing on ellipsoidal 

surface is represented instead. The characteristic matrix of ellipsoidal surface has 

eigenvalues and eigenvector, which are used for the computation of MFPT. 

Finally, the MFPT is computed with the variation of wind speed and noise intensity. 

MFPT is significantly low especially when wind speed higher or equal to 8 m/s. The lower 

MFPT means the higher risk of power system instability.  

To implement MFPT to the practical use, the test power system is modified and the 

measurement data of wind power (or wind speed) is provided. After modification of the 

test power system, the process of MFPT computation is done. There are several steps to 

implement MFPT as follows 

 First, measurement of wind power every 1 or 10 minutes of recording time interval 

is used. In the case measurement data is not available, wind power simulation using 

measurement wind speed data can be applied instead.  

 Second, use moving average technique to compute average noise intensity and wind 

speed. The time interval of averaging can be considered from the ability of power 

system which can operate without regulation. For example, the reasonable 

regulation which can possibly or significantly occur at every 10 minutes. 

 Third, the results of mean wind speed and noise intensity of wind power from 

moving average technique can be used to judge the possibility of instability of the 

power system under different conditions of wind power. For example in the above 

table, if the average wind speed is larger than 10 m/s while noise intensity is higher 
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than 0.25, the MFPT will be less than or equal to 10 minutes. This is the situation 

that should be avoided.    

When varying wind speed and its noise intensity, the results of MFPT are 

represented in the following figures and table. 

-50

0

50

100

150

200

250

0 1 2 3 4 5

ln
(M

FP
T)
 h
o
u
rs

Noise Intensity

Wind Speed 4 m/s

Wind Speed 6 m/s

Wind Speed 8 m/s

Wind Speed 10 m/s

Wind Speed 12 m/s

 

-2

-1

0

1

2

3

4

0 1 2 3 4 5

ln
(M

FP
T
) h

o
u
rs

Noise Intensity

Wind Speed 4 m/s

Wind Speed 6 m/s

Wind Speed 8 m/s

Wind Speed 10 m/s

Wind Speed 12 m/s

 

Figure 5.127 Log-scale of MFPT at different wind speeds and noise intensity 

 

The results in Figure 5.127 and Table 5.19 show that MFPT decreases with 

increasing noise intensity of wind power and mean wind speed. Noise intensity is larger 

than 3.4, 0.88, 0.38, 0.24, and 0.18 with mean wind speed at least 4, 6, 8, 10, and 12 m/s, 

respectively, are seriously considerable and can lead the system to be unstable within a 

short time (less than 10 minutes). 
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Table 5.19 MFPT at different wind speeds and noise intensity 

noise 

intensity 

MFPT (hours) at mean wind speed noise 

intensity 

MFPT (hours) at mean wind speed 

4 m/s 6 m/s 8 m/s 10 m/s 12 m/s 4 m/s 6 m/s 8 m/s 10 m/s 12 m/s 

0.04 65535 3.2E+202 6.35E+34 3.77E+11 7677328 2.04 0.605985869 0.09941 0.090767 0.089748 0.089615 

0.08 65535 7.97E+48 21983425 55.44486 4.568147 2.08 0.558612984 0.098979 0.090699 0.089726 0.089612 

0.12 65535 4.13E+20 257.0525 1.172062 0.43399 2.12 0.517539572 0.098574 0.090635 0.089706 0.089611 

0.16 4.0682E+186 6.28E+10 5.792008 0.346039 0.207364 2.16 0.481711836 0.098194 0.090575 0.089687 0.089613 

0.2 3.5077E+118 2011752 1.10842 0.205336 0.150636 2.2 0.45028328 0.097835 0.090518 0.089669 0.089618 

0.24 4.05638E+81 7869.855 0.476175 0.156892 0.127488 2.24 0.422568533 0.097498 0.090464 0.089654 0.089625 

0.28 2.3031E+59 294.1306 0.293715 0.134123 0.11557 2.28 0.398008549 0.097179 0.090414 0.089639 0.089635 

0.32 8.77701E+44 36.33701 0.217452 0.121428 0.10855 2.32 0.376144121 0.096878 0.090365 0.089626 0.089648 

0.36 1.18259E+35 8.94814 0.178129 0.113551 0.104036 2.36 0.356595563 0.096593 0.09032 0.089614 0.089665 

0.4 1.05819E+28 3.366507 0.154996 0.108293 0.100949 2.4 0.339046979 0.096323 0.090277 0.089603 0.089684 

0.44 6.59911E+22 1.664309 0.140117 0.104593 0.098739 2.44 0.323234002 0.096068 0.090236 0.089594 0.089708 

0.48 7.39249E+18 0.987714 0.129919 0.101883 0.097099 2.48 0.308934153 0.095825 0.090197 0.089586 0.089735 

0.52 6.32629E+15 0.664913 0.122588 0.099834 0.095847 2.52 0.295959222 0.095595 0.09016 0.089579 0.089767 

0.56 2.36049E+13 0.489405 0.117121 0.098246 0.094869 2.56 0.284149187 0.095376 0.090125 0.089573 0.089803 

0.6 2.62565E+11 0.384311 0.112922 0.096988 0.094091 2.6 0.273367356 0.095168 0.090091 0.089569 0.089843 

0.64 6679110727 0.316596 0.109621 0.095974 0.093461 2.64 0.263496431 0.094969 0.090059 0.089566 0.089889 

0.68 321502762.5 0.270412 0.106974 0.095144 0.092943 2.68 0.254435331 0.09478 0.090029 0.089565 0.08994 

0.72 25503572.6 0.23746 0.104816 0.094456 0.092513 2.72 0.246096594 0.0946 0.089999 0.089565 0.089997 

0.76 3008347.051 0.213079 0.103031 0.09388 0.092152 2.76 0.238404247 0.094428 0.089972 0.089566 0.09006 

0.8 488223.2844 0.194494 0.101537 0.093392 0.091846 2.8 0.231292055 0.094264 0.089945 0.089569 0.09013 

0.84 102702.2931 0.179973 0.100272 0.092975 0.091584 2.84 0.224702064 0.094107 0.08992 0.089573 0.090207 

0.88 26735.03873 0.168388 0.099193 0.092616 0.091358 2.88 0.218583401 0.093957 0.089896 0.089579 0.090291 

0.92 8303.824468 0.158982 0.098262 0.092305 0.091162 2.92 0.212891262 0.093813 0.089873 0.089587 0.090384 

0.96 2989.294566 0.151226 0.097455 0.092033 0.090991 2.96 0.207586063 0.093676 0.08985 0.089596 0.090486 

1 1218.499628 0.144748 0.09675 0.091795 0.090841 3 0.202632734 0.093544 0.089829 0.089607 0.090598 

1.04 551.8694178 0.139274 0.09613 0.091585 0.090708 3.04 0.198000114 0.093417 0.089809 0.089621 0.090719 

1.08 273.4553054 0.134601 0.095583 0.091398 0.090591 3.08 0.193660441 0.093296 0.089789 0.089636 0.090852 

1.12 146.3664073 0.130576 0.095096 0.091232 0.090486 3.12 0.189588915 0.09318 0.089771 0.089653 0.090997 

1.16 83.73513745 0.127081 0.094662 0.091083 0.090393 3.16 0.185763327 0.093068 0.089753 0.089672 0.091155 

1.2 50.75120579 0.124025 0.094273 0.09095 0.090309 3.2 0.182163745 0.09296 0.089736 0.089694 0.091328 

1.24 32.34662103 0.121336 0.093923 0.09083 0.090233 3.24 0.178772233 0.092857 0.089719 0.089718 0.091515 

1.28 21.54391028 0.118954 0.093607 0.090721 0.090165 3.28 0.175572619 0.092758 0.089703 0.089745 0.091719 

1.32 14.91456046 0.116835 0.09332 0.090622 0.090103 3.32 0.172550291 0.092662 0.089688 0.089774 0.09194 

1.36 10.68318965 0.114939 0.09306 0.090533 0.090047 3.36 0.169692015 0.09257 0.089674 0.089806 0.092181 

1.4 7.886605914 0.113236 0.092822 0.090451 0.089996 3.4 0.166985787 0.092481 0.08966 0.089842 0.092442 

1.44 5.980068156 0.1117 0.092605 0.090376 0.089949 3.44 0.164420695 0.092396 0.089646 0.08988 0.092727 

1.48 4.643799946 0.110309 0.092406 0.090307 0.089907 3.48 0.161986801 0.092313 0.089634 0.089922 0.093035 

1.52 3.683687624 0.109044 0.092224 0.090244 0.089868 3.52 0.159675038 0.092234 0.089621 0.089967 0.093371 

1.56 2.978279295 0.107892 0.092055 0.090186 0.089833 3.56 0.157477122 0.092157 0.08961 0.090016 0.093735 

1.6 2.449474388 0.106838 0.0919 0.090133 0.089801 3.6 0.155385469 0.092083 0.089598 0.090069 0.09413 

1.64 2.045783234 0.105871 0.091757 0.090083 0.089772 3.64 0.153393126 0.092011 0.089588 0.090126 0.09456 

1.68 1.732480636 0.104982 0.091623 0.090038 0.089745 3.68 0.151493708 0.091942 0.089577 0.090188 0.095026 

1.72 1.485656487 0.104163 0.0915 0.089995 0.089721 3.72 0.149681343 0.091875 0.089568 0.090254 0.095533 

1.76 1.288531316 0.103406 0.091385 0.089956 0.0897 3.76 0.147950625 0.091811 0.089558 0.090325 0.096083 

1.8 1.129122125 0.102705 0.091278 0.089919 0.089681 3.8 0.146296565 0.091748 0.089549 0.090401 0.096681 

1.84 0.99873242 0.102055 0.091178 0.089885 0.089664 3.84 0.14471456 0.091688 0.089541 0.090483 0.09733 

1.88 0.890956333 0.10145 0.091085 0.089854 0.08965 3.88 0.14320035 0.091629 0.089533 0.090571 0.098036 

1.92 0.801009942 0.100887 0.090997 0.089824 0.089638 3.92 0.141749991 0.091572 0.089525 0.090665 0.098802 

1.96 0.725274755 0.100361 0.090916 0.089797 0.089628 3.96 0.140359829 0.091517 0.089518 0.090765 0.099635 

2 0.660981179 0.09987 0.090839 0.089772 0.08962 4 0.139026471 0.091464 0.089511 0.090873 0.10054 
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An example using existing test systems with wind power is calculated from wind speed 

data is represented. 

In Chumporn Province of Thailand, during October 2011 and May 2012, the mean 

wind speed at 90 meters hub-height is about 5 m/s while noise intensity of wind power is 

about 0.5. The wind power in this case is calculated using VESTAS V90 2000kW 

specification. The distributions of wind speed and its noise intensities are represented in 

Figure 5.128. The wind power and its noise intensities are represented in Figure 5.129. The 

relation between wind speed and noise intensity of wind power is shown in Figure 5.130.  

If wind power is operated without regulation control, the power system may 

become unstable within 10 minutes under some conditions. The noise intensity larger than 

3.4, 0.88, 0.38, 0.24, and 0.18 with mean wind speed at least 4, 6, 8, 10, and 12 m/s, 

respectively, are such critical conditions to be considered. Figure 5.130 shows that within 

shaded area, MFPT is less than 10 minutes. Therefore, outside a shaded area in which 

MFPT larger than 10 minutes are occurred especially when wind speed higher than 6 m/s. 

These serious conditions will occur during April – May and Nov – Dec when the monsoon 

has much influence in that area. 

 

Figure 5.128 Distribution of wind speed (left) and noise intensity (right) of wind speed 

Noise intensity of wind speed Wind speed (m/s) 

10minute-sample 
10minute-sample 
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Figure 5.129 Distribution of wind power (left) and noise intensity (right) of wind power 

 

Table 5.20 The results of MFPT implementation 

Variables 
Results at different wind speed 

4 m/s 6 m/s 8 m/s 10 m/s 12 m/s 
NImax 3.16 3.16 1.18 0.45 0.31 

MFPT at NImax (hours) 0.18 0.09 0.09 0.1 0.1 
Rt (hours) 0.167 0.167 0.167 0.167 0.167 

MFPT < Rt ? no yes yes yes yes 
 

NImax is the maximum noise intensity of wind power occurring at each range of 

mean wind speed. It is found that NImax vastly decreases with increasing wind speed. Rt is 

an imposed constraint of the power system (for example, the constraint which are used in 

Area Control Error or ACE for power balancing and frequency control). In this case, Rt is 

assumed to be 10 minutes (0.167 hours).  

In Table 5.20, the maximum noise intensity (NImax) and MFPT at NImax with 

different wind speeds are determined. When MFPT is less than Rt, the power system is 

possibly unstable before the regulation or control system can serve for any small and 

continuous disturbances.   

Wind power (kW) Noise intensity of wind power 
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Figure 5.130 Relation between wind speed and noise intensity of wind power using the 

wind data of the Chumporn wind monitoring station in the South of Thailand. 

In conclusion, this section can explain the main problem of the thesis. The effects 

of stochastic wind power on the power system stability can be determined reasonably using 

the stability index, namely MFPT. 

