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ABSTRACT

This study quantitatively assesses the effects of stochastic wind energy on power
quality and stability of a power system using both stochastic and probabilistic methods.
The stability analysis method is newly developed in this thesis basing on the theory of
stochastic stability and is called the stochastic stability index (SS/). To compute SSI,
several processes have to be done consisting of the determination of steady state variables,
estimation of well-defined energy function, and formulation of stochastic differential
equations. Energy function method, basing on Lyapunov’s theory, is used to determine the
region of attraction of stable equilibrium points and the critical values of energy. The wind
power is modeled using aggregated doubly-fed induction generator (DFIG) and squirrel
cage induction generator (SCIG) wind turbines.

The stochastic stability index (SSI) can quantify the effects of increasing wind
power and its noise intensity on power system stability. When the stochastic wind power
increase, SS/ will decrease and the system is less stable, especially, when there is
exchanged power to or from an infinite bus. The results of SSI are corresponded to the
results of the simulation. If apply white noise for wind power, when wind power increase
50%, 100%, and 150%, the SSI decrease about 56%, 75%, and 84%, respectively,
comparing with base case. However, the percentage of decreasing of SS/ when apply
colored noise are larger than when apply white noise.

To maintain the synchronization of the system, the wind power generation should
be limited at an appropriate value for a given noise intensity. This index gives an
alternative analysis for power system stability by stochastically incorporating wind power.
This stochastic stability analysis method can analyze the nonlinear and stochastic power

system stability with less time and computational effort.

Keywords: stochastic stability index; small signal stability; energy function method;
Lyapunov’s stability; theory of stochastic stability; deterministic method



11

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my advisor, Dr.
Krissanapong Kirtikara, who gave me a great chance as a great teacher and truly inspired
me in both working and learning. I truly appreciate my co-advisor, Asst. Prof. Dr.
Anawach Sangswang, who empathize with students by intelligent suggestions and
discussion. I would like to express my thankfulness to all committees for their valuable
time and comments. I also would like to thank Dr. Dhirayut Chenvidhya who is both my
committee and my boss who give kindness and opportunity.

Furthermore, I sincerely thank the CSSC (CES Solar Cells Testing Center) staff for
their support and sympathy. I also truly appreciate my best friend for her heartwarming
care and always gregarious. For most important, I deeply express my appreciation to father
and mother for their understanding and caring with bountiful mind.

I also acknowledge the financial and facilities support from the CSSC, the Joint
Graduate School of Energy and Environment, and King Mongkut’s University of
Technology Thonburi.



CHAPTER

11

CONTENTS

TITLE
ABSTRACT
ACKNOWLEDGEMENT
CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
INTRODUCTION
1.1 Rational and Problem Statement
1.2 Literature Review
1.3 Research Objectives
THEORIES
2.1 The Power System
2.2 Power System Stability Classification
2.3 Small Signal Stability
24 Transient stability
2.5 Voltage Stability
2.6 Frequency Stability
2.7 Wind Power
2.8 Probabilistic Methods for the Power System
2.9 Energy Function Methods
METHODOLOGY PART 1
3.1 The Characteristics of Wind Power

3.2 The Characteristics of Power System

Incorporating Wind Power

PAGE

il
il

vi

XXVvii

34

35
44
46
51
60
70
73
91
110

120
123



CHAPTER

v

CONTENTS (Cont’)

TITLE

33 A study of Effects of Wind Power on Small
Signal Stability using Eigenvalue Method

3.4 A Study of Effects of Wind Power on Small
Signal Stability using Stochastic Stability
Method: The Mean First Passage Time (MFPT)

3.5 A Study of Effects of Wind Power on Small
Signal Stability using New Stochastic Stability
Method

3.6 A Study of Effects of Wind Power on Voltage
Stability using New Stochastic Stability Method

3.7 A Study of Effects of Wind Power on Voltage
Variation using Probabilistic Method

METHODOLOGY PART 2

4.1 Power System Modeling

4.2 Power System Simulation

4.3 Noise Modeling and Stochastic Differential
Equations Formulation

4.4  Well-defined Energy Function Formulation

4.5 Critical Energy Estimation

4.6 Eigenvalues Determination

4.7 Mean First Passage Time (MFPT)
Determination

4.8 Stochastic Stability Index (SSI) Determination

RESULTS AND DISCUSSION PART 1

5.1

5.2

The characteristics of wind speed and wind
power
The characteristics of power system

incorporating wind power

PAGE
132

138

140

142

144

146
170
186

192
211
211

220

226

264

294



CHAPTER

53

54

CONTENTS (Cont’)

TITLE
A study of effects of wind power on the small
signal stability using eigenvalue method
A study of effects of wind power on the small
signal stability using stochastic stability
method: the mean first passage time (MFPT)

RESULTS AND DISCUSSION PART 2

6.1

6.2

6.3

The Study of Effects of Wind Power on the
Small Signal Stability using New Stochastic
Stability Method

The Study of Effects of Wind Power on the
Voltage Stability using New Stochastic
Stability Method

The Study of Effects of Wind Power on
Voltage Variation using Probabilistic Method

CONCLUSION AND FUTURE WORK

7.1 Conclusions
7.2 Future Studies
REFERENCES

APPENDIX

PAGE
332

342

350

382

391

396
402
403
411



TABLE
1.1
1.2

1.3

1.4
2.1
2.2
23
24
3.1

3.2

33
34
3.5

3.6

3.7
3.8
3.9
3.10

3.11

vi

LIST OF TABLES

TITLE
Major problems of power quality from wind power integration
Interesting issues of power system stability and quality incorporating
wind power
Deterministic indices and analytical methods of power system
stability
Probabilistic indices and analytical methods of power system stability
Eigenvalues with time variation and phase portrait
Comparison between explicit and implicit methods
Wind turbine types by speed and power control
Unstable equilibrium points formulation
Testing conditions for the study of probability distribution of wind
power
Testing conditions for the study of characteristics of the power system
incorporating wind power
System Parameters and Constants
The computation conditions of induction machine (SCIG) parameters
The computational conditions of induction machine (DFIG)
parameters
Testing conditions for the study of the effects of wind power to multi-
machine power test systems
System Parameters and Constants for TMIB
Power flow and noise conditions for SSS analysis of TMIB
Power flow and noise conditions for VS analysis of TMIB
Testing conditions for a study of effects of wind power to load
voltage
Testing conditions for a study of effects of various noises to load

voltage

PAGE
18
21

32

33
52
58
80
116
123

131

132
134
136

138

142
142
144
145

145



TABLE
4.1

4.2

4.3

4.4

5.1

5.2

53

54

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

vil

LIST OF TABLES (Cont’)

TITLE

The slope (ka) and offset (ca) of the linear relationship between
internal phase angle of voltage behind transient reactance and phase

angle of terminal voltage during the time 0.3 — 2.0 seconds

The slope (k,) and offset (c.) of the linear relationship between
internal phase angle (Deltai, 0") and angle of internal voltage (Delta,

o) of DFIG
System data of FMPS test system
Parameters of four machine power system

Testing conditions for the study of probability distribution of wind

power
Testing conditions for power-load characteristic analysis
Testing conditions for power-angle characteristic analysis

Testing conditions for the study of characteristics of the power system

incorporating wind power
Energy of the test system at interested unstable equilibrium points

Variables at stable equilibrium point of the test system with different

wind speed

Share of generating power from synchronous generator, infinite bus

generator, and wind turbine generator at different wind speed

The critical value at different wind speed

System Parameters and Constants

The testing conditions of SCIG wind turbine for SMIB power system
The results of eigenvalue analysis of SCIG wind turbine

The parameters of DFIG wind turbine under different conditions

PAGE
153

161

184

185

277

299

304

311

322

324

324

325

330

333

335

337



TABLE
5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

viii

LIST OF TABLES (Cont’)

TITLE

The results of eigenvalue computations of DFIG wind turbine

The results of eigenvalue computation for DFIG when Vrq depends

partly on xw

The results of eigenvalue computation for DFIG when Vrq not

depends on xw & yw

Testing conditions and steady state values of speed and angle

The results of eigenvalue analysis for six testing conditions

The participation factors

MFPT at different wind speed and noise intensity

The results of MFPT implementation

Testing conditions and results of exit times compared with DSE
Contribution of Lu components

System Parameters and Constants for TMIB

Testing conditions for DFIG wind turbine with white noise model

Critical energy of the test system with DFIG wind turbine and white

noise model

The exit time (seconds) of six different conditions from the

simulation
Testing conditions for DFIG wind turbine with colored noise model

Critical energy of the test system with DFIG wind turbine and colored

noise model when X14 = 0.6

Critical energy of the test system with DFIG wind turbine and colored
noise model when X14 = 0.5

The testing conditions and results of simulation to investigate Lu

PAGE
337

338

338

341

341

342

346

348

354

355

361

365

365

368

373

373

374

380



TABLE
6.11

6.12

6.13

6.14

6.15

6.16

X

LIST OF TABLES (Cont’)

TITLE

The exit time (seconds) of six different conditions for DFIG WT with

colored noise

Testing conditions for voltage stability analysis

Critical energy of the test system for voltage stability analysis

The exit times (ET) and SS7 for DFIG wind turbine with colored noise
The statistical results of voltage on load bus

The testing conditions for the effects of various noise conditions on

load voltage

PAGE
382

386

387

391

392

393



FIGURE
1.1

1.2

1.3

1.4
1.5

1.6
1.7
1.8
1.9

1.10

1.12
1.13
1.14
1.15
1.16
1.17

1.18

LIST OF FIGURES

TITLE
Cumulative wind power capacity growth and annual growth
Development of small signal stability problems (gray), wind power
problems (red) and probabilistic methods (blue) for analyzing
Wind speed spectrum model of Van der Hoven [Burton et. al., Wind
Energy Handbook]
Wind speed spectrum at 3 areas of Palmyra island by Hwang
Real power output (kW) variation (left) and power spectral density
(PSD, kW.Hz %) (right) of the power output from 10 turbines wind
farm
Power spectral density of Remolinos wind farm at low wind speed
Power spectral density of Borja wind farm operating around 6 m/s
The decomposition of fast wind power variation
Power of aggregated wind turbines in case of IWT, 30WTs, 150WTs,
and 300WTs
Histogram and fit Beta distribution (left) and hourly power change
(right) of aggregated wind power plants in BPA, ERCOT, and
Midwest ISO
Power spectral density of power output of S00kW wind turbine
The 4-machine power system
Root loci of eigenvalues
P-V curve with three power factors
Q-V curve with different P
P-V curve of power system with and without wind power
P-V curve of power system, including wind farm, at different wind
speeds with normal and contingency situations
P-V curve of power system with SVC and Capacitor bank

compensator

PAGE

11
13
13
15
15
16

17



FIGURE
1.19

1.20
1.21

1.22
1.23
1.24
1.25
1.26

1.27
1.28
1.29
1.30
1.31
1.32
1.33

1.34

1.35
1.36
1.37
2.1
2.2
23

X1

LIST OF FIGURES (Cont’)

TITLE

Frequency deviation with constant P and V control
Frequency deviation with P and frequency dependent V control

Test system with 2 generators (G1 and G2), variation of wind speed
with noise, P and Q of G1, G2 with small amount of wind power, and
with large amount of wind power

Reactive power and voltage without reactive power compensation
Reactive power and voltage with reactive power compensation
Active power and frequency without reactive power compensation
Active power and frequency with reactive power compensation

Power spectral density of power from 225kW pitch controlled wind
turbine

Complex plane of eigenvalues

Probability of instability vs load

Variation of MFPT with wind power of low noise intensity
Variation of MFPT with wind power of high noise intensity
The 4-bus system one-line diagram

Variation of MFPT with loads of 2 scaled noise intensity levels

Schematic diagram and generation/load data of the 6 bus power system

model

In T vs. p.u. load increase (6 bus power system) with the same (left)
and with different (right) load fluctuation intensity levels (€) for P and
Qofbuses 1,2, and 3

Daily time varying load pattern

Probability distribution of voltage at 2 a.m.

Probability distribution of voltage at 2 p.m.

Structure of the power system

Current induces magnetic flux on solenoid

Schematic diagram of a three-phase synchronous machine

PAGE
18

18
19

20
20
20
20
21

24
24
28
28
28
28
29

29

31
31
31
36
37
38



FIGURE
24

2.5
2.6
2.7
2.8
2.9
2.10
2.11

2.12
2.13
2.14

2.15

2.16
2.17
2.18
2.19
2.20
2.21
2.22

2.23
2.24
2.25
2.26

xil

LIST OF FIGURES (Cont’)

TITLE

Stator and rotor circuit of a synchronous machine
Schematic diagram of two-winding transformer
Transmission line circuit diagram

Schematic diagram of [I-equivalent circuit
Classification of Power system stability

Block diagram representing state variables vector
Basic circuit diagram for SSS problem

One-line diagram of power system with 1 generator connected to an
infinite bus through transmission lines 1 and 2

Power-rotor angle curve describing equal-area criterion
Potential energy-rotor angle curve

Circuit diagram of the power system with transmission and load
impedance

Current, voltage, and power curves at receiving end with line and load
impedance

The P-V characteristics with different power factor (pf)

The Q-V characteristics with different powers

P-V characteristics (left) and root loci plot of eigenvalue (right)
The over-generated Island diagram

The under-generated Island diagram

Power curve (left) and C, curve (right) of Suzlon S64 wind turbine

Hourly wind speed (m/s) (left) and wind power (kW) (right) for 1000
hours

Example of velocity duration of wind over one year
Example of distribution function of wind speed
Example of frequency function of wind speed

Power duration curve (left) and Velocity duration curve (right)

PAGE
39

42
43
44
45
48
49
53

55
59
61

62

63
65
70
71
72
74
75

76
77
77
78



FIGURE
2.27

2.28
2.29
2.30
2.31

2.32
2.33
3.1
3.2
3.3

3.4

3.5
3.6

3.7

3.8

3.9
3.10

3.11
3.12

3.13
3.14
3.15

Xiii

LIST OF FIGURES (Cont’)

TITLE

Energy production (shaded area) from multiplication between power
(kW) and velocity duration (hours)

Schematic diagram of wind power model
Schematic diagram of wind turbine model

Circuit diagram of typical radial power network including WTGs

Circuit diagram of power network including WTGs at the jth node

The P-f characteristics of wind power system

The potential energy-rotor angle curve for PEBS method
The methods to study the characteristics of wind speed
The processes to study the characteristics of wind power

The method to study on the characteristics of power system
incorporating wind power

The method to study the characteristics of the energy of the power
system

Schematic diagram and Phasor diagram of SMIB

Circuit diagram of the power system with transmission and load
impedance

SMIB including internal sources of small signal

SMIB including wind power and dynamic load

Test power system including wind power and load

Block diagram representing state space equation of the SCIG wind
turbine

Single machine infinite bus power system

Block diagram representing state space equation of the DFIG wind
turbine

Single machine infinite bus power system for DFIG WT

Process to study effects of wind power using SSI

The two machine infinite bus power system (TMIB)

PAGE
78

81
83
88
88
90
114
121
121
123

124

125
127

129
130
131
133

134
135

135
141
142



Xiv

LIST OF FIGURES (Cont’)

FIGURE TITLE PAGE
4.1 Single-line (left) and phasor (right) diagrams of induction generator 150
4.2 Single-line diagram of power test system in PSCAD 152
4.3 The relationship between internal phase angle (IntA) and angle of 153

internal voltage (AolV) and phase angle of terminal voltage (PHA)

4.4 Single machine infinite bus power system for wind power modeling 154
4.5 Single-line (left) and phasor (right) diagrams of induction generator 159
4.6 Variation of internal phase angle (Deltai, 6") and angle of internal 160

voltage (Delta, ¢') and angle of stator voltage (PAdfig, 6 ) when wind
power is 1.0 p.u.
4.7 The relationship between internal phase angle (Deltai, ¢') and angle of 160
internal voltage (Delta, 6') and angle of stator voltage (PAdfig, 6))
when vary wind power (WP)
4.8 Linear relationship between k, (left) and ¢, (right) with DFIG wind 162

power

4.9 Single-line (left) and phasor (right) diagrams of synchronous generator 163

4.10 Block of synchronous generator model in PSCAD 171
4.11 Block of SCIG model in PSCAD 173
4.12 Equivalent circuit of SCIG in PSCAD 174
4.13 Torque-Slip Characteristics 174
4.14 Variation of starting torque with rotor resistance 174
4.15 Variation of torque and stator current with slip 174
4.16 Performance curves of 3-phase squirrel cage induction generator 174
4.17 Schematics of nominal PI section (left) and coupled PI section (right) 175
models
4.18 Tline and TLine components 176
4.19 The conductor geometry method 176

4.20 Bergeron, Frequency Dependent (Mode and Phase) models and options 176



FIGURE
4.21
4.22

4.23
4.24

4.25
4.26
4.27
4.28

4.29
4.30

431

4.32
4.33
5.1

52

53

54

5.5

5.6

XV

LIST OF FIGURES (Cont’)

TITLE
Example of 3-phase 3-limb transformer schematic
AC exciters (top), DC exciters (middle), and Static exciters (bottom) in
PSCAD

Hydro and steam turbine and governor model descriptions in PSCAD
Hydro turbine (top), hydro governor (middle), steam turbine (middle),
steam governor (bottom) models with input and output in PSCAD
Fixed P and Q load and passive R, X;, and X¢ load model

Transfer function of wind turbine governor model

Schematic of wind source, turbine and governor model

Single machine infinite bus (SMIB) system including wind power and
load

Four machine power system (FMPS) including wind power and load

Block diagram representing state space equation of the SCIG wind
turbine
Block diagram representing state space equation of the DFIG wind
turbine

Test power system including wind power and load for SSI
Test power system including wind power and load for DFIG WT

PSD of wind speed data from BKT1 station with frequency range of
0 - 8.3 mHz (left) and 0 - 0.14mHz (right)

PSD of wind speed data from CHMP1 station with frequency range of
0 - 8.3 mHz (left) and 0 - 0.18 mHz (right)

Hourly average (left) and monthly average (right) of wind speed of
BKT1

Hourly average (left) and monthly average (right) of wind speed of
CHMP1 station

Distribution of wind speed (left) and standard deviation (right) of 1-
min data of 130,000 samples at CHMP1 station at 90m-height
Hypothesis test of every second wind speed data

PAGE
177
177

178
179

179
181
181
182

184
213

215

228
233
265

265

266

266

267

268



FIGURE
5.7

5.8
59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21
5.22

xvi

LIST OF FIGURES (Cont’)

TITLE

Hypothesis test of every minute wind speed data
Hypothesis test of every hour wind speed data

Wind speed at 90m heights of BKT1 station with second (left)

and minute (right) time scale

Wind speed (left) and its standard deviation (right)

at 90m heights of CHMP1 station

PSD (left) and histogram (right) of 1-sec wind speed at 90m heights
of BKTTI station for 2,000 samples

Noise wind speed 1-sec data 2,000 samples (left) and its histogram
(right)

Wind speed distribution (left) and turbulence or noise wind speed
distribution (right) of 1-min data for 26,000 samples at CHMP1 station
(upper) and BKT1 station (lower)

Example of gust wind speed of 1-min data for 10,000 minutes at BKT1
station (left) and CHMP1 station (right)

Wind speed (left) and its standard deviation (right) of 1-min data for
10,000 minutes at BKT1 station (upper) and CHMP1 station (lower)
Hourly average wind speed (left) and calculated wind power (right) at
the coastal site in the South of Thailand

Histogram of 7,000 hours wind speed (left) and calculated wind power
(right) at the coastal site in the South of Thailand

Hourly average wind speed (left) and calculated wind power (right) at
BKT]1 station

Hourly average wind speed (left) and calculated wind power (right) at
BKTTI station

PSD of 800 hours wind speed (left) and calculated wind power (right)
at BKTI station

Hypothesis test of hourly averaged wind power

One-line diagram of test system of case Al

PAGE
269

269
270

270

271

271

272

272

273

274

275

275

276

276

277
278



xvii

LIST OF FIGURES (Cont’)

FIGURE TITLE PAGE

5.23 Wind speed (left) and wind power (right) of case A1 (WS1 and WP1 278
use Cparam = 5, WS2 and WP2 use Cparam = 10)

5.24 Histogram of wind speed (left) and wind power (right) of case Al 278
(Cparam = 5)

5.25 Histogram of wind speed (left) and wind power (right) of case Al 279
(Cparam = 10)

5.26 One-line diagram of test system of case A2 279

5.27 Wind speed (left) and wind power (right) of case A2 (WS1 and WP1 280
from WTG1, WS2 and WP2 from WTG2)

5.28 Histogram of wind speed (left) and wind power (right) of case A2 280
(from WTGI)

5.29 Histogram of wind speed (left) and wind power (right) of case A2 280
(from WTG2)

5.30 One-line diagram of test system of case A3 281

5.31 Sample of wind speed (left) and wind power (right) of case A3 281

5.32 Histogram of wind power of WTG1 (left) and total wind power (right) 282
of case A3

5.33 PSD of wind power of WTG1 (left) and total wind power (right) of 282
case A3

5.34 One-line diagram of test system of case A4 283

5.35 Wind speed (left) and different wind speeds (WS2-WS1) (right) of case 283

A4

5.36 Histogram of wind speed (left) and different wind speeds (WS2-WS1) 284
(right) of case A4

5.37 Histogram of wind power of WTG2 (left) and different wind powers 284

(WP2-WP1) (right) of case A4

5.38 Normal probability plot of different wind speeds (WS2-WS1) (left) and 284
different wind power (WP2-WP1) (right) of case A4

5.39 One-line diagram of test system of case A5 285



xviii

LIST OF FIGURES (Cont’)
FIGURE TITLE PAGE
5.40 Histogram of wind powers for the case wind speed, k = 6m/s (upper 286

left),9m/s (upper right), and 10m/s (lower)

541 Histogram of different wind powers (WP2-WP1) for the case wind 286
speed, k = 6m/s (upper left), 9m/s (upper right), and 10m/s (lower)

542 Normal probability plot of different wind powers (WP2-WP1) for the 287
case of wind speed, k = 6m/s (upper left), 9m/s (upper right), and

10m/s (lower)
543 Different wind speed (WS2-WS1) for all k 287
5.44 One-line diagram of test system of case A6 288
545 Wind speed (left) and wind power (right) of case A6 288

(WS1 and WP1 use Cparam = 5, WS2 and WP2 use Cparam = 10)

5.46 Histogram of wind speed of case A6 for Cparam = 5 (left) and Cparam 289
=10 (right)

5.47 Histogram of wind power of case A6 for the case Cparam = 5 (left) 289
and Cparam = 10 (right)

5.48 One-line diagram of test system of case A7 290

5.49 Noise wind speed (left) and noise wind power (right) of WTG2 of case 290

A7

5.50 Histogram of noise wind speed (left) and wind power (right) of WTG2 290
of case A7

5.51 Normal probability plot of noise wind speed (left) and 291

noise wind power (right) of WTG2 of case A7
5.52 Single line diagram of SMIB with DFIG wind turbine 292

5.53 The variation of wind power (left) and its power spectral density (right) 292
when varying bandwidth (upper), scaling factor (middle), and noise
intensity (lower)

5.54 The normal curve of wind power when varying bandwidth (left), 293

scaling factor (middle), and noise intensity (right)



FIGURE
5.55

5.56
5.57

5.58
5.59
5.60

5.61

5.62

5.63

5.64

5.65

5.66
5.67
5.68
5.69
5.70

5.71

5.72

X1X

LIST OF FIGURES (Cont’)

TITLE
The data distribution of wind power when varying bandwidth (upper),
scaling factor (middle), and noise intensity (lower)

The variation (left) and data distribution (right) of wind power

The variation (left) and normal curve (right) of angle and speed
deviation (-slip)

The data distribution of angle (left) and speed deviation or —slip (right)
Schematic diagram of SMIB and equations

Active power-angle characteristics of SMIB system when varying
voltage

Reactive power-angle characteristics of SMIB system when varying
voltage

Active power-angle characteristics of SMIB system when varying total
impedance

Reactive power-angle characteristics of SMIB system when varying
total impedance

Reactive power-voltage characteristics of SMIB system with varying
active power

Reactive power-voltage characteristics of SMIB system

with varying line reactance

Phasor diagram, circuit diagram, and equations of power test system
Active power-load characteristics when varying Theta and fix Phi
Reactive power-load characteristics when varying Theta and fix Phi
Active power-load characteristics when varying Phi and fix Theta —Phi
Reactive power-load characteristics when varying Phi and fix Theta —
Phi

Voltage-Load characteristics when fix Phi varying Theta-Phi (left) and
when fix Theta-Phi varies Phi (right)

One line diagram and testing equations of SMIB power system

PAGE
293

294
294

294
295
295

296

296

297

298

298

299
300
300
301
301

302

302



XX

LIST OF FIGURES (Cont’)
FIGURE TITLE PAGE
5.73 Block diagram (left) and function representing power-angle equation 303

(right) of active (upper) and reactive power (lower)

5.74 Electrical power (p.u.) and power angle (rad) of the case 1 (upper left) 304
to case 3 (upper right) and case 4 (lower left) to case 6 (lower right).

5.75 Active Power-angle characteristics for case 1 (upper left) to case 3 305
(upper right) and from case 4 (lower left) to case 6 (lower right).