Considering wind speed data from the Chumporn monitoring station, the cases 

when noise intensity larger than 3.4, 0.88, 0.38, 0.24, and 0.18 with mean wind speed 6, 8, 

10, and 12 m/s, respectively, are seriously considerable and can possibly lead the system to 

be unstable within a short time (less than 10 minutes). These serious conditions will occur 

during April – May and Nov – Dec when the monsoon has much influence in that area. 

However, this result is based on the assumption that wind power is Gaussian white 

noise, and the power system is unregulated, which is not practical. The dynamics with 

regulation system needs an improvement of the stability index. Furthermore, the energy 

function, using for MFPT solution, is an approximated value which has ellipsoidal surface 

shape. It cannot represent the complex surface problems, for example, the energy of the 

power system when incorporate DFIG wind turbine model. Therefore, the other methods 

will be developed and explained in the next chapter. 

Wind speed (m/s) 



CHAPTER 6 

RESULTS AND DISCUSSION PART 2 

 
In Chapter 3 and 5, the stability index called mean first passage time (MFPT) was 

determined to evaluate the small signal stability of the power system when incorporating 

stochastic wind power. This method can reveal the effects of different wind power and 

noise intensity on the power system stability using simplified elliptic surface energy 

function. However, it cannot represent the complex energy function, for example, when the 

DFIG wind turbine model is incorporated in the power system. Therefore, to overcome this 

problem, a new method is developed and explained in this Chapter.  

This chapter focus on the stochastic stability problems, which consist of the study 

of the effects of wind power on the small signal stability using a new stochastic stability 

method, a study of effects of wind power on the voltage stability using a new stochastic 

stability method, and a study of the effects of wind power on voltage variation using a 

probabilistic method. 

6.1 The Study of Effects of Wind Power on the Small Signal Stability using New 

Stochastic Stability Method 

6.1.1 The Derivative of Stochastic Energy (DSE) for Gaussian distribution 

white noise model 

This sub-section will focus on the study of the effects of stochastic wind power and 

load using the stability performance index, which is called the derivative of stochastic 

energy (DSE). The wind power is modeled using Gaussian distribution white noise model. 

There are two kinds of effects to be studied: first is the effect of stochastic wind power and 

constant and second is the effect of stochastic load and constant wind power.  

      6.1.1.1 The effects of stochastic wind power and constant load 

From Section 4.8, the DSE can be computed by applying the following conditions. 

1) The power test system 

From Sections 4.2.2 and 4.8.1, the power test system is represented in Figure 6.1. 
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Figure 6.1 Test power system including wind power and load for DSE 

 

The total n bus system consists of m bus of generation and n-m bus of load and 

others. The bus i represents synchronous generator (SG) (total m-p bus), bus w represents 

squirrel cage induction generator (SCIG) (total p bus) and k represents load bus. Bus no. 1 

is a reference bus. 

2) The stochastic differential equations (SDE) 

From section 4.8.1, the matrix form of stochastic differential equations of the test 

system is 
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Eq.6-1 

where D is damping coefficient of SG. V is terminal voltage. Pmi (Pmi=Plk–Pmw) and 

Pmw are mechanical input power of SG and SCIG wind turbine, respectively. Plk is a 

constant power load. Pei , Pew ,and Pek are electrical power at bus i=2 , w=3 and k=4, 

respectively. 
k

c is frequency dependent coefficient of load. 

3) The well-defined energy function 

From section 4.4.2, the well-defined energy function of the power system and its 

derivative are 

SCIG WT
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4) The derivative of stochastic well-defined energy function 

From section 4.8.1, the derivative of stochastic well-defined energy function (DSE): 
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  Eq.6-4 

From Section 4.8.1, the DSE can be formulated as follows 

   2 20

3 3

3

4

1

2
m

k
M

PP
c

DSE


        Eq.6-5 

5) The testing conditions 

The per unit base power is 100MVA, the fundamental speed, 0 = 314.159 rad/s, an 

inertia constant of induction generator wind turbine (IG), Mw = 7.0 sec. [45], and the 

damping coefficient of the synchronous generator (SG), Di = 0.21 [52]. The power 

deviation on the load bus (P4) remains constant at 0.04 throughout the simulation. The 

stability of this test system can be investigated by varying the noise intensity of the wind 

power (α3) from 0 to 0.1 and the mechanical wind power (Pm3) is set to 0.5, 1.0, and 2.0. 

The frequency dependent coefficient of load, ck is 0.025. The power flow of the test system 

with Load: Wind Power: power of SG is 4: 2: 2 p.u. . 

 The noise intensity (NI) of wind power depends generally on local wind 

characteristics. For example, the yearly NI calculated with hourly average wind power of 

four wind power plants in USA during 2000 – 2010 are 0.8 – 1.0 [70]. As a small signal, 

the noise intensity of this test system will be varied from 0 – 0.1.  
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6) The results  

Since the stable condition of the stochastic system is DSE < 0, therefore, a larger 

DSE means that the system has higher probability to become unstable and the stability of 

the power system decreases. In Figure 6.2, it can be seen that the DSE gradually increases 

with the wind power and its noise intensity. This result indicates that the highly fluctuated 

wind power can reduce the rotor angle stability of the power system. When DSE is zero or 

critically stable condition, the critical noise intensities at wind power 0.5, 1.0, and 2.0 p.u., 

are about 0.09, 0.045, and 0.0225, respectively. Therefore, the critical noise intensities of 

wind power seem to linearly inverse to the changing of wind power. It can be implied that, 

to avoid system instability, the wind power should be limited by its noise intensity.  
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Figure 6.2 DSE compared with noise intensity of wind power (α3) at different wind 

powers (Pm3, p.u.) when frequency dependent coefficient, ck = 0.025. 

 

7) Verification of the results 

 To illustrate an example of DSE, the system equations in Eq.6-1 are studied using a 

computer simulation. The energy in Eq.6-2 is computed and compared between 4 testing 

conditions (C1 to C4) with the system parameters in Table 6.1. The testing conditions and 

the results of the stochastic index, namely the exit time [9] (the time in which the 

synchronized speed increases beyond the critical value, in this case is 1.02, and results in 

lost synchronism) are represented in Figure 6.3.   
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Table 6.1 Testing conditions and results of exit times compared with DSE 

Conditions C1 C2 C3 C4 
Noise intensity (α) 0.2 0.5 0.2 0.2 

Mechanical Wind Power (Pm3) , p.u. 2.0 2.0 2.0 3.0 
frequency dependent coefficient (ck) 0.025 0.025 0.1 0.025 

Exit time (seconds) 176 85 176 47 
DSE 3.67 22.75 3.72 8.24 

Rate of change of Energy 6667 8750 6667 16667 
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Figure 6.3 Energy of the test system under 4 test conditions C1 – C4 . 

 

Figure 6.4 Phase portraits of slip-angle (left) and energy-angle (right) of IG wind turbine 

when noise intensity increase from 0.2 (upper) to 0.4 (lower). 
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From the results in Figure 6.3 and Table 6.1, it can be seen that the small but 

continuous fluctuations of wind power and state variables can finally cause the system to 

become unstable due to loss of synchronism. The energy of the system in Figure 6.3 

increases with the different rate. If compare C1 and C2 when noise intensity increases 1.5 

times, the exit time decreases 0.52 times, DSE increase 5.2 times and the rate of change of 

energy increase 0.3 times. For C1 as compared with C4, when wind power increases 0.5 

times, the exit time decreases 0.73 times DSE increases 1.25 times and the rate of change 

of energy increases 1.5 times.  

However, for C1 as compared with C3, the frequency dependent coefficient (ck) has 

no significant effect on the exit time, whereas a small deviation on the system energy of 

16.3% is observed at 240 seconds. Figure 6.4 represents the phase portrait of slip and angle 

of IG WT and the phase portrait of energy and angle of IG WT of the condition C1. The 

loss of synchronism occurs when the noise intensity of wind power increases from 0.2 to 

be 0.4 .  

When the Pm3 is reduced to 0.5 p.u., while the other terms remain the same with the 

case C1. The loss of synchronism is not observed within the simulation time period 240 

seconds. Furthermore, the contribution of each term in Eq.6-4 is provided in Table 6.2. The 

contribution of the first (Lu_1) and the third (Lu_3) terms have shown to be more than 

99.7%. This empirically justifies the formulation of the DSE in Eq.6-5. 

Table 6.2 Contribution of Lu components 

Conditions 
% Contribution of Lu components at time 60s 

Lu _1 (-) Lu _2 (-) Lu _3(+) Lu _4 (-) Lu _5(+) 

Case A1 51.9% 0.0% 47.9% 0.2% 0.0% 
Case C1 2.4% 0.0% 97.3% 0.3% 0.0% 

 

8) Conclusion 

The derivative of stochastic energy (DSE) proposed in this section can be used to 

estimate the impact of fluctuating wind power to the power system. The stochastic 

differential equation and the energy function of the power system are used to compute 

DSE. The wind turbine induction generator model (SCIG wind turbine) is included in the 

formulation of the energy function and to the DSE. The stability of the power system which 

is measured by the exit time, decreases with increasing of wind power and its noise 

intensity. In this study, if mean wind speed is constant while its noise intensity is varied, 
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the DSE is corresponded to the inverse of exit time. This index gives an alternative idea for 

power system stability analysis by stochastically incorporating the wind power.  

With the stated assumptions, the DSE can capture the system characteristics and 

estimate the power system stability with less computational effort. The wind turbine model 

may be improved in the future work for more accurate results. 

      6.1.1.2 The effects of stochastic wind power and stochastic load 

In this subsection, the stochastic load is applied using almost the same methods as 

described in the previous section. However, to focus mainly on the effects of wind power 

and load, this section assumes testing conditions to be different from Section 6.1.1.1 as 

follows: 

1) The power test system 

The single machine infinite bus power system is focused on the effects of wind 

power and electric load. The single line diagram of this test system is shown in Figure 6.5. 

Figure 6.5 Single machine infinite bus 

power test system including wind power 

and load 

 

2) The stochastic differential equations (SDE) 

The structure preserving model power systems in this section consists of differential 

equations (rotor dynamics of IG of wind turbines and dynamic of load), and the algebraic 

equations (network equation in power balance form, and stator voltage coefficients of IG). 

The stochastic differential equations of the power system are applied from Section 4.8.1, 

which can be represented as follows: 
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Eq.6-6 
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Where subscript n represents total number of network bus (n = 3), w is wind power 

bus (bus 3), k is load bus (bus 2). Vw is voltage behind transient reactance. V with subscript 

k and j are bus voltage,  is angle of Vw and ’ is the different angle between Vw and the 

stator terminal voltage (Vsw). Bij is susceptance component between bus i and j. Plk is a 

constant power load. Pmw is mechanical power of IG.  Pew ,and Pek are electrical power at 

wind power bus and load bus, respectively. ck is frequency dependent coefficient of load. ka 

and ca are the slope and offset of the linear relationship between  and ’ during transient. 

0 is rated angular speed (100). T0 , X, and X’ are transient open-circuit time constant, 

open-circuit reactance, and transient or short-circuit reactance, respectively [45]. 

3) The well-defined energy function 

The well-defined energy function of the power system and its derivative are 
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Eq.6-7 

2U k kc x            Eq.6-8 

4) The derivative of stochastic well-defined energy function 

From Section 4.8.1, the derivative of the stochastic well-defined energy function is 
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Multiplying Eq.6-9 by 2 2
2k lc P , the performance index, which can be called the derivative 

of stochastic energy (DSE), can be found as follows: 
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where Pe2 is negative which can be replaced by –|Pe2| and dP2 = Pl2 – |Pe2|  is the deviation 

of power on load bus, 2 2 2d d lP P P  and 3 23 m lm P PP  . 

5) The testing conditions 

There are mainly three cases to be examined, which are, Case #1 (base case) when 

wind power and power load have no stochastic part (αw=0 and αk=0), Case #2 when only 

power load has stochastic part (αw=0), and Case #3 when only wind power has stochastic 

part (αk=0).  

The per unit base power is 100MVA, the fundamental speed, 0 = 314.159 rad/s, an 

inertia constant of IG, M3 = 7.0 s. The frequency dependent coefficient of load, ck = 0.05 as 

the base case. Assumes V1, V2, and V3 are close to 1.0, b12 is 0.5 and b32 is 0.25, x12 = (x1-

x2) and x32 = (x3-x2) can be varied between 0.1 to 0.5 radians. Pl2 is a real load and αk is 

noise intensity of load which can be assumed to vary between 0.05 and 0.2 .  

The yearly noise intensity (NI) calculated with hourly average wind power of four 

wind power plants in USA during 2000 – 2010 are 0.8 – 1.0 [70]. The stability of this test 

system can be investigated by varying the noise intensity of wind power (αw = 0.5 and 1.0), 

mechanical wind power (Pm3), and the power deviation on the load bus (dP2). 

6) The results  

For the Case #1, the terms with αk and αw in Eq.6-10 are zero. The DSE always less 

than or equal to zero and depends linearly on ck which has the same form of dissipative 

energy as represented in Eq.6-8. The noise intensity when DSE is zero is called the critical 

noise intensity. Moreover, the larger ck means the frequency deviation on load bus is less 

affected by the deviation of power load which cause the system damping to increase and 

become more stable.  The results of DSE computation of Case #2 when fix wind power and 

Case #3 when a fixed power load are represented in Figure 6.6. This figure represents the 

relationship of DSE and noise intensity of power load at different bus voltage (V2) and 

frequency dependent (ck) when fixed wind power (or αw= 0) and noise intensity of wind 
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power at different penetration ratios and frequency dependent (ck) when the power load is 

fixed (or αk=0). 