5.76 Reactive Power-angle characteristics for case 1 (upper left) to case 3 305
(upper right), and from case 4 (lower left) to case 6 (lower right)

5.77 Schematic diagram and one line diagram of power test system 306

connecting to an infinite bus and including wind power and load

5.78 Wind speed 10m/s constant 307
5.79 Wind speed 10m/s + ramp 1m/s4Hz 307
5.80 Power angle of constant wind 307
5.81 Power angle of case small signal 307
5.82 Rotor speed of constant wind 308
5.83 Rotor speed of case small signal 308
5.84 Active power of constant wind 308
5.85 Active power of case small signal 308
5.86 Reactive power of constant wind 308
5.87 Reactive power of case small signal 308
5.88 Voltage of constant wind 309
5.89 Voltage of case small signal 309
5.90 Test power system including wind power and load 310
591 Wind turbine model in PSCAD 310

5.92 The power angle and rotor speed for base case and PSD of power angle ~ 311
(black) and rotor speed (blue) for base case in dB/Hz
5.93 The power angle of generator for Case B2 in degrees and the rotor 312

speed of generator for Case B2 in per unit



FIGURE
5.94

5.95

5.96

5.97

5.98

5.99

5.100

5.101
5.102
5.103
5.104
5.105
5.106

5.107

xx1

LIST OF FIGURES (Cont’)

TITLE
The power angle of generator for Case B3 in degrees and the rotor
speed of the generator for Case B3 per unit
The wind power (left) of Case B4 (casel) compared with Case B5
(case2) and its PSD (right)
The power angle of synchronous generator of Case B4 (casel)
compared with Case B5 (case2, left) and its PSD of Case B4 compare
with Case B5 (right)
The rotor speed of synchronous generator of Case B4 (casel)
compared with Case B5 (case2, left) and its PSD of Case B4 compare
with Case B5 (right)
The wind power (left) and its PSD (right) of Case B6 (case 3) and Case
B7 (case 4)
The power angle of synchronous generator of Case B6 (case 3)
compared with Case B7 (case 4, left) and its PSD of Case B6 compare
with Case B7 (right)
The rotor speed of synchronous generator of Case B6 (case 3)
compared with Case B7 (case 4, left) and its PSD of Case B6 compare
with Case B7 (right)
Wind speed (m/s) of the cases B8 — B11

Wind power (per unit) of the cases B8 —B11

Power angle (degrees) of synchronous generator of the cases B8 — B11
Rotor speed (per unit) of synchronous generator of the cases B8 — B11
Total energy of the test system

Phase portrait plot of voltage phase angle (x-axis) and rotor speed (y-
axis)
Block diagrams of wind speed model, including normal random noise

wind speed

PAGE
312

314

314

314

315

316

316

318
319
320
321
323
323

326



xxii

LIST OF FIGURES (Cont’)
FIGURE TITLE PAGE
5.108 Total energy (upper left), wind speed (lower left), and phase portrait 327

plot (right) of synchronous generator when the standard deviation of

wind speed is 0.5

5.109 Total energy (upper left), wind speed (lower left), and phase portrait 327
plot (right) of synchronous generator when standard deviation of wind
speed is 1.0

5.110 Total energy (upper left), wind speed (lower left), and phase portrait 327

plot of synchronous generator (upper right) and phase portrait plot of
wind turbine generator (lower right) when standard deviation of wind
speed is 2.0

5.111 Total energy (upper left), wind speed (lower left), and phase portrait 328
plot of synchronous generator (upper right) and phase portrait plot of
wind turbine generator (lower right) for the case sampling frequency of
wind speed is 0.5Hz

5.112 Total energy (upper left), wind speed (lower left), and phase portrait 328
plot of synchronous generator (upper right) and phase portrait plot of
wind turbine generator (lower right) for the case sampling frequency of
wind speed is 2.0 Hz

5.113 Total energy (upper left), wind speed (lower left), and phase portrait 329
plot of synchronous generator (upper right) and phase portrait plot of
wind turbine generator (lower right) for the case sampling frequency of
wind speed is 0.1 Hz

5.114  Wind power variation (left) and its distribution (right) of 4 trials of 331
simulation

5.115 Angular speed (left) of generator no.1-2 and phase angle (right) of bus 331
no. 2-4 of stochastic system simulation during 60 seconds of trial no.1

5.116 Example of wind power variation during 3600 seconds (left) and its 331

distribution (right) of simulation trial no.1



xxiii

LIST OF FIGURES (Cont’)
FIGURE TITLE PAGE
5.117 Power spectral density of wind power variation during 3600 seconds of 332
trial no.1
5.118 Block diagram representing state space equation of the SCIG wind 333
turbine
5.119 Single machine infinite bus power system 333

5.120 Results of simulation case 1. (base case) : Speed (left), angle (middle), 334

and phase protrait of speed (y-axis) and angle (x-axis)

5.121 Results of simulation case 2. (reduce stator voltage of SCIG) : Speed 334
(left), angle (middle), and phase protrait of speed (y-axis) and angle (x-
axis)

5.122 Results of simulation case 3. (increase reference voltage) : Speed (left), 334

angle (middle), and phase protrait of speed (y-axis) and angle (x-axis)

5.123 Results of simulation case 4. (increase transmission reactance) : Speed 334
(left), angle (middle), and phase protrait of speed (y-axis) and angle (x-
axis)

5.124 Results of simulation case 5. (increase stator reactance of SCIG) : 335
Speed (left), angle (middle), and phase protrait of speed (y-axis) and

angle (x-axis).

5.125 Block diagram representing state space equation of the DFIG wind 336
turbine

5.126 Two-machine infinite bus power system including wind power and 340
load

5.127 Log-scale of MFPT at different wind speeds and noise intensity 345

5.128 Distribution of wind speed (left) and noise intensity (right) of wind 347
speed

5.129 Distribution of wind power (left) and noise intensity (right) of wind 348

power



XX1v

LIST OF FIGURES (Cont’)
FIGURE TITLE PAGE
5.130  Relationship between wind speed and noise intensity of wind power 349

using wind data of Chumporn wind monitoring station in the South of

Thailand
6.1 Test power system including wind power and load for DSE 351
6.2 DSE compared with noise intensity of wind power (a3) at different 353

wind powers (Pm3, p.u.) when frequency dependent coefficient, ck =
0.025
6.3 Energy of the test system under 4 test conditions C1 — C4 354

6.4 Phase portraits of slip-angle ( left) and energy-angle (right) of IG wind 354
turbine when noise intensity increase from 0.2 (upper) to 0.4 (lower)

6.5 Single machine infinite bus power test system including wind power 356
and load

6.6 The relationship of DSE and the noise intensity of the power load when 359
wind power is fixed (left) and noise intensity of wind power when
power load is fixed (right)

6.7 Phase portraits of slip-angle ( left) and energy-angle (right) of IG wind 359
turbine when noise intensity increase from 0.2 (upper) to 0.4 (lower)
with constant load

6.8 Test power system including wind power and load for DFIG WT 361

6.9 Phase portrait of speed (x-axis)-angle (y-axis) of G3 of Case2 (left) 366
and Case3 (right) when noise intensity is 0.4 and 0.8, respectively

6.10 The results of Lu’ computation with increasing noise intensity 367
compared among 6 testing conditions for DFIG wind turbine with
white noise model

6.11 The relation of SSI (seconds) and noise intensity compared among 6 367
testing conditions for DFIG wind turbines with white noise model

6.12 The results of Lu’ computation with increasing noise intensity 375
under 6 testing conditions for DFIG wind turbine with colored noise

model



XXV

LIST OF FIGURES (Cont’)
FIGURE TITLE PAGE
6.13 The log-scale SSI (y-axis, seconds) with increasing of noise intensity 375

(x-axis) under 6 testing conditions for DFIG wind turbine with colored
noise model

6.14 The variation of mechanical wind power during 600 seconds of 376
simulation

6.15 The variation of phase angle of G2 (PA Syn.Gen.), G3 (PA DFIG), and 376
load (PA Load) during 600 seconds of simulation (left) and 311 — 323
seconds (right).

6.16 The variation of angular speed of G2 (Speed Syn.Gen.) and G3 (Speed 377
DFIG) during 307 — 319 seconds (left) and 306 — 316 seconds (right).

6.17 The phase portrait of phase angle and angular speed of G2 (left) and 377
G3 (right) during 0 — 318 seconds

6.18 The energy of the power system during 600 seconds of simulation 378
(left) and 302 — 320 seconds (right).

6.19 The derivative of stochastic energy of the power system (LU) during 378
600 seconds of simulation (left) and 308 — 323 seconds (right).

6.20 The derivative of deterministic energy of the power system (pU) during 379
600 seconds of simulation (left) and 310 — 329 seconds (right).

6.21 Data distribution of Lu for the cases C1 — C3 (left) and Case 1 —Case 6 380
(right)

6.22 The variation (left) and data distribution (right) of Lu for the cases C1 381
(upper), C2 (middle), and C3 (lower)

6.23 The results of Lu computation with increasing noise intensity 387
comparing between 6 testing conditions for voltage stability analysis

6.24 The results of SSI computation with increasing noise intensity (0-1.0) 388
comparing between 6 testing conditions for voltage stability analysis

6.25 The results of SS7 computation with increasing noise intensity (0.6-1.0) 388
comparing between 6 testing conditions for voltage stability analysis

6.26 Active power (y-axis, left) and reactive power (y-axis, right). 389



FIGURE
6.27

6.28

6.29
6.30
6.31

6.32

6.33

XXV

LIST OF FIGURES (Cont’)

TITLE
Phase angle (y-axis, left) and angular speed (y-axis, right)
Relative energy (y-axis, left) and derivative of stochastic energy or LU
(y-axis, right).
Voltage (upper) and reactive power (lower) at load bus
The average (left) and standard deviation (right) of voltage on load bus
The data distributions of wind power, active and reactive power loads,
and wind speed for the cases T1 — T5
The data distribution of voltage for the cases T1 — T5 (left) and All 1
(right)
The data distribution of voltage for the cases T1 — T5 (left) and cases
All 1 — All 2 (right)

PAGE
389

390

390
392
394

395

395



Abbreviations
AGC
BCU

BW
CCT
CDF
CFD
DAE
DFIG
DSE
EMC

EMTDC
ESD
FMPS
FSFC
FSIG
GGD
GWEC
HB
IEC
IG
KE
LCOP
MCS
MFPT
NI

NR

PDF

XXVvil

LIST OF ABBREVIATIONS

Full Meaning

Automatic Generation Control

Boundary Controlling Unstable Equilibrium Point Method

Bandwidth

Critical Clearing Time

Cumulative Distribution Function
Computational Fluid Dynamic
Differential and Algebra Equation
Doubly-Fed Induction Generator
Derivative of Stochastic Energy
Electromagnetic Compatibility Standard
Electromagnetic Transients including DC
Electrostatic Discharge

Four-Machine Power System

Full Scale Frequency Converter

Fixed Speed Induction Generator
Generalized Gaussian Distribution
Global Wind Energy Coucil

Hopft Bifurcation

International Electrotechnical Commission
Induction Generator

Kinetic Energy

Locus of Critical Operating Point
Monte Carlo Simulation

Mean First Passage Time

Noise Intensity

Newton-Raphson Method

Probability Distribution Function



Abbreviations
PE
PEBS
PMF
PMSG
PQ
PS
PSCAD
PSD
PSFC
SCIG
SDE
SMIB
SNB
SSI
SSS
SVC
SVS
TEF
THD
TMIB
u.e.p.
VS
WRIG
WSS
WT
WTG

Xxviii

LIST OF ABBREVIATIONS (Cont’)

Full Meaning
Potential Energy
Potential Energy Boundary Surface
Probability Mass Function

Permanent Magnet Synchronous Generator

Power Quality
Power System Stability

Power System Computer Aided Design

Power Spectral Density

Partial Scale Frequency Converter
Squirrel Cage Induction Generator
Stochastic Differential Equation
Single Machine Infinite Bus
Saddle-Node Bifurcation
Stochastic Stability Index

Small Signal Stability

Static Var Compensator

Static Var Systems

Transient Energy Function

Total Harmonic Distortion

Two Machines Infinite Bus
unstable equilibrium point
Voltage Stability

Wound Rotor Induction Generator
Wind Speed Spectrum

Wind Turbine

Wind Turbine Generator



CHAPTER 1
INTRODUCTION

Energy and environmental problems have encouraged people to increase their
awareness of energy consumption that is friendlier to the environment. This leads to more
interest in renewable and clean energy, especially solar and wind energy.

Long-term RE development, especially wind power, requires the power system to
be able to support RE efficiently in terms of physical structure and performance. This
requires an understanding on constraints relating to characteristics of wind power and other
RE sources.

In order to increase wind power penetration, the power system stability and power
quality must first be studied for grid interconnection standardization, for grid performance

improvement and for basic knowledge for long-term planning of RE development.
1.1 Rationale and Problem Statement

Power system stability (PS) is the ability of the power system to maintain or control
the system (synchronization, voltage, and frequency) within an equilibrium operating
condition after subjection to small and large disturbances. This ability depends on
characteristics of generators, loads, transmission system, and control system. PS includes
phenomena with period range from several seconds to several minutes. These phenomena
are, for example, the loss of synchronization, and loss control of voltage and frequency
after subject to disturbances such as transient fault, loss of generator, loss of transmission
line, suddenly increase of load, and small perturbation as a noise.

Power quality (PQ) concerns the quality or characteristics of voltage, current,
frequency, and power that may harm the electrical equipment of customers. It is influenced
by relationship between generation, transmission, and power consumption. Voltage
variation, Frequency variation, and wave form distortion are general issues of PQ which
period range from millisecond to several minutes.

Wind power affects both PS and PQ since it generates random and fluctuating
signals to the power system. As the generated power fluctuate, system responses to the
disturbances possibly vary significantly and result in power system instability and/or poor

power quality.



The study of the effects of wind power on a power system previous was based on
these deterministic methods for which all operating conditions and network topology are
explicitly determined. The stochastic characteristics of winds, varied by space and time,
can cause the large variation and unpredictable of power output. Since the nature of wind
power generation, load, and disturbances in the power system are stochastic, the classical
deterministic methods, which rely on steady characteristics assumptions, cannot be used
realistically. Furthermore, the larger systems lead to higher degrees of complexity of
solutions with many uncertainties. Since the wind power has become very much larger than
the last two decades, the more complexity and severity affecting to the power system can
be found frequently.

Accordingly, the probabilistic methods are the most relevant tools to overcome the
realistic and dynamics conditions of a system. Even though, the probabilistic methods have
been used to study the power system stability and reliability problems more than two
decades, the understanding in the influencing of the random wind power still far from the
real situations.

Therefore, this research aims to develop the suitable probabilistic methods to assess
the effects of wind power on power quality and stability of the power system, which
incorporates the stochastic characteristics of winds.

The impact of wind energy generation on power systems becomes a more serious
issue according to an increase of wind energy penetration in many countries to close to the
conventional acceptable level of 20% [60]. The cumulative wind power capacity grew 21%
per year on average since 2004 to reach about 318 GW at the end of 2013 [24] and the
most market share of wind turbine technology is Doubly-Fed Induction Generator (DFIG)
at about 54.8% [64]. Wind power is the third ranking of renewable energy of the world and
increase with the rate of about 25% per year. At the end of 2013, the cumulative installed
capacity of wind power was about 318 GW, starting from 1995.
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Figure 1.1 Cumulative wind power capacity growth and annual growth [24]

In the late 1990s, transient voltage stability and the dynamic behavior of induction
generator during disturbances were the first that be focused on [49]. Later, International
Electrotechnical Commission (IEC) published the first edition of technical standard on
assessment of power quality from wind turbine in 2001 (IEC 61400-21, 2008).

In North Germany, there is high risk of grid instability due to 3-phase fault of
transmission line if 3,000 MW of wind power fail. Therefore, on 1st of April in 2006, new
grid interconnection regulations were published requiring fault-ride-through to deal with
this problem. [29]

The same as Spain, before, Spanish’s requirement is that wind turbine (WT) had to
disconnect when subject to voltage dip. This caused large amount of wind power cascading
decrease for 500MW, 400MW, and 1,000MW for 6 hours on 19th March in 2007. This
results in high risk of grid instability and therefore, new grid code required voltage dip
fault-ride-through to avoid this problem. [29]

In China, PS and PQ are already a problem because of weak inter-regional
interconnections, causing power shortages. This leading many existing wind farms to be
left unconnected and unused. For example, 10GW wind project at Jiu Quan in Gansu is the
biggest problem which wind farm located too far from load center.(www.atimes.com, 16th
Jan., 2010).

In USA, on Tuesday, 26th of February in 2008, the loss of wind power caused
Texas grid operator when to the state of emergency and cut service to some large customer
for 90OMW. In this case, wind power fell from 1,700MW to 300MW cause grid frequency
suddenly dropped and followed by blackout (www.reuters.com : Wed, 27th Feb 2008).



In 2008, the IEC published a new edition of IEC 61400-21 with advanced technical
standards for assessment of power quality of wind power. This standard is an assessment
procedure that considers phenomena, for example, voltage fluctuation during both
continuous and switching operation, harmonics and interharmonics, response to voltage
drop, active power ramp rate limitation, reactive power capability, grid protection, and
reconnection time after grid fault. These phenomena depend on local characteristics of the
power system. Therefore, different country with different structure of power system leads
to dissimilar regulation for the unlike problems concerning.

Motivation of regulations involving impacts of wind power still be an issue of
interesting more and more since the power system is more complex while renewable such
as wind power is random and almost unpredictable. However, the standardization of PS
assessment cannot be easily prepared due to many reasons, including the different
characteristics of the power system, uncertainty of the analyzing methods, and uncertainty

of many variables concerning the power system.
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Figure 1.2 Development of small signal stability problems (gray), wind power problems

(red) and probabilistic methods (blue) for analyzing

In summary, while wind power has increased continuously, more serious power
system problems occur. For example, low frequency oscillation occurred in HK and CN in
1991. In 2001, IEC 61400-21 standard was published to counteract the growth of wind
power. In 2006, risk of grid stability in Germany occurred with the 3GW wind power. In
2007, voltage dip fault-ride-through regulation has been applied in Spain. In 2008, loss of
wind power happened in Texas, US and followed by new edition of IEC 61400-21. In



2010, power system stability and power quality problems had occurred in Gansu, CN with

10GW wind power.
1.2 Literature Review

1.2.1 Characteristics of Wind Power
The dynamics of wind speed consists of two main components, the slow variation
component with spectral ranges between 10 hours and several months, and the turbulence

components with spectral ranges between 1 second and 10 minutes as represented in the

figure below [68].
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Figure 1.3 Wind speed spectrum model of Van der Hoven

In the figure above, over a large frequency range (0.007 to 900 cycles/hr) of wind
speed spectrum (WSS) at Brookhaven, Van der Hoven [32] found that the 2 main
phenomena influencing WSS were synoptic scale, and turbulence (micro-scale dynamics).
The Meso-scale dynamics, such as diurnal effect, had less influence in this area.

The other studies about wind speed spectrum are from H. J. Hwang (1969), Jay Apt
(2007), and Joaquin Mur-Amada and Angel A. Bayod-Rujula (2007). Hwang found that at
Palmyra Island as represented in Figure 1.4, WSS at 3 sites are notably different. Synoptic
scale dynamics is, clearly, the most influence for Barren Island, and Causeway as shown in
below figure. For Army site, synoptic scale dynamics has less influence to wind speed. For

conclusion, the different location can cause vastly difference of wind speed spectrum.
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Figure 1.4 Wind speed spectrum at 3 areas of Palmyra Island by Hwang

Jay Apt used 1-s and 1-h time resolution wind data to construct the power spectrum

of wind, as presented in Figure 1.5. The left figure represents the real power output (kW) of

the 10-turbine wind farm for ten days at 1 sec resolution. The right figure presents power

spectral density of the power output from the same wind farm at 1-h and 1-s resolutions.

For highly fluctuate wind power, log-scale of power spectral density (PSD) has linear

relationship with log-scale frequency during about 0.00001 - 0.5 Hz.
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Figure 1.5 Real power output (kW) variation (left) and power spectral density

(PSD, kW.Hz %) (right) of the power output from 10-turbine wind farm

Amada and Rujula presented the power spectral density of 10.98 MW Remolinos

wind farm operating at low winds and 16.2 MW Borja wind farm operating around 6 m/s in

Aragon of Spain. In this study, the linear relationship between log-scale PSD and log-scale

frequency can extent up to about 1Hz at low wind speed and 2Hz at high wind speed. At

about 1 - 2 Hz, fluctuated PSD occur due to 3p (3 times of rotor speed ) or tower shadow

noise. The low wind speed cause PSD trend to keep constant and then fall at frequency



higher than 2Hz. For the high wind speed, log-scale PSD decrease continuously when log-

scale frequency decrease at frequency higher than 2Hz. [38].
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Figure 1.6 Power spectral density of Figure 1.7 Power spectral density of Borja

Remolinos wind farm at low wind speed wind farm operating around 6 m/s.

For conclusion, at about 0.00001 - 1 Hz , log-scale PSD of wind power has a linear
relationship with log-scale frequency. About 1 - 2 Hz, wind power is influenced by tower
shadow noise or 3p noise. Higher than 2Hz, the low wind speed cause PSD trend to keep
constant and then fall. Synoptic scale dynamics most influences wind speed followed by
micro-scale dynamics. Wind speed spectrums at different locations are vastly different.

The slow variation wind component is influenced by the diurnal and seasonal or
synoptic meteorological effects and can be modeled statistically using Weibull or Rayleigh
distributions. The turbulence component can be modeled as a zero average random process
[32].

Consequently, the wind power variation can be composed of the slow variation and
fast variation components. The slow variation of wind power is influenced by the slow
variation component of wind speed. The fast variation is influenced by the turbulence of
wind speed and the dynamics of wind turbine. The measurement of wind power reveals the
decomposition of fast wind power variation, which consist of low frequency (frequencies
up to 0.5Hz) relating to the turbulence wind speed and the high frequency (frequencies
above 0.5Hz) power variation relating to the dynamics of wind turbine, as represented in

Figure 1.8 [49].
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Figure 1.8 The decomposition of fast wind power variation.

The contribution of low frequency power variation is about 16 — 22% of rated
capacity, while of high frequency power variation is only about +2% [49]. In this study, the
wind power modeling for the study of power system stability can reasonably neglect the
effects of high frequency power variation. Therefore, the mechanical power input (Py,) of
wind turbine can be modeled as follows

Pm:})l11s+me:Pms+Rnl+th qu_l

Where Py, is slow variation wind power, Py is fast variation wind power, Py is low
frequency wind power variation, and Py, is high frequency wind power variation.
1) The aggregated wind power
Many previous studies concluded that the aggregation of many wind turbines can
cause power to be smoother due to wind power fluctuation being compensated among each

other, as shown in Figure 1.9 [49].
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Figure 1.9 Power of aggregated wind turbines in case of IWT, 30WTs, 150WTs, and
300WTs

Many individual wind turbines when connected together may be represented by one
large turbine and called aggregated wind turbine. Each turbine produces wind power
exhibiting random behavior with known and unknown probability distributions. Ideally,
from the property of convolution, the random effects when summarize can reasonably be
modeled using zero-mean Gaussian distributed white noise [41]. The data distribution of
power output of aggregated wind turbines will close to Gaussian or Normal distribution.

In practice, many previous studies have shown that the wind power distribution of
wind power plants are not a type of Gaussian distribution [41][ 55][48][69]. The wind
power distribution may be approximated by Beta distribution, kernel estimator, or mixture
three Gaussian distribution. The wind power deviation distribution is, however, may be
approximated by Laplace distribution. Examples of wind power distribution for wind
power plants in different location and the wind power deviation distribution are shown in

Figure 1.10.
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Figure 1.10 Histogram and fit Beta distribution (left) and hourly power change (right) of
aggregated wind power plants in BPA, ERCOT, and Midwest ISO.

The wind power distribution of wind farm depends on many factors, especially,
geographical diversity, wind speed distribution, wind turbine performance, turbulence of
wind speed, etc. In Figure 1.10, the power distribution of Midwest ISO power plant seems
close to normal distribution more than the other two plants due to the larger geographical
diversity of wind turbines in Midwest ISO power plant comparing with the others [41].

Therefore, the slow variation component of wind power can be approximated by a
Normal distribution when the geographical diversity is large enough. For the fast variation
component, such as an hourly variation wind power or less, the zero mean Laplace
distribution is more accurate than Normal distribution.

2) The colored noise of wind power

In Figure 1.11, the power spectral density of wind power reveals the finite ranges of
wind power spectrum [49]. Therefore, the colored noise (limit spectrum) should be used for
stochastic wind power modeling more realistic than white noise. From previous topic, the
slow variation wind power distribution is not a type of zero mean Gaussian distribution but
can be approximated using non-zero mean Beta distribution. Unfortunately, the non-zero

mean data distribution is not defined in the theory of stochastic differential equations. To
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apply for the study of stochastic stability analysis, following assumptions are made basing
on the relaxed conditions for the theory of stochastic differential equation.

a) The slow variation of wind power (when the fast variation part is filtered out) is
long enough so that the wind power can be assumed as a constant within a definite
period. For example, wind power is constant for at least 10 hours or 36,000
seconds.

b) The fast variation of wind power (when the slow variation part is filtered out) is
zero-mean data distribution and can be approximated using colored noise. The low
frequency component is dominant while the high frequency component has very
low contribution compared with the low frequency component and the slow

variation component.

PSD of active power (kW/hz)

7
Frequency (Hz)

Figure 1.11 Power spectral density of power output of S00kW wind turbine

From Eq. 1-1, when high frequency component is neglected, the mechanical wind

power of aggregated wind turbines can be represented as follows

P,=P, +P,=P, (1+a,,) Eq. 1-2

ml
pv, =—¢,.0, +7.E.pW Eq. 1-3
Where P = aPnsv, Ly represents colored noise applying to wind power, a,, and &, are

noise intensity and bandwidth of low frequency component of wind power, vy, is scaling

factor depending on application.
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From measurement by Pedro, the noise intensity of low frequency component of
wind power between 0.1 — 0.2 is reasonably assumed. The bandwidth, when increased will
cause the colored noise act close to a white noise. From Figure 1.11, the bandwidth of PSD
of wind power in the model should not be larger than 20 Hz.

1.2.2 Impacts of wind power on the power system stability (PS)

The instability of the power system occurs when the power system cannot regain a
state of operating equilibrium after facing a physical disturbance. This can be determined
as the ability of synchronous machines, most of electrical machine type of generation, in
the power system to keep synchronization that is called rotor angle stability. Rotor angle
stability can be affected by the small, but continuous disturbances, and the large
disturbances. The small and continuous disturbances may be considered using a linear
relationship between the influencing small signals and the rotor angle and can be called
small signal stability.

For the large disturbances, a nonlinear relationship between the influencing
disturbances and the rotor angle of the power system always occur under transient situation
and can be called transient stability.

The other major types of power system stability are voltage and frequency stability.
It is the ability of the power system to control and stabilize the voltage and frequency under
any situations. Instability of voltage caused from the negative relationship between reactive
power and voltage after critical balance of load and generation and then the system lose
control finally. Instability of frequency caused from unbalance between generation and
load for a long time.

1) Impact on small signal stability (SSS)

Small signal stability (SSS), for the case of instability, is evaluated by the positive
eigenvalue which enlarge the state variables to diverge until the system loss control. These
eigenvalues are influenced by the designed parameters of the power system, for example,
damping and synchronizing coefficients of generator, base rotor electrical speed, base
frequency, inertia constant, field circuit inductance and resistance, and mutual inductance.

J.L. Rueda and F. Shewarega (2009) had studied the impacts of wind power on SSS
of 4-machine systems with 2652.5 MW of initial value (Figure 1.12). Total load demand is
2,734 MW, with 967TMW of L1 and 1,767MW of L2. Wind power plant totally 750 MW
(with 215.7 MW of initial value) with 150 DFIG wind generators (SMW each) were set to

replace G3 synchronous generators. There are 3 cases of this scenario: first, base case
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without wind power (with O in figure); second, 85% of G3 power generation is replaced by
wind power (with [ in figure); and third, G3 is fully replaced by wind power (with A in

figure). Eigenvalues were computed with damping ratio lines as shown in the next figure.
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Figure 1.12 The 4-machine power system Figure 1.13 Root loci of eigenvalues

In Figure 1.13, eigenvalues are classified into 3 groups within 3 rectangular boxes.
Group 1 (oscillation of G3 or G4 to the rest of system) represent local mode of oscillation
with high load demand (L2 at bus B09), group 2 (oscillation of G1 or G2 to the rest of
system) represent local mode of oscillation with low load demand in distant area (L1 at bus
AO07) and group 3 represent inter-area mode of oscillation (oscillation between area 1 with
G3, G4 and area 2 with G1, G2).

The larger wind power penetration replacing G3 (path from O>>[1>>A) causes

¢ (and 1) larger with negative or stability increase for local mode of oscillation with high

load demand and inter-area mode. Fully replace of wind power (G3 is switched off) occur

only for inter-area mode with path change obviously. For this case, ¢ has no change

significantly, but @ increase with insufficient damping, and thus, increasing system swing.
However, local mode of oscillation with low load demand in distant area has no significant
influence by wind power.

For wind power with random variations, it can be concluded that SSS can become
significant depending on location of wind turbine, stress of the system (loading factor), and
amount of conventional generation that replaced by wind power. Installation of Doubly-
Fed Induction Generator (DFIG) wind power plant within the highly load area to replace

large amount of conventional generation can improve SSS significantly.
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Practically, the impact of variations in wind power on SSS or dynamic stability
cannot be analyzed using eigenvalue methods. The cumulative effect of random variation
of wind power can finally cause the system away off an equilibrium region and thus
instability [28]. Dynamic stability cannot easily be characterized using eigenvalue method
(as presented above) since the variation of mechanical input cannot directly affect to root

of (sI - A)'matrix. Therefore, a study of dynamic stability needs other suitable methods

that can incorporate random variation effects of wind power.
2) Impact on transient stability
The most frequent transient phenomenon in a power system is a short circuit fault.
During a fault, power and voltage may suddenly drop close to zero. Unbalance between

mechanical power of generator (P,) and electrical power of the system (P ) can cause

transient instability that can be described using swing equation of power system as follow.

do, d°6 o,
r 289 _“ip _p Eq. 1-4
dt  df? 2H[ nE] a
o, =ds/dt Eq. 1-5

where P, =(EgE,sind)/X, , is called power-angle relationship, w,is rotor electrical
speed, O is rotor angle, @, is base rotor speed, and H is inertia constant of generator.

In Equation 1-3, the mechanical power of a generator is larger than the electrical
power of a power system, and thus, causes acceleration of state variables, such as rotor
electrical speed and angle. If faulted line is cleared (by open circuit) within a proper time,
state variables may become stable finally but if not, instability may occur. Numerical

simulation method always be used to compute time variation of ¢ and @, after subject to

faults with different clearing time. The clearing time of protection devices that can make
o first enlarge and out of equilibrium is called Critical Clearing Time (CCT). CCT is used
indirectly to quantify transient stability. The larger CCT means system is more stable due
to practical clearing time may never reach that CCT.

The transient stability of an induction generator wind turbine strongly depends on
pitch control systems. The quicker response of pitch control, the faster converge to stable
condition. However, dynamics behavior of wind generators (with power 0.5 p.u.) does not
have so significant effect on transient stability of conventional synchronous generators

(with power 1.0 p.u.) [39].
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Furthermore, transient stability is influenced by the location of wind farms, types of
generators, and wind power penetration. Wind power can improve transient stability for
some bus, while can cause poorer transient stability for the other bus. Variable speed
scheme of DFIG wind turbine can have better transient stability than fixed speed scheme of
IG because DFIG can better control reactive power. However, transient stability decrease
when penetration of wind power increase [19].

3) Impact on voltage stability

Voltage instability occurs when a system cannot control voltage by the normal
compensation of reactive power. This situation happens when load is too high, reactive
power is limited, and/or under other contingencies such as loss of transmission line.
Practically, voltage collapse (suddenly large drop of voltage) can possibly be found before
voltage instability. P-V curve and Q-V curve usually are used to explain the operating

condition and state of voltage stability as shown in the next figures.
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Figure 1.14 P-V curve with three power Figure 1.15 Q-V curve with different P

factors

For voltage stability indicators under static conditions, V-Q sensitivity and roots of
Q-V modal sensitivity are always considered. For dynamic condition, bifurcation concept
is applied to explain characteristic of the case one value of P or Q have 2 operating points
of V. The saddle-node bifurcation (SNB or point of collapse) and hopf bifurcation (HB) are
specified to explain the state of operation. SNB is the point when eigenvalue of system
matrix is zero while HB occur when complex conjugate eigenvalue cross imaginary axis.

The operating point at SNB is the point of maximum power at the receiving end on
the P-V curve while HB may or may not occur on the P-V curve before reaching SNB. At

SNB, voltage decreases vastly (or voltage collapse), V-Q sensitivity become negative,
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increase Q cause aggressively drops of voltage, system loss control finally. At the point
HB, voltage swings corresponding to imaginary part of eigenvalue.

The induction generator of a wind turbine usually consumes reactive power from
the power system, reducing capability of the system to control voltage and reduce voltage
stability (as shown in Figure 1.16). Increasing of internal parameters, such as impedance of
step-up transformer and transmission line, can also increase voltage stability. Moreover,
the better wind potential, the more loadability (ability to handle load without voltage
instability) as shown in Figurel.17. However, using Static var compensator (SVC) instead
of capacitor bank cannot improve loadability or even SNB but can increase HB that
reduces the swing of voltage as shown in Figure 1.18 [76].

Conversely, this last result contrasts with Youjie’s study. Even though both cases
use DFIG for simulation, Youjie found that SVC can improve loadability and SNB.
Furthermore, SVC can reduce active and reactive power loss in the line and can improve

voltage stability at the bus [71].
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Figure 1.16 P-V curve of power system with Figure 1.17 P-V curve of power system,
and without wind power including wind farm, at different wind speeds

with normal and contingency situations.
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Figure 1.18 P-V curve of power system with SVC and Capacitor bank compensator

4) Impact on frequency stability

The imbalance between the mechanical power of the generator and the electrical
power of the system can cause the acceleration of rotor electrical speed that affects
electrical frequency directly. Therefore, frequency stability depends on ability of generator
to generate power for load demand. Frequency drop when system loss of generation and
then frequency instability can occur. This large disturbance may cause cascading outage
due to load shedding regulation or in worst case, may be cause -cascading
desynchronization of generators.

Frequency stability incorporating wind power depends on both wind power
penetration and control schemes of active, reactive power and voltage. For example, after
2.5% loss of generation, larger penetrations of wind power cause the frequency to drop
faster with a finite time. In the case of DFIG wind generator with constant P and V control,
frequency of larger penetration wind power exponentially drops until becoming stable and
keeps decreasing until lower than less penetration wind power, as shown in Figure 1.19.
For the case with P and frequency dependent V control, frequency drop slightly and
suddenly regain to stable value as shown in Figure 1.20. However, this latter case of

control scheme leads to larger voltage drop especially near a wind farm [31].
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1.2.3 Impacts of wind power on power quality

For PQ problems, over/under voltage, over/under frequency, flicker, harmonics,

protection error, and over current could be issues of interest. Problem and causes of these

issues are listed in Table 1.1 [49].

Table 1.1 Major problems of power quality from wind power integration

No. Problems Causes
1 Steady state voltage rise Wind speed variation
2 Over-current Peaks of wind speed
3 Protection error action Peaks of wind speed
4 Flicker during continuous operation Dynamic operation of wind turbines
5 Flicker during switching operations Switching/start up operation of generators
6 Harmonics Power electronic converters
7 Voltage drop In rush current due to switching operations of generators

Wind power fluctuates with wind speed, which causes the more reactive power

absorbed by wind farm when there is larger variation of wind speed and with greater wind

power penetration. Furthermore, the effect of random wind speed (noise including gust and

ramp) has more effect on fluctuation of P and Q for larger wind power penetration, as

shown in Figure 1.21 [66].
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Aggregation of wind farm (separated into many groups) with proper distance and

time shifts between each group can cause reduce flicker and 3p noise (3 times of rotor

frequency), and can make P, Q, and V smoother [36].

Later, Muljadi et al. also studied the other aspects concerning PQ in a wind power

plant. From the results (as shown in Figures 1.22 — 1.25), they concluded that voltage

varied with reactive power and reactive power compensation can improve voltage quality.

Frequency varied with derivative of active power, and reactive power compensation cannot

improve frequency quality. Self-excitation can occur when capacitor provide reactive

power to induction generator during off-grid [20].
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Moreover, the main flicker contributions from wind turbines comes from the 3p
power variations (at the frequency of 2.1Hz) which is related to rotational turbulence and
the 3 blades passing the tower. The 1p power variation (approximately 0.7Hz) is related to
the rotor speed variation. In the frequency of 8.4Hz, corresponding to 12p, a small power
spectral density (PSD) is related to the flexible aero elastic part of the wind turbine in

addition to the induction generator, as shown in Figure 1.26 [49].
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Figure 1.26 Power spectral density of power from 225kW pitch controlled wind turbine

For conclusion, interesting issues involving PS and PQ when incorporating wind

power, are presented as follows.

Table 1.2 Interesting issues of power system stability and quality incorporating wind

power
reverssemsiiy | cwe |
Transient instability loss of wind , voltage drop, or line fault
Dynamics instability cumulative effect from random variation of wind power
Voltage instability or random variation of wind power during critical operating point
voltage collapse (bifurcation)
Frequency instability loss of loadability (critical imbalance between load and generation)

during random variations of wind power

Voltage variation and Over/Under Variation of reactive wind power relating to variation of reactive
voltage power compensation of the power system

Frequency variation and Over/Under

Variation of active wind power (relating to variation of load)
frequency

Variation of mechanical power of wind turbine relating to turbulence

Flicker during continuous operation . . .
urng uous op of wind and dynamic response of turbine

Variation of scale, occurrence, and duration when start up and/or

Flicker during switching operation switching of wind power
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1.2.4 Deterministic methods for power system stability and power quality
analysis

Effects of wind energy on power system stability (PS) and power quality (PQ) have
been studied by many authors using methods generally based on deterministic approaches.
Deterministic method analyze PS by solving Differential and Algebra Equations (DAE) of
power system both static and dynamic system based on generator model, network system
model, load characteristics equations, and control system model.

For deterministic methods, all operating conditions and network topology are
explicitly determined with the dynamic response to time-variation of generation of input
and dynamic (or static) state variables. Classical small signal stability, transient stability,
and voltage stability, generally based on deterministic method, are well explained in Power
System Stability and Control by P. Kundur (1998).

Some of these classical methods are Dynamics numerical method, Equal-area
criterion, Direct method, Eigenvalue analysis, Q-V modal analysis and V-Q sensitivity
analysis. Examples of deterministic methods for PS analysis are presented in Chapter 2.

Moreover, voltage stability analysis method is later improved considerably and well
described by Claudio A. Canizares (1995, 1998, and 2003) . He clearly describes voltage
stability and voltage collapse base on bifurcation theory, optimization technique, and
reduction load flow Jacobian. Furthermore, they had developed many useful voltage
stability indicators such as Saddle-node bifurcation (SNB), Hopf bifurcation (HB), and
Linear performance index (linear relationship between Eigenvalue index or HB and loading
factor).

However, deterministic methods require enormous exact information to compute
highly accurate results, which is impossible under the realistic random nature of power
systems. The power system concerning many uncertainties from, for example, load
varying, random occurrence of faults, dispatching of transmission line, operating of control
system, and variation of generation such as renewable sources especially wind power.
Spectrum of uncertainty varies from very low frequency (0-0.1 Hz) to high frequency (up
to 3kHz) with small and large scale that affect to operating condition differently.

To incorporate the real random nature of the complex power system, probabilistic
methods were developed and applied to studying the effects of randomly fluctuating
variables. These random variables are, for example, fault type, fault location, fault

occurrence, load factor, power generation, availability of equipments, impedance of
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transmission line due to dispatching, impedance of overall network system, and operating
condition.
1.2.5 Probabilistic methods for power system stability and power quality
analysis
1) Classical probability method for small signal (dynamic) stability analysis
Originally, well-known probabilistic methods for small signal (or dynamic) stability
(SSS) were discussed by Burchett and Heydt (1978). They evaluated SSS based on
classical eigenvalues analysis method for the linearized system state matrix. Uncertainty
(with mean and covariance) of system parameters, such as rotor angle and mechanical
damping coefficient, and with sensitivity to eigenvalues was determined to compute
uncertainty of eigenvalues. Probabilistic method was applied to compute the probability
that all eigenvalues have negative real part which remains in the stable region. This
approach can save more calculation time than deterministic approach while can accurately
describe uncertainty of stability statistically. For this study, state space equation in vector
form are reformed to be,
AX=AAX Eq. 1-6
To compute the unknown uncertainty of the eigenvalues from the known
uncertainty of the state variables, sensitivity analysis was determined from this equation:

Ad = S,Az, Eq. 1-7
Where 4 is i" eigenvalues, z;is j" system parameter and S, =4, /oz, is sensitivity of it
eigenvalues to j" system parameter. o4, / 0z, can be computed from the scalar product of

matrix A, and the right and left eigenvectors as follows.

o, Y
s & _\% | Eq. 1-8

[j = 2=
0z, (w.v,)
Where w,,v. are the i™ left and right eigenvector, respectively, corresponding to the i™
eigenvalues.

If Az, are known multivariate random variables, therefore, by chain rule, AA also are

multivariate random variables. Theoretically, properties of multivariate random variable
are used to calculate uncertainty of eigenvalues in matrix form as follow

Mean (A4)=0 Eq. 1-9

Covariance (A1) = Real (S ).Covariance (Az).Real (S") Eq. 1-10
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To compute the probability of instability that all eigenvalues have no negative real parts,

zero mean (M) and covariance matrix of multivariate random variables, cov(A41) =C, are

used in the probability density function (PDF) of the multivariate random variables , that is

£ (X)= ! rexp(-0.5(X-M)'C'(X-M)) Eq. 1-11
((27)" det(C))

The probability that all eigenvalues have no negative real parts is

P{x, 2u,%, 2 Uy, %, 21, } =P{X2 U} = [ .| [f,(X)dxdx,.dx,  Eq.1-12

un u2ul

This form of probability can be computed using the Generalized Tetrachoric Series
method as described by R.C. Burchett and Heydt. The results of eigenvalues (4, = 4™'w,4)
with uncertainty (mean and standard deviation) and probability of instability are presented
in next figure. Standard deviations of eigenvalues are computed from covariance matrix as

stated before (Std(4,) =/c; ).
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Figure 1.27 Complex plane of eigenvalues Figure 1.28 Probability of instability vs
load

From the above right figure, since the rotor angle is influenced by the load,
increasing the loading factor causes the eigenvalues (corresponding to rotor angle) to move
from negative to close zero. This will increase the probability of the instability as a result.

2) Stochastic differential equation for dynamic stability analysis

Even though, the classical technique as presented above, has higher statistical

accuracy than deterministic methods, it cannot be properly used when considering the

effects of random variations of state variables and overall network parameters. This is due
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to the differential equations is linearized to consider only steady system state matrix and
eigenvalue could be computed without respect to fluctuation of state variables.

Theoretically, given any dynamical system that is continuously perturbed by a zero-
mean Guassian distributed noise, the probability that a given stable operating point will
eventually leave its stability region in finite time is essentially one, independent of the
magnitude of the noise and excluding any control actions [7]. Therefore, the cumulative
effect of random variations can finally cause the system to be away off an equilibrium
region and thus unstable. Dynamic stability cannot easily be characterized using eigenvalue
method (as presented above) since the variation of mechanical input or load cannot directly
affect to eigenvalue matrix. Therefore, study on dynamic stability need the other suitable
methods which can incorporate random variation effect of wind power.

Advanced methods for dynamic stability analysis that account for the stochastic
nature of random variables was clearly explained by S.M. Shahidehpour and J. Qiu (1986
and 1989) and later improved with many applications by C.O. Nwankpa et al. (1989, 1991,
and 1992). For this method, Mean First Passage Time (MFPT) is introduced to be as
stability indicator based on theory of Stochastic Differential Equation (SDE). Cumulative
effect of random fluctuation of system variables can continuously push the system until
exit the stable region within finite time. Since there are many values of exit time vary
randomly, MFPT is the average of the first time exiting stable region of the system. When

the system is perturbed by stochastic variation, the perturbed differential equation becomes

dX(t)=g(X)dt + Veodw(?) Eq. 1-13
Where X(t) is the state variables matrix, g(X) is the bounded function matrix, & #0 is a
small real parameter, o is the diffusion matrix, w(t) is the n-dimensional Weiner process
(Brownian motion).

For the exit problem, t(X) is the mean first exit time (MFPT) when x exits from the
boundary of the domain of attraction, while at time 0, x € Q. t(x) is determined from the
solution of the boundary value problem as follows [61]:

L(z(x)) = -1 for xeQ r(x)=0 for xeQ

2

0 4 3}
+ (x)— Eq. 1-14
Ox,0x ;g,( )6xl. a

L= an: a, ;(x)

i,j=1
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For the power system, the Weiner process (w(t)) can be considered to be white
noise for the idealization or colored noise depending on the characteristics of the perturbed
variables and the complexity of the solution.

The white noise (§) has properties, as follows
e mean of () =E(§) =0

e power spectral density is constant for infinite bandwidth

e normally has Gaussian distribution with N(O,Gz)
The colored noise (v) has various properties, for example:

o E)#or=0

e power spectral density is a function of f 2, - 1, fO, fl, f2, or others with a finite
bandwidth (word color means at the different range of frequency)

e not necessary to have Gaussian distribution with N(O,cz)

Realistically, colored noise is generally found in the nature of the power system.

For the power system with white noise perturbation, Langevin equation is applied as

follows:

X =x, and X, =—Bx, —yr(x,) +JeoE Eq. 1-15
Where x(t) is state variables, £ is coefficient related to o, £#0 is magnitude of perturbation
(noise intensity), o is coefficient of perturbed variables, &(t) is white noise, and ¥(x) is
system potential. When & = 0, therefore, y with respect to x7 is presented in below figure

74

Xa X °
For above figure, s; and sy are stable points while uj is unstable. This figure can be

well described by the energy function method. Therefore, energy function method can be

used as an boundary condition to determine t(x) which is bounded by the critical energy

(Ec=wA- wp) [61].

For the power system with colored noise perturbation, the Orstein-Uhlenbeck process is

applied as follows [9]:
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X, =—y(x,)+y, and v, =—av+ \/Eaaf Eq. 1-16
Where xj is state variables at bus &, « is bandwidth of noise, & #0 is noise intensity, o is
perturbed variable coefficient, vf is colored noise, & is white noise, y(X) is system

potential.
Equations of colored noise are added into the system with known bandwidth and

intensity. State space equation will be used to determine energy function E = f(xy) . After
that, find critical energy (E.) from t(x) can be determined from the solution of boundary
value problem which is a function of y, €, a, B, xA, and xg. Process to compute 1(x) is

well described by Anawach Sangswang (2003).

The SDE method adds a perturbation part to the conventional differential equation
and can be solved only by special calculus for the SDE problem. For example, the swing
equation added by the perturbation of wind power generation is as follows:

%:ﬁ[&myw—g] Eq. 1-17
Where w, is rotor electrical speed, H is inertia constant, P, is mechanical power input of

wind turbine, P, electrical power of the system, yis noise intensity (standard deviation

divide by mean value), and w is white Guassian (white) noise (random noise with constant
power spectral density (PSD) and normal distribution).

Furthermore, noise with selective filter (colored noise) can be stated instead of
white noise due to the nature of some variables for which PSD is not constant for wide
range.

Hadiza and C.O. Nwankpa (1998 and 2000) have applied this method to
incorporate stochastic random of wind power. They found that MFPT decreases with
increasing of wind power, noise intensity and loading factor, as shown in Figures 1.29 —

1.32.
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3) Stochastic differential equation method for voltage stability analysis

SDE is also applied to study voltage stability using stochastic voltage collapse

indicator or MFPT. This concept is based on the structure-preserving model for load bus

and equation of motion of generator as follows [12]:

Vk :_ng(Vkoek)+\j‘9kQO_éé

ék = _WI:(Vlt’ek’a)l‘qf)+Vg:G.k

0,=0,-a,

d)i = _:Ha)i _l//i(Pmi’Bzi)

Eq. 1-18
Eq. 1-19
Eq. 1-20

Eq. 1-21

Where ¢ is noise intensity for P and Q at load bus &, y(x) is system potential for equation

of P and Q and for swing equation, J" and @ are bus voltage and scaled rotor angle, and @

is angular speed of machine i, bus &, reference.
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Then the energy function (E) is determined from the system potential function ().
Since E is known, E . can be computed to determine MFPT for voltage stability as follows
MFPT = % . fe/h) Eq. 1-22
Where A(E,) is a function of E, & is weighted constant for &” and &€ .

Two cases the same and the different load fluctuation intensity levels (g]), when the

load is increased, are presented in Figures 1.33 — 1.34.

—O
Bus V (pw) | PmMW) [ PL(MW) [ QI (MVar)
¢ 1 1.0 0 100 20
2 1.0 0 120 20
3 1.0 0 80 20
4 1.0 150 0 0
f i 5 1.0 80 0 0
6 1.0 80 0 0

Figure 1.33 Schematic diagram and generation/load data of the 6 bus power system model
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Stochastic Voltage Collapse Indicator (InT)

Stochastic Voltage Collapse Indicator (InT)

T o
1 [t

Figure 1.34 In 1 vs. p.u. load increase (6 bus power system) with the same (left) and with

different (right) load fluctuation intensity levels (¢) for P and Q of buses 1, 2, and 3

Figures 1.33 and 1.34 show that the same £=1.0, Bus#3 has the poorest voltage
stability while Bus#1 and Bus#2 are better. For the different ], Bus#3 (with smallest ¢))

seem to have highest voltage stability at load less than 1.6 p.u., but after that become
poorest.

However, wind speed varied with space and time results in different PSD of wind
power over a finite range of frequency. Therefore, noise intensity and bandwidth will be
different depend on location, time, wind turbine technology, and wind farm design. Noise
intensity and bandwidth including wind power in earlier studies still lack of the details and

need more information for several aspects such as
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e [t is true or not that only noise intensity and bandwidth parameters are enough for
studying various PSD characteristics of wind power?

e If enough, how to determine noise intensity and bandwidth with different ranges of
frequency and different related factors. But if not, what else?

e How to apply SDE with colored noise to analyze the dynamics and voltage stability
incorporating wind power?

e How to determine energy functions of SDE applied to the problem of power
quality, especially, voltage variation, frequency variation and flicker?

4) Probability method for transient stability analysis

Transient stability using the probability method was well collected and described by
R. Billinton and P.R.S. Kuruganty (1979, 1980, and 1981). They computed the probability
of stability by consider probability distribution function (PDF) of involving aspects for
example, fault location, fault type, fault clearing time, machine inertia, and system
reactance. This method even though not complicate to deal with, but require vary much of
information to accurately compute PDF of involving aspects.

Lastly, Sherif O. Faried, R. Billinton and P.R.S. Kuruganty (2009 and 2010)
applied this method to evaluate the transient stability of power system incorporating wind
farms. The first study, they considered uncertainty from type of fault, location of fault,
fault impedance, fault location, fault clearing process, system load, and spring constant of
wind turbine. One year later, they studied the similar aspects with different type of fault,
location of fault, fault impedance, operating condition, reclosing time, and spring constant
of wind turbine. They found that, weather wind can improve transient stability or not, it
depends on location of connection. Increasing of wind power penetration can possibly
increase of transient stability.

1.2.6 Probabilistic methods for power quality analysis

For probabilistic methods for power quality analysis, only voltage (V) fluctuation,
frequency (Fr) fluctuation, and flicker (F1) problems are considered. The V, Fr, and FI
under acceptable ranges with upper (UL) and lower limits (LL) are reported in the IEEE
and Grid Codes of many countries. Therefore, we need to know PDF of V, Fr, and FI of the
power system to determine probability of V, Fr, and FI be within the range UL and LL.
There are 2 ways to determine PDF of V, Fr, and Fl, first is based on convolution of

independent random variables with known PDF for the linearized equation, second is based
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on Monte Carlo simulation (MCS) with known PDF of random variables for differential
equation.

The first method is based on assumptions that may be far from the real situation,
while the second method, even though accuracy and realization is better, requires much
computational time [22].

A Monte Carlo simulation can compute the random state variables from the
differential equations. Monte Carlo simulation will randomly generate sample values with
known probability distribution function and solve the differential equations iteratively.
Number of calculation normally should large enough (May be more than 1,000 iterations)
for statistical reason of accuracy. Therefore, large spend of computational time and effort.
However, advantages of probabilistic methods still be attractive for improvement the
understanding of PS and PQ incorporating wind power.

MCS is the method used to compute PDF of output unknown variables by
generating (or sampling) input random variables with known PDF. Since MCS has high
probabilistic accuracy and highly acceptable, therefore, this thesis will use Monte Carlo
simulation method to analyze voltage fluctuation, frequency fluctuation and flicker.

Examples of probability distributions of voltage with load varying at different times
by sampling P, Q (from mean and variance data) at each node and switched capacitor (from

probability distribution) at each hour are presented in Figures 1.35 —1.37 [14].
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Figure 1.35 Daily time Figure 1.36 Probability Table37 Probability distribution of

varying load pattern distribution of voltage at 2 a.m. voltage at 2 p.m.

1.2.7 Conclusions of Literature Review
For power system stability, the major impacts of wind power to power system are
dynamic stability and voltage stability due to the continuous random fluctuation of wind

power causing cumulative effects on the system performance, especially the voltage and
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synchronization. Transient stability, even though important, occurs infrequently. For
frequency stability, instability can occur when large amount of wind power loss during
high load demand. If wind potential is low to medium, therefore, small amount wind power
loss can cause small possibility of frequency instability.

For dynamic and voltage stability, MFPT is a proper indicator to quantify the level
of stability based on SDE theory. Previous studies are not given details of the wind speed,
wind power or any different technology influencing stability of the power system.
Therefore, it is a challenge for any future research to apply this method for a study of
Effects of wind energy on power system stability with more details of wind characteristics,
random fluctuate wind power, and the others concerning factors.

For power quality problems, random variations of wind power lead to variations of
active and reactive power, and cause frequency and voltage fluctuations, respectively. The
theory of SDE even though, can compute MFPT but cannot easily calculate system
parameters with uncertainty. However, if deterministic variables with known PDF can be
specified, therefore, PDF of non-deterministic variables can be computed using analytical
probabilistic method or Monte Carlo simulation method.