For Case #2, the stochastic terms of wind power in Eq.6-10 (term with αw) is zero. 

The DSE is affected by ck , αk and the variables such as bus voltage and its phase angle. If 

focused only on an influence of αk at different ck and bus voltage (V2) as represented in 

Figure 6.6, the DSE progressively increases with increasing αk, while linearly decreasing 

with decreasing bus voltage. The critical noise intensities (DSE=0) are 0.25, 0.2, and 0.17 

when voltage increases to be 0.6, 1.0, and 1.4 p.u., respectively. The larger ck results in the 

smaller DSE (larger critical noise intensity of power load).  

Figure 6.6 The relationship of DSE and the noise intensity of the power load when wind 

power is fixed (left) and noise intensity of wind power when power load is fixed (right) 

 

Figure 6.7 Phase portraits of slip-angle ( left) and energy-angle (right) of IG wind turbine 

when noise intensity increase from 0.2 (upper) to 0.4 (lower) with constant load. 
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 For Case #3, the stochastic term of the power load in Eq.6-10 (term with αk) is zero. 

The DSE increase with increasing wind power (Pm3) and sharply increase with increasing 

noise intensity of wind power (αw). The critical noise intensities (DSE=0) are >1.0, 0.95, 

and 0.47 when wind power penetration are 0.2, 0.4, and 0.6, respectively. The effect of ck 

is different from Case #2 and Case #1 such that, at small noise intensity of wind power, the 

larger ck causes the smaller DSE. But for the large noise intensity, the larger ck causes the 

larger DSE. Moreover, the larger ck causes the smaller critical noise intensity. 

7) Conclusion 

This section applies the stochastic stability analysis method to investigate the small 

signal stability of the single machine infinite bus power system. The stochastic stability 

index is proposed to describe the effects of stochastic load and wind power.  

An increase of noise intensity of both wind power and load causes the stochastic 

stability index to increase, and the system possibly becomes progressively unstable. When 

only stochastic load is represented (fix wind power), the smaller load bus voltage and the 

larger frequency dependent coefficient causes the lower DSE and the system possibly 

becomes more stable. When only stochastic wind power is represented (fix power load), 

the larger share of wind power leads to larger DSE and an increased in frequency 

dependent coefficient causes the critical noise intensity to decrease, which causes the 

system to be less stable. 

Therefore, this method can estimate the effects of stochastic wind power and load 

quantitatively while the general deterministic methods cannot. 

6.1.2 The Stochastic Stability Index (SSI) with Gaussian distribution of white 

noise  

This sub-section will focus on the study of effects of stochastic wind power using 

the new stability performance index, which is called the stochastic stability index (SSI). For 

this section, the DFIG wind turbine with Gaussian distribution white noise model is 

applied. The following conditions are used to formulate SSI for implementation. 

1) The power test system 

The power test system in this section is the same as Figure 6.1 in Section 6.1.1.1, 

except for the SCIG wind turbine being replaced by DFIG wind turbine. The single line 

diagram of two machine infinite bus power system (TMIB) is represented in Figure 6.7. 

In Figure 6.8, there are aggregated synchronous generators (G2) and aggregated 

DFIG wind turbines (G3), connecting buses B2 and B3, respectively.  Bus B1 is an infinite 
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bus and B4 is a load bus. The system is assumed to be lossless for which the line resistance 

can be neglected. X14 is a line reactance (tie line) connecting between bus B1 and B4. X24 

and X34 are line reactances including transformer’s reactance. The electric load is a 

dynamic load which has ck at about 0.05 [9]. The values of system parameters and 

constants are listed in Table 6.3. 

 

 

Figure 6.8 Test power system including wind power and load for DFIG WT 

Table 6.3 System Parameters and Constants for TMIB 

M = 7.0 sec 0 = 314.2 rad/sec Lm = 3.95279 p.u. 

Lr = 0.09955 p.u. Ls = 0.09241 p.u. T0 = 2.343  p.u. 

X = 4.0 p.u. X’ = 0.1 p.u. XT = 0.5 p.u. 

kd = 0.8868 kb = 7.372 ka = 0.274Pm + 0.346 

kp = 1.0 kop = 0.56 ca = -0.022 Pm +0.006 

|E’| =Vw=1.05 p.u. kc1 = 0.97396 kc2 = 1.90308 

Vs = 1.0 (p.u.) V0 = 1.0 (p.u.) km = 1.017 

X14 = 0.5 p.u. X24 = 0.2 p.u. X34 = 0.2 p.u. 

 

2) The stochastic differential equations (SDE) 

From Section 4.3.2, when the load is constant, the matrix form of stochastic 

differential equations will become the dynamic perturbed system in a matrix form as 

follows: 
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Eq.6-11 
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 Eq.6-

13 

β is a parameter to rescale the intensity of noise. For example, βi = Di/Mi .  

3) The well-defined energy function 

From Sections 4.4.3 and 4.8.2, the well-defined energy function of the power 

system and its derivative are: 
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4) The derivative of a stochastic well-defined energy function 

From Section 4.8.2, the derivative of a stochastic well-defined energy function is 
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It can be noticed that, the first two terms on the right of Lu in Eq.6-16 are the same 

with the derivative of the energy of the deterministic system (pU). Therefore, the Lu is the 

derivative of the stochastic energy function which can influence the system stability the 

same as the derivative of energy in a deterministic system. However, it can be definitely 

proven that the pU is less than or equal to zero, but not for Lu. 

Since Lu in Eq.6-16 is quite complicate, it is assumed that the system is started 

from the equilibrium state in which the derivative terms are small enough and can be 

neglected. Therefore, Lu will be approximated by focus only on the non-derivative terms 

and becomes 

   2

3 3 4 3 3 3u , , mx xL f y P        Eq.6-20 

By experiment, function f3 is always positive under normal operating conditions. 

Comparing with DSE in the previous section, Lu’ is always positive and influences Eq.6-16 

to increase Lu while DSE can probably be positive or negative.  
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5) The stochastic stability index (SSI) 

By dividing the critical energy (Uc) with the Lu’ in Eq.6-20, the time that the energy 

takes to reach the critical value can be perceived. This conceptual time can be scaled using 

an appropriate parameter. For example, when Lu’ is scaled by the power load term γ = 

(ck/Pl4)
2, the penetration ratio of wind power (wind power over power load) can be 

obtained as a result. This conceptual time is then called the Stochastic Stability Index (SSI) 

and can be computed as follows: 

 ucSSI U L       Eq.6-21 

This SSI is improved from the previous work in the previous section and has the 

same concept with the mean first passage time (MFPT), which is the performance index to 

quantify the average time that a state-space trajectory takes to change from a given 

operating point to the boundary of its domain of attraction under the influence of small 

perturbations. 

 

6) The testing conditions 

The testing conditions are represented in Table 6.4. From this table, the steady state 

value of speed and angle are represented according to six conditions. These steady state 

values are from the simulation using Eqs.6-11 – 6-13. The power exchange (PExchange) is 

calculated from the power load (Pload) minus the generation power (Pm3 + Pm2).  

 

Remark: 
The derivative of the energy of the stochastic system can be conceptually compared with 
the deterministic system as follows: 

c

c

UdU

dt t
 c

s

U
Lu

t
 Vs.

deterministic stochastic

time

U

(Deterministic 
critical time)

Critical 
energy

(Stochastic 
critical time)

ts tc

Uc

Deterministic 
energy

Stochastic 
energy

 
The tc is the critical time when the energy of the deterministic system increases to reach the 
critical value (Uc) while the ts is for the stochastic system (SSI = ts). 
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Table 6.4 Testing conditions for DFIG wind turbine with white noise model 

Variable 
Case 1 

(*) 
Case 2 

(.) 
Case 3 

(+) 
Case 4 

(o) 
Case 5 

() 
Case 6 

(�) 
PLoad 4 4 4 4 4 4 
Pm3 1.0 1.0 1.0 0.4 0.6 0.8 
Pm2 3.0 4.0 2.0 3.6 3.4 3.2 

PExchange 0.0 -1.0 1.0 0.0 0.0 0.0 
y3s 0.1129 0.1129 0.1129 -0.037 0.0174 0.0670 
x2s 0.6435 1.7754 -0.4365 0.8038 0.7478 0.6945 
x3s 0.2897 1.1385 -0.5584 0.1143 0.1723 0.2306 
x4s 0.0000 0.8480 -0.8481 0.0000 0.0000 0.0000 

 

7) The results 

The results of critical energy computation from the simulation corresponding 6 test 

conditions are represented in Table 6.5. The phase portraits of state variables (speed and 

angle) are represented in Figure 6.9. The results of Lu’ and SSI computation corresponding 

to 6 testing conditions are represented in Figures 6.10 and 6.11, respectively.  

Table 6.5 Critical energy of the test system with DFIG wind turbine and white noise model 

Unstable condition 1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

 2 3 4 2 3, , , ,s s s s sx x x y y x   2.44 2.75*10-6 0.56 1.42 1.74 2.08 

 2 3 4 2 3, , , ,s s s s sx x x y y x  4.95 951.06 1503.56 5.44 8.94 7.06 

 2 3 4 2 3, , , ,s s s s sx x x y y x  803.46 1733.92 694.02 158.20 99.84 434.65 

Unstable condition 2    

 2 3 4 2 3, , , ,s s s s sx x x y y  x   21.29 25.13 13.13 24.04 23.10 22.18 

 2 3 4 2 3, , , ,s s s s sx x x y y  x  26.04 933.67 1519.41 0.13 14.71 21.56 

 2 3 4 2 3, , , ,s s s s sx x x y y  x  764.83 1703.79 733.01 175.14 72.72 400.41 

Unstable condition 3    

 2 3 4, ,s s sx x x     x  1343.35 3811.57 24557.40 20.77 403.82 859.82 

Unstable condition 4    

2 3

4

,

,

s s

s

x x

x

 



       
   

x  1271.75 3694.66 23482.30 36.93 337.80 789.39 

Critical Energy (Minimum) 2.44 2.75*10-6 0.56 0.13 1.74 2.08 
 

From the results in Table 6.5, the critical energy has both positive and negative 

values. For the Case 1-3, the critical energy decreases when the magnitude of the power 

exchange increases, especially when export power to infinite bus.  For the Case 4-6, the 
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critical energy increase when wind power increases. Therefore, it can be found that under 

steady state conditions, wind power can improve the stability of the power system. 

 

 

Figure 6.9 Phase portrait of speed (x-axis)-angle (y-axis) of G3 of  Case 2 (left) and Case 3 

(right) when noise intensity is 0.4 and 0.8, respectively  

 

From Figure 6.10, the Lu’ increases gradually with increasing noise intensity (α3) 

and wind power penetration (WPP). However, Lu’ cannot distinguish between Cases 1, 2 

and 3 which have the same WPP but different exchanged power.  

From Figure 6.11, the larger value of SSI implies that the system is possibly more 

stable. It can be seen from this figure that, SSI decreases with increasing of noise intensity 

(α3). For the Cases 4 – 6, when WPP increase, the critical energy increase while the SSI 

decrease. For the deterministic method, the power system is more stable when wind power 

increase [45] but for this stochastic method, the power system becomes less stable at the 

same condition. However, for the Cases 1 – 3, the results of SSI are corresponded to the 

critical energy and exit time in Table 6.6. If the critical regulation time response (tR) of the 

power system is 10 minutes (600 seconds), the critical noise intensities (NIC) in which SSI 

= tR are 0.88, 0.67, 0.54, and 0.26 for the Cases 4, 5, 6, and 1, respectively. When noise 

intensity is greater than NIC , SSI will less than tR and the power system is possibly unstable 

before the regulation system can take action.  
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Figure 6.10 The results of Lu’ computation with increasing noise intensity  

compared among 6 testing conditions for DFIG wind turbine with white noise model 

 

 

Figure 6.11 The relation of SSI (seconds) and noise intensity compared among 6 testing 

conditions for DFIG wind turbines with white noise model 

 

8) Verification of the results 

The results of Section (7) are verified by comparing with the averaged exit time 

from 20 trials of simulation. The exit times of six different conditions are shown in Table 

6.6. 
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Table 6.6 The exit time (seconds) of six different conditions from the simulation 

Variable 
Case1 

(*) 
Case2 

(.) 
Case3 

(+) 
Case4 

(o) 
Case5 

() 
Case6 

(�) 
PLoad 4 4 4 4 4 4 
Pm3 1.0 1.0 1.0 0.4 0.6 0.8 
Pm2 3.0 4.0 2.0 3.6 3.4 3.2 

PExchange 0.0 -1.0 1.0 0.0 0.0 0.0 
Uc 2.44 2.7E-6 0.56 1.42 1.74 2.08 

ET, NI 0.4 >1000 63 >1000 >1000 >1000 >1000 
ET, NI 0.6 >1000 47 321 >1000 >1000 >1000 
ET, NI 0.8 >1000 46 74 >1000 >1000 >1000 
SSI, NI 0.4 1097 0 252 6661 2926 1670 
SSI, NI 0.6 488 0 112 2960 1300 742 
SSI, NI 0.8 274 0 63 1665 731 418 

* ET = Exit Time (average value of 20 trials of simulation), NI = Noise Intensity 

 

From Case 2 and Case 3 in Table 6.6, when there is exchanged power, the exit time 

from the simulation decreases with increasing noise intensity. The zero values of SSI in 

Case 2 represent the close-to instability condition according to the near-zero critical 

energy. Furthermore, the exit time of Case 2 is less than that of Case 3, which corresponds 

to the value of critical energy and the SSI. However, for the other cases, even the 

simulation time is very much longer than 1000 seconds and the noise intensity is 1.0, the 

system still be stable and need more experiments to verify. For Case 4 (base case), 5, 6 and 

1, when wind power increase 50%, 100%, and 150%, the SSI decrease about 56%, 75%, 

and 84%, respectively, comparing with base case.  

9) Conclusion 

This section proposes the stochastic stability analysis method, which is suitable for 

the study of the effects of DFIG wind turbines on power system stability, and can capture 

the effects of exchanged power with the infinite bus.  

The wind power is modeled using aggregated DFIG wind turbines, which have the 

largest contribution in the market at present. The stochastic stability index (SSI) can 

quantitatively reveal the effects of increasing wind power and its noise intensity on power 

system stability. When the stochastic wind power increases, SSI will decrease and the 

system is less stable, especially when there is exchanged power to or from an infinite bus.  

The values of SSI correspond to the exit times from the simulation. This stochastic 

stability analysis method can evaluate the nonlinear and stochastic power system stability 

with less time and computational effort. 
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6.1.3 The Stochastic Stability Index (SSI) for Gaussian distribution colored 

noise 

In the previous section, the Gaussian distribution white noise model is an ideal 

noise model used in the stochastic stability analysis. However, this section will focus on 

the Gaussian distribution of the colored noise model, which is more practical and can be 

adjusted depending on bandwidth. The larger bandwidth results in being closer to the effect 

of white noise. The following conditions are used to formulate SSI for the study. 

1) The power test system 

The power test system in this section is the same as Section 6.1.2. 

2) The stochastic differential equations (SDE) 

The stochastic differential equations (SDE) of the power system will become the 

dynamic perturbed system in a matrix form as follows: 
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Eq.6-23 

where βi = Di/Mi . Pml = αPms, w represents colored noise applying to wind power, αw and 

w are noise intensity (the standard deviation divided by mean value) and bandwidth of 

low frequency component of wind power. Plk (1- αkk) is stochastic power load, k 

represents colored noise applying to power load, αk and k are noise intensity and 

bandwidth of power load.  
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Eq.6-24 

Where γw is scaling factor of wind power noise which is formulated using the method by 

C.O. Nwankpa and S.M. Shahidehpour (1991) as follows: 
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Where lw is the noise scaling factor of wind power bus which has lowest value and w is 

the noise scaling factor of wind power bus w. β is a parameter to rescale the intensity of 

noise for mathematical convenience. The γk is scaling factor of power load as follows: 
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Where lk is the noise scaling factor of load bus which has lowest value and k is the noise 

scaling factor of load bus k. β is a parameter to rescale the intensity of noise for 

mathematical convenience. 

Furthermore, it is assumed that 
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3) The well-defined energy function 

From Sections 4.4.3 and 4.8.2, the well-defined energy function of the power 

system and its derivative are: 
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4) The derivative of stochastic well-defined energy function 

From Section 4.8.2 and operating points are not close to the steady state values, the 

derivative of stochastic well-defined energy function is: 
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5) The stochastic stability index (SSI) formulation 

By dividing the critical energy (Uc) with the LU in Eq.6-32, the time that the system 

takes to reach the critical energy can be perceived. This time can be scaled using an 

appropriate parameter. This conceptual exit time is then called the Stochastic Stability 

Index (SSI) and can be computed as follows: 

 ucSSI U L      Eq.6-35 

This SSI is improved from the work in the previous section and has the same 

concept with the mean first passage time (MFPT), which is the performance index to 

quantify the average time a state-space trajectory takes to change from a given operating 

point to the boundary of its domain of attraction under the influence of small perturbations. 

6) The testing conditions 

The testing conditions are the same as in Section 6.1.2. From Table 6.7, the steady 

state value of speed and angle are represented according to six conditions. These steady 

state values are from the simulation using Eqs. 6-22 – 6-24. The power exchange (PExchange) 

is calculated from the power load (Pload) minus the generation power (Pm3 + Pm2). The 

power load is assumed to be constant. Therefore, the terms which have stochastic load are 

zero. The bandwidth is assumed to be fixed at 1.0. However, the variation of bandwidth 

will also be analyzed. 
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Table 6.7 Testing conditions for DFIG wind turbine with colored noise model  

Variable 
Case 1 

(*) 
Case 2 

(.) 
Case 3 

(+) 
Case 4 

(o) 
Case 5 

() 
Case 6 

(�) 
PLoad 4 4 4 4 4 4 
Pm3 1.0 1.0 1.0 0.4 0.6 0.8 
Pm2 3.0 4.0 2.0 3.6 3.4 3.2 

PExchange 0.0 -1.0 1.0 0.0 0.0 0.0 
x2s 0.64284 1.56986 -0.23281 0.79943 0.74450 0.69287 
x3s 0.28896 0.93253 -0.35487 0.10764 0.16780 0.22856 
x4s -0.00053 0.64301 -0.64434 -0.00469 -0.00302 -0.00138 
y2s 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
y3s 0.19987 0.19987 0.19988 -0.10627 0.02582 0.12358 

 

7) The results 

      7.1) The results of critical energy computation 

The critical energy computation corresponding to the 6 test conditions are 

represented in Tables 6.8 and 6.9 for the case when X14 is 0.6 and 0.5, respectively. 

Table 6.8 Critical energy of the test system with DFIG wind turbine and colored noise 
model when X14 = 0.6 

Unstable condition 1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

 2 3 4 2 3, , , ,s s s s sx x x y y x   2.436 0.000 0.575 1.417 1.735 2.075 

 2 3 4 2 3, , , ,s s s s sx x x y y x  7.500 3.725 4.031 9.266 8.666 8.078 

 2 3 4 2 3, , , ,s s s s sx x x y y x  33.962 15.085 36.047 33.271 33.576 33.805 

Unstable condition 2    

 2 3 4 2 3, , , ,s s s s sx x x y y  x   21.286 25.133 13.141 24.037 23.098 22.182 

 2 3 4 2 3, , , ,s s s s sx x x y y  x  13.783 10.008 10.314 11.779 12.436 13.104 

 2 3 4 2 3, , , ,s s s s sx x x y y  x  8.829 -10.048 10.914 8.138 8.444 8.673 

Unstable condition 3    

 2 3 4, ,s s sx x x     x  179.851 1469.099 7002.342 71.448 107.288 143.577 

Unstable condition 4    

2 3

4

,

,

s s

s

x x

x

 



       
   

x  146.416 1399.267 7132.752 49.226 79.703 112.291 

Critical Energy (Minimum) 2.436 0.000 0.575 1.417 1.735 2.075 
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Table 6.9 Critical energy of the test system with DFIG wind turbine and colored noise 
model when X14 = 0.5 

Unstable condition 1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

 2 3 4 2 3, , , ,s s s s sx x x y y x   2.436 0.077 1.874 1.417 1.735 2.075 

 2 3 4 2 3, , , ,s s s s sx x x y y x  7.500 4.733 5.236 9.266 8.666 8.078 

 2 3 4 2 3, , , ,s s s s sx x x y y x  33.962 18.548 37.094 33.271 33.576 33.805 

Unstable condition 2 

 2 3 4 2 3, , , ,s s s s sx x x y y  x   21.286 25.209 14.441 24.037 23.098 22.182 

 2 3 4 2 3, , , ,s s s s sx x x y y  x  13.783 11.016 11.520 11.779 12.436 13.104 

 2 3 4 2 3, , , ,s s s s sx x x y y  x  8.829 -6.585 11.961 8.138 8.444 8.673 

Unstable condition 3 

 2 3 4, ,s s sx x x     x  178.492 1408.681 7172.596 71.172 106.741 142.669 

Unstable condition 4 

2 3

4

,

,

s s

s

x x

x

 



       
   

x  145.302 1340.025 7262.738 49.041 79.296 111.578 

Critical Energy (Minimum) 2.436 0.077 1.874 1.417 1.735 2.075 
 

From Tables 6.8 and 6.9, the critical energy increases with increasing wind power. 

Furthermore, when X14 decreases (or shorter transmission line), almost the conditions are 

unchanged except in Case 2 and Case 3 in which the critical energy increases. The critical 

energy of Case 2 is less than Case 3, therefore, the power when is transferred to infinite bus 

has more influence to power system stability than when receive from infinite bus.  

      7.2) The results of SSI and Lu computation 

When assuming all the derivative terms in Lu are very small and be negligible, the 

Lu becomes Lu’ and can be computed using non-derivative terms (such as the last two 

terms in Eq.6-32) and be represented in Figures 6.12 and 6.13, respectively. 

In Figure 6.12, Lu’ increase gradually with increasing of wind power and its noise 

intensity. However, Lu’ of the Case1, Case2, and Case3 are not different according to the 

same values of wind power.  

In Figure 6.13, for Case 1 – Case 3, the SSI of Case 2 is the lowest, followed by 

Case 3 and Case 1, respectively which are agree with the critical energy in Tables 6.8 and 

6.9. For the Case 4 – Case 6, the SSI decreases gradually with increasing of wind power 

and its noise intensity. These results conform to the results in Section 6.1.2 (when applying 

white noise models), but with the different values of SSI. For this section (colored noise 

with bandwidth 1.0), the critical noise intensities (NIC) in which SSI = tR (regulation time 
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response is 10 minutes or 600 seconds) are >1.0, >1.0, 0.87, and 0.74 for the Case 4, 5, 6, 

and 1, respectively. 

 

 

Figure 6.12 The results of Lu’ computation with increasing noise intensity  

under 6 testing conditions for DFIG wind turbine with colored noise model 

 

Figure 6.13 The log-scale SSI (y-axis, seconds) with increasing of noise intensity (x-axis) 

under 6 testing conditions for DFIG wind turbine with colored noise model 
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      7.3) Investigation of state variables, energy, and Lu from the simulation 

For Case 2 with noise intensity 0.3, bandwidth 10, and Trial no. 1, the 600 seconds 

of simulation reveals that the exit time is about 318 seconds.  The mechanical wind power 

is represented in Figure 6.14 .  The phase angle of synchronous generator (G2), DFIG wind 

turbine (G3), and load are represented in Figure 6.15. The angular speed of synchronous 

generator (G2) and DFIG wind turbine are represented in Figure 6.16. 

In Figure 6.14, it can be seen that the wind power is decreases a lot at about 315 - 

316 seconds. During this time, all phase angles are decrease vastly while angular speed of 

G2 is increase gradually as be represented in Figure 6.15. Consequently in Figure 6.16, the 

angular speed of G2 increases continuously until beyond the limit value at 0.02 p.u. 

(unstable).     

 

 

Figure 6.14 The variation of mechanical wind power during 600 seconds of simulation 

 

Figure 6.15 The variation of phase angle of G2 (PA Syn.Gen.), G3 (PA DFIG), and load 

(PA Load) during 600 seconds of simulation (left) and 311 – 323 seconds (right). 
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Figure 6.16 The variation of angular speed of G2 (Speed Syn.Gen.) and G3 (Speed DFIG) 

during 307 – 319 seconds (left) and 306 – 316 seconds (right). 

 

During 0 – 318 seconds, the phase portrait of phase angle and angular speed of G2 

and G3 are represented in Figure 6.17. From this figure, the trajectory (operating point) 

seems to out of bound and back again during 314 – 317 seconds. After that, the trajectory is 

completely out of bound.   

 

 

Figure 6.17 The phase portrait of phase angle and angular speed of G2 (left) and G3 (right)  

during 0 – 318 seconds 

 

For the energy of the system in Figure 6.18, the energy (ET = U from Eq. 6-30) 

increases continuously corresponding to the energy component no.1 (or E(1) = U(1) in 

Eq.6-30). Before 318 seconds, the energy component no. 9 ( E(9) = U(9) ) and no.7 ( E(7) 

= U(7) ) are most influenced, respectively. After that, the E(1) has more influence and 

increases continuously due to an increasing speed of synchronous generator G2.  

318 s 

317s 
316s 

315s 
314s 

318 s 317s 
316s 

315s 314s 
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Figure 6.18 The energy of the power system during 600 seconds of simulation (left) and 

302 – 320 seconds (right).  

For the derivative of stochastic energy (LUT) in Figure 6.19, the most influential 

LU components are LU(5) and LU(6) in Eq.6-32, respectively. Comparing between 

Figures 6.19 and 6.15, the variation of LU is corresponded to the variation of phase angle 

of wind turbine (PA DFIG). It can be seen that, LU(5) in Eq.6-32 consist of the derivative 

of phase angle PA DFIG and phase angle of load. It can be noticed that, LU(9) is constant 

and always positive while the other components fluctuates alternatively.  