Power system stability indicators and analytical methods for deterministic and

probabilistic methods are summarized in Table 1.3.

Table 1.3 Deterministic indices and analytical methods of power system stability

Disturbance | Type of stability Stability indices Analyzing methods
Voltage stability | Voltage drop or rise with duration Dynamics numerical method
Area under power curve Equal-area criterion
Large Transient stability Critical clearing time (CCT), and Dynamics numerical method
disturbances ang'e
Critical energy (CE) of instability Direct method
Frequpp y Frequency drop or rise with Dynamics numerical method
stability duration
Small signal Eigenvalue of system Eigenvalue , Eigenvector analysis
(Dynamics) characteristics matrix with linearized model
Small V-0 sensitivity Newton-Raphson iterative method
disturb i 3
1SHTDARCes Voltage stability Eigenvalue Of Q V'modal Eigenvalue , Eigenvector analysis
sensitivity
Point of Collapse Bifurcation analysis
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Table 1.4 Probabilistic indices and analytical methods of power system stability

Disturbance Type of stability Stability indices Analyzing methods
Voltage stability - -
Large . . P(CT<CCT) 1) Equal area criterion
disturbances Transient stability (line fault) 2) Dynamics simulation
Frequency stability - -
) o P(A<0) Eigenvalue analysis with
Dynamics stability of linearized system multivariate random variables
Small (small signal stability) — - -
. MFPT Stochastic differential equation
disturbances
Voltage stability Stochastic voltage L . .
(Voltage collapse) collapse indicator Stochastic differential equation

Generally, the deterministic method, called eigenvalue analysis, is used for the
study of small signal stability of the power system incorporating wind power, for example,
the studies of Thomas Ackermann (2005), T.R. Ayodele et al. (2010) and J.L.. Rueda and F.
Shewarega (2009). However, this method uses the linearization technique to approximate
nonlinear characteristics of the system and lose key information as a result. Even though,
there are many attempts to include the probabilistic characteristics in the SSS analysis,
such as in [54], [75], and [62] but these studies still based on linearization eigenvalue
analysis method.

Another probabilistic method, such as Monte Carlo Simulation (MCS), has been
applied to study the nonlinear and random characteristics of the power system, for example
in R. Billinton and W. Li (1994) and Z. Xu et al. (2005), but it consumes much time and
computational resources. Alternatively, the stochastic techniques, such as in [11], [2], and
[28], have been developed and applied for power system stability analysis using stochastic
stability theory of exit time [74]. However, these techniques are based on the simplified
(quadratic) energy function which is not proper for induction generator of wind turbine.

Recently, there is an alternative technique to study the effects of wind power using
stochastic stability analysis method [47]. This technique can characterize a nonlinear power
system including stochastic wind power while consumes less time and computational
resource. Nevertheless, that paper used the simplified induction generator (IG) wind
turbine in the model which is not the major share of the market and may miss the
significant effects due to the different technology.

Therefore, this paper aims to study the effects of DFIG wind turbines on the

stability of the power system using the stochastic stability analysis method.




34

1.3 Research Objectives

To quantitatively assess the effects of wind energy on the power quality and the
stability of the power system using probabilistic methods to incorporate the stochastic
characteristics of wind power.

Scope of Thesis

1) The probabilistic methods were developed for the purpose of assessing the effect of
wind power on power quality and stability of the power system to incorporate the
stochastic characteristics of winds.

2) The designed power system is based on the standard test system as a main part and with
case study of Thailand as addition.

3) The wind power system models have been selected from suitable published studies.
Fixed Speed Induction Generator (FSIG) and Doubly-Fed Induction Generator (DFIG) will
be used in this research.

4) For power system stability analysis, dynamic stability and voltage stability are the
major parts of interest for this study. The theory of Stochastic Differential Equations will
be applied for power system stability analysis.

5) For power quality, over/under magnitude from fluctuations of voltage and frequency are
the major part of interest for this research. Monte Carlo simulation and analytical

probabilistic method were used for power quality analysis.



CHAPTER 2
THEORIES

From the objectives and scopes of thesis, to design the methodology for the study, it
is necessary to understand the theoretical background of the power system stability, the
power quality, the wind power characteristics, and the probabilistic methods. This chapter
reviews these theoretical backgrounds, which are
The Power System: Consists of (1) the generator model, (2) the transformer model, and
(3) the transmission line model.

Power System Stability Classification: Consists of (1) Rotor angle stability, (2) Small
signal instability, (3) Transient stability, (4) Voltage stability, and (5) Frequency stability.
Wind Power: Consists of (1) Estimation of wind power, (2) Probability distribution of
wind,

(3) Wind turbine technology, (4) Wind Turbine Type and Classification, (5) Wind power
models, and (6) Wind Power and Power quality.

Probabilistic Methods for the Power System: Consists of (1) Random variables,
(2) Stochastic processes, (3) Stochastic differential equation, and (4) Monte Carlo
simulation.

Energy Function Methods: Consists of (1) Lyapunov’s theory of stability, (2) Modeling
aspects for stability problems, (3) Potential energy boundary surface (PEBS) method, and
(4) Boundary controlling unstable equilibrium point (BCU) method (5) Critical energy
estimation, and (6) Well-defined energy function formulation using the first integral

method.

2.1 The Power System

Structure of the power system, which is represented in Figure 2.1, consists of
e Generation Unit: the generator (synchronous and/or induction generators), which
converts kinetic energy into electric potential energy.
e Transmission Unit: the electrical network, which transfers energy from the
generation unit to the distribution unit. It includes transformers, electrical wires,

and electrical control and protection equipment.
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e Distribution Unit: the electrical network which receives energy from the
transmission unit and distributes to its customers. It includes transformers, electrical

wires, and electrical control and protection equipment.

22 kV 220V

:} Industrial

O

. .. . . . Small Gen
Generation Transmission Distribution

%
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Figure 2.1 Structure of the power system

The main components focused on the study of power system stability, are the
generator, transformer, and transmission line. The model of each component is described
below.

2.1.1 Generator Model

The principle of the generator is based on the magnetic theory of Maxwell, which

explains the relation between the magnetic field and the electric field as follows.

AB=0 B is magnetic flux density
AD=p D s electric field flux density
is charge distribution
AxH =J+ ob P _ s _ ' _
ot H is magnetic field intensity
Axe = — 86_3 J is current density
t

¢ is electric field intensity

~

Ampere’s law C}SH-dl = J.Jda = Ni is length path of H

i 1S current

, OB
Faraday’s law Cfg dl= _Ia-da a 1is cross section area (s)

From Ampere’s law, moving charges induce N is turns of coil

magnetomotive force ( mmf= Ni)
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Figure 2.2 Current induces magnetic flux on solenoid

Where magnetic flux I Bda = ® and for N turns of coil, total magnetic flux (flux linkage) is

=0 +0,+0,+D, =NO Eq. 2-1
From Faraday’s law, variation of magnetic flux induces electric field with induced
voltage, v; as follows:

dt

Eq. 2-2

Flux linkage can be presented in terms of inductance L and current i as follows:

v =Li Eq. 2-3

Maxwell’s equations and Eqs. 2-1 — 2-3 are used to explain the characteristics of
the generator and transformer in the following sections.

The generator transforms kinetic energy into electromagnetic energy. The rotating
turbine causes magnetic field on field circuit (on the rotor or stator) to vary periodically.
By Faraday’s law, variation of magnetic flux induces electric field and voltage on armature
circuit. The different type of generator depends on the design of rotor and stator
corresponding to source of magnetic field and armature circuit.

The two types of generators discussed are synchronous generators, and
asynchronous or induction generators.

2.1.1.1 Synchronous generators

For synchronous generators, the electrical frequency is synchronized with the

mechanical rate of rotation of the generator.
_120f
o p

N

Eq. 2-4

Where f'is electrical frequency (Hz), n, is mechanical speed (or synchronous speed) of

magnetic field (rpm), and p is number of poles.
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The generator consists of two main parts, the field and the armature. The dc current
is supplied to the field winding on the rotor and induces a magnetic field which N pole for
d-axis and its quadrature is g-axis. The three phases system corresponds to the a-a’, b-b’,
and c-c¢’ armature windings. Axis of phase a is 90° with the a-a’ winding while axis of
phase b and c is 120° counterclockwise shift and clockwise shift, respectively and be
presented in below figure. [52]

The dc current is from an external source or from a special circuit on the rotor shaft.
The external source supplies dc current through slip ring or brushes which suitable for
small machine since it is cost effective even though require maintenance and cause voltage
drop on brushes. The special circuit, or called brushless exciter, consists of exciter field on
the stator and exciter armature on the rotor. Rotating of rotor induces ac current on exciter
armature which is converted to be dc current by 3 phase rectifier and then supply for the
main field circuit on the rotor. The power supplied to an exciter field is from an external

power source or from a permanent magnet circuit.

g-axis

Axis of phase b\
A

Field winding

d-axis

" - Axis of phase a

Axis of phase ¢

Figure 2.3 Schematic diagram of a three-phase synchronous machine

There are two rotor structures, depending on the operating speed. For low rotational
speeds, such as wind turbines and hydraulic turbines, a salient pole rotor with a large
number of poles is required to achieve the rated frequency. For the high speed such as
steam or gas turbines, a round rotor (non-salient) with 2 or 4 poles is required.

The salient pole rotor always has damper windings or amortisseurs at the end ring

to damp out speed oscillations and eddy current losses. Non-salient pole rotors, even
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though without damper windings but a solid steel rotor, offers paths for eddy currents that
affect amortisseur currents equivalently.

Therefore, the rotor circuits consist of a d-axis field circuit and d, g-axis
amortisseur circuits. The stator circuits consist of a, b, ¢ phase windings. However, for
calculating convenience, the a, b, ¢ phase winding can be presented in d and g-axis using d-
g-0 transformation function. Stator and rotor circuit of a synchronous machine are

presented in next figure [52].

Rotation
-——
w, elec. rad/s

a, b, ¢ : Stator phase windings
fd . Field winding
kd . d-axis amortisseur circuit
kg . g-axis amortisseur circuit
k= 1,2, ..n n=no. of amortisseur circuits
0 = Angle by which d-axis leads the magnetic axis

- of phase a winding, electrical rad
Rotor Stator o, = Rotor angular velocity, electrical rad/s

Figure 2.4 Stator and rotor circuit of a synchronous machine [52]

For the per unit system, the electrical equations of synchronous generator are

presented as follows [52].

Per unit inductance L Per unit air-gap torque

Lafd =L fda = Lyi =L =Ly

¢ T =y, —yi Eq. 2-6

Ly, =L, =L, Eq. 2-5 do T
Lfkd = Lkdf
Per unit stator voltage equations Per unit rotor voltage equations
Vv, =W, —W,0,— R, Vg =W+ Ryly
v, =¥, +y,0, - R, Eq.2-71 0 =y,,+Ri,

) _ ) ) Eq. 2-8
Vo =¥ — R 0 =y, +Ri,

0 =l/?2q +R2qizq
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Per unit stator flux linkage equations Per unit rotor flux linkage equations

Va= Lf/“difd + L/'ldild =L,

Wi =Lyt Ly — Lyt
Eq. 2-9 1d fld. fd naha 'd d Eq. 2-10
Wi, =Ly, + L, b, — L,

aquq aqq

W, ==L, +L)i, +Ladiﬁi + Ly
y,=—(L, +L)i, +L, i, +L

aqllq aql2q

Wy =Lyl

‘//Zq = Laqllq + LZZqZZq - Laqlq

Where fd is for field circuit d-axis, /d is for amortisseur circuit no. 1 in d-axis, /g and 2¢q
are for amortisseur circuits no. 1 and no. 2 in g-axis, ffd is for the value of field circuit, f1d
is for the value between field and /d circuit, and //d and 22q are for the values of /d and
2q circuit.
2.1.1.2 Induction (or Asynchronous) generators

For induction generators, alternating current is supplied to the stator winding, which
induces alternating current in the rotor winding. This is the same as a concept of
transformer. There are two main types of induction generator: (1) the squirrel cage
induction generator (SCIG), and (2) the wound rotor induction generator (WRIG). For
SCIG, the conducting bars at both end of rotor are shorted circuit and look like a cage. For
WRIG, a rotor winding with terminals are brought out to slip rings for external connection.

First, the 3-phase current in the stator winding produces a rotating magnetic field in
the air gap of the machine. The rotating magnetic field induces voltage in conductor bars of
rotor. The induced voltage produces rotor current which interact with magnetic field in the
air gap to produces torque. The rotor starts to rotate in the direction of magnetic field. If
rotational speed of rotor (n) is less than synchronous speed (#,), then the motor mode is
applied with speed n. If n > n;, the generator mode is applied. But if n = n;, then there will
be no torque and no induced current.

The rotational speed of the rotor () is always expressed in the form of a fraction of
the synchronous speed or called s/ip (s) as follows:

PNl

Eq.2-11
n

Where n, = 1201/ p.

System equations of induction generator consist of at least the voltage equations,
flux linkage equations, and torque equations.

For example, per unit voltage equations of a squirrel cage induction generator

(SCIG) in the d-q (direct-quadrative) reference frame, is as follows [67]:
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d
uds = _Rsids - a)qus +%
u, =—Ri +oy,+ (‘/;tqs
Eq. 2-12
udr = O = _Rridr - Sa)sl//qr + %
uqr = O = _Rriqr + a)sy/dr + Z/tqr

Where u is voltage, subscript s and r are for stator and rotor, R is the resistance, i is the
current, @y is the synchronous speed, vy is the flux, and s is the slip.

The slip, s, is defined as follows

s=1-L% Eq. 2-13
2 o,

Where p is the number of poles and @, is angular frequency of generator rotor.
The flux linkages can be determined as follows

v,=—(L, +L )i, —L.i,

W =—(Ly,+L,)i, —L,i,

v, =—(L, +L)i,—L.i,

vy =Ly +L,)i, ~ Ly,

Eq. 2-14

Where L is the inductance and subscript o and m are leakage and mutual, respectively.

The electrical torque is T, =y i, — Vi, Eq. 2-15
. . do 1
The equation of motion is w=——oI ,-T,) Eq. 2-16
dt 2H

The equation of active (P) and reactive power (Q) consumed are as follows

32%%+%%} Eq.2-17
O, =ty — Uy,
2.1.2 Transformer Model
From Ampere’s law, the moving charge induces magnetomotive force (mmf = Ni).
For a two-winding transformer, the input current of primary winding induces magnetic
fluxes which consist of mutual flux @y, linking between primary and secondary winding,
leakage flux @ and ®@p, linking only primary and secondary circuit, respectively.

In case of ideal transformer, there are no losses, no leakage fluxes, and magnetic

core has infinite permeability. The physical power transformer is close to the ideal with
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losses about 0.5% of rating, leakage fluxes about 5% of the mutual flux, and high
permeability of special alloy steels.

If an ideal transformer is assumed, the flux linkages (1) are as follows:
For primary winding A=N(®, +D,)=ND, Eq. 2-18
For secondary winding A =N,(D,+D,,)=N,D, Eq. 2-19

The schematic diagram of a two-winding transformer is presented in the next figure.

@, _l
. TN ,//’,f:7%’WW?:”:‘T{\ qS H.dl=HIl=Ni Eq. 2-20
== ' | =i
e W A W B =pH = 11,1 Eq.2:21
- C | | >
T, P j Bda=® or BA=0 Eq. 2-22
._Metal core
$H dl=HUI = Nj,+N,j, Eq. 2-23
— —
@ Cross section CZ
1= — i
Primary winding Secondary winding
with N, turns with N, turns

Figure 2.5 Schematic diagram of two-winding transformer

Where /. is the path length along the metal core, [, is the path length across air gap, H, 1s
magnetic field intensity along /., H, is magnetic field intensity along /,, R. and R, are
reluctances.

Variation of linkage flux (mutual flux) induces the terminal voltages (v) as follows:

For primary winding v, = a4 =N, 4, Eq. 2-24
dt dt

For secondary winding Vv, = dd—ﬂ? =N, dj)’” Eq. 2-25
t t

The voltage gain v, / vi = N, / Ny = n is called transformer turns ratio.
For an ideal transformer in the above figure, the primary and secondary
magnetomotive forces (mmfs) are added to yield the total magnetomotive force as follows:

F=0, ICA = Njj, + Nyi, =, R = mmf Eq. 2-26
ILIC c

where Rc is the reluctance of the core.
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For the ideal transformer, the core has infinite permeability, thus the reluctance is
zero. Consequently, i» /i) =- Ny /N, =-1/n=-a.If i, is assumed with the opposite
direction, therefore, i,./ij =N,/ N,=1/n=a..

2.1.3 Transmission Line Model

Transmission line can be represented in terms of phasor and impedance as follows:

z =r+ jwl = series impedance per meter

y = g + joc = shunt admittance per meter to neutral

Figure 2.6 Transmission line circuit diagram

Applying Kirchhoff’s voltage law and current law to the above figure yields
dV = I(zdx)
Eq. 2-27
dI =(V+dV)ydx =V (ydx)
Since the product of the derivative part dV is neglected, the first-order linear

differential equations are

dv d/
—=0Iz , —=N Eq. 2-28
or . y q
The second order linear differential equations are
d’v d’/
o =yzV , —=yz =u’l Eq. 2-29

where u = (yz)"~ is called the propagation constant.
For the lumped-circuit equivalent, a [T-equivalent is assumed with parameters A, B,
C, and D from the equations as follows:
V;=AV,+ Bl
I, =CV,+ DI,

where (z/y)o'5 =Z., A =cosh uw , B =Z. sinh uw, C =sinh uw / Z., D = cosh uw.
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The diagram of a [T-equivalent circuit and corresponding equations are presented as

follows.
Figure 2.7 Schematic diagram of [1-equivalent circuit
Therefore: |4 =V2+Z'(12+%V2j=(l+zzy)l/2 +7Z17, Eq. 2-30
11:£V1+£V2+12:)f’ 1+—ZY v, + 1+ZY I, Eq. 2-31
2 2 4 2
where
A:1+%, B=7 C=Y’[1+ZY], D:1+ZY Eq. 2-32
Therefore, B is determined as follows:
, . z . sinh uw sinh uw
Z'=Z sinhuw=_|—sinhuw=zw =Z Eq. 2-33
v uw uw
where Z = zw, and 4 is determined as:
A=1+ =coshuw Eq. 2-34
Y’ _coshuw—1_ 1 — :ztanh(uw/Z) Eq.2-35

2 Zsinhuw Z, 22 (uw)2)

where Y = yw. For uw << 1, tanh(uw/2) / (uw/2) =1, therefore, Y’/2 = Y/2.
2.2 Power System Stability Classification

Power system stability can be classified by the affected state variables, the scale of

disturbance, and the duration of phenomena as represented in the following figure.
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Power system
stability

Voltage o Frequency
stability E{Otor angle Stablllt}) stability
\
Small Large Small signal | [ Transient Large
disturbance disturbance stability stability disturbance

Figure 2.8 Classification of power system stability

Rotor angle stability is the ability of the power system to control the synchronization of
generators or to control the rotor angle of generators when disturbed by transient and small
signal.

The small signal instability is the cumulative effect on the steady state system due to the
small but continuous perturbation of the input parameters and the responsive characteristic
of the system which can push the state parameters (such as rotor angle of generator) and/or
output parameters (such as voltage and current output of generator) away from the
operating point until system lost control (or desynchronizations).

Transient stability is the ability of the power system to maintain the synchronization of
generators or to balance the mechanical torque and electromagnetic torque after subjection
to large and instant disturbance of voltage, current, and power.

Voltage stability is the ability of the power system to maintain or control voltage during
normal operation and at given initial conditions, after subjection to disturbances. It depends
on the ability to restore equilibrium between load demand and supply of the power system.
The result may be voltage progressive drop or rise and finally loss of load in some areas.
Voltage stability is concerned with load stability while rotor angle stability is concerned
with generator stability.

Frequency stability is the ability of the power system to maintain or control frequency,
during normal operation and at given initial conditions, after subjection to disturbances.
The characteristics time of frequency stability range from several second corresponding to
the response of devices such as generators control and protection, to several minutes
corresponding to the response of devices such as prime mover systems and load voltage

regulators. Frequency stability is classified as large disturbance with long-term stability
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due to the characteristic time of the overall islanding is range from seconds to several

minutes.
2.3 Small Signal Stability

Small disturbances, if they occur continuously, can cause the generator to lose
synchronization, limit of power transfer on the transmission system, and highly stress the
mechanical shaft. The effects of small disturbance on the power system are explained as
follows:

e Loss of synchronization from steady increase and/or diverging oscillation of

rotor angle

For under-loaded conditions, the small and continuous disturbance causes the rotor
angle to swing continuously. If the damping torque is insufficient, the rotor angle will
swing or oscillate with increasing of amplitude and finally uncontrollable or unstable.

For overloaded conditions, the small and continuous disturbance causes the rotor
angle to increase continuously. If synchronizing torque is insufficient, the rotor angle will
increase continuously and finally unstable.

These two conditions are the major effects of the small disturbance on the power
system. However, the case underloaded condition can be found mainly under normal
operating condition.

e Limit the power transfer of the transmission system

For machine with damper winding, the damping torque coefficient decrease with
increasing power and rotor angle. Therefore, to avoid small signal instability, the power
cannot be generated at maximum value. Furthermore, the larger impedance of transmission
line causes the power-angle relationship move to the left with smaller maximum value. If
small signal occur in such case, more power transfer is limited to avoid the instability
situation.

e Increase stress on the mechanical shaft

Under mechanical dynamic condition, the larger number of shaft mass cause an
increasing of swing amplitude of shaft. If fluctuating small signal resonance with natural
frequency of multi-mass shaft, highly stress can be formed on the shaft and finally can

harm the shalft.
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Sources and involving factors of small disturbance

Sources and involving factors of small disturbances can be considered as external
and internal sources/factors. For example:

External sources/factors:

e Load variation

e Variation of other fluctuating power sources

e Multi-machine synchronization and interaction

Internal sources/factors

e Response of turbine governor

e Response of excitation voltage system control

e Damper winding

e Effect of rotor flux linkage variation on the electrical power generation

The small signal instability is the cumulative effect on the steady-state system due
to the small, but continuous perturbation of the input parameters and the responsive
characteristic of the system, which can push the state parameters (such as rotor angle of
generator) and/or output parameters (such as voltage and current output of generator) away
from the operating point until the system loses control (or desynchronizations) finally.

This cumulative effect can cause oscillation or non-oscillation of state parameters
(rotor angle) depending on synchronizing force and damping on force characteristics of the
system. Insufficient of synchronizing torque can lead to oscillation of rotor angle while
insufficient of damping torque can cause the divergence of rotor angle from operating
point.

The input parameters are, for example, mechanical torque of generator, voltage
sources and/or current sources. The state parameters are, for example, rotor angle (o),

rotational speed of rotor (@, ), flux linkage of field circuit (¥, ), controlled voltage of

excitation system, and controlled voltage of power stabilizer. The output parameters are,
for example, voltage, current, active and reactive power.
To understand the responsive characteristics of the steady state system, the linearized state
space equations will be represented in the following forms.
X=AX+BU Eq. 2-36
Y=CX+DU Eq. 2-37
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Using Laplace transformatioms, Eqs. 2-36 and 2-37 become

sX(s)=AX(s) +BU(s) and X(s)=(sI - A)'BU(s) Eq. 2-38
Y(s)=CX(s)+DU(s) and Y(s)=[ C(s - A)'B+D |U(s) Eq. 2-39

Or: X(s) / U(s)=A'(s)=(sI - A)'B Eq. 2-40
Y(s)/ U(s)=T(s) =C(sI - Ay 'B+D Eq. 2-41

Us) —» A’(s) —»X(s) Uis) —» (SIFA)!' | »[ B [ »X(s)

Us) —» T(6) =Y U(s) > C | = A’(s) =Z)>Y(s)

\4
D |»

Figure 2.9 Block diagram representing state variables vector

2.3.1 Small signal stability analysis
To analyze the characteristics of the steady state stability, the linearized state space
equations are represented in the following forms.
AX = AAX + BAu Eq. 2-42
Ay = CAx + DAu Eq. 2-43

Using Laplace transformations, Eqs. 2-42 and 2-43 become

sAX(s)=AAX(s) + BAu(s) and Ax(s)=(sI - A)'BAu(s) Eq. 2-44
Ay(s)=CAx(s) + DAu(s) and Ay(s)=| C(sI - A)'B+D | Au(s) Eq. 2-45
AX(S) _ vy ANV )
or ) A'(s)=(sI -A)"B Eq. 2-46
AyG) T(s)=C(sI -A)'B+D Eq. 2-47
Au(s)

For small signal stability analysis using the eigenvalue method:
1) Identify state, input, and output parameters

2) Identify state space equations in form of Ax=AAx+ BAu and/or Ay=CAx+ DAu
3) Use Laplace transformations to rearrange to Ax(s)=(sI - A)'BAu(s) and/or

Ay(s)=[ C(sI - A) 'B+D |Au(s)
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4) Identify characteristic functions from det(sI - A)=0
5) Find s from characteristic functions and s is called eigenvalues (in case zero input,
sX = AX similar to AX = AX).
6) Find ¢ ,®,,0 ,and@. Synchronizing and damping characteristics of the system
depend on these parameters.
7) Interpret the results. The system is unstable if
e (’<l,s=0%jw,and o >0 is the case of oscillation with undamped
e (’>1,and s=0+w>0 is the case of undamped without oscillation
8) Interpret the results, the system is stable with oscillation if
e (’~0,0~0,and s==*jw is the case of oscialltion only
e (’<l,and s=o0+jo is the case of oscillation with damped

9) If the system is unstable or oscillated, improve the system by adjusting the

parameters of A.