The derivative of deterministic energy (pU) in Figure 6.20 is always negative and 

decreases continuously at 138 seconds which causes the trend of LUT to decrease.  

It can be noticed that even though the pU is negative, the power system can be unstable due 

to the variation of wind power.  

 

 

Figure 6.19 The derivative of stochastic energy of the power system (LU) during 600 

seconds of simulation (left) and 308 – 323 seconds (right). 
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Figure 6.20 The derivative of deterministic energy of the power system (pU) during 600 

seconds of simulation (left) and 310 – 329 seconds (right). 

 

      7.4) An investigation of variation and distribution of Lu  

Theoretically, the positive value of Lu means the system will become unstable 

within a finite time. From (7.3), the component Lu (9) is investigated due to it always being 

positive and constant throughout the simulation period. Moreover, the Lu (9) consists of the 

deterministic variables which are more convenient for the power system stability analysis.   

To investigate Lu (9), the three cases of testing conditions are examined in which 

the Lu (9) has the same value at 25.0 but Lu (5), Lu (6), and total Lu is different depending 

up on the noise intensity (NI) and bandwidth (BW) of wind power. The Lu (9) is 

represented as follows: 

Lu (9) = 0.5 x Pmw x NI x (BW)2     Eq.6-36 

The simulation is done for 600 seconds with different conditions. From the results 

of simulation, the mean and standard deviation of Lu are determined and compare with the 

computation of Lu (9) using Eq.6-36. The testing conditions and the results are represented 

in Table 6.10 . From this table, for the cases C1 – C3, the mean Lu corresponds to the Lu 

(9) while the standard deviation of Lu corresponds to noise intensity. For Case1 – Case6, 

the mean Lu still corresponds to the Lu (9).  

However, it was found that the standard deviation of Lu (Std Lu) does not 

correspond to the noise intensity or even Lu (9). Therefore, it can be concluded that the 

standard deviation of Lu is not clearly related to the variation of wind power.  
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Table 6.10 The testing conditions and results of simulation to investigate Lu 

Case 
Wind Power  

(Pmw) 

Noise  

Intensity(NI) 

Bandwidth

(BW) 
Mean Lu Stdev Lu Lu (9) 

C1 1.0 0.5 10 22.76 17.47 25 
C2 1.0 0.25 Sqrt(200) 24.46 7.34 25 
C3 1.0 0.125 Sqrt(400) 24.84 3.65 25 

Case1 1.0 (Exc. P. = 0) 0.2 10 9.69 5.83 10 
Case2 1.0 (Exc. P. = 1) 0.2 10 9.69 5.76 10 
Case3 1.0 (Exc. P. = -1) 0.2 10 9.69 5.78 10 
Case4 0.4 (Exc. P. = 0) 0.2 10 3.94 2.35 4 
Case5 0.6 (Exc. P. = 0) 0.2 10 5.92 1.28 6 
Case6 0.8 (Exc. P. = 0) 0.2 10 7.84 1.77 8 
Exc. P. = Exchange Power between load bus and infinite bus 

 

 

Figure 6.21 Data distribution of Lu for the case C1 – C3 (left) and Case 1 – Case 6 (right) 

 

Data distribution of Lu for the cases C1 – C3 and Case1 – Case6 are compared as 

represented in Figure 6.21 . The variation and data distribution of Lu for the case C1 

(upper), C2 (middle), and C3 (lower) are also represented in Figure 6.22 . From these 

figures, the mean values of Lu are always positive which imply that the system will 

become unstable within finite time.  

In conclusion, the dominant components of Lu are component numbers 5, 6, and 9. 

Since the state variables of the system are varied randomly, the Lu comparing with the 

deviation of state variable is also random. The mean of total Lu is close to the value of Lu 

component number 9. However, the standard deviation of Lu is not clearly related to the 

standard deviation of mechanical wind power. It is found that, Lu cannot capture the 

different of Cases 1-3 when the exchange power between load bus and infinite bus is 

changed.   
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Figure 6.22 The variation (left) and data distribution (right) of Lu for the cases C1 (upper), 

C2 (middle), and C3 (lower) 

 

8) Verification of the results 

The results of section (7) are verified by comparing with the mean exit time from 

20 trials of simulation. The exit time of 6 different conditions are shown in Table 6.11 . It 

can be found from Table 6.11 that from Case 2 and Case 3, the exit time decreases with 

increasing noise intensity. Furthermore, exit time of Case 2 is less than of Case 3 which is 

correspond to the value of critical energy and the SSI in Figure 6.13. However, for the other 

cases, the exit time is longer than 3600 seconds and need more experiments to verify. For 
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Cases 4 (base case), 5, 6 and 1 in this section, when wind power increase 50%, 100%, and 

150%, the SSI decrease about 64%, 82%, and 89%, respectively, comparing with base case. 

The SSIs in this section are larger than the values in Section 6.1.2, but however, the 

percentage of decrease in SSI is larger.  

 

Table 6.11 The exit time (seconds) of six different conditions for DFIG WT with colored 

noise 

Variable 
Case 1 

(*) 
Case 2 

(.) 
Case 3 

(+) 
Case 4 

(o) 
Case 5 

() 
Case 6 

(�) 
PLoad 4 4 4 4 4 4 
Pm3 1.0 1.0 1.0 0.4 0.6 0.8 
Pm2 3.0 4.0 2.0 3.6 3.4 3.2 

PExchange 0.0 -1.0 1.0 0.0 0.0 0.0 
Critical E 

(Uc) 
2.436 0.077 1.874 1.417 1.735 2.075 

ET*, NI = 0.3 >3600 227.3 943.8 >3600 >3600 >3600 
ET, NI = 0.4 >3600 65.3 86.9 >3600 >3600 >3600 
ET, NI = 0.5 >3600 29.1 73.6 >3600 >3600 >3600 
SSI, NI = 0.3 8842 279.5 6802 80360 29150 14710 
SSI, NI = 0.4 3730 117.9 2870 33900 12300 6206 
SSI, NI = 0.5 1910 60.4 1469 17360 6297 3177 

* ET = Exit Time (average value of 20 trials of simulation), NI = Noise Intensity 

 

6.2 The Study of Effects of Wind Power on the Voltage Stability using New Stochastic 

Stability Method 

The voltage stability is the ability of the power system to control voltage when 

perturbed by any disturbances. For the dynamic power system, the deviation of voltage is 

related to the variation of reactive power depending on the characteristic and type of 

electric load as be described in Section 4.1.4.  This section will apply the dynamic load 

model including voltage deviation equation for the power system incorporating DFIG wind 

turbine. The colored noise of wind power and load are also modeled to represent the effects 

with more applicable than white noise model. 

6.2.1 The Stochastic Stability Index (SSI) applying for voltage stability analysis 

1) The power test system 

The power test system in this section is the same as Section 6.1.2. 

2) The stochastic differential equations (SDE) 

From Section 4.3.3, the stochastic differential equations of the power system in 

matrix form is 
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Eq.6-39 

Where Qlk (1- αqkqk) is the stochastic reactive power load, qk represents the colored noise 

applying to Qlk, αqk and qk are noise intensity and bandwidth of reactive power load, γqk is 

scaling factor of power load which is formulated using the method by C.O. Nwankpa and 

S.M. Shahidehpour (1991) as follows: 

2lk qk
qk lqk qk

k k

Q

V


  


       Eq.6-40 
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Furthermore, it is assumed that: 
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3) The well-defined energy function 

From Sections 4.4.4 and 4.8.3, the well-defined energy function of the power 

system and its derivative are: 
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4) The derivative of stochastic well-defined energy function 

From Section 4.8.3 and operating points are not close to the steady state values, the 

derivative of stochastic well-defined energy function is: 
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5) The stochastic stability index (SSI) 

By dividing the critical energy (Uc) with Lu’ (last three components of Lu) in Eq.6-

46, the time that the energy takes to reach the critical value can be perceived. This 

conceptual time is then called the Stochastic Stability Index (SSI): 

 u'cSSI U L      Eq.6-50 

6) The testing conditions 

The testing conditions are the same as in Section 6.1.2. From Table 6.12, the steady 

state value of speed and angle are represented according to 6 conditions. These steady state 

values are from the simulation using Eqs. 6-37 – 6-39. The power exchange (PExchange) is 
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calculated from the power load (Pload) minus the generation power (Pm3 + Pm2). The active 

power load is assumed constant. The bandwidth is assumed to be fixed at 1.0. 

Table 6.12 Testing conditions for voltage stability analysis 

Variable 
Case 1 

(*) 
Case 2 

(.) 
Case 3 

(+) 
Case 4 

(o) 
Case 5 

() 
Case 6 

(�) 
PLoad 4 4 4 4 4 4 
Pm3 1.0 1.0 1.0 0.4 0.6 0.8 
Pm2 3.0 3.5 2.5 3.6 3.4 3.2 

PExchange 0.0 -0.5 0.5 0.0 0.0 0.0 
x2s 0.587117 1.017949 0.239299 0.777726 0.702494 0.64083 
x3s 0.280651 0.552676 0.046355 0.117212 0.171878 0.22612 
x4s -2.7E-17 0.250562 -0.2265 -9.8E-17 -1.3E-16 -9.2E-17 
y2s 4.01E-14 -2.2E-14 -1.6E-18 4.86E-09 1.39E-10 1.91E-11 
y3s 0.199901 0.200094 0.199831 -0.03097 0.05714 0.132831 

 

7) The results 

      7.1) The results of critical energy computation 

In Table 6.13, the critical energy increases with increasing wind power. The critical 

energy of Case 2 is less than the other cases. However, the critical energy of Case 3 in this 

case is larger than Case 1 which is different from the results in previous section.    

      7.2) The results of SSI and Lu computation 

When assuming that all the derivative terms in Lu are very small and close to zero, 

the Lu and SSI can be computed from non-derivative terms and represented in Figures 6.23 

- 6.25, respectively. From Figure 6.23, it can be seen that, Lu increase gradually with 

increasing of wind power and its noise intensity. However, Lu of the Cases 1, 2, and 3 

(with the same wind power) are not different. From Figures 6.24 and 6.25, for the Cases 4 

– 6, the SSI decrease gradually with increasing of wind power and its noise intensity. For 

the Cases 1 – 3, the SSI of Case 2 is lowest, follows by Case 1 and Case 3, respectively. 

The SSIs in this section are agreed with the results in previous section but with the different 

scale of SSI. For this section, the critical noise intensities (NIC) in which SSI = tR 

(regulation time response is 10 minutes or 600 seconds) are >1.0, >1.0, 0.94, and 0.86 for 

the Cases 4, 5, 6, and 1, respectively. 
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Table 6.13 Critical energy of the test system for voltage stability analysis 

Unstable condition 1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

 2 3 4 2 3, , , ,s s s s sx x x y y x   3.115219 1.259305 3.881501 1.601228 2.128044 2.6292 

 2 3 4 2 3, , , ,s s s s sx x x y y x  4.357902 3.506202 4.175423 5.631103 5.234121 4.803396

 2 3 4 2 3, , , ,s s s s sx x x y y x  32.64797 24.95465 36.27428 30.58077 31.52095 32.18026

Unstable condition 2    

 2 3 4 2 3, , , ,s s s s sx x x y y  x   21.96478 23.25045 19.58946 24.2207 23.49087 22.73539

 2 3 4 2 3, , , ,s s s s sx x x y y  x  10.64109 9.789388 10.45861 8.144377 9.004032 9.829945

 2 3 4 2 3, , , ,s s s s sx x x y y  x  7.515232 - 11.14154 5.448024 6.38821 7.047518

Unstable condition 3    

 2 3 4, ,s s sx x x     x  22.47461 584.002 - 29.21134 27.91522 25.66381

Unstable condition 4    

2 3

4

,

,

s s

s

x x

x

 



       
   

x  - - - - - - 

Critical Energy (Minimum) 3.115219 1.259305 3.881501 1.601228 2.128044 2.6292 
* the negative  

 

Figure 6.23 The results of Lu computation with increasing noise intensity  

comparing between 6 testing conditions for voltage stability analysis 
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Figure 6.24 The results of log-SSI computation with increasing noise intensity (0-1.0)  

under 6 testing conditions for voltage stability analysis 

 

 

Figure 6.25 The results of SSI computation with increasing noise intensity (0.6-1.0)  

under 6 testing conditions for voltage stability analysis 

      7.3) An investigation of state variables, energy, and Lu from simulation 

For Case 2, noise intensity 0.8, bandwidth 10, and Trial no. 1, the 200 seconds of 

simulation reveals that the exit time is at the 148th seconds.  The electrical active and 

reactive power are represented in Figure 6.26.  The phase angle of synchronous generator 

(G2), DFIG wind turbine (G3), and load are represented in Figure 6.27. The angular speed 

of synchronous generator (G2) and DFIG wind turbine are represented also in Figure 6.27. 
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From Figure 6.26, at 69th second, the active wind power increases while the others 

decrease. The reactive powers are increase except the exchanged reactive power.  

 

 

Figure 6.26 Active power (y-axis, left) and reactive power (y-axis, right). 

For Figure 6.27, the phase angles are fluctuated and instantaneously reduce to zero 

within a few seconds. The angular speed of synchronous generator (Speed Syn. Gen.) is 

gradually jumped to reach maximum value and then back to zero while the angular speed 

of DFIG is suddenly decrease to become zero. However, an increase of Speed Syn. Gen. is 

beyond the limit at 0.02 p.u.  

 

 

Figure 6.27 Phase angle (y-axis, left) and angular speed (y-axis, right). 

Figure 6.28 represents the relative energy with its components and the derivative of 

stochastic energy (or Lu). For relative energy, the component numbers 10, 7, and 8 are the 

most significant, respectively. For the derivative of stochastic energy, the component 

numbers 6, 2, and 13 are most significant, respectively. It can be seen that, during 147th – 

148th seconds, Lu is clearly fluctuated and swing back to zero state within a few seconds. 



390 
 

   
 

 

Figure 6.28 Relative energy (y-axis, left) and derivative of stochastic energy or 

 Lu (y-axis, right). 

For Figure 6.29, during 147th – 148th seconds, the voltage on load bus decrease 

gradually and swing back until reach zero within a few seconds. At that time, the reactive 

power load increase vastly and then return back to zero finally. This situation is called 

Voltage Instability. 

  

 

Figure 6.29 Load voltage (p.u.) and reactive power (p.u.) on load bus 

 
8) Verification of the results 

The results of section (7) are verified by comparing with the averaged exit time 

from 20 trials of simulation. The exit time of six different conditions are shown in Table 

6.14 . It can be found from Table 6.14 that from Case 2, the exit time decrease with 

increasing of noise intensity. However, for the other cases, the exit time is longer than 3600 

seconds and need more experiments to verify. For Cases 4 (base case), 5, 6 and 1 in this 
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section, when wind power increase 50%, 100%, and 150%, the SSI decrease about 61%, 

79%, and 84%, respectively, comparing with base case. The SSIs and the percentage of 

decreasing of SSI in this section are less than the values in Section 6.1.3. However, the exit 

times are larger than the values in Section 6.1.3 which conflict with the results of SSI. 

 

Table 6.14 The exit times (ET) and SSI for DFIG wind turbine with colored noise 

Variable 
Case 1 

(*) 
Case 2 

(.) 
Case 3 

(+) 
Case 4 

(o) 
Case 5 

() 
Case 6 

(�) 
PLoad 4 4 4 4 4 4 
Pm3 1.0 1.0 1.0 0.4 0.6 0.8 
Pm2 3.0 3.5 2.5 3.6 3.4 3.2 

PExchange 0.0 -0.5 0.5 0.0 0.0 0.0 
Critical E. (Uc) 3.115219 1.259305 3.881501 1.601228 2.128044 2.6292 
ET (s), NI = 0.6 >3600 2523.3 >3600 >3600 >3600 >3600 
ET (s), NI = 0.8 >3600 699.4 >3600 >3600 >3600 >3600 
ET (s), NI = 1.0 >3600 79.1 >3600 >3600 >3600 >3600 
SSI (s), NI = 0.6 1761 571.4 1413 11350 4470 2330 
SSI (s), NI = 0.8 742.9 241 596.3 4789 1886 982.9 
SSI (s), NI = 1.0 380.4 123.4 305.3 2452 965.5 503.2 

ET is Exit Times which are averaged from 20 trials of simulation 

 

6.3 The Study of Effects of Wind Power on Voltage Variation using Probabilistic 

Method 

The effects of wind power on the power quality, especially voltage, will be 

determined using the probabilistic method called Monte Carlo Simulation (MCS). There 

are two main topics that are studied: (1) the effects of wind power with stochastic noise on 

load voltage, and (2) the effects of different noises on load voltage. 

6.3.1 The effects of wind power with colored noise on load voltage 

1) Testing conditions 

The testing conditions in this section are the same as in Section 6.2 in Table 6.12. 

The additional conditions are the three cases of colored noise conditions. First, the noise 

intensity (NI) 0.6 and bandwidth (BW) 10. Second, NI 0.3 and BW 10. Third, NI 0.3 and 

BW 1.0. 

2) The stochastic differential equations (SDE) 

The SDEs in this section are the same as Eqs. 6-37 to 6-39.  
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3) The results 

 

Table 6.15 The statistical results of voltage on load bus 

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
Load 4 4 4 4 4 4 
Pm3 1.0 1.0 1.0 0.4 0.6 0.8 
G2 3.0 3.5 2.5 3.6 3.4 3.2 

balance (PmG) 0.0 -0.5 0.5 0.0 0.0 0.0 
x2s 0.587117 1.017949 0.239299 0.777726 0.702494 0.64083 
x3s 0.280651 0.552676 0.046355 0.117212 0.171878 0.22612 
x4s -2.7E-17 0.250562 -0.2265 -9.8E-17 -1.3E-16 -9.2E-17 
y2s 4.01E-14 -2.2E-14 -1.6E-18 4.86E-09 1.39E-10 1.91E-11 
y3s 0.199901 0.200094 0.199831 -0.03097 0.05714 0.132831 

NI 0.6 BW 10      
Vload Avg 1.028 0.947 1.060 0.977 1.001 1.018 
Vload Max 1.032 0.958 1.061 0.977 1.002 1.020 
Vload Min 1.021 0.927 1.058 0.976 1.000 1.014 

Vload Stdev 0.0019 0.0058 0.0005 0.0001 0.0004 0.0010 
NI 0.3 BW 10      

Vload Avg 1.031 0.956 1.061 0.977 1.002 1.019 
Vload Max 1.032 0.959 1.061 0.977 1.002 1.020 
Vload Min 1.030 0.952 1.060 0.977 1.002 1.019 

Vload Stdev 0.0004 0.0012 0.0001 0.0000 0.0001 0.0002 
NI 0.3 BW1      

Vload Avg 1.031 0.956 1.061 0.977 1.002 1.019 
Vload Max 1.032 0.959 1.061 0.977 1.002 1.020 
Vload Min 1.030 0.952 1.060 0.977 1.002 1.019 

Vload Stdev 0.0004 0.0012 0.0001 0.0000 0.0001 0.0002 

 

 

Figure 6.30 The average (left) and standard deviation (right) of voltage on load bus 

 

From Table 6.15 and Figure 6.30, for Cases 4 – 6, averaged voltage and its standard 

deviation increase with increasing wind power. The average value of voltage seems to 

rarely relate to noise intensity and bandwidth of wind power. However, the standard 
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deviation of voltage is clearly related to the noise intensity of wind power. The bandwidth 

has no effect on both average and standard deviation of voltage. 

For Cases 1 – 3, the voltage is dropped when power is transfer to infinite bus while 

increase when power transfer from infinite bus. It is found that, the standard deviation act 

in the opposite way of the average voltage. The standard deviation of voltage, for this case, 

is strongly related to the noise intensity of wind power. The bandwidth of wind power has 

no effect on both average and standard deviation of voltage. 

6.3.2 The effects of various noise conditions on load voltage 

For the 200 trials of simulation, the testing conditions and statistical results of 

voltage on load bus are represented in Table 6.16. The wind power and power load are in 

Figure 6.31. 

Table 6.16 The testing conditions for the effects of various noise conditions on load 

voltage 

Variable Case T1 Case T2 Case T3 Case T4 Case T5 All 1 All 2 
PLoad 4 4 4 4 4 4 4 
Pmw 1.0 1.0 1.0 1.0 0-1 0-1 1.0 
Pmi 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Pexchange 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
QLoad 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

NI,BW Pmw 0.1,10 - - 0.1,0.1 - 0.1,10 0.1,10 
NI,BW PLoad - 0.025,0.1 - - - 0.025,0.1 0.025,0.1 
NI,BW QLoad - - 0.1,0.1 - - 0.1,0.1 0.1,0.1 
Weibull WS - - - - yes yes - 

        
Vload Avg 1.0320 1.0303 1.0319 1.0320 1.0252 1.0228 1.0303 
Vload Max 1.0322 1.0320 1.0336 1.0322 1.0388 1.0482 1.0332 
Vload Min 1.0318 1.0151 1.0299 1.0318 1.0156 0.8954 1.0150 

Vload Stdev 71x10-6 2466x10-6 710 x10-6 68 x10-6 8398x10-6 20415 x10-6 2503 x10-6 

 

The Weibull WS is the case when wind power is not constant, but varied by wind 

speed. The wind speed is modeled using the Weibull distribution with scale parameter 8.0 

and shape parameter 2.0 . The wind power is computed using this wind speed and the 

power curve from manufacturer as represented in section 3.1.1 . The system equations are 

the same as previous section for Eqs.6-37 to 6-39.  

From Table 6.16 and Figure 6.32, for the cases T2, T3 and T4, the standard 

deviation of three cases are not different. However, the variation of power load of the case 

T2 is most influence to the voltage on load bus.  When Weibull wind speed is applied in 
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case T5, the deviation of voltage become much more significant. When all noises are 

applied, the voltage is deviated seriously with the value between 0.895 – 1.048 p.u. From 

the case T1 and T4, the bandwidth of wind power noise has no significant effect on the 

voltage of the load bus.   

 

 

 

Figure 6.31 The data distributions of wind power, active and reactive power loads, and 

wind speed for the cases T1 – T5  
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Figure 6.32 The data distribution of voltage for the cases T1 – T5 (left) and All 1 (right) 

 

The data distributions of voltage on load bus are represented in Figure 6.33 .  

 

 

Figure 6.33 The data distribution of voltage for the cases T1 – T5 (left) and  

cases All 1 – All 2 (right) 

In conclusion, when the power load is constant, the variation of wind power has 

significant effect on the voltage of load bus. The voltage increases with increasing wind 

power but decrease with increasing of power transfer to infinite bus. However, when power 

load is not constant, the variation of power load has more influence to voltage than wind 

power even at the same scale of fluctuation.   



CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusions 

This thesis can quantitatively assess the effects of stochastic wind energy on the 

stability of the power system using stochastic analytical method. The performance index, 

called the stochastic stability index (SSI), is developed in this thesis based on the theory of 

stochastic stability. To determine SSI, several processes have to be done consisting of the 

determination of steady state variables, estimation of well-defined energy function and 

critical energy, and formulation of stochastic differential equations.  

Characteristics of wind speed and wind power 

From the measured wind speed data in Thailand, it was found that the wind speed 

distribution can be approximated by Weibull’s distribution and noise wind speed 

(instantaneous – mean value) can be approximated by Generalized Gaussian Distribution 

(GGD). The wind power distribution of one turbine cannot be classified into any type of 

distribution. However, for many turbines with diversity of geographical area, the wind 

power distribution can be approximated using Normal distribution. The power spectral 

densities (PSD) of wind speed and wind power decrease with increasing of frequency. The 

majority parts of PSD occur within 0-500 mHz (the low frequency). The wind power with 

frequencies higher than 500 mHz have small contribution. Therefore, it is possible to 

approximate the wind power of many turbines using Gaussian distribution white noise and 

colored noise models. 

The characteristics of power system incorporating wind power 

The simulation of two machines infinite bus power system (TMIB) incorporating 

aggregated wind turbine is done in this section using PSCAD. It was found that when wind 

power increased without noise, the power angle of the nearby synchronous generator (SG) 

decreased, while the rotor speed increased with oscillation (frequency about 750 mHz) 

until reaching new steady state values. When the voltage of transmission line decrease 

from 500kV to be 230 kV, the oscillations of power angle and rotor speed are diverge 

continuously which is the condition of instability. When noise of wind power is applied, 

the standard deviation of noise has more influence to power angle and rotor speed of 

nearby SG than its frequency. However, if frequency of wind power noise is close to the 
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hunting frequency (frequency about 750 mHz for this study) of nearby SG, the magnitude 

of oscillation of power angle and rotor speed will be largely due to the resonance effect.  

A study of effects of wind power to the small signal stability using the eigenvalue 

method 

 For both squirrel cage induction generator (SCIG) and doubly-fed induction 

generator (DFIG) wind turbines, when the wind speed increases, the speed deviation, 

power output, current and power factor increase, but bus voltage decreases. The real parts 

of eigenvalues increase (move from negative to close to zero) with increasing of angle of 

internal voltage and decreasing of stator voltage. The imaginary parts of eigenvalues 

decrease with increasing of reference voltage, transmission line reactance, and angle of 

internal voltage and decreasing of stator voltage. Therefore, for a single wind turbine 

connecting to an infinite bus, when wind speed and wind power increase, the angle of 

internal voltage also increase causing the real parts of eigenvalues to increase and 

imaginary parts of eigenvalues to decrease.  

For multi-machine power system, including DFIG wind turbine, the significant 

eigenvalues (eigenvalues that closer to zero) decrease with increasing wind power, and 

decreasing of main synchronous generator, which means that the wind power can improve 

small signal stability of the power system. Moreover, it is found that the significant 

eigenvalues are mostly influenced by speed deviation (or slip) of DFIG wind turbine and 

follows by the speed deviation of synchronous generator. It can be implied from the results 

that when wind power increase to substitute the power from other conventional power 

plants without excess power, the small signal stability of the system is improved. 

A study of effects of wind power to the small signal stability using stochastic 

stability method: the mean first passage time (MFPT)         

The mean first passage time (MFPT) is the performance index to quantify the 

average time a state-space trajectory takes to change from a given operating point to the 

boundary of its domain of attraction under the influence of small perturbations. To 

compute MFPT, several processes have to be done consisting of the determination of 

steady state variables, estimation of critical energy, and formulation of stochastic 

differential equations. 