Example of small signal stability analysis of a simple circuit is represented by the

basic circuit diagram in Figure 2.10:

R Ls
—ANNN——TTO00——
Vi(s) 1/cs —— Yo(8)

Figure 2.10 Basic circuit diagram for SSS problem

The system equation is represented by using Laplace transformations (for comparison) as

follows:
YO gL Y& YLIC Eq. 2-48
U(s) Vi(s) (R+Ls)+1/Cs s*+Rs/L+1/LC
For time domain equation:
Voltage loop: Vo=V =V.-V,-V, Eq. 2-49
i, =i, =i, =i=CdV,/dt Eq. 2-50

V,=Ldi, /dt=LCdV}/dr Eq. 2-51
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V, = Ri=RCdV, /dt

2
Set differential equation: V.=LC a7, +RC a7, +V

! ds? e

Eq. 2-52

Eq. 2-53

To compare with the state space equation, if u=V,, x =y=V,, and x =x,=dV,/dt

o

Ry, x  u
L LC LC

T I P N

xl
Y=CX+DU or y= [1 O] +Ou
X

u=LCx,+RCx,+x, or x,=—

Using Laplace transformations for state space equation:

-1 T'T o
X(s)=(sI - A)'BU(s) or X(s){l/zc s+ R/J L/LC}U(S)

-1

Eq. 2-54

Eq. 2-55

Eq. 2-56

Eq. 2-57

ST
Y(s)=[C(sI -A) B+ D] U(s) or Y(s)=[1 O]L/ZC o R/L} L/LC}U(S) Eq. 2-58

Yo - ] |:S+R/L 1}{ 0 }U )
()= s’+sR/L+1/LC )| -1/LC s||1/LC (s
B 1 s+R/L 1 0
Y(S)_(SZ+SR/L+1/LCJ[1 O][—I/LC JL/LC}U(S)

B I/LC 1
Xs)= [Sz +sR/L +1/LCJL}U(S)

~ I/LC
= [sz +sR/L+1/LC]U(S)

Eq. 2-59

Eq. 2-60

Eq. 2-61

Eq. 2-62

From the term in the brackets in Eq. 2-6, replacing with the damping ratio (¢ ),

natural frequency (@, ) and represent in the form:

2
(0] R
- where @ =1//LC ,and { =——
s +2lw,s+w; " / 4 2L,

The term det(s/-4) will become the characterized equation of the system:

Therefore: s’ +2lw,s+w; =0

Identify s: s =

2

Eq. 2-63

o, + g0y —4a} 7o
o, £(2¢o,) —4o, s=—Cw tao ¢ —1 Eq.2-64
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If &% >1, R>2L/\/LC,therefore s=otw where o=-Cw, and o=,/ -1

If &% =1, R=2L/\/LC,therefore (s—0)’=0 where c=-w, and =0

If§’2<1,R<2L/\/LC,therefore s=octjo  where c=—Cw, and w=w,1-¢°

If £* =0, R<<2L/\/LC,therefore s=tjo where o~0 and w=w,

where o=-R/2L and o= R-2  for &1,
2L C
and  w=—— |2_R for (<l
2LNC

(s—o+jo)s—o—-jo)=s"-20s+0"+w’ =0 and @’ =0’ +’
Assume Vi(s) is 1/s that is called the step function, thus:
o+ k, k, N k,

V() = V)T (5) = L
s(s—o+jo)(s—oc—jow) s s—-oc+jo s—-oc-jw

With inverse Laplace transformation, the above equation becomes:

V(t)=k +k,e "7 + ke

Eq. 2-65

Eq. 2-66

Term k; is force response and terms k,e'”"’*" and k,e'”~’*" are natural responses.

Example of eigenvalues and phase portraits are represented in Table 2.1.

2.4 Transient stability

Transient stability is the ability of the power system to maintain the synchronization

of the generators, or to balance the mechanical and electromagnetic torques after subjection

to large and instantaneous disturbances of voltage, current, and power.
Factors influencing transient stability are, for example,
o Percentage of generated power of generator
o Fault location and type
o The fault-clearing time

o Post-fault transmission system reactance



Table 2.1 Eigenvalues with time variation and phase portraits.

N Complex number ‘ o Phase portrait
Conditions ) Time variation L=0.1, C=0.4,
diagram I / JIC =1
2 . / i\‘\\\ \\
&>, i® v, /(\
R>2L/VLC, hit
o t ‘
s=ctw<0
R=15 Stable node
2 _ .
¢ =1 jo Ve
R=2L/JLC,
’0 t
(s—0)’=0,0<0
Stable node
R=1
o zO,R<<2L/\/LC jO) [
s=tjo, o=0,
o
wza&zﬂﬁLC
R=0
4/2 < 1 , R < 2L/ ILC , jm VO S //7/;7\:\\\
(i .
— : x e
s=octjw, c<0 ——0 MW{R i
R=0.5 \,/ )
Stable spiral | I é/f//}/ )
v
Wil
<1, R<2L/\LC, i v, /
s=otjo, c>0 x s YTy Not applicable in this
x case
Unstable
CQ >]w jO) p;

R>2L/JLC,

s=octxtw>0

Not applicable in this

t casc

Unstable
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o The generator reactance (Lower reactance increases peak power and reduces initial
rotor angle)
o The generator inertia. The higher inertia the slower response and cause a reduce of
kinetic energy gained during fault
o The generator internal voltage which depends on the field excitation
o The infinite bus voltage
There are 3 methods for transient stability analysis to be represented in this topic.
First is an Equal-area criterion, second is the Dynamics system numerical method and third
is the Direct method.
2.4.1 Equal-area criterion
Accelerating torque (or torque caused by differences between mechanical and
electromagnetic torques) can cause the variations in rotor speed and rotor angle. In a per
unit system, an electromagnetic torque is equal to and can be replaced by electrical power.

The relationship between electrical power and rotor angle (Ex.P, = E¢E,sind/X,) is

called a power-angle relationship, is used to describe the equal-area criterion method. The
next figure shows examples of power-angle relationships from the classical model of

generator connecting with an infinite bus.

Esz3

Figure 2.11 One-line diagram of power system with 1 generator connected to an

infinite bus through Transmission lines 1 and 2

1) Initially, at an equilibrium point (Point 1), mechanical and electrical power
is equal, and therefore, the rotor angle is not varied. The power-angle
relationship is curve Cl1.

2) Later, if there is a disturbance in the system, for example, a short circuit to
ground of transmission line, and then cause the electrical power to fall under
the equilibrium point while mechanical power still remain. Since fraction of
power lose to the ground, power maximum decreases and then the power-

angle relationship is now curve C2.
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3) At that time, operating point is Point 2, power (P,) and energy of generator
is more than of the power system (curve C2) and tries to transfer energy to
the power system.

4) During transfer electrical power and rotor angle increase continuously
through curve C2 from Point 2 to 3.

5) Immediately after disturbance, the protection system clears the short-
circuited line within some specific time (z.; or #.;). This stop the loss of
power to the ground and then power and impedance of the power system
increase immediately to larger than mechanical power. The power-angle
relationship is now curve C3.

6) At this time, operating point is Point 4, the power of the generator is less
than that of the power system. Rotor speed decreases.

7) Subsequently, an inertia effects (rotor speed decrease while rotor angle still
increase with retard) causes rotor angle and electrical power to increase until
reach the maximum point (Point 5) at specific time (#,,).

8) At this point, there are two situations possible to occur subsequently.

e First, clearing time is fast enough to allow area A1l to be equal to A2,
or energy transfer to be equal to energy transfer from the power
system. Electrical power and rotor angle return and decrease
continuously to reach equilibrium point again (Point 6). This is
called Stable case as shown in the upper figure.

e Or second, clearing time is too late and causes area Al to be larger
than A2, and the power system loses synchronism due to electrical
power and rotor angle overshoot and diverse continuously. This is
called Unstable case as shown in the figure below.

There are two situations depend on characteristics of the power system, and

configuration and/or clearing time of the protection system.

The area between the mechanical and electrical power of the generator during a
range of rotor angle variation represents the energy transfer between the generator and the
power system. If the area before and after clearing time is equal, an energy transfer to the
power system is equal to the energy that the power system can absorb after fault clearing.

This situation causes the power system to reach equilibrium point and stable after
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disturbance. Conversely, if areas are not equal, the power system is unstable and lost

synchronism finally. This method is then called Equal-area criterion.

Powz’ Pe Stable case
/ 5 C1 (Initial, Line 1&2 close)
p}-1 6, ! 7% 77777777777777777 C3 (Line 2 open)
m ¥ "y |
. 3 1 C2 (Line 2 shorted)
7 | 1
] ‘ ‘ >
8o 8¢ Sm Rotor angle (3)
t0 tc1 tm
Povxar, Pe Unstable case
45 C1 (Initial, Line 1&2 close)
P I PN /7 /7. >3 (Line 2 open)
i 5
: 3 C2 (Line 2 shorted)
2 1
8o 3¢ 8m Rotor angle (8)
tO tcz tm

Figure 2.12 Power-rotor angle curve describing equal-area criterion

An equal-area criterion can be described by the following relationship:

From swing equation of motion (Aw, =d&/dr):

2
o, &0 _@rp _p) Eq. 2-67
a df  2H
245 245 4% 245
Multiply by 292 . _ @ rp _p1290 Eq. 2-68
PYDY ~4 prRrR T L ey d

2
Reform the above equation, E(Ej = &[Pm —~ Pe]@ Eq. 2-69
de\ dr H dt
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do
Integrate both sides, P —P|do Eq. 2-70
8 ( di J -[% o P .

: do
For the stable case, the rotor angle is constant ord— =0, therefore:
t

I Jas =0 Eq. 2-71
o,

Therefore, areas under P, — P, curve is the integral over the range from &, to 0, . It

can be considered to be 2 ranges, which are, range from J, to 6, and range from J, to J,,.

5, s,
f |ds = a1 I [P, - B, |ds = 42 Eq. 272
5 c
For the stable case, 41 = A2, therefore:
5, 5,
[Pm_Pe]d‘S_J.[ ]d5 0 Eq. 2-73
5, 5,
5. S,
I[Pm_Pe]d5: I[Pe_Pm]d5 Eq. 2-74
) )

Areas A1 and A2 are considered as the energy transfer of the generator to and from

the power system, respectively. If energy transfers to the power system before clearing

time equal to the energy that the power system can absorb after clearing time, then, the

system is stable.

2.4.2 Numerical methods

Since state space equations of the power system contain nonlinear ordinary
differential equations with many state variables and inputs, analytical solutions cannot be
used without difficulty. Numerical methods are the useful technique to solve this kind of
problems with the help of computer programming. Ordinary differential equations of the
power system are generally in the form:

dX

—=1(X,t
o T(X1)
5 —
For example: ddo, _d 25 P “[P,—P] and 4o _ w,Aw,  Eq.2-75
de d® 2H de

For any state variable x:
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%: f(x,r) where x, =xatr=t,+iAt Eq. 2-76

By using Taylor’s series expansion:

At"| d"x
_+_

' n
n! | dt x=x;

dx A | d’x
X, =X +At| —

el 4. Eq.277
ey, | 20| a7 a

t

x—xl-

For the power system, the 1% order differential equation can generally be
considered. The 2 types of numerical methods, which are explicit and implicit methods, are
used for power system analysis. These methods can be truncated from Taylor’s series
expansion.

2.4.2.1 Explicit numerical methods

Explicit numerical methods predict the unknown values at the time step ¢, =7, + At
entirely with the known values at time step ¢, (or initial values). Examples of classical

explicit numerical methods are Euler method, Modified Euler method (Huen method,
Predictor-corrector methods, Adams-Bashforth methods, Milne methods, and Hamming
methods), and Runge-Kutta methods.

Euler method X, =x +Atf(x,t)

i+1

. At
Modified Euler’s method ~ x”, =x, +At.f(x,,,) and x°, =x, + 7.[f(xi )+ 1) |

Runge-Kutta methods X =X, +(k +2k, +2k; +k,) /6

ky, = At Af(x, +k—22,t,. +%), ky = At f(x, + k;,t, + At)
2.4.2.2 Implicit numerical methods
Implicit numerical methods predict the unknown values at the time step ¢, = ¢, +iAt
and not explicitly with the known values at time step ¢, (initial values), but also with the
known values at time step ¢, (boundary values) and the set of unknown values at the time
step before ¢, .

Therefore, this is a kind of algebraic linear system of equations and could be solved

using the method for example, Gauss elimination. Implicit numerical methods give higher
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numerical stability (due to being limited by boundary values) but are much more complex

and difficult to process than explicit methods. For example:

1-step Backward Euler method X, =x +Atf(x,,t.,,)
. At
1-step Trapezoidal method X, =X + 7.[f(xi 1) +1(x,,,, 1, )]
1-step Leapfrog method X, =X, +2At.A(x; ,t,)
2-step Leapfrog method 3x,,—4x +x,_, =2AtM(x,, ,t.,,)

Table 2.2 Comparison between explicit and implicit methods

Explicit methods Implicit methods

+ Higher numerical stability due to being

limited by boundary values.

+ Easier to process and program

Advantage

+ Larger Afand fewer time step

Much more complex and difficult to process.

Algebraic linear system of equations

In some case, Af must be very small ) ) )
(Matrix) require more computer time per

which can result in long running time. )
time step

Disadvantage

Larger A¢ result in larger truncation errors,

especially for transient problems.

Therefore, in the case of transients, explicit numerical methods are more suitable
than implicit methods. This is because implicit methods can cause larger error of transients.

2.4.3 Direct method
Parameters from both equal-area criterion and numerical methods do not directly
measure the level of stability of the power system. They just estimate the state of stability.

Therefore, new method with direct measure of how significant of stability of the power
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system should be developed. By this reason, the direct method can be used to quantify the
level of stability directly.

Since rotor angle instability from transient causes are due to imbalances between
mechanical and electrical torque, there are imbalances between the kinetic energy gain
from generator and potential energy transfer from power system when subject to
disturbances. The direct method measure minimum energy needed to make the system

unstable is called critical energy. This method can be described as follows.

Critical energy

Y A J -
S 5 Oc Rotor angle
to t .

Figure 2.13 Potential energy-rotor angle curve

At a pre-fault state, the rotor angle isd,, which is at a state equilibrium point.

During the fault state, electrical power is zero and the power system gain power and kinetic
energy (KE) from generator. The rotor angle and potential energy (PE) of generator
increase continuously until faults are cleared.

If potential energy is less or equal critical energy (with rotor angle d, ), the systems

will rollback with decreasing of rotor angle and potential energy to reach state equilibrium
point again. However, if potential energy is larger than critical energy, the generator loss
synchronism and instability sate occur.

Even though direct methods are vulnerable to numerical problems, this method
needs sophisticate and robust solutions. This can make the method slower than the time

domain numerical methods.
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2.5 Voltage Stability

2.5.1 Definition of voltage stability and voltage collapse

The ability of the power system to maintain or control voltage during normal
operation and at a given initial condition after subjection to disturbances depends on the
ability to restore equilibrium between load demand and supply of the power system. The
result may be voltage progressive drop or rise and finally loss of load in some areas.

Voltage stability is concerned with load stability while rotor angle stability is
concerned with generator stability.

Voltage stability parameters or indices

1) Voltage drop or rise and duration (Dynamics analysis)
2) V-Q sensitivity (Static analysis)
3) Eigenvalues of O-V modal (Static analysis)

Factors influencing voltage stability

o Load factors, for example, over load demand

o Network factors, for example, weak network power line, loss of transmission
line, control system/devices error or damage after fault

o Generation factors, for example, loss of generators, generation control error

Classification of voltage stability

1) Small disturbance voltage stability
Voltage stability following the small disturbances which post-disturbance
equilibrium voltage can be either close to the pre-disturbance values for stable
cases or progressive decrease (or increase) for unstable cases.

2) Large disturbance voltage stability
Voltage stability normally involves large disturbances, including sudden
increase, in load or power transfer. The instability is almost always a periodic
decrease in voltage.

2.5.2 Power system characteristics influencing voltage stability
2.5.2.1 Transmission system and load characteristics

The transmission system and load characteristics can be described using the

following figure and equations. For simple power circuit, the system consists of voltage

source (Es) at terminal of generator, line impedance (Z.x), and load impedance (Z;p). At
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the terminal of load, voltage (Vz), active power (Pg), and reactive power (Qg), are

characterized as follows.

Zin/9
LNLO v,

PR*]QR
e (1

Figure 2.14 Circuit diagram of the power system

with transmission and load impedance

Z,y :|ZLN|cosl9+j|ZLN|sint9 Eq. 2-78
Z,, :|ZLD|c0s¢+j|ZLD|sin¢ Eq. 2-79
___E Es , ___ Eq.2-80
Zv+Z, (|ZLN|cosn9+|ZLD|cos¢)+](|ZLN|smt9+|ZLD|s1n¢)
1 E 1 E, Z
I= S , y, =8 L Eq. 2-81
JF Z,. N N Z,. q
2
where F:1+(Zﬂj +2(@Jcos(9—¢) Eq. 2-82
LN ZLN
2
P, =V, I cos¢:Z—}?D EZS cos ¢ Eq. 2-83

LN

When

Zip=Zuy> then By= Py, Vo = Eg[\2+2¢08(0-9) ., I = Eg(Z,,\2+2c0s(0—9) )

E: cos¢
Z,y(2+2cos(0—¢))

E E
P =V cosg= S S cos ¢ =
\/F Pmax Z LN \/F Pmax

Be _ ZLD E; ZLN (2+2COS(9_¢)) cos¢:lzﬂ(2+2005(9—¢)) Eq. 2-85
P F Z;, E; cos¢ FZ

Eq. 2-84

LN
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Figure 2.15 Current, voltage, and power curves at receiving end with line and load

impedance

From the above figure:

1) Z,,>Z,,,normal or stable conditions.

Load impedance is higher than line impedance. Increasing of load (reduceZ,, )

causes active power, reactive power and current increase. Contradictory, load increase
cause voltage decrease whereas enlarge voltage drop along the power line. Voltage can be
controlled by increase or decrease reactive power. For example, in case over voltage,
operator can increase reactive power to reduce voltage by change tab of substation
transformers.

2) Z,,=Z

. » critical condition.

Load impedance is equal to line impedance. This situation causes power to reach

the maximum point and be the critical operating point.

3) Z,,<Z,, ,unstable condition or instability.

Load impedance is less than line impedance due to loading over or loss of
transmission line. Increasing of load cause decreasing of active and reactive power.
Voltage in this situation cannot be controlled by regulating reactive power normally and
lost control finally. This is unstable condition or voltage instability which caused from

large disturbance of transmission system characteristics.
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If consider power factor variation, the P-V characteristics is represented as follows.

1.2
1w — =
\0\\\\_\-\3:).95 lead
0.8 Lo
Pf=0.95I
0.6 - %
w oo -
i Locus of critical operating
4
> 04 point
0.2
/ **Pmanx is the maximum power at
unity power factor
0 T T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
PR/ P max

Figure 2.16 the P-V characteristics with different power factor (pf)

In the above figure, normal operating points are the points above the locus of the
critical operating point line. The 3 solid curves represent P-J characteristics at the different
power factor or different reactive power. The line of locus of critical operating point
increases with an increasing of power factor from negative (lag) to be positive (lead) value.

The characteristics of transmission systems depend on the characteristics of load
and line impedance, and the flow of active and reactive power, which can impact the
stability of voltage as explained above. Therefore, the principal causes of voltage
instability are

o Load is too high

o Loss of transmission line
o Voltage sources are too far from load center
o Voltage sources are to low

o Insufficient reactive power compensation
Considering Q-V characteristics, the power angle relationship is concerned and
characterized. A Q-V characteristic is helpful for understanding relationship between
voltage control and reactive power. Assume the power system with line impedance Z;y is X

(R 1s very small), as shown in the figure below.
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If I°X loss is neglected, therefore,
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P=P ==
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2
q :&:£c0s5—(ﬁj =vycosd —V*
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If p is specified, for example p =0, 0.2, 0.5, 0.8, 0.9, and 1.0 , therefore

g =vcos (sin‘I (ED —?
\%

ES45—VRLO) y [ES cosS + jE sins -V,
T .

. . . 4
If normalized power is equal to short circuit power, O =P, = 75 and v=—"=%

j Eq. 2-86

Eq. 2-87

Eq. 2-88
Eq. 2-89
, therefore,

N

Eq. 2-90

Eq. 2-91

Eq. 2-92

In Figure 2.17, the stable operating condition occurs on the right side of the locus of

the critical operating point while unstable case occurs on the left side. Under stable

operating condition, voltage increase with increasing of reactive power. Moreover, the

operating point depends on Q-V characteristics of capacitor bank which vary between a

designed range by using automatic switching. At high load power, for example p = 1.0, out

of range of capacitor bank can be expected. Therefore, operating point never reach when

load power is too high.
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Figure 2.17 The O-V characteristics with different powers

2.5.3 Voltage stability analysis

Power system elements influencing voltage stability are, for example, loads,
generators, excitation control of generator, static var systems (SVSs), automatic generation
control (AGC), and protection and control devices. These elements have significant impact
on voltage stability and have to be modeled. There are mainly 2 analysis methods to be
used, which are dynamic and static analysis.

2.5.3.1 Dynamic analysis

Dynamics analysis method is time-domain variation simulation similar to transient

stability analysis. Therefore:

the general form of first order differential equations is

x=f(x,V) Eq. 2-93
and the general form of the algebraic equations is

I(x,V)=Y,V Eq. 2-94

The initial conditions ( Xo and V) are known, where x is state vector of the system,
V is bus voltage vector, I is current injection vector, and Yy is network node admittance
matrix.

Differential equations can be solved using iterative numerical methods (such as
Newton-Raphson) while algebraic equation can be solved using power flow analysis

methods. Step-by-step processes for solving these equations are as follows.
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For the first step, specify initial values of variables of generator unit, transmission
network, load devices and control unit, such as excitation systems and then set an

equationx =f(x,V). At this time, the steady state is assumed. The state variables are
constant andx =f(x,V)=0.
2" step: set equation I(x,V)=Y,Vand use previous state variables (x;) to

compute next step current and voltage ( I; and V).

3 step: use V, and x; to replace in x =f(x,V) and then solve this equation to find

x2. To solve this problem, explicit or implicit numerical methods could be used.

4™ step: repeat 2™ and 3" steps using new state variables.

The overall system equations are provided for differential and algebraic equations
and can be described similar to transient stability analysis. However, characteristics of
reactive compensating and voltage control devices are added to model in this case.

2.5.3.2 Static analysis

For static analysis, the derivatives of the state variables are assumed to be zero for
each time frame. The power system characteristics are captured at various time frames
along the considered time-domain.

Therefore, overall system equations can be reduced to be only algebraic equations
and can be solved using power flow analysis methods. Mainly, 2 static analysis methods
are described, which are V-0 sensitivity analysis and Q-7 modal analysis.

1) V-Q sensitivity analysis

V-Q sensitivity analysis method is based on the Newton-Raphson (NR) iterative
method for power flow analysis. The Jacobian of NR method is considered to be
sensitivity between V and Q. To specify Jacobian, the network equation in terms of node

admittance equation is fist identified as follows.

ji = )’}ik Ak Eq. 2-95

k=1
For node i, S =P+jO=VI Eq. 2-96
Substitute /., yield P+jO. =V YV Eq. 2-97

Where V.V, =V V,(cos 0, + jsin0,)(cos §, — jsind,) =V,V, (cos(d.—6,) + jsin(6, - 6,))

and YA;* = Aik - 'Bik .
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Therefore, P and Q are functions of V" and € that can be presented as follows.

B =V, V. (4, cos(6,~,)+B,sin6,-6,)) Eq. 2-98
k=1
O =V2.V (Aik sin(, —6,) — B, cos(0, — ek)) Eq. 2-99
k=1
P,.k"—B:AB:ZEAGk+z%AVk Eq. 2-100
k=1 aek k=1 6Vk
0" -0, =AQ, =Z@A9k +Z%Am Eq. 2-101
k=1 6<9k k=1 8Vk
o8 oR
AP &| 06, av, |[A6,
=> Eq. 2-102
20] 20 20 ||,
00, oV,

For the power system with m nodes, or 1= 1 to m, therefore:

e OBy 0B OBy
00, 00, lov, o
AR | S 2 i[a6]
s 0P, oP, 0P, oP ||
AP, | 06, a6i v T _ani| ae,
AQ, - i@ """" iQ_I_E i@ ------- lQ_I_E AV, Eq. 2-103
: 100, 0, v, avi||
20, | | o LA, |
00, 0, 100, 20,
oP  OP
{AP}: 0 oV [AG} Or[AP}z{J% JPV}[AB} Bq. 2-104
AQ 8_Q a_Q AV AQ JQQ JQV AV
00 oV

The matrix with derivative terms are Jacobian, where, J,,is the relationship
between P and 0,J,, is the relationship between P and V,J ,, is the relationship between
Qand 0,J,, is the relationship between Q and V.

If we consider only sensitivity between AQ and AV , therefore, AP can be zero, yields
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0=J,,A0+J,, AV Eq. 2-105

AQ=1J,A0+J, AV Eq. 2-106

From the above 2 equations: AQ = (—J 00J R S | or )AV or Eq. 2-107
AQ =J AV Eq. 2-108

J,is sensitivity between AQandAV or called V-Q sensitivity. The positive J¢means

stable operation while negative means unstable operation. The smaller the sensitivity, the

more stable is positive J,and more unstable is negative J. Therefore, Jis used to be as

indicator matrix for V-Q sensitivity analysis.

2) O-V modal analysis (eigenvalue , eigenvector)

From the equation AV =J/'AQ Eq. 2-109
If J'=wAu , Eq. 2-110

where A™'is diagonal eigenvalue matrix, w and u are left and right eigenvector,

respectively.

Therefore, AV = wA'uAQ Eq. 2-111
Since w™' =u , thus uAvV = A 'uAQ Eq.2-112
or v=ATq Eq. 2-113

where v =uAV is modal voltage variation, and q =uAQ is modal reactive power variation.

For the node (or mode) i, replaces eigenvalue (4) for A"yield

1
V. =—q. Eq. 2-114
i /1 ql q

A,1s used as an indicator for the voltage stability condition. If 4,>0, v,increase with q, for
stable operation. The larger A means the more voltage stable. If 4,<0, v,decrease when
q, increase for unstable operation. The smaller 4 means the more voltage unstable.

V-0 sensitivity analysis and Q- modal analysis are the fundamental important
techniques for static analysis of the power system. These methods have been applied for

modern voltages stability analysis as be described in later section.
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2.5.4 Voltage collapse

Voltage collapse is a voltage stability problem when the voltage suddenly drops due
to cascading change of the power system with the period ranging from several seconds to
minutes. Voltage drop for large portion of high power system can be expected follow by
local blackouts. Main cause of voltage collapse is an inability to serve for additional
reactive power demand. However, for many cases, voltage collapse occurs when the power
network is weak due to immediate loss of the transmission line.

Voltage collapse is influenced by many factors for example, large distance between
generation and load, tab changing action of transformer during low voltage condition, poor
load characteristics, and poor control and protective system characteristics.

Voltage instability always occurs after voltage collapse due to bifurcation. Voltage
collapse is a nonlinear phenomenon. Therefore, nonlinear analysis methods, such as
bifurcation theory, are applied to voltage collapse and voltage stability analysis.

Bifurcation theory characterizes the slow change of the system from a stable
condition to an unstable one. There are 2 classes of bifurcation that are local and global
bifurcations. Local bifurcation occurs when parameters change causes critical operating
point (fixed point) change. There are several types of local bifurcation, for example,
saddle-node bifurcation, transcritical bifurcation, pitchfork bifurcation, period-doubling
bifurcation, and hopf bifurcation. Global bifurcation occurs when larger set of parameters,
such as periodic orbit variation, collide with critical point and causes divergence from the
critical point.