Considering wind speed data from the Chumporn monitoring station, the cases 

when noise intensity is larger than 3.4, 0.88, 0.38, 0.24, and 0.18 with mean wind speed 6, 

8, 10, and 12 m/s, respectively, are seriously considerable and can possibly lead the system 
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to be unstable within a short time (MFPT less than time constraint of regulation or control 

system 10 minutes). These serious conditions that occur during April – May and Nov – 

Dec which the monsoon has much influence in that area. 

However, this result is based on an assumption that wind power is a Gaussian white 

noise and the power system is unregulated which is not practical. The dynamics with 

regulation system needs an improvement of the stability index. Furthermore, the energy 

function, for MFPT solution, is an approximated value which has ellipsoidal surface shape. 

It cannot represent the complex surface problems, for example, the energy of the power 

system when incorporate DFIG wind turbine model. Therefore, an improved method is 

developed in this thesis to overcome these problems. 

The Study of Effects of Wind Power to the Small Signal Stability using New 

Stochastic Stability Method 

- The derivative of stochastic energy (DSE) with Gaussian distribution white 

noise model 

To quantitatively evaluate the effects of stochastic wind power to the power system, 

the derivative of stochastic energy (DSE) is formulated and used as a stability performance 

index. The stable condition of the stochastic system is DSE < 0, therefore, the larger DSE 

means the system has higher probability to become unstable.  

For TMIB power system incorporating aggregated SCIG wind turbines with 

Gaussian distribution white noise, it was found that the DSE gradually increases with 

increasing wind power and its noise intensity. For the power flow of the test system with 

Load: Wind Power: power from SG is 4: 2: 2 p.u., when DSE is zero or critically stable, the 

critical noise intensities at wind power 0.5, 1.0, and 2.0 p.u., are about 0.09, 0.045, and 

0.0225, respectively. Therefore, the critical noise intensities of wind power are linearly 

inverse to the changing of wind power.  

From the simulation, the small but continuous fluctuation of wind power can finally 

cause the system to become unstable due to loss of synchronism. For example, if noise 

intensity increases 1.5 times, the exit time (the time when the rotor speed increase beyond 

the limited value and the system become unstable) decreases 0.52 times and DSE increase 

5.2 times. If wind power increases 0.5 times, the exit time decreases 0.73 times and DSE 

increase 1.25 times. The DSE is corresponded to the inverse of exit time. Therefore, the 

stability of the power system, which is measured by the exit time and DSE, decreases with 

increasing of wind power and its noise intensity.  
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- The study of the effects of stochastic wind power and stochastic load using DSE 

For the SMIB (single machine infinite bus) power system with SCIG wind turbine, 

an increasing of noise intensity of both wind power and load causes the DSE to increase 

and the system possibly becomes progressively unstable. When only stochastic load is 

represented (fix wind power), the larger load voltage and smaller frequency dependent 

coefficient causes the larger DSE. When only stochastic wind power is represented (fix 

power load), the larger share of wind power leads to larger DSE and an increasing of 

frequency dependent coefficient causes the critical noise intensity to decrease which causes 

the system less stable. 

From these studies, the DSE gives an alternative idea for the stability analysis of the 

power system incorporating stochastic wind power without computational effort. 

Furthermore, it can be implied that, to avoid system instability, the mechanical wind power 

should be limited by its noise intensity using DSE to be as a stability performance 

evaluation index.  

- The stochastic stability index (SSI) with Gaussian distribution white noise 

model 

In this section, a new stability performance index is formulated from the critical 

energy divided by the non-derivative components of the derivative of stochastic energy 

(which is not dependent on state variables) and is called the Stochastic Stability Index 

(SSI). This SSI is improved from the previous section (DSE), and has the same concept 

with the mean first passage time (MFPT) which is the performance index to quantify the 

averaged time a state-space trajectory takes to change from a given operating point to the 

boundary of its domain of attraction under the influence of small perturbations. 

From the results, SSI decreases with increasing noise intensity of wind power. For 

the TMIB power system incorporating DFIG wind turbine with Gaussian distribution white 

noise, when wind power increases, the critical energy increases while the SSI decreases, 

which means that the power system becomes less stable. This result is opposite to the 

deterministic method (Ex. eigenvalue analysis method) in which the power system is more 

stable when wind power increases. For example, assumes the critical regulation time 

response (tR) of the power system is 10 minutes (600 seconds), the critical noise intensities 

(NIC) of wind power in which SSI equal to tR are 0.88, 0.67, 0.54, and 0.26 for wind power 

0.4, 0.6, 0.8, and 1.0 p.u., respectively. If noise intensity is greater than NIC , the SSI will 
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less than tR and the power system is possibly unstable before the regulation system can 

completely take action. 

Compared to the exit time from the simulation, when there is exchanged power 

(export to or import from infinite bus), the exit time decreases with increasing of noise 

intensity of wind power which is corresponded to the value of SSI. Furthermore, the exit 

time when export power is less than when import power which is corresponded to the value 

of critical energy and the SSI. Moreover, when wind power increases by 50%, 100%, and 

150%, the SSI decreases by about 56%, 75%, and 84%, respectively, compared with the 

base case where wind power is 0.4 p.u.. However, when there is no exchanged power, even 

the simulation time is longer than 1000 seconds and noise intensity is 1.0, the system still 

be stable and need more studies to verify.  

- The stochastic stability index (SSI) with Gaussian distribution colored noise 

model 

When applying the Gaussian distribution colored noise model, which is more 

practical and can be adjusted depending on bandwidth, the larger bandwidth results in 

being closer to the effect of white noise. The results conform to the case when applying the 

white noise model, but with the different values of SSI. For this condition (colored noise 

with bandwidth 1.0), the critical noise intensities (NIC) in which SSI equal to tR (600 

seconds) are >1.0, >1.0, 0.87, and 0.74 for wind power 0.4, 0.6, 0.8, and 1.0 p.u., 

respectively. When wind power increase 50%, 100%, and 150%, the SSI decrease about 

64%, 82%, and 89%, respectively, comparing with base case which wind power is 0.4 p.u. . 

The percentage of decreasing of SSI when apply colored noise are larger than the values 

when apply white noise. 

Moreover, it was found that the mean value of derivative of stochastic energy (Lu) 

is corresponded to the non-derivative components of Lu (which is not depended on state 

variables and is used to compute SSI). If there is exchanged power, the standard deviation 

of Lu is corresponded to noise intensity of wind power but not for the case when there is no 

exchanged power. Therefore, it can be implied that the standard deviation of Lu is not 

clearly related to the variation of wind power. 

Therefore, the SSI can quantitatively reveal the effects of increasing wind power 

and its noise intensity to the power system stability. When the stochastic wind power 

increase, SSI will decrease and the system is less stable, especially, when there is 



401 
 

   
 

exchanged power to or from an infinite bus. The results of SSI are corresponded to the exit 

time from the simulation.  

The wind turbine induction generator model (using aggregated DFIG and SCIG 

wind turbines) is included in the formulation of the energy function and to the SSI.  

Increasing noise intensity of both wind power and load causes the stochastic stability index 

to increase and the system become unstable progressively.  

To maintain the synchronization of the system, the wind power generation should 

be limited at an appropriate value for a given noise intensity. This index gives an 

alternative idea for power system stability analysis by stochastically incorporating the wind 

power. This stochastic stability analysis method can analyze the nonlinear and stochastic 

power system stability with less time and computational effort. 

The Study of Effects of Wind Power to the Voltage Stability using New Stochastic 

Stability Method 

In this section, the SSI is applied to study the effects of wind power to voltage 

stability of the power system. The dynamic load model with voltage deviation equation 

(load voltage is not constant) is included in the power system equations incorporating 

DFIG wind turbine using the colored noise model of wind power.  

The SSI increases with increasing wind power and its noise intensity, which agree 

with the results in the previous section, but with the different values of SSI. For this 

section, the critical noise intensities (NIC) in which SSI equal to tR (600 seconds) are >1.0, 

>1.0, 0.94, and 0.86 for wind power 0.4, 0.6, 0.8, and 1.0 p.u., respectively. Moreover, the 

SSI of the case when import power from infinite bus is larger than the case when export 

power. It can be implied that when apply voltage deviation equation, the power system is 

less stable when there is excess power exported to an infinite bus.  

From the simulation results, when there is excess power exported to an infinite bus, 

the mean exit time decrease with increasing of noise intensity which corresponds to the 

results of SSI. However, for the other cases, the exit time is longer than 3600 seconds and 

need more experiments to verify. Furthermore, it is found that at the exit time, the load 

voltage is sharply decline while the reactive power of load vastly increases and both are 

return to zero after that.  

If wind power increase 50%, 100%, and 150%, the SSI decrease about 61%, 79%, 

and 84%, respectively, comparing with base case. The percentages of decreasing of SSI in 

this section are less than the values in previous section when the load voltage is fixed. 
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The Study of Effects of Wind Power to Voltage Variation using Probabilistic 

Method 

In this section, the effects of wind power to the power quality, especially voltage, 

are determined using probabilistic method called Monte Carlo Simulation (MCS).  

When there is no exchanged power, the mean load voltage and its standard 

deviation increase with increasing wind power, but the mean load voltage seems to rarely 

relate to noise intensity and bandwidth of wind power. However, the standard deviation of 

load voltage is clearly related to the noise intensity of wind power. The bandwidth has no 

effect to both average and standard deviation of voltage. 

When there is exchanged power, the mean load voltage is dropped when power is 

transferred to infinite bus, while increasing when power is transferred from infinite bus. It 

was found that the standard deviation of the load voltage changes in the opposite way of 

the mean value. The standard deviation of voltage, for this case, is strongly related to the 

noise intensity of wind power. The bandwidth of wind power has no effect on both mean 

and standard deviation of load voltage. However, when applying Weibull wind speed 

instead of Gaussian distribution, the deviation of voltage become much more significant. 

Moreover, when the power load is not constant, the variation of power load has more 

influence on the voltage than does the wind power even at the same scale of fluctuation. 

7.2 Future Studies 

The wind turbine model may be improved in future studies for more accurate 

results. The following topics should also be analyzed: the voltage stability index, the power 

quality evaluation, the different type of wind power and noise models, the different 

location, and the real data of wind power and the power system. 

Several results need more analysis. For example, the different between exit time 

and SSI when there is no exchanged power and the case when apply voltage deviation 

equation, the power system is less stable when there is excess power exported to an infinite 

bus. Many other variables such as bus voltage, phase angle, machine parameters, etc. 

should be investigated and explained physically in the future work compared with the 

deterministic methods. 
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APPENDIX 

Appendix A: The identification of coefficients 1C , C2, and 3C  

To identify 1C , C2, and 3C , we have to determine the coordinate system transformation, 

derivations of 1C , C2, and 3C , and finally general solution and asymptotic solution of 

MFPT. 

A1. Coordinate system transformation 

For simplicity, the integral equations of the Cartesian coordinate system of C1, C2, 
C2 in Eq.2-61 will be transformed in to polar coordinate system with multiple dimensions 
or system variables. 

For example, the transformation from Cartesian into a spherical coordinate system with 3 
dimensions (variables) and 4 dimensions (variables).  

ݖ ൌ ݎ cos  ߠ

ݔ ൌ ݎ sin ߠ cos ∅ 

ݕ ൌ ݎ sin ߠ sin ∅ 

ݎ ൌ ඥݔଶ ൅ ଶݕ ൅  ଶݖ

 

ଵݔ ൌ ݎ cos  ଵߠ

ଶݔ ൌ ݎ sin ଵߠ cos  ଶߠ

ଷݔ ൌ ݎ sin ଵߠ sin ଶߠ cos  ଷߠ

ସݔ ൌ ݎ sin ଵߠ sin ଶߠ sin  ଷߠ

ݎ ൌ ටݔଵ
ଶ ൅ ଶݔ

ଶ ൅ ଷݔ
ଶ ൅ ସݔ

ଶ 

In the case of the system with 2n+m-1 dimensions or variables, the coordinate 
transformation will become: 
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

   Eq. A-1 
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The energy function from Eq.2-34 is a complicated surface function which cannot 
easily be used for the solution of problem in Eq.2-60. This problem can be achievable 
derived when the integrals terms are represented in the form of polar coordinate system. 
First of all, an approximate energy function basing on ellipsoidal surface is represented as 
in Eq.2-62 [C.O. Nwankpa, 1990].  

An ellipsoidal surface energy function is then transformed into a standard form as 
follows: 

 T TW
 

  
 

z
z y H

y
      Eq. A-2 

Where H is a partitioned diagonal (2n+m-1)x(2n+m-1) matrix, y is n vector functions of y 
and z is n+m-1 vector functions of z. Thus, H can be written in the form: 

1

2

0

0

 
  
 

H
H

H
      Eq. A-3 

Where H1 is a (n+m-1)(n+m-1) matrix and H2 is a nn matrix as follows 
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    Eq. A-4 

If  n = 3 and m = 5, therefore H1 and H2 of the energy function is  

1

2 2

3

0 0

0 0

0 0

M

M
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 
   
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H      Eq. A-5 



 

 

413

 

3 

 

 



414 
 

   
 

From Eq. A-2, if we define   
 

 
 

z
Rv

y
      Eq. A-7 

Where R is (2n+m-1)x(2n+m-1) matrix the same with H and v is (2n+m-1) vector of new 
state variables. Placing Eq. A-7 into Eq. A-2, we can write  

T TW  v R HRv       Eq. A-8 

To simplify Eq. A-8, we assume R is a partitioned diagonal matrix which is the same as H 
and R is also orthogonal of H. Thus RT = R-1 and from the rule of eigenvalues as a diagonal 
matrix, we know that 

1

21

2 1

0 0

0 0

0 0

T

n m
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   


    Eq. A-9 

Where N is a diagonal matrix for which elements are eigenvalue, i . For this case, R is a 

matrix consisting of a set of eigenvectors of H corresponding to each .  

If we state that N = N*N* when 
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2

2 1
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0 0 n m
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    Eq. A-10 

Therefore, placing into Eq. A-8, we can write 

T TW   v N N v A A      Eq. A-11 

Where   N v A  and thus  

1 1 1

2 22
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
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

   Eq. A-12 

Where i i ia v  . The Eq. A-11 can be represented in the form as follows 

2 2 2 2 2 2
1 2 2 1 1 1 2 2 2 1 2 1... ...T

n m n m n mW a a a v v v               A A    Eq. A-13 

From Eq. A-1, if we replace xi with ai from Eq. A-13, then 
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2 2 2
1 2 2 1... n mr a a a W          Eq. A-14 

Thus, the polar coordinate system can be constructed as follows: 
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  Eq. A-15 

The Jacobian matrix of multi-variables polar coordinate system can be computed as [Wendell 
Fleming, 1977]: 

      
2 2

2 3 2 4
1 2 2 3sin sin ... sin

n m
n m n m

n mJ W   
 

   
     Eq. A-16 

Then, the surface elements of this multi-variables polar coordinate system is given by: 

1 2 2 2d d d ...d n ms J           Eq. A-17 

Furthermore, z and y in Eq. A-7 can be transformed into A by this following step: 

From Eq. A-11, multiply by (N*)-1 to become 

  1v N A        Eq. A-18 

If we multiply Eq. A-12 by R and use the result of Eq. A-18, we will get: 

  1  
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 

z
Rv R N A

y
     Eq. A-19 

Since H is a partitioned diagonal (2n+m-1)x(2n+m-1) matrix, thus R and N are also 
partitioned diagonal matrix in the form: 

1
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0
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R
R

R
 and  1

2

0
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N

N
   Eq. A-20 

Where R1 and N1 are (n+m-1)(n+m-1) matrix while R2 and N2 are nn matrix. 

From Eq. A-19, the standard form of z and y in Eq. A-7 can be represented in the following 
form 
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      Eq. A-21 
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A2. Derivations of 1C , C2, and 3C   

To determine   
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A3. General solution and asymptotic solution of MFPT 

clear all 
close all 
clc; 
  
t = 10; 
nim = 0.2; 
a = 0; 
  
%%% Case1 WS = 6 m/s Vary NI 
V = [0.998  1.000  1.002  1.011  0.992 0.998  1.000  1.002]; %%%% Assume 
Internal voltage is the same with terminal voltage %%%%% 
P = [9.410  0.05 1.606 0  10.786];  
xs = [0.330 -0.454 0.0 -0.073 -0.455 0.330 -0.454 0.0]; %%%% Assume 
internal angle is not affected by internal impedance of machine %%%%% 
Wc = 2.036 ; %%%%% Critical energy from simulation and calculation 
for i = 1:1:t 
NI(i) = (nim*(a+(t-a)*i/t))/t ; %%%%%%%%%%%%% Noise intensity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
MFPTc1(i) = MFPT2(xs,V,P,Wc,NI(i)); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%% Case2 WS = 8 m/s Vary NI 
V = [0.998  0.996  1.002  1.012  0.995 0.998  0.996  1.002]; %%%% Assume 
Internal voltage is the same with terminal voltage %%%%% 
P = [9.410  0.219 1.436 0 10.841];  
xs = [0.340 -0.375 0.0 -0.066 -0.440 0.340 -0.375 0.0]; %%%% Assume 
internal angle is not affected by internal impedance of machine %%%%% 
Wc = 2.173 ; %%%%% Critical energy from simulation and calculation 
for i = 1:1:t 
NI(i) = (nim*(a+(t-a)*i/t))/t ; %%%%%%%%%%%%% Noise intensity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
MFPTc2(i) = MFPT2(xs,V,P,Wc,NI(i)); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%% Case3 WS = 10 m/s Vary NI 
V = [0.998  0.969  1.002  1.012  0.994 0.998  0.969  1.002]; %%%% Assume 
Internal voltage is the same with terminal voltage %%%%% 
P = [9.410  0.526 1.101 0  10.826];  



418 
 

   
 

xs = [0.356 -0.248 0.0 -0.051 -0.413 0.356 -0.248 0.0]; %%%% Assume 
internal angle is not affected by internal impedance of machine %%%%% 
Wc = 2.35 ; %%%%% Critical energy from simulation and calculation 
for i = 1:1:t 
NI(i) = (nim*(a+(t-a)*i/t))/t ; %%%%%%%%%%%%% Noise intensity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
MFPTc3(i) = MFPT2(xs,V,P,Wc,NI(i)); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%% Case4 WS = 12 m/s Vary NI 
V = [1.001  0.939  1.005  1.015  0.988 1.001  0.939  1.005]; %%%% Assume 
Internal voltage is the same with terminal voltage %%%%% 
P = [9.410  0.674 0.866 0  10.747];  
xs = [0.366 -0.194 0.0 -0.063 -0.418 0.366 -0.194 0.0]; %%%% Assume 
internal angle is not affected by internal impedance of machine %%%%% 
Wc = 2.576 ; %%%%% Critical energy from simulation and calculation 
for i = 1:1:t 
NI(i) = (nim*(a+(t-a)*i/t))/t ;%%%%%%%%%%%%% Noise intensity 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
MFPTc4(i) = MFPT2(xs,V,P,Wc,NI(i)); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xlswrite('MFPT_varyWS.xls',[NI(:),MFPTc1(:),MFPTc2(:),MFPTc3(:),MFPTc4(:)])
; 
 

 
function [MFPT] = MFPT2(xs,V,P,Wc,NI) 
  
%NI = Noise intensity  
%V = Assume Internal voltage is the same with terminal voltage  
%P = is active power of the system 
%Q = is reactive power of the system 
%xs =Assume internal angle is not affected by internal impedance of machine 
%ys = [0 0 0]; in steady state rotor speed 
%Wc = Critical energy from simulation and calculation  
  
%%% 1. Case 1 Wind Power Incorporating SMIB 
%%% 1.1 System data and configuration 
M = [3.117 5 1000]; %%%%%%%%%%% Inertia of Machine %%%%%%%%% 
D = [0.03*M(1) 0 0.03*M(3)]; %%%%%%%%%%% Damping part of Machine %%%%%%%% 
cf = 0.05 ; % frequency coefficient 
Pbs = 100 ; % Base power 100MVA 
Vbs = 500 ; % Base Voltage 500 kV 
n = 3 ; % Number of Generation Machine = 3 
m = 5 ; % Number of all bus = 5 
B = zeros([n+m n+m]); % Susceptance matrix 
H1 = zeros([n+m-1 n+m-1]); % Susceptance matrix 
H2 = zeros([n n]); % Susceptance matrix 
H01 = zeros([n+m-1 n]);  
H02 = zeros([n n+m-1]); 
D1 = zeros([n+m-1 n+m-1]); 
D3 = zeros([n n]); 
R1 = zeros([n+m-1 n+m-1]); 
R2 = zeros([n n]); 
N1 = zeros([n+m-1 n+m-1]); 
N2 = zeros([n n]); 
B(1,4) = 6.667; 
B(2,5) = 6.667; 
B(3,4) = 3.075; 
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B(4,5) = 25.0; 
B(4,1) = B(1,4); 
B(5,2) = B(2,5); 
B(5,4) = B(4,5); 
B(4,3) = B(3,4); 
B(1,1) = -6.667; 
B(2,2) = -6.667; 
B(3,3) = -3.075; 
B(4,4) = -34.78; 
B(5,5) = -31.67; 
B(1,6) = 0.3; %%%%%%%% Internal Susceptance of Machine 1 %%%%%%%%%%%% 
B(2,7) = 0.03; %%%%%%%% Internal Susceptance of Machine 2 %%%%%%%%%%% 
B(3,8) = 0.6; %%%%%%%%%% Internal Susceptance of Machine 3 %%%%%%%%%% 
B(6,1) = B(1,6); 
B(7,2) = B(2,7); 
B(8,3) = B(3,8); 
D11 = 0; 
D12 = 0; 
D13 = 0; 
D14 = 0; 
C1 = 0; 
C2 = 0; 
C3 = 0; 
intgl = 0; 
ns = P(2)*NI/sqrt(2*M(2)) ; % noise scale 
  
%%% 1.2 Find stable equilibrium points %%%% 
  
%%% 1.3 Construct matrix H 
% For H1 
for i = 1:1:m+n-1 
    for j = i:1:m+n-1 
    if i==j 
        for k = 1:1:m+n 
            if i ~= k 
            H1(i,j) = H1(i,j)+0.5*cos(xs(i)-xs(k))*V(i)*V(k)*B(i,k); 
            end 
        end 
    else 
        H1(i,j) = -0.5*cos(xs(i)-xs(j))*V(i)*V(j)*B(i,j); 
        H1(j,i) = H1(i,j); 
    end 
    end 
end 
% For H2 
for i = 1:1:n 
    for j = i:1:n 
    if i==j 
        H2(i,j) = M(i); 
    else 
        H2(i,j) = 0; 
        H2(j,i) = H1(i,j); 
    end 
    end 
end 
H = [H1 H01 
    H02  H2]; 
  
%%% 1.4 Find eigenvalues & eigenvectors of matrix H 
[R N] = eig(H); 
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for i = 1:1:m+n-1 
    for j = i:1:m+n-1 
       R1(i,j) = R(i,j);  
       N1(i,j) = sqrt(N(i,j));  
    end 
end 
  
for i = 1:1:n 
    for j = i:1:n 
       R2(i,j) = R(i+n+m-1,j+n+m-1);  
       N2(i,j) = sqrt(N(i+n+m-1,j+n+m-1)); 
    end 
end 
  
%%% 1.5 Construct matrix D 
% For D1 
for i = 1:1:n+m-1 
    for j = i:1:n+m-1 
        for r = 1:1:n+m 
            for h = 1:1:n+m 
               D11 = D11 + cos(xs(2)-xs(r))*cos(xs(2)-
xs(h))*V(r)*V(h)*B(2,r)*B(2,h) ;  
            end 
        end 
        D11 = D11*ns*V(2)*V(2) ;  
         
        D12 = ns*V(i)*V(j)*cos(xs(i)-xs(2))*cos(xs(j)-
xs(2))*V(2)*V(2)*B(i,2)*B(j,2) ; 
         
        for r = 1:1:n+m 
            D13 = D13 + cos(xs(2)-xs(r))*cos(xs(j)-
xs(2))*V(r)*V(2)*B(2,r)*B(j,2) ;  
        end 
        D13 = D13*ns*V(2)*V(j) ;    
         
        for h = 1:1:n+m 
            D14 = D14 + cos(xs(i)-xs(2))*cos(xs(2)-
xs(h))*V(2)*V(h)*B(i,2)*B(2,h) ;  
        end 
        D14 = D14*ns*V(i)*V(2) ;   
         
        D1(i,j) = D11 + D12 - D13 - D14 ; 
         
    end 
end 
% For D3 
for i = 1:1:n 
    for j = i:1:n 
    if i==j 
        D3(i,j) = D(i)*M(2); 
    else 
        D3(i,j) = 0; 
        D3(j,i) = D3(i,j); 
    end 
    end 
end 
  
%%% 1.6 Construct matrix F 
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F1 = inv(N1)*transpose(R1)*D1*R1*inv(N1); 
  
F3 = inv(N2)*transpose(R2)*D3*R2*inv(N2); 
  
%%% 1.7 Compute C 
for i = 1:1:n+m-1 
    C1 = C1 + F1(i,i); 
end 
C1 = 0.5/(n+m)*C1 ; 
  
for i = 1:1:n 
    C3 = C3 + F3(i,i); 
end 
C3 = 0.5/n*C3 ; 
  
for r = 1:1:n+m 
    if r~= 2 
    C2 = C2 + cos(xs(2)-xs(r))*V(2)*V(r)*B(2,r) ;  
    end 
end 
C2 = C2*ns ; 
  
%%% 1.8 Compute MFPT 
a = C2/C1-1; 
b = C3/C1/ns; 
delt = 1/1000; 
for i = 1:1:Wc*1000 
    intgl = intgl + ((i/1000)^a)/exp(b*(i/1000))*delt; 
end 
  
MFPT = M(2)/C3*(Wc^(-C2/C1))*exp(C3*Wc/C1/ns)*intgl/60/60/24 ; %%%% unit in 
days %%%%% 
 

 


	Blank Page
	Blank Page