For voltage collapse and voltage stability, local bifurcation, especially, saddle-node
and hopf bifurcations, are always of interest due their agreement with characteristics of the
power system as real as possible.

Saddle-node bifurcation occurs at the critical point when stable operating
conditions slowly disappear. For example, when load increase cause load impedance to
decline slowly and equal to line impedance, the power reach maximum equilibrium point
or critical point. Beyond this point, the system become unstable and cause losses control of

voltage. This critical point is such kind of saddle-node as shown in the figure below.
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Figure 2.18 P-V characteristics (left) and root loci plot of eigenvalue (right)

In the above figure, saddle-node or critical point is point C with the maximum
power P, and critical voltage Vcr. Operating point of the system slowly changes from
point B, as stable condition, to point C and after that becomes unstable. In term of
eigenvalue (A1) consideration, real A (1=a) change from positive for stable case, pass zero,
and decrease further to be negative value for unstable case. This characteristic is the major
interest of voltage collapse problem of local power system.

Hopf bifurcation occurs when a pair of complex conjugate eigenvalues (1= a * jp),
point A and A’, cross the imaginary axes of the complex plane. The consequence can be
either stable oscillation or growing oscillatory unstable. This can occur when the resistance

of the transmission line is significantly not zero [15].
2.6 Frequency Stability

2.6.1 Definition of frequency stability

Frequency stability is the ability of the power system to maintain or control
frequency, during normal operation and at given initial conditions, after subjection to
disturbances. The characteristics time of frequency stability range from several second
corresponding to the response of devices such as generators control and protection, to
several minutes corresponding to the response of devices such as prime mover systems and
load voltage regulators.

Frequency stability is classified as large disturbance with long-term stability due to

the characteristic time of the overall islanding is range from seconds to several minutes.
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Factors influencing frequency stability

Frequency stability depends on the ability to restore equilibrium between loading
and generation of the active power. The result may be large excursion of frequency, power,
voltage, and other system variables, and result in loss of load (load shedding) in large
areas.

Frequency stability mostly concerns islanding that may or may not reach an
acceptable state of equilibrium and with minimum loss of load. Normally, the response of
overall islanding system to the mean frequency is characterized. Frequency instability
depends on, for example, poor response of control and protection equipments, or
insufficient generation reserve.

2.6.2 Power system characteristics influencing frequency stability

From an islanding perspective, there are 2 possible cases of frequency instability
that are, the over-frequency situation corresponding to over-generated Island, and under-
frequency situation corresponding to under-generated Island.

The over-generated Island cause from, at the time of separation, the islanded area
has generated power larger than area load including loss. The characteristic of islanding

system depends on generation, load, loss, and generator control system.

Islanded area

Generation

Load Rest of power system
+

loss

Figure 2.19 The over-generated Island diagram

For example, the over-generated cause oscillatory over-frequency for several
seconds. If control system with auxiliary governor in service, an exceed frequency (or
overspeed) is detected periodically. Therefore, the governor of mechanical power may be
switched on-off periodically. This causes oscillatory large swing of mechanical power and

other involving parameters.
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The under-generated Island cause from, at the time of separation, the islanded area
has generated power less than area load including loss. The characteristic of islanding

system depends on generation, load, loss, and active/reactive devices.

Islanded area

Load + loss

Rest of power system

Generation

Figure 2.20 The under-generated Island diagram

For example, the under-generated cause under-frequency for several seconds. The
switching sequences include load shedding relays that may reject partly area load with or
without capacitor switched out. In case of capacitors are not switched out, because of
surplus reactive power in the area, bus voltage increase significantly. This cause load
power still high even after load shedding and generator attempt to generate power until
reach the limit. This causes the frequency to drop for longer periods of time.

In the case of capacitors are switched out after load shedding, bus voltage increase
but not significant. Generated power of generator is not reach the limit. The system
frequency recovers to the rated value within a short time and settles after that.

2.6.3 Frequency stability analysis

Power system elements influencing frequency stability are loads, generators,
excitation control of generator, governor control system, active/reactive control system,
and protection and control devices. These elements are impacted to frequency stability and
have to be modeled. There are mainly 2 analysis methods to be used, which are, dynamics
and static analysis.

2.6.3.1 Dynamic analysis

Dynamic analysis is a time-domain variation simulation that is similar to transient

and voltage stability analysis.

The general form of first order differential equations is:
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x=f(x,V,0) Eq. 2-115
and general form of algebraic equation is
I(x,V,0)=YV Eq. 2-116

Initial conditions ( xo, Vo and ®) are known, where x is state vector of the system,
V is bus voltage vector, ® is rotational speed (or frequency), I is current injection vector,
and Yy is network node admittance matrix.

Differential equations can be solved using numerical methods while algebraic
equations can be solved using power flow analysis.

The overall system equations are provided for differential and algebraic equations
and can be described similar to transient stability analysis. However, characteristics of
governor control system, active/reactive control devices, and protection and control devices

are added to be modeled in this case.
2.7 Wind Power

2.7.1 Estimation of wind power

Wind turbines can be rotated when the air attacks the surface of the blades.
Therefore, the moving air has kinetic energy to transfer to the blades as lift and drag force
and then can move or rotate the rotor in the direction of net force. This kinetic energy (KE)
(Wh) is

KE=PxH Eq. 2-117

Where P is the power of the wind (W) and H is the time that wind move pass the rotor
(hour).

For the power of the wind, P= %n’aV2 Eq. 2-118

where V is velocity (m.s™), and for the air, the mass transfer is
m=pAV Eq. 2-119
where p is air density ( kg.m™ ), 4 is areas of rotor swept (m?).

Therefore, the power of the wind (W) over the rotor is
P:%,OAV3 Eq. 2-120

It can be concluded that power of wind pass one rotor depends on the velocity cube

(V?), areas of rotor , and air density.
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An extracted mechanical wind power, P,,, can be calculated by
1
P.=7¢,p4 v’ Eq. 2-121

where ¢, 1s performance coefficient which depends on tip speed ratio (4) and pitch angle
(6)-
Generally, ¢, can be estimated using information about the wind turbines from the

manufacturers which already includes electrical efficiency as shown in the figure below.

Power curve of Suzlon S64 1250 kW Cp of Suzlon S64 1250 kW
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Wind speed (m/s) A Wind speed (m/s)

Figure 2.21 Power curve (left) and C, curve (right) of Suzlon S64 wind turbine

For example, from the above figure, to estimate c,, two polynomial functions will
be used to fit 2 different curves. First is for the wind speed from 3 to 6 m/s, second is for
the wind speed from 6 to 25 m/s.

For wind speed from 3 to 6 m/s, 3" order polynomial can be fitted as follows.

3 2
Cpa =1V +aV +azl+ay Eq. 2-122
For wind speed from 6 to 25 m/s, 3™ order polynomial can be fitted as follows.
3 2
Cpb:b1V + bV +bsV+by Eq. 2-123
Therefore, Pex can be calculated using Eqs. 2-121—2-123 and become
1
P, = > PAV?  where3<V<6m/s Eq.2-124
1 3
P ZEC,,;]PAV where 6 <V <25 m/s Eq. 2-125

However, the polynomial function can be estimated differently depending on the ¢,

curve from the manufacturer.
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If we know the time series of wind speed and ¢, curve from manufacturer, then we

can calculate time series of electrical wind power (P,) using Eqs. 2-124 and 2-125 (P.= P.y)

with the suitable range of selected wind speed. The c¢,, and c,, can be fitted using

polynomial function, for example, as show in Eqs. 2-122 and 2-123. Example of electrical

wind power result of calculation is shown in next figure.

Raw Wind data

Wind Speedim/s)
=

o
T
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1 | 1 I I I | 1 |
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Figure 2.22 Hourly wind speed (m/s) (left) and wind power (kW) (right) for 1000 hours

In the above two figures, examples of hourly wind speed for 1000 hours are shown.

The electrical wind power (P,) is then calculated using these hourly wind speed data based

on Egs. 2-121 to 2-125. For Suzlon S64 wind turbine, A4 is 3,217 sq.m. and p is about 1.18

kg/m® for Thailand.
2.7.2 Probability distribution of wind

The velocity duration of wind

Velocity duration of wind is the time (hours) that each level of wind velocity occurs

during a period of one year, one month or one day. The Figure 2.23 is an example of

frequency distribution of wind over one year.
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Figure 2.23 Example of velocity duration of wind over one year

Weibull distribution of wind

The distribution function (cumulative of frequency) of wind speed is expressed as:

ol
F(V)=1-e'° Eq. 2-126

where c is the scale parameter and k is the shape parameter.

The parameter c is larger for the distribution with stronger wind. The parameter k
has the value between 1.0 to 2.0 for light and fluctuating wind, and from 2.0 to 4.0 for
strong and steady wind.

The frequency function of wind speed can be expressed as:
=1 (Y
k(V 17
() =;(? e ( j Eq. 2-127

However, to get a best fit curve of Weibull distribution, R.H.B. Exell et al. (1981)
claimed that one should exclude calm winds. Figures 2.24 and 2.25 represent examples of

distribution function and frequency function of wind speed, respectively.
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Weibull distribution functions of wind speed
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Figure 2.24 Example of distribution function of wind speed

Weibull frequency function of wind speed
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Figure 2.25 Example of frequency function of wind speed

Power Duration and Energy production estimation of Wind Turbine

From the frequency function of wind speed, we know the parameters ¢ and k, and

one specified period of time (Ex. 8760 hours), therefore we can produce a velocity duration

curve as shown in Figure 2.26 (left). Commercial wind turbine generally has information of

power duration curve of turbine for example as show in Figure 2.26 (right).

Since we have both the velocity and power duration curves, the energy production

of that wind turbine with this wind regime can be estimated. Energy production can be

calculated by integration of the multiplication between the power and duration of wind at

any velocity for example as follows:

V=V max

E= [ P(rm(y)av
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Figure 2.26 Power duration curve (left) and Velocity duration curve (right)

An example of energy production is shown in Figure 2.27.
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Figure 2.27 Energy production (shaded area) from multiplication between power (kW) and

velocity duration (hours)

2.7.3 Wind turbine technology
2.7.3.1 Wind turbine type

There are 2 types of wind turbines based on speed control, which are:

WTS (1) Fixed-speed wind turbines

The wind turbine’s rotor speed is fixed and can be controlled by stall control. They

are normally equipped with an induction generator (squirrel cage or wound rotor) which

directly connect to the grid. The fixed-speed wind turbine is simple, robust, reliable, and

well-proven.
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However, its disadvantages are an uncontrollable reactive power consumption,
mechanical stress, and limited power quality control. In case of weak grid, power
fluctuation from fixed-speed wind turbine can causes large voltage fluctuation.

WTS (2) Variable speed wind turbines

The variable speed wind turbines are designed to achieve maximum aerodynamic
efficiency over a wide range of wind speeds. Therefore, the rotational speed of a wind
turbine can accelerate or decelerate and tip speed ratio is fixed depending on maximum
efficiency. The wind turbines are normally equipped with an induction or synchronous
generator and connect to the grid through power converter. The power converter controls
the generator speed, power output and voltage.

The advantages of variable speed wind turbines are increased energy capture,
improved power quality, and reduced mechanical stress. The disadvantages are losses in
power electronics, the use of more components, increasing cost of equipments.

There are 3 types of wind turbines base on power control, that are

WTP (1) The stall control

The stall control wind turbine is robust and cheapest when the blade angle is fixed
(called passive control). The fixed blade angle is designed for the over wind speed to stall
and then power losses. This is a slow aerodynamic power regulation causing less power
fluctuation than fast-pitch power control.

WTP (2) The pitch control

The blades can be turned in or out to achieve the maximum power. The pitch
control has advantage for the starting up and emergency stop. Power output is kept close to
the rated generation. However, it causes more components with complexity. The high wind
gust can cause higher power fluctuation around the rated mean power.

WTP (3) The active stall control

At low wind speed, the blades are turned the same with pitch control mechanism.
At high wind speed, the blades are fixed with the angle that can cause stall effect to limit
the power output. This active stall control can reduce power fluctuation at high wind speed
unlike in the case of pitch control.

From the concepts of speed control and power control, wind turbines can be

classified as presented in the table below.
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2.7.3.2 Wind turbine classification

Typically, 4 conceptual types of wind turbines are presented in the table below [67].

Table 2.3 Wind turbine types by speed and power control

Power control
Speed control
Stall Pitch Active stall
Fixed speed Type A Type AO Type Al Type A2
Type B - Type Bl -
Variable speed Type C - Type C1 -
Type D - Type DI -

Type A wind turbines (fixed speed with stall control, pitch control, and active stall
control) are directly connected to the grid with an asynchronous squirrel cage induction
generator (SCIG). Between SCIG and transformer always has capacitor bank (C-bank) to
compensate reactive power drawing from the grid. Before C-bank, soft-starter is used for
smoother connecting to the grid.

Type B wind turbines (limited variable speed with pitch control) with an
asynchronous wound rotor induction generator (WRIG) are directly connected to the grid
through soft-starter, C-bank, and transformer. Additional important equipment is variable
rotor resistance connecting to the rotor of WRIG which can be controlled by optically
controlled converter. Therefore, the power output is controlled through variable rotor
resistance.

Type C wind turbines (Variable speed with partial scale frequency converter), with
a slip ring WRIG directly connected to the grid and parallel with partial scale frequency
converter (PSFC) which are known as doubly fed induction generator (DFIG). The partial
scale frequency converter (PSFC), parallel to the line between WRIG and transformer, is
designed for reactive power compensation, the smoother grid connection and grid
protection. Generally, the frequency or speed range of PSFC is -40% to +30% of the
synchronous speed.

Type D wind turbines (Variable speed with full scale frequency converter) with the
generator connected to the grid through full scale frequency converter (FSFC). FSFC is

designed for reactive power compensation, the smoother grid connection and grid
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protection. The generator can be excited electrically by wound rotor synchronous generator
(WRSG), WRIG, or by permanent magnet synchronous generator (PMSQ).

In 2002, Type C wind turbines had the most shares of 47% of total installed wind
power follow by Type A wind turbines with 28% shares and type D 20% shares. [67.]

2.7.4 Wind power models

For wind power modeling, the 3 main models are wind speed model, wind turbine
model or wind farm model, and grid system model.

If a wind farm is considered instead of an individual wind turbine, the wind farm

model which consists of wind turbine model and wind power integration model are studied.

components model

Wind Speed Model Wind Farm/Turbine Model Power System Model
‘ L I
| | ! » Wind turbine 1 — N
‘ . | Generators model
! | Wind speed | i i i
| . . |
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Figure 2.28 Schematic diagram of wind power model

2.7.4.1 Wind speed model

The main proposed of wind speed model is to generate wind speed for each wind
turbine. The complex of topography and surrounding obstacles including nearby wind
turbines causes turbulence of wind and result in complication of the modeling.

The 3 main parts of the wind speed model are wind speed simulation, turbulence
model, and wind speed scaled model for wind farm.

The wind speed simulation will simulate wind speed value, for example, constant
value, time varying value, ramp, sinusoid, etc., as the main part of wind speed in the case
of not having the measured wind data. Straightforward wind speed simulation will not
consider the physical phenomena while the complicated one applies physical phenomena of

winds using mathematical model. These mathematical functions are such as conservation
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of mass, conservation of momentum or motion and conservation of heat. The sophisticated
mathematical modeling bases on the Navier-Stokes Equations that is to simulate steady or
unsteady (time varying) wind speed.

The turbulence is a complicated part that is caused by topographical effects and
from aerodynamic of wind turbine itself and among each other. The mathematical model
for topographical effect turbulence is called turbulence closure model which higher order
of wind speed deviation are considered. The more details are well explained in An
Introduction to Boundary Meteorology by Roland Stull.

The turbine generated (aecrodynamic of wind turbine) turbulence, or wake effect, can
be modeled using analytical methods such as velocity deficit model, and numerical
methods such as eddy viscosity model and computational fluid dynamic (CFD) aeroelastic
model (from website: www.windpro.com).

The wind speed scaled model integrates the wind speed simulation and turbulence
model to generate wind speeds at each wind turbine rotor position in the wind farm. This
can be called a park scaled model, which are, for example, Mann simulation method, real
cross spectral method, and complex cross spectral method [51].

2.7.4.2 Wind farm/turbine model

For a wind farm model, the wind power aggregation model is used to approximate
the power output of a wind farm with reduced computational time and complications.
There are 3 cases of aggregation model, that are, (1) Aggregated wind farm model, (2)
Grouped wind farm model, and (3) Detailed wind farm model.

Aggregated wind farm models assume the same wind speed and same wind turbine
parameters for all wind turbines. Therefore, only one wind turbine is modeled and then the
power output of wind farm is the multiply by N turbines [49].

Grouped wind farm models assume the same wind speed but different wind turbine
parameters for wind turbines with the different type. Therefore, each group of wind turbine
is modeled differently.

Detailed wind farms compute power from individual wind turbine with different
wind speed and parameters. This method has higher accuracy than the previous two
methods but require much of computational time and complication.

The wind turbine model consists of many sub-models such as rotor model,

mechanical shaft model, generator model, and power converter model depending on type
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of wind turbine as be presented in next figure. Furthermore, the converter model, the main

control system and pitch control system are also considered for some types of wind turbine.

Wind turbine model

. Power .
Mechanical Generator |~ Electrical
—> Rotor model > —> —>  converter *#>Win 1 Power

Wind speed = shaft model model

model

Figure 2.29 Schematic diagram of wind turbine model

The rotor model transforms kinetic energy from wind to mechanical power.
Therefore, the mechanical power output of a rotor depends on wind speed (V,;), air density
(p), area of rotor (4,), the blade angle (f), and the rotational speed of the wind turbine
(@r).

P.=fo,(®,.V. P Eq. 2-129

1
P, = 5 pAc, (4, PV, Eq. 2-130

The power efficiency coefficient (C,) depends on tip speed ratio (4), and £
The tip speed ratio is a function of @y, Vs, and turbine radius (R) as follows
w, R

v

ws

2 Eq. 2-131

The C, can be represented in various models, for example, constant power with
constant C,, function and polynomial approximation, table representation, and blade
element momentum method (BEM) and aeroelastic code. [67]

The moment of inertia of a wind rotor is about 90% of total moment, while the rotor
generator is about 6-8% and remaining parts of the drive train are about 2-4%.

The mechanical shaft (or drive train of wind turbine) can be modeled using
equations of mass motion. A set of the first order differential equations for i mass model

is formed as follows [73]:

B 0, =Ao Eq. 2-132
dt
7989 K 6 -8) K, (5-5.)
4 : : Eq. 2-133

+Di,i+1 (Awm - Aa)j) - Di,i—l (Aa)i o Aa)i—l) - DiAa)i
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Where &; is torsion angle of i mass (displacement of the mass), @; is rotational speed of i”"
mass, ), @y is synchronous speed of shaft rotor, J; is moment of inertia of i mass, 7 1S
external torque applied to i mass, K;;+; and K;;; are stiffness coefficients of the shaft
sections between mass (i,i+/ )th and mass (i,i-1 )th, and D;;+; and D;;; are damping
coefficient of the shaft sections.

The generator model of squirrel cage induction generator (SCIG) wind turbine in
the d-q (direct-quadrature) reference frame, was presented already in Section 2.1.3) .

The generator model of doubly fed induction generator (DFIG) wind turbine in

the d-q (direct-quadrature) reference frame, the voltages in per unit are as follows [67]:

uds = _Rsids + a)sl//qs = _Rsl.ds + a)s [(LSG + Lm )l’qs +L J ]

m-qr

uqs = _Rsiqs - a)sl//ds = _Rsiqs - a)s [(LSO' + Lm)ids + Lmidr]
) . . . Eq. 2-134
udr = _erdr + Sa)sl//qr = _erdr + Sa)s [(Lra + Lm )lqr + L l ]

m°qs

uqr = _Rriqr - Sa)sl//dr = _Rriqr - Sa)s [(Lra + Lm )idr - Lmids]

The differences from SCIG wind turbine are that the rotor voltage is not zero and
the derivative of flux linkages are neglected.
The equations of active (P) and reactive power (Q) are also different due to the

rotor winding of generator can be adjusted. These equations are

qs-qs qr-qr

P=P+P =u,i, +u,i +u,i, +u,i
Eq. 2-135

0=0.+0. = uqsids —udsiqs +uqrid,, —ud,iqy
The power converter model is basically modeled as a current source. ug is equal
to u; (the terminal voltage) based on the assumption that d-axis corresponds to the
maximum of the stator flux. Thus, electrical torque can be computed as follows
L ui

T, = mrer Eq. 2-136
o (L, +L))

The reactive power exchanged with the grid at the stator terminals (Q;) depends on the
direct component of the rotor current. Thus, DFIG wind turbine neglects the stator
resistance, and assumes that d-axis corresponds to the maximum of the stator flux.

Therefore,

0 Lty u; Eq. 2-137
(L, +L,) oL, +L,) +
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The total reactive power exchanged with the grid depends on both the control of the

generator and the control of the grid side of converter, therefore, active and reactive power

converter are

Pc = udcidc +uqciqc } Ea. 2-138
q. 2-

0. = Ugelge = Ugely,
Where c stands for converter.
In this case, P, is equal to P; of DFIGURE P, may be multiplied with the converter
efficiency. Total reactive power exchanged with the grid is equal to Qs + Q..
2.7.4.3 Power system model
The power system model is a set of nonlinear first-order differential equations and
algebraic equations (DAE) expressed by
x =f(x,u,?)
g(x,y,u,7)=0

Where x,y, u are state, input, and output vectors of generator, generator controller,

Eq. 2-139

turbine, turbine controller, transformer, transformer controller, transmission line, load,

motor, etc.
The linear DAE of the power system is described by

AX = AAX + BAu

Eq. 2-140
Ay = CAx + DAu q

A/ /R
ox, ox, Ou, ou,
A= : . [,B=| : .
Yo .. Y L/
| Ox, ox, | | Ou, ou, |
% % (% O]
Ox, ox, ou, ou,
C: : " ,D: . ._ :
| Ox, ox, | | Ou, ou, |

Where A, B, C, D are state matrixes that define the proportion of the input appearing

directly in the output and n, m, r are the size of state variables, number of output, and

number of input variables, respectively.
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2.7.5 Wind Power and Power quality
2.7.5.1 Classification of power quality
The 4 major international standards of power quality are by J. Arrillaga and N.R.
Watson (2000) and Roger C. Dugan (2003) as follows:
e IEC 61000-2-5:1995 is Electromagnetic Compatibility Standard (EMC) for
- Low-frequency phenomena (<9kHz) (conducted voltage, frequency)
- High-frequency phenomena (>9kHz) (Electric and mechanical field)
- Electrostatic Discharge (ESD) phenomena
e IEC 61000-2-1:1995 for EMC that is technical reported with conducted low-
frequency (<10kHz)
e IEEE 1159:1995 for the power system with 7 categories depending on spectral

content, duration, and voltage magnitude.

(C.1) Transient with impulsive (10‘9, 1076, 10-3 sec) and oscillatory
(C.2) Short-duration variation (0.5 cycle — 1 min) (sag, swell, Interruption)
(C.3) Long-duration variation (>1min) (Interruption, over/under voltage)
(C.4) Voltage imbalance (steady state)
(C.5) Waveform distortion (d.c.offset, harmonics, inter-harmonics, noise)
(C.6) Voltage fluctuation ( <25Hz)
(C.7) Power frequency variation (< 10sec)

e EN 50160-1999 standard defining the quality of the power supplied to the
consumers. 7 limits for the low voltage supply are:
(1) Voltage magnitude : 95% of 10min avg. during 1 week should be within
+10% of the nominal voltage (V, =230V)
(2) Voltage magnitude step : not exceed +5% of V,,
(3) Voltage fluctuation : 95% of 2h long term flicker (fl) during 1 week not

exceed 1. ( P

=3

i P2 s Py is short-term flicker with 10 min averages)
=1

(4) Harmonic distortion : voltage harmonics up to order 25th not exceeding

95% of 10 min avg. during 1 week. 7yp — /i y> is calculated for voltage < 8%

(5) Voltage unbalance : 95% of ratio of — and + sequence voltage 10min avg.

not exceeding 2% during 1 week.
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(6) Signaling voltages : 95% of the 3s avg. during 1 day not exceeding 9% for
frequency up to 5S00Hz, 5% for freq. 1-10 kHz, 1% for higher frequencies.
(7) Frequency : 95% of 10s avg. not outside the range 49.5 — 50.5 Hz

Power quality standard for wind power

The International Electrotechnical Commission (IEC) published the first edition of
the technical standard on assessment of the power quality from wind turbines in 2001 that
is IEC 61400-21 and the latest version in 2008.

There are many important parameters in IEC 61400-21 for wind turbines (WT) that are:

(1) Maximum permitted power, Py,
(2) Maximum measured power, Pg() (60s average)
(3) Maximum measured power, P 5 (0.2s average)

(4) Reactive power, Q
(5) Flicker coefficient (depend on phase angle, annual avg. wind speed)

(6) Max. number of switching operation in 10 min, Ny
(7) Max. number of switching operation in 2 h, N1

(8) Flicker step factor (depend on network impedance phase angle)
(9) Flicker change factor (depend on network impedance phase angle)

(10) Maximum harmonics current, I, (only WT with converter)

However, the PQ standard on the assessment of wind farm has not yet been published.

Interesting power quality aspects incorporating wind power

Based on IEEE 1159 and IEC 61400-21, 3 interesting aspects of power quality
including wind power are,
e Long-duration voltage variation (Interruption, Over/under voltage due to
mismatching between wind power source and load demand)
e Voltage fluctuation ( <25Hz including flicker)
e Frequency variation (< 10sec)
The other categories not directly influenced by wind power fluctuations and/or rare
to occur at present. Wave form distortion is not considered here since it depends on

electronics components of wind power system which beyond the scopes of thesis.
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2.7.5.2 Voltage variation of wind power [73]

The variation of voltage when connected to a wind power plant depends not only on
variation of wind power generation and load but structure of the power network and point
of connecting have also to be considered. For example 2 types of power network with
different point of wind power connecting are expressed. These are 1) typical radial power
network including WTGs at terminal and 2) power network including WTGs at middle
node.

The voltage variation (drop) for typical radial power network including WTGs at

terminal is constructed as presented in next figure.

I Ry+iXj ] N-T Rn.in#jXn-n N '
AT R N-1NT) N1N*> -Pwras HjQwres

P1+jQ: P +Q P;+jQ P+ +jQne Pn+Qn

Figure 2.30 Circuit diagram of typical radial power network including WTGs

Variations of voltage, for typical radial power network, including WTGs at a

terminal, as a function of active, reactive power and impedances is presented as follows.

Jj-1 Jj-1
PWTGs Z R1,1+1 - QWTGs Z Xl,l+1
=0 =0

v

n

WTGs
AV, = AV, = AV =

Eq. 2-141
Where V'y, is rated voltage ,AV(; is voltage drop in branches from 0 to j without WTGs.
AVOV;/T @ is voltage drop with WTGs.

The voltage change in the ith node for power network, including WTGs at jth node

is constructed, as presented in the figure below.

. . . . RN-NHXN-1N N
}Mi ,,,,,,,, L RHX; ) N-1 ‘
v R |

Py +jQ1 P +jQ P +ij Pn-1 Q-1

-Pwres +jQwres

Figure 2.31 Circuit diagram of power network including WTGs at the jth node
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Variations of voltage for power network, including WTGs at the middle node as a

function of impedances and current of WTGs is presented in the equation below.

-1
é‘I/l: i VtWTG3 _[IIWTGSZZ p+lzz p+lj(zz p+1j Eq 2_142

Where Vj is the voltage in i™ node without WTGs, ¥""*is the voltage in i node with

WTGs, and IyTgs 1s the current of WTGs.

2.7.5.3 Flicker [73]
There are 3 types of flicker according to IEC61400-12, which are:

e Flicker emission level during continuous operation for N WTGs

N

P, =P, :SL\/Z:(ci(t//k,va)Sm)2 Eq. 2-143
k

i=1
e Short-term flicker emission level during switching operation for N WTGs

18( & 32\
RFS—[Zle-(kﬁ(l//k)Sm») j Eq. 2-144
k

i=1

e Long-term flicker emission level during continuous operation for N WTGs

8 (& 32 )
T S_(Zleoi (kﬁ (‘//k)Sm') j Eq. 2-145
k

i=1
Where §, is apparent short-circuit power at PCC , S is rated the apparent power of

ith wind turbine, c, is ith wind turbine flicker coefficient, i 1s network impedance phase
angle, v, is annual average wind speed, k;; is flicker step factor, k  is voltage change factor,

N, i » Ny are max. number of switching operation within 10 and 120 minutes. ¢, , k., N,

120i

, N k, are from measuring methods in IEC61000-21.

120i°

Relative voltage change (%) due to switching operation is

d =100k, (v,)S,S,' Eq. 2-146
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2.7.5.4 Frequency variation of wind power [3]

The frequency variation can be considered from two aspects, which are:

1) The frequency change considering generation characteristics

Af R AIgG _ f)L AI)G

& _ g AR
LR ykp, B
i=1

AP*_&Pm -P

ax min

K = =
PO fmax _fl‘nin

d_
"R A

¥

2) The frequency change considering system control:

ﬂz R APPS:_ 1 APPS:_ 1 APPS

f, " B Ky B (K;+K) P
APPS:APG""APL:PL(KG"'KL)Af/fn

f
A
- P A
/ Prp
jilll |
Pgr
2
Pga
AP APL
P
APpg

Figure 2.32 The P-f characteristics of wind power system

Where

Eq. 2-147

Eq. 2-148

Eq. 2-149

Eq. 2-150

R; =1/ Kj 1s statism or slope between rotational speed and turbine mechanical power

R,=1/Kis for generation

R, =1/ K, is for load

Ky =1/ R 18 system stiffness
P is power generation

P, is power load

Py, 1s mechanical power generation

AP

pg 18 change in overall power
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2.8 Probabilistic Methods for the Power System

Present and future power systems are dynamics systems that are very complicate
and expected to have high reliability. Realistic operating conditions and system parameters
cannot be predicted certainly due to many uncertainties from, for example, the system
structure, load conditions, generation conditions, and affecting environment.

Uncertainties from unpredictable phenomena are random. Therefore, deterministic
methods with high reliability cannot be used directly to deal with these problems.
Normally, deterministic methods are based on worst case scenarios and ignore the
variability of the important parameters of the power system. Better technique is the several
cases scenario which consider several possible values of parameter or condition.

However, this is not precise enough when dealing with random variables or random
processes affecting the system design and operation. Accordingly, the probabilistic
methods are the most relevant tools to deal with random variables and processes of the
system.

2.8.1 Random Variables

Random variable may be continuous or discrete. Important topics relating to
random variables are probability distribution, cumulative distribution function, probability
density function, probability mass function, Mean, Variance, and Standard Deviation of
random variable, multiple random variable, and determination of distribution models.

2.8.1.1 Probability distribution

Probability distribution is the probability of the occurrence of random variable X.

Probability distribution, p(x) when xe X has two simple properties as follows:

For continuous random variable 0<p(x)<1 and j p(x)=1

For discrete random variable 0<p(x,)<1 and z p(x;)=1

2.8.1.2 Cumulative distribution function
Cumulative distribution function, CDF, ( Fx(x) ) is the probability that X is less
than or equal to x when xeX or
FX(x):P(XSx) Eq. 2-151
e Fx(x) has interval between 0 and 1

e lim_, F (x)=1and lim__ F, (x)=0

x——0
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o If Fx(x) is discrete, then X is discrete random variable. But if Fx(x) is
continuous, then X is continuous random variable.
2.8.1.3 Probability density function
Considering x on the interval (a,b) on the real axis with a<b, the probability that X
is in between the interval (a,b) is the integral of probability density function (PDF), fx(x),

between the limit (a,b) as follows:

b
P(a<X <b)=[fy(x)dx Eq. 2-152

a

Several properties involving PDF are as follows:

o fx(x) =0 forall x and fo(x)dle
o F(x)=[fipd  and P(a<X<b)=F(b)-F(a)

2.8.1.4 Probability mass function
For a discrete random variable X, the probability mass function (PMF) is the
probability that X is equal to x.
PMF = P(X=x) Eq. 2-153
For the sequence of probabilities of discrete random variables ( P(X=x;) ), CDF can

be used to describe as follows:
F(xl.)—F(xi_I ) = P(X < xi)—P(X <X, ) = P(X = x,.) Eq. 2-154
2.8.1.5 Mean, Variance, and Standard Deviation of random variable

Mean or Expected value (Central value)

The mean or expected value of a random variable is the weighted average, while the

weight is the probability of the random value.

For discrete random variables: E(X) = z X, p, Eq. 2-155

For continuous random variables:  E(X) = I xty (x)dx Eq. 2-156

Variance and Standard Deviation

The expected value functions above can be applied to the function of X or g(X) as

follows:
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For discrete random variables: E[g(X)]= Z g(x,)p, Eq. 2-157

all x;

[’e]

For continuous random variables:  E[g(X)] = j g(x)fy (x)dx Eq. 2-158

—00

E[g(x)] is called the mathematical expectation of g(X).

The variance (c°) of a random variable is ( Var(X) ) defined as follows:
Var(X) = E[(X-E(X))’] Eq. 2-159
If g(X) = (X-E(X))* and E(X) = px , therefore :

For discrete random variables: Var(X) = Z g(x,)p, = Z (x; - 1)’ P, Eq. 2-160

all x; all x;

For continuous random variables: ~ Var(X) = '[ (x- 1) £y (x)dx = E(X*)— 1z, Eq. 2-161

—00

The standard deviation (o) of the random variable is the square root of Var(X), that is:

Std(X) =/ Var(X) Eq. 2-162

For bivariate random variable (X,Y), the mean, variance, and covariance are as follows:

The mean of X is E(X) = I _[ xfyy (X,y)dxdy Eq. 2-163

—00 —00

The variance of X is oy=Var(X) = J. J. (X — a1, )y (x,y)dxdy Eq. 2-164

The covariance of X, Y is Cov(X,Y) = E[(X— £, (Y- 1,)] = E(XY)-E(X)E(Y) Eq. 2-165

If X and Y are independent ~ Cov(X,Y) = [ (x— ) (x)dx [ (y =2, )f, (y)dy ~ Eq. 2-166

_ Cov(X,Y)

OxOy

The correlation coefficient is Eq. 2-167

2.8.1.6 Types of probability distribution
There are two main types of probability distribution, which are discrete distribution
and continuous distribution.

For discrete distribution

1) The binomial distribution
The probability of exactly & occurrences in # trials in a Bernoulli sequence is the

binomial PMF, that is:
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P(X=k)=(})p"(1-p)"" Eq. 2-168

Where p is probability of occurrence of an event in each trial, (] ) = n!/[k!(n-k)!] is
binomial coefficient.
2) The geometric distribution

For a Bernoulli sequence, the probability that the number of trials until a specified

event occurs for the first time is called the geometric distribution which is:
P(X=j)=pq’" Eq. 2-169

Where gq=1- p is the probability of the nonoccurrence of an event in any of prior (j-1) trials.

The mean and variance of the geometric distribution are as follows:

E(X):Zx.pq-’”:p(1+2q+3q2+...):p ! ~ =
Jj=1 (l_q)

Eq. 2-170

2
Var(X) = Z(x—%j pq’ " = lf% Eq. 2-171
j

3) The Poisson distribution
The Poisson distribution is the probability of the occurrence of events in time
and/or space assuming that a unit interval is constant and the events are all independent.
The PMF of a Poisson process (or called Poisson distribution) is:

",
x!

P(X, = x) =L Eq. 2-172

Where A is the mean occurrence rate (events per unit interval) and X is random variable
representing the number of occurrences in an interval of range t.

For continuous distribution

4) The normal distribution
The normal (or Gaussian) distribution is one of the most commonly used
distributions. Its density function with a bell shape curve is:

L
£y (x) = =e Eq. 2-173
2o

This bell shape curve is symmetric around g and its cumulative distribution function is:

()’

29° dy Eq.2-174

F(x)—J‘\/_
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The normal probability density relating to normal distribution is obtained from the
tables of the standard normal distribution (the normal distribution with zero mean and

standard deviation = lor N(0,1) ). The standard normal distribution is:

®,(z) = Ly Eq. 2-175

Lie
2z 2,

Where z = (x-p)/c. If X has N(u,o), then CDF of random variable X is as follows:

FX(x):d)(x_ﬂj Eq. 2-176
o
Therefore, the probability that X is in between a and b is:
P(aSXSb):FX(b)—FX(a):CD(b_—’uj—CD(a_'uj Eq. 2-177
o o

5) The logarithmic normal distribution
If the logarithm of the random variable X has a normal distribution, then X has the

logarithmic normal distribution (or log-normal). The PDF of X is:

I’
£ (x)= ! e 2( ¢ j ,0<x<o0 Eq. 2-178
ExN2rm

Where f = E(InX) and ¢ = /Var(In X) are the mean and the standard deviation of InX ,

respectively. The probability that X has an interval (a,b] is:

b _IIn—pY’
P(a<X£b):jﬁe 2( ¢ )dx ,0<x<o Eq. 2-179

a

When considering the standard normal distribution of InX. Let s=(Inx-)/e and dx = x¢ ds:

(Inb-p)/ e _ _
Pla<X <b)=—— ¢ ds =@ MEZL_p[Ina=f Eq. 2-180
N27w & & a
(Ina-p)/¢

6) The gamma distribution

The gamma distribution has an equation as follows:

a
ﬂ’ a-1_—Ax

x“ e Eq. 2-181
I'(@)

fx (x)=

Where >0 and £>0 are the characteristic parameters of the distribution shape and I'(a) is

value of gamma function as follows:

INa)= T “le™dx and T(a)=(a-DI'(a-1) Eq. 2-182

0

Where 1= a/A and o = a/ 2%,
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7) The Weibull distribution
The PDF of the Weibull distribution is:

f (x)=apfx’'e™  a>0,8>0,x>0 Eq. 2-183

The CDF of X is from the integration of fx(x) as follows:

F(x) = _[ afx’ Je e dr=1—e" Eq. 2-184

Where o and f are scale and shape parameters of the Weibull distribution.
If £ <1, then the shape is an exponential distribution. If #>1, then the shape is
asymmetric bell. The mean and variance of Weibull distribution can be determined as

follows:
u=a ""T(1+1/B) Eq. 2-185

o’ =a’T(1+2/B)-T*(1+1/B) Eq. 2-186

The Weibull distribution is used to determine the long-term wind speed distribution.
2.8.1.7 Multiple random variable
Before understanding multiple random variable (or multivariate random variable),
the univariate and bivariate random variables are explained.
1) The univariate random variable

e There is only 1 random variable, X.

e CDFofXis FX(x)=P(XSx)=]£f(x)dx

2) The bivariate random variable

e There are 2 random variables, X and Y.

Yy x
e Joint CDF of X and Y is Fyy (x,3)=P(X<x,Y<y)= [ [ fyy (x,y)dxdy

Where f,, (x,)is the joint PDF. To find joint PDF of X and Y, CDF and PDF of

X and Y is explained as follows:

e For CDF of X: F (x)=P(X<x,Y<w)= j IfXY (x,y)dxdy

—00 —00

e Therefore, PDF of X is: fo(x)= % = J‘ froy (%, 3)dy
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oy
e For CDF of Y: F, (y)=P(X<o0,Y<y)= I Ifxy(xay)dydx

—00 —00

e Therefore, PDF of Y is: f,(y)= % = j fry (1, p)dx
y —0

f
Eolid) g (1) =D tE2)

fy (») f (x)

e IfXandY areindependent: fy, (x|y)="fy(x) and fyx (vIx)=1f,(»)

o JointPDFis: fy,(x|y)=

Therefore f,, (x, y) =1y (x).fY (y)

If X and Y have a normal distribution (Bivariate normal random variable), then:

05 XA ’ oo X—Hy :
£ (x)= e 0'5[ o j and £,(») S S 0'5[ o J Eq. 2-187
o2 oyN2r

If X and Y are independent:

IRyl

f =1 1t = Eq. 2-188
xv (60) =fx (x) £ (») O'XO'Y27Z'e a
If X and Y dependent,
05 | (x|, fxoug X,,YHMZ}
Joint PDFis  fy, 1 e’ ){[ A Eq. 2-189

R (]

Where p=oxy/(ox0oy) is the correlation coefficient, oxy is the covariance of X and Y.
3) The multivariate random variable

e There are more than 2 random variables, U=[X;,X,.. .,XN]T.

e The covariance matrix of Uis o, =E ((U - w)(U—- ,u)T) e RN

X, E(X)) H 0,0, 0,0, -+ OOy

X E(X o,0, 0,0, ‘- 0,0
U=| > |eR" and E(U)= (:2) =Uu= ,u:2 and o = 2 e 2

Xy EXy) Hy Oy0; OxO, =+ O\Oy

e [f U has a normal distribution, the multivariate PDF of U is

1 ~03[(U-p)" o (U-p)

- (272_)1\//2 |O_U |1/2

f(U) Eq. 2-190

Where oy is a covariance matrix and det(cy) = |oy |.
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2.8.1.8 Generalized tetrachoric series method for probability of
multivariate random variables
To determine the probability of X > K or P(X > K) where X is a multivariate
random variable, the integral form is first stated as follows:
[ (%5000, )dxd, .. dx, Eq. 2-191

ks ky

P(X2K) = P(x, 2k, %, 2 kyoors X, 2 k,) = | ..
k,

The tetrachoric series form is:

P(X>K)= zz Z[al'az am! (qplqu

=0a,=0 a,

or P(XX>K)= ZZ z[ﬁ(z—f’i']xﬁ(f[,/(kj)g(kj))} Eq. 2-192

a;=0 a,=0 =0] i=l1

) (H ), (k). H, (k) 2k k) (k)|

Where m=n(n-1)/2, g(x) = (2n)'0‘5exp(-0.5x2) is standard normal PDF.

Hx)=1, HK = o05% (_lj)(d/e—o..sx J’

HLi(x) = (1-G(x))/g(x) o

G(b) = [ g(x)dx.

q ;j can be determined step by step as follows:

Step (1): From covariance matrix of X or matrix C with dimension n x n, divide

row i with (c;)" and divide column j with (cj)™ . The result is matrix Q:

I cll 012 Cln |
0.5 0.5 0.5
q q q (cllcll) (611022) (Cllcnn)
11 12 In c c c
4 9» q,, = 05 = 05 = 05
o=|". . . (CZZCll ) (szczz) (czzcnn )
in an qrm .
Cnl an cnn
0. 0. 0.
L (cnncll ) i (cnnCZ2 ) ’ (Cnncnn ) ’ i

Step (2): Find p; which are numbers of row and column of Q, if i = 1,2,3...,m

i 1 2

p, 12 13

n

n+1

23 24

35

2(n=1) 2n 2(n+1) .. m
2n 34

n—1n

Step (3) Find ¢ gi using p; from Step.2) and g; that is stated before.



99

r; is defined by the summation of ¢; minus 1 which, when compared to qf,i using the table

below, ¢ with row j or column j being selected.
a; a 4 ... 4y 4, Gy gy Gy, oy . 4y

q, o G5 . Gy Doz Y24 o Doy Y34 Y35 . G,
For example, 7 =(aitaxt...tan1)-1, r=(a1tastan+...Faxn) ) -1

Process to find P(X=K):

(1) Determine n, m, and matrix Q and then start with i = 1 and a,, = 0

(2) Define p; and a; and do steps (3)-(6)
(3) Determine qf,j from (2) and (1) and then compute IT (qu_ /ai!)

(4) Forj =1 to n, determine g(k;), r;and Hy;(k;) and then compute IT Hj(k)x g(k;)

(5) Compute result of (3)x(4)

(6) i=i+1,ifi>m go to (7) but if not return to step (2).

(7) Increase an, = anm +1 to infinity (practically 100) with the repeat step (1)-(6)
while the sum of each step of (5) as a result

(8) Increase am.; = am-1 +1 to infinity (practically 100) and repeat steps (1)-(6)
while summing each step of (7) as a result

(9) Repeat step (8) with an.2, dm.3,..., ai. The final result is P(X>K).
2.8.1.9 Determination of distribution model using the Kolmogorov-Smirnov
test

The Kolmogorov-Smirnov (K-S) test compares the selected theoretical CDF ( F(x) )

with the cumulative frequency curve of considered data (Qn(x)).
The maximum difference between F(x) and Q(x) is the measure of the fit.
Dy = max| F(X) - Qu(x) | Eq. 2-193
Since D, is random variable, if D, is less than the critical valueD;, then the

distribution of considered data is fit with the selected theoretical distribution at significant

level a. The probability that D, is less than or equal to D! is
P(D,<D?)=1-a Eq. 2-194

The smaller is a, the larger is D; . The larger is n, the smaller is D .
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2.8.1.10 Convolution integral
If Z = g(X,Y) and a unique g"'(z,y) = x and g’ (x,z) = y exist, Then the PDF of Z is:

© -1
@)= [fo@ [ fdy  where g'(zy)=x=g" Eq. 2195

—0 V4

_ T -1 agfl -1 -

f,2)= [ fey(x,g™) | where g'(x,z) =y =g Eq. 2-196

—0 V4

-1
IfZ=X+Y, then, og =6—X=Q=l. Thus PDF of z is:
0z 0Oz 0z

£,(2)= [ fey (2= v, y)dy Eq. 2-197

Since Z is symmetric with respect to X and Y, therefore:
f,(z)= j £y (X, 2= x)dx Egq. 2-198

If X and Y are statistically independent:

£,(2)= [ fx(z=y)f, (y)dy Eq. 2-199
f,(z)= T fy (x) f, (z—x)dx Eq. 2-200

These above two equations are called the convolution integrals.
2.8.2 Stochastic processes
The stochastic process means random functions of time. For random variables, each
observation corresponds to one or more frequencies of an event occurring. For stochastic
process, each observation corresponds to a function of time with the time sequence of the
events.
2.8.2.1 Types of stochastic processes [58]
There are 4 categories of stochastic processes that can be analyzed using different
mathematical techniques:
e Discrete values and discrete time
e Discrete values and continuous time (for example, Poisson process)
e Continuous values and discrete time
e Continuous values and continuous time (for example, Brownian motion

process)
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2.8.2.2 The Markov process [5]

All possible values of random variables are the state system or state space. The
probability of transition from one state to another may generally depend on the prior states
or the previous realization of the process. If the future state is solely influenced by the
present state of the system, then the process is called a Markov process. If the state space is
a countable set, the process is called a Markov chain.

For probability that is independent of the process x at the prior time before to, if the
process x(t) is in state k; and time to, the probability that the process goes into the state k; at
time tott is P{ x(to+t)=k; | x(to)= ki }. If this is a Markov chain, the probability is reduced
to:

Pi() = P x(tot =k | x(to)= K } Eq. 2-201

If this is a homogenous Markov chain, this probability is reduced to:

pi) = P{x()=kj | x(to)= ki } Eq. 2-202
For arbitrary t and s:
pi(tts) = P{ x(t+s)=kj [ x(0)=ki }
= Y P{x(t)=K | X(0= ka x(0)= ki } P{ x(D)= kq | x(0)=k; }

= D PUX(®)= ka| X(0)= ki }P{ x(t+s)=kj | x(0)= ka}

pii(t+s) = D pia(t) pai(s) Eq. 2-203

This transition probability is a continuous version of the Chapman-Kolmogorov equation.
If we consider the change transition probability, the forward and backward
Kolmogorov equations are stated as follows:

For the forward Kolmogorov equation:

_ pg;([+At)_pgj(t) _

pi(0) o Z P,  0,j=012,.. Eq. 2-204
For the backward Kolmogorov equation:
(0 = pff(HAAtz_p"f'(t) =S Aupy(®)  5j=012..  Eq.2-205
M

Where p,(0)=0, i#j, p,(0)=1,and 4, = are the transition densities.

t=0
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2.8.2.3 The Poisson process [22]
The Poisson process is a Markov process, which is a discrete value with continuous
time or parameters. For the Poisson process with constant A:
o Pi(s.H)=P[X(H)=j| X(s) =]
e Events occurring in non-overlapping time intervals are independent of each
other.
e For a very small At, the probabilities of occurrence of events in the interval
(t, t+At] are followed these two assumptions
(1) Probability of the transition to the next state is P;;.(t, t+At) = AAt
(2) Probability of two or more transitions within At is zero, that is
Pii(t, t+At) ~ 1-AAt
Let Py(t) = P[X(t) =n | X(0) = 0]. Based on assumption (2), in general:

Pa(t+AL) = Poy(t) AAL + Py(t)(1- AAY) Eq. 2-206
% =—AP,(1) Eq. 2-207
% = AP, (t)-AP.(1) Eq. 2-208

If we assume the initial condition Po(0) = 1 and Py(0) = 0, k=1, 2, 3,... for a given

interval (0,t] , then the solution of the above linear differential equations is:

(’“') e, n=0,l,. Eq. 2-209
n!

P.(0)=

Instead of starting at t=0, the initial observation is made at t=s, s>0 which X(s) = i.
Therefore, the probability of (n-1) events in the remaining time (t-s) is:

P (s,1) =Me*<‘*” Eq. 2-210
’ (n-1)!
2.8.2.4 The Brownian motion process [5]

The Brownian motion process is of continuous time and is a continuous value
stochastic process. It is used to describe the movement of a particle in a liquid relating to
external force and collision. The position x(t) of a particle is modeled as a function of
second-order differential equation as follows:

mx"(t) + £ x'(t) + ex(t) = W(t) Eq. 2-211
where m is the mass of the particle, f'is coefficient of friction, cx(t) is an external force,

and W(t) 1s the collision force.
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W(t) can be viewed as normal white noise with zero mean and power spectrum Sp(w) =
2kTf where T is absolute temperature, k = 1.37 x 10 J.K is Boltzmann constant.
If restoring force cx(t) is not zero, the position x(t) approaches a stationary state with zero

mean and power spectrum:

S (w)= 25727 — Eq. 2-212
’ (c-mo’ ) +f o
o kT o a .
Its autocorrelation is: R (r)=—=¢ cos At + Esm plt] Eq. 2-213
c
For specific t, its PDF is: f.(x)= _C o Eq. 2-214
’ 2kT

where x(t) is a normal random variable with zero mean and variance R(0) = kT/c.

The conditional density of x(t) is a normal curve with mean ax, and variance P, where:

a:RX(T) P =R (0)(1-d?) T=t-1, Eq. 2-215
R.(0)

If restoring force cx(t) is zero (for example free motion), thus:
mx"(t) + £x'(t) = W(t) Eq. 2-216
The solution of this equation is nonstationary process (since it has ¢ in an equation).
If replace position with velocity, v(t) = x'(t), this equation becomes:
mv '(t) + fv (t) = W(t) Eq. 2-217
This equation is called Langevin equation. The steady state solution of this equation

is stationary process (Ornstein-Uhlenbeck process) with:

spectrum Lorenzian is S, (w)= % Eq. 2-218
mao +f
kT -
its autocorrelation is R(r)=—e " Eq. 2-219
m
v(t) is a normal process with zero mean and variance k7/m, where
m o
its PDF is X)=,|——e?7 Eq. 2-220
S, () 2xkT a
The conditional density of v(t) is a normal with mean av, and variance P, where:
- 2
a:Rv—(T):e’” P:k—T(l—az):k—T(l—e’" ) Eq. 2-221
R (0) m m

Its variance is P=E[x(t)]= %TTLt I T g ] Eq. 2-222

fr
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Therefore, x(t) in free motion is a nonstationary normal process with zero mean
and variance P. If t >> m/f, the variance P is reduced to:
2kT kT

P=E[x(t)’]*——t=2D*t D’=— Eq. 2-223
S S

where D is the diffusion constant.
The Brownian motion process has properties such that
For 1> 0 and X(0) =0, [ X(t+1)-X(t) ] is a Gaussian random variable with
E[ X(t+1)-X(t) ] =0
Var(X(t+71)-X(t)) = at
which is independent of X(r) forall r <t.

The joint PDF of Brownian motion process X(t) is

2
_ (xn “Xn-1 )

g (i) Eq. 2-224

For the Weiner process, mx"(t) of a particle in free motion is assumed to be very

small compare to fx'(t) and can be neglected, thus:

FXO=W() and  x()= % [W(@)da Eq. 2-225
0
Its variance is P=E[x(t)]= %TTt =at a=2D?= %TT

Therefore, x(t) is a nonstationary normal process with PDF:

7x2

fon(X) = L e Eq. 2-226

N 2mot

For the Weiner process, the position of a particle in free motion with negligible

acceleration has the following properties
e E[x(t)]=0, Var(x(t))=at, Ry(ti, ) =0 min(t, t2)
¢ Independent increment
e The conditional density of x(t) is normal with mean ax, and variance P, where:

Lo Rt

= P=R (t,{)—aR (t,t,) = at —at Eq. 2-227
R (to,1,) (t,1) (2,2y) 0 q

—(x—xg )2

e?e Eq. 2-228

1

Sy (x| x(20) = x;) :W

e Its PDF is
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2.8.2.5 Autocorrelation and autocovariance [22]

The autocorrelation function of the stochastic process X(t) is
Rx(t,7) = E[X(t)X(t+7)]
The autocovariance function of the stochastic process X(t) is
Cx(t,t) = Cov[X(t),X(t+71)]
For 1=0, Cx(t,t) = Var[X(t)]
The relationship between an autocovariance and autocorrelation function is:
Cx(t,7) = Rx(t,7) — E[X(t)]E[X(t+7)]

2.8.2.6 The stationary process [58]

For the stationary process, the statistical properties of the process do not change
with time. Therefore, the same random variable is observed at all time instants. For any
time instant t and time difference t:

Fx(*¥) = (%) = (%)
where X(t) = X(t;), X(t2), X(t3),..., X(tm) for t=ty, t5, t3,...tn and X = X1, X2, X3,...,Xpm .

Stationary process is defined by the expected value, autocorrelation, and
autocovariance, while a wide sense stationary process is defined only by expected value
and autocorrelation as follows:

For wide sense stationary process (WSS) X(t):
E[X(D)] = px(t) = px Eq. 2-229
Rx(t,t) = Rx(0,7) = Rx(7) Eq. 2-230
For a stationary process (strict sense) X(t), one more property is added as follows:
Cx(t,7) = Rx(1)-(nx)* = Cx(7) Eq. 2-231

Therefore, a stationary process (or strict sense stationary process) is a subset of a
wide sense stationary process.

The power spectrum or power spectral density (PSD) of a WSS process x(t), real or

complex, is the Fourier transformation S(®) of its autocorrelation R(t) = E{ X(t+1)X (1) } as

follows:
PSD is S(@)= [ R(z)e " dz Eq. 2-232
.. . . 1 ;
Fourier inversion of PSDis  R(7) = gy I S(w)e’"dw Eq. 2-233
T —o0

If x(t) is a real process, then R(7) is real and even, and thus S() is real and even. Therefore
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PSD is S(w) = I R(t)cos(wr)dr = ZIR(T) cos(wr)dr Eq. 2-234
—o0 0

Fourier inversion of PSD is R(7) = 2L j S(w)cos(wr)dw = l'[S(a)) cos(wr)dw Eq. 2-235
T —o0 T 0

The cross-power spectrum of two processes x(t) and y(t) is

cross-PSD is Sy(@)= [ R, ()" dr Eq. 2-236
Fourier inversion of cross-PSDis R (7) = % I A ()’ dw Eq. 2-237
7 —o0

Where Ryy(1) = E{ x(t+t)y*(t) } 1s cross-autocorrelation.
2.8.3 Stochastic differential equation [40]
Considering the ordinary differential equation (ODE)
ig)))_:f:(t)) >0 Eq. 2-238
where x(t) € R" is the state of the system at time t, f(x) is a function of x for which the
solution is the trajectory x(t).
It includes the random effects disturbing the system, ODE becomes:
zg)))—: iizi(t)) +B(x(1))¢(0), t>0 Eq. 2-239
where B(x) is a function of x with dimension mxn and &(?) is white noise (wide sense
stationary process) with dimension m.
If m=n, xo =0, and B =1, the solution of the above equation is the Weiner process
or Brownian motion w(.), which symbolically is
w()=¢5() Eq. 2-240
Therefore, the white noise is the time derivative of the Weiner process.

Replace & with w, thus:

ax® =f(x(¢)) + B(x(?)) dw) Eq. 2-241
dt dr
Multiplying by dt yields
dx(¢) = f(x(¢))dt + B(x(2))d w(¢) Eq. 2-242

This equation is the Stochastic Differential Equation (SDE). Solve SDE to find x,
yield:
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x(t) = x, +jf(x(s))ds +jB(x(s))dw Eq. 2-243

For a Langevin equation problem, the model of the motion of a Brownian particle
with frictional forces is as follows:
X=-bX+0¢ Eq. 2-244
where X is the velocity of a particle, b>0 is a coefficient of friction, o is a diffusion

coefficient. Therefore, this equation can be represented as follows
dX =-bXdt + cdW

Eq. 2-245
X(0)=X,
where X is independent of Brownian motion (W). This is a Langevin equation.
The solution is Xt)=e"X,+ O'I e dw 120 Eq. 2-246
0
Its expected value is  E[X(¢)]=e "E[X,]
2

Its variance is Var[ X (t)] = e"Var[ X, ]+ % (1—e™™) Eq. 2-247
If t Doo, E[X(1)] >0, Var[X(t)]>c*/2b Eq. 2-248

For the Ornstein-Uhlenbeck process problem, the motion of a Brownian particle
with frictional forces becomes
Y =-bY +0&
. Eq. 2-249
Y(0)=Yy, Y(0)=x
where Y(t) is the position of a Brownian particle at time t, Yy and Y are given Gaussian
random variables.

Then X = Y, the velocity of a particle satisfies the Langevin equation:

dX =-bXdt + ocdW

Eq. 2-250
X(©0)=Y,

The solution of X is X(@t)=e"Y + GI e dw , 120 Eq. 2-251
0

t
The solution of Y is Y(t) =Y, + j Xds Eq. 2-252
0
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1 _ e—bt

Therefore, its mean is E[Y(¢)]= E[Y,]+ jE[X(s)]ds =LY, ] J{ jE[Yl] Eq. 2-253

Its variance is Var[Y(t)] = Var[Y, ]+ Z—jt + ;—;(—3 +4e™ —e)  Eq.2-254

The details of these solutions are described in “An Introduction to Stochastic
Differential Equations” by Lawrence C. Evans. For higher order differential equations, a
SDE solution is still not applicable due to its difficulty.

2.8.4 Monte Carlo simulation [22]

The Monte Carlo simulation is a numerical simulation applied to statistical
problems with known probability distributions of random variables. It is a repeating
process to generate values of random variables according to the known probability
distribution. Therefore, samples from Monte Carlo simulation are (theoretically) the same
with the samples from experimental observations.

2.8.4.1 Uniformly distributed random numbers

All methods to generate uniformly distributed random numbers are based on
recurcive calculations of residues of modulus m or x mod (m), which returns the integer
remainder when x is divided by m.

The multiplicative congruential method or power residue method, which is used
most frequently at present, is stated as follows:

Xi = x'(mod m) Eq. 2-255
However, this method is not suitable for very large numbers of 1, therefore, an equivalent
equation can be used as follows:
Xi = pXi.; (mod m) and u;=x;/m Eq. 2-256
where p is a constant multiplier and u; is a uniform CDF of x; which x; = F,'(u;).

The most common choice of m is m = r°, where r is the base of the number of the
computer system (2, 10, 16, 64 bit) and s is the word length in the computer. Standard
recommendations choose p to be values from 8t £3 (t=1,2,3,...).

Another recursive method is:

xi = (pxj.; + b)(mod m) and u=x;/m Eq. 2-257
where b is a nonnegative integer.

However, the numbers generated from these methods are really not random
numbers, but pseud- random number. The large m causes the numbers generated uniformly

distributed and statistically independent.
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2.8.4.2 Random numbers with given distributions
This method requires specification of the inverse of the distribution function and
called the inverse transformation method. For example, if u; ( i=1,2,3,... ) are generated,
the CDF of an exponential distribution function is
Fx(x)=1-¢™, x>0 Eq. 2-258
Taking then inverse of this function, thus
xi=-A"In(l-u) or x=-A" In(u) Eq. 2-259
since u is uniformly distributed, therefore 1-u is also.
2.8.4.3 Jointly distributed random numbers
If random variables x;, X2, X3,..., X, are dependent, the joint CDF is as follows

Fxl,.“,x“ (X5eenX, ) = FXl (XI)FX2 (x, |x1)....FX“ (X, [ X5 X, ) Eq. 2-260

where Fx(x;) and Fxy(Xk|x1,...,Xk.1) are marginal and conditional CDF of X; and Xj.

If a set of uniformly distributed random numbers (u;, uy,..., u,) is generated, then

x1 = Fu(ur) Eq. 2-261
X2 = Fo ' (uylx1) Eq. 2-262
Xn = Fyn (Un|X 1. - ., Xno1) Eq. 2-263

This method can be used if the marginal and conditional CDFs can be inverted
analytically.

2.8.5 Stochastic stability concept

The deterministic differential equation can be stated in the following form:

x=f(x) X(t)=x, Lt=t, Eq. 2-264

If there exists a positive-definite function U(x) (U(x¢) = 0 and U(x)>0 for all x # x¢)
such that

dU(x,?)
dt

oU &.0U
_ £ (x.£)<0 Eq. 2-265
or +;6x ((%:1) q

The equilibrium of this system is called stable. A function U which satisfies these
conditions is called a Lyapunov function.

For probabilistic or stochastic differential equations:

dx=f(x,t)dt+g(x,t)dW, x(t0)=xo 21, Eq. 2-266
Where f(x,7)is nonlinear function, g(x,t)is diffusion function, and dWis Weiner

Process.
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If there exists a positive-definite function with continuous partial

differentials, u (x, t) = U, such that the expectation of its differentiation is less than or equal

to zero

E(dU) <0 forall 7>¢, Eq. 2-267
The function u(x,t)is called the Lyapunov function belonging to the particular

equilibrium state of the stochastic differential equation [26].

The differentiation of U of stochastic system becomes
d m
dU(x, t)=(Lu (x,7) )dt ZZ (x,1)g; (x,1)dW, Eq. 2-268

The L u(x,t) is a stochastic differential operator according to Ito’s sense.

2
Lu(x,t):a_qua_uf( )+;Trace{g (x, t)g 4
x’

Eq. 2-2
= on ~g(x, t)} q. 2-269

This condition can be used for stochastic system stability analysis in the sense of

Lyapunov.
2.9 Energy Function Methods

The energy function method was first proposed by A.M. Lyapunov in 1892, called
Lyapunov’s method, which is based on the energy function representing a nonlinear
dynamic system. It is the concept of energy balance which have been proved and applied
for stability problems of the power system more than 40 years. Energy function method
began with the application for transient stability by Magnusson and Aylett, followed by
more general Lyapunov’s method by Elabiad and Nagappan [50]. It was applied later for
voltage stability and small signal stability from load and generation change.

For an energy function method applying for transient stability, or called Transient

Energy Function (TEF), the system equation with 3 conditions is:

1. Initial system (Prefault) x=f'(x) ,—0<t<0
2. Faulted system x=f"(x) ,0<t<t,
3. Postfault system x=f(x) ,t,<t

If initial system variables are known, the faulted system and postfault system

equations will be used for TEF to quantify critical energy and critical clearing times.
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2.9.1 Lyapunov’s Theory of Stability

For a nonlinear dynamic system, x= f(x) where f(0)=0, Lyapunov suggests
that if there is a positive-definite scalar function W(x) > 0 around the equilibrium point and
the derivative W (x) <0, then the equilibrium is asymptotically (closely to) stable. ¥ (x)is

computed from:
W(x)= ZZTWX = ZaaTW £(x)= VW' £(x) Eq. 2-270
For the power system, W(x) is generally the sum of kinetic (Wxz) and potential
(WpE) energies of the postfault system. The critical value of W(x) causing the system
instability is called the critical energy (W), which is different for each fault.
2.9.2 Modeling aspects for stability problems
In terms of energy perspective, W(x) = Wxg + Wpg . Since power is the derivative of
energy, therefore, in terms of power perspective:
W=We+W,, Eq. 2-271
For conservative system, the increasing rate of Wxz is equal to the decreasing rate

of Wp. Therefore W, = —W,, and W is zero.

An analogy of the equation of motion of a power system:

2 2
W=0= &dff ~(P,-P,) or ﬁdfi:Pmi—Pa, Eq. 2-272
w, dt w, dt

Wherei=1, 2, ...,m, H, is inertia constant of machine i, ®,is rated synchronous speed of

machine i, ¢,1s rotor angle of machine 1, P, is mechanical power of machine 7, and P,1is
electrical power of machine i.
If E = |El| Z 8, is the terminal voltage of machine i, and Y, = G, + jB; is admittance

between machine i and machine j with real part G; and imaginary part B; . Thus the

electrical power of machine i relative to the other machines j=1, 2, .., m is:

P, =Y EE, (G, cos(5,~3,)+B,sin(5,-5,)) Eq. 2-273
j=1
P, =E!G,+Y EE, (G, cos,+B,sind,) Eq. 2-274
e
2H, d°6, < :
Therefore, 2H,d0o, _ (Pmi -E!G, ) - Z EE, (G,.j cos o, + B, sind; ) Eq. 2-275

2
w, dt =
J#i



112

If 2H,/w, = M, and d6,/dt = », — @, , thus

M, =(P

mi

—E,.ZG”.)—ZE[EJ.(Gy coso; + B, siné'l.j) Eq. 2-276
e
In the form of a first-order differential equation (equation of motion of machine 1),
S =0-o, Eq. 2-277
Ma,=(P,, —E}G,)~ Y EE,(G,cos 5, +B,sin5,) Eq. 2-278
y
If the center of inertia (COI) concept is applied to the above equation, then:
1 & 1 &
Ocor = —ZMlé'l and @, = —ZM,.a)[ Eq. 2-279
T i=1 MT i=1
0, =06,=0c and @, =, — @y, Eq. 2-280

where M, = ZM . and Pcoyis the power at the center of inertia of the system,
i=1

Py =3(B,-P,)= i(Pml. ~E[G,)- 33 EE,G, cos0, Eq. 2-281
- ,

i i=1 i=l j=i+l

Therefore, the equation of motion becomes

0, = o, Eq. 2-282
Mo, =(P, -EG,)- iEl.E (G, cos,+B,sing),) —%PCO, Eq. 2-283
i !
For the faulted system:
Mo, = 1" (0) where 0<7<¢, Eq. 2-284
For the postfault system:
M., = f,(6) where > 1, Eq. 2-285

If we integrate the postfault system, for € between ° (rotor angle at equilibrium)

and @;, and for ® between 0 and @, , then:
[ =W+ [, Eq. 2-286

o,
1 i

W(0,0)=— M} - [ £,(0)40 Eq. 2287
H[S
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6,

A m 0; ;
W(0,0) =M o - [(P,—EG,)d0-)"| [ EE,(G,cos6,+B,sin0, )40 —% [ Podo
3 o\ T o
| Eq. 2-288

This formulation process is called the first integral method. Therefore, the energy

function of the power system or TEF in the COI reference frame is

w(0,w) :%:ZIMIQZZ _i[(Pmi _EizGii)<9i _9{.9)]

i=1

m=1 m 0,+0; Eq 2-289
_Z 21 EE B, (cos 0, —cos6; ) — I E.E,G,cos0,d (Q + (9],)
i 0 +68

For terms on the right,

the 1% term is a change in the rotor kinetic energy of all machines,

the 2" term is a change in the rotor potential energy of all machines,

the 3" term is a change in the stored magnetic energy of all branches, and

the 4™ term is a change in the dissipated energy of all branches.

The 1* term is kinetic energy (Wxz) which depends only on the rotor speed and the
2" 3" and 4™ terms are the potential energy (Wpg) which depends only on the rotor
angle. If G is very small and close to zero, this equation is good described by Lyapunov’s
Method.

The system becomes unstable when energy exits some critical values, called the
critical energy W,, .
Generally, there are 3 methods to compute W, :

1) Potential Energy Boundary Surface (PEBS) method

2) Boundary Controlling Unstable Equilibrium Point (u.e.p.) method

3) Lowest Energy u.e.p. method

The Lowest Energy u.e.p. method finds the u.e.p. with the lowest value of W, of
the postfault system. Since this method is not universally used and needs much
computational time, it is not considered here in this report. Instead, the other two methods
are described in the next topic.

2.9.3 Potential Energy Boundary Surface (PEBS) method

For the PEBS method, W,, is determined as the maximum value of the potential
energy components (2" , 3 | and 4™ terms of W) of the faulted system. For the

conservative system, energy (the sum of kinetic and potential energies) is a constant
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depending on rotor angle and speed. The concept of the PEBS method can be described as

shown in the figure below.

Potential
Enirgy

Critical energy

Wer
w

| ‘ >
Js Bl Bus Rotor angle
tpf tc' 8cl < 8cr < 6us

tCr

Figure 2.33 The potential energy-rotor angle curve for PEBS method

From the above figure, the postfault system has 6 = 6 at time t,r while Wy and Wpg
are zero. The system is perturbed by fault and then the fault is cleared at time t, with & =
dc1. At this time, energy W is the sum of Wxg and Wpg. If W < W,, , thus the rotor will
accelerate from point a and then start decelerating at point b. If W > W,, , thus the rotor
angle will accelerate beyond the value 8, at point ¢ and the system is unstable. If W= W, ,
the potential energy is maximum while the kinetic energy is zero and the system is nearly
unstable. Therefore, W = Wpg = W,, and the clearing time is called critical clearing time
(ter) with 6 =3, . W, 1s determined from the maximum value of Wpg of the faulted system.

The kinetic energy Wxg at time t is considered as excess energy injected into the
system. Therefore, stability of the system is the ability to absorb this excess kinetic energy.

The steps to compute critical clearing time ¢, are as follows

1) Compute ds and 0, from the post fault system parameters (E, G, B)

2) Compute Wpg from the faulted system equation at each time step

3) Monitor if Wpg reach the maximum value, then maxWpg = W,

4) At W = W,, of the faulted system, &, and 0. are known and then t. can be

estimated.
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2.9.4 Boundary Controlling Unstable Equilibrium Point (BCU) method
The BCU method, is also called the exit-point method, computes the critical energy
when an unstable equilibrium point (u.e.p.) is closest to the point where the faulted system
function exits the region of the post fault system function. This is called controlling u.e.p. .
The algorithms of the BCU method are as follows:
1) For a contingency that involves either line switching or load/generation
change, compute s and 0 of the post fault system.
2) Compute the controlling u.e.p.
(2.1) Integrate the faulted system equation and compute W(0,0) = Wgg +
Wpg at each time step. Find 0* and time t* when Wpg reaches the maximum
value.
(2.2) After max Wpg, the faulted swing equations are no longer integrated.
Instead, the gradient system equations of the post fault system are used. For

t>t*
0=r(0).0(t")=0 Eq.2-290
The above equation is integrated and looking for the minimum of Z‘ f (9)‘ )
i=1
At the first minimum, €= &, is almost the controlling u.e.p close to the u.e.p
(6ss), and Wpg (6.ys) 1s approximated as W, with very little difference.

(2.3) The exact u.e.p (6s) can be computed by solving f (&)= 0using G

as starting point to arrive 6.
3) W, is determined as W., = W(6,5,0) = Wpg (6ys)

Compute t,; when W(6,w) = W,, . In the case of fault, W(6,w) is from the faulted
system equation and the system is stable if the fault is cleared at t < t.. In the case of
load/generation change, W(6,w) is from the post disturbance system equation and the
system is stable if the W(6,w) < W, for all t.

2.9.5 Critical energy estimation

The computation of critical energy needs the determination of unstable equilibrium
points and stable equilibrium points. The stable equilibrium point can be calculated using
the power flow solution or the simulation until reaching the steady state. For mathematical
convenience, unstable equilibrium points can be estimated using the process of M.

Ribberns-Pavella [43]. For the method of M. Ribberns-Pavella, unstable equilibrium points
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of rotor angle, when any machine loss synchronism, can be approximated using the value
+n - x° (where x° is stable equilibrium point). Only the case of loss synchronization

(unstable) of 1 machine and all machines are considered.

Table 2.4 Unstable equilibrium points formulation

Case 1 (5 sets) Case 2 (5 sets) Case 3 (1 set) Case 4 (1 set)
x = {x1,%2,%3,%4,X5} X 5 x = {x1, %2, %3, %4, X5} X 5 x = {x1,22,%3,%4, X5} | X = {x1, %2, X3, %4, X5}
4ofx; =x7 for =1,2,.,5 | 4ofx; =x7 for i=1,2,..,5 X =m—x; X =—T—x;
lofx, =m—x; lofx, = —m—x; for i=12,.,5 for i=12,..,5
fork=1,2, .., 5 and (i=k) for k=1,2, .., 5 and (i#k)

2.9.6 Well-defined energy function formulation using first integral method

The energy function is used in this thesis and will be applied to the study of the
impact of wind power on power system stability. Energy function method, basing on
Lyapunov function, is used to determine the region of attraction of stable equilibrium
points and the critical values which beyond these values, system become unstable.

The cumulative effect of continuous small disturbances in the power system (such
as load and wind power) can finally make the system reach critical values and become
stable. An average time that the system first hit the critical boundary of region of attraction
is called mean first passage time (MFPT). The mean first passage time (MFPT) is the
performance index to quantify the average time a state-space trajectory takes to change
from a given operating point to the boundary of its domain of attraction under the influence
of small perturbations [2][9][10][11[13].

An important step for an energy function construction is to ensure that this function
is a type of Lyapunov function. If then, this is called well-defined energy function which
the theory of system stability of Lyapunov can be described. However, since now, there is
no complete or exact solution of energy function. Carefully check an existence of energy
function ( W(x;) ) should be considered by using following conditions [9].

I W(x,)=0 when operating points are stable equilibrium points ( x; = x5 )
I. w(x,)>0 when trajectories of operating points are within the region of

attraction around equilibrium points

IIl. #(x,)<0 when trajectories of operating points are within the region of

attraction and asymptotically move to equilibrium points
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There are two methods for constructing energy functions, the two-step procedure
and the first-integral method [30]. This thesis uses well-known first integral methods to
formulate energy functions.

For the swing equation, the terms in the form of power balance will be integrated as an

energy balance as follows:

My, =P,-P,—D,y, Eq. 2-291
multiply by o, and integrate:
TMiyl.dyl. = r P ydt— J.X P.ydt— Jw D,yldt Eq. 2-292
) 5 . 5
TMiyidyi =J mt I idx_'[: Diyidx Eq' 2-293
o ;
Dt =l )+ S50, [eosn ) ol )] [ Do Ea, 2294

j=1
Where the left term is kinetic energy (KE) and the right terms are potential energy (PE)
from mechanical power, electrical power, and damping power, respectively.

Therefore, the energy function of swing equations (Ws,) of an n machine system is:

3t B )25 [eos(s ) -eolot ) 1S

i=l j=1
Eq. 2-295

For power flow equations, in the case of active power:

n+m

P ==Y VVB, sm( —x ) for m load bus Eq. 2-296

Jj=1

multiply by dx and integrate:

Tl’,kdx——wj‘j("i:nVVB sm( )jdx Eq. 2-297

X;

By (v =) = S0 B [eos(x,x, ) ~cos(xi —x;) Eq. 2-298
j=1

Therefore, the energy function of power flow equations (Wpr) of m load bus is:

n+m n+m n+m

Woy= > P ( ) > > VVB, [cos( )cos(x x)] Eq. 2-299

k=n+1 k=n+1 j=1

An energy function, W= W, + Wpr , can be computed as follows:
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W=w, +W,= ZM z ml( ) 2.2 1I/I.I/,.Bi/. [cos(x,. —x,.)—cos(xf —x';)]
i=l j=
+k§ P}k( —xk) /”f nzMjVV]Bkj [cos(xk —xj)—Cos(xz _xj)}rj‘:( N D,-yfjdx
=n+l k=n+1 j=1 ! i=1
Eq. 2-300

If we neglect damping terms by assuming conservative systems or lossless systems,

and rearrange the above equation, the energy function is

ntm n+m n+m
S s S s
ZMI Vi E ml( X, xl.)+ E P,k(xk—xk)— Vl.VjB,.j[cos(x,.—xj)—cos(xi —xj)]
k=n+1 i=l j=1

Eq. 2-301
The existence of Lyapunov function candidate can be proof using three conditions
as described previously:
I.  w =0 when operating points are the stable equilibrium points ( x; = x; )

From the equation of the energy function above, if x = x*, term nd , 31 , and 4™ on
the right are exactly zero. For the first term on the right, under steady state when x = x*, @

is nearly equal to @y which y=w-@y=0. Therefore, energy function is zero (W = 0) when
X=X .
II. w>0 when trajectories of operating points are within the region of attraction
around equilibrium points
This is true in the case when —-7—x’ <x<z—x' andx=x*. The 7—x* and -7z —x°
are unstable equilibrium points.
III. W <0 when trajectories of operating points are within the region of attraction

and asymptotically move to stable equilibrium points
- oW . oW . . .
W= it (> My J+[ =X B+ X By + 2. DV Bysin(x, )y, | Eq. 2-302

Placing M.y, = P, — P, - D,y, into the above equation, yields

mi
n+mn+m

{z mlyl—i"’z*"wsin<x,-,->»—szyf} {z P+ 3By + S8 B, sin, )y}

i=1 j=1 i=l j=1

Eq. 2-303
W= HZM Byt % % VV,B,sin(x,)y,— > Dy Eq. 2-304
i=n+1 i=n+l j=1

n+m

Placing P, = Z V.V.B, sm( Xj) into the above equation, it can be seen that
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n+m n+m n+m n+m

W=- Z Z VV.B, sin(xl,j)y,. + Z Z VV.B, sin(xij)yl. —Z:Dt.yi2 Eq. 2-305

i=n+l j=1 i=n+l j=1
W =-3 Dy Eq. 2-306
i=1
Therefore, W <0 is always true in this case.

For summary, an energy function (W) of this system, when applying structure
preserving models by neglecting transferred conductance terms, is a well-defined energy

function that will be useful for power system stability analysis in this thesis.



CHAPTER 3
METHODOLOGY PART 1

From the objectives and scopes of thesis, the following topics are the main issues
discussing in this thesis.

e The characteristics of wind power

e The characteristics of power systems incorporating wind power

e A study of effects of wind power on the small signal stability using eigenvalue
methods

e A study of effects of wind power on the small signal stability using stochastic
stability method: the mean first passage time (MFPT)

e A study of effects of wind power on the small signal stability using new stochastic
stability methods

e A study of effects of wind power on the voltage stability using new stochastic
stability methods

e A study of effects of wind power on power quality using probabilistic methods

This chapter describes the methods to study these topics.
3.1 The Characteristics of Wind Power

To study the effects of wind power on the power system requires understanding of
the characteristics of wind speed and wind power in terms of statistics and probabilistic
data. This topic will focus on the method to analyze the characteristics of the measured
wind speed and the estimated wind power (since the measured wind power is unavailable).
The wind speed data is from the monitoring station in Thailand. The wind power is
calculated using the power curve of selected wind turbine. In the last section of this topic,
the wind turbine models are developed and tested. These wind turbine models will be used
in the stochastic stability analysis.

3.1.1 Variation of wind speed and wind power

For the study on the characteristics of wind speed, the measured wind data are
separated between fast variations and slow variations. Both parts are characterized basing
on time variation, frequency distribution of data, power spectral density (PSD), and

standard distribution function test. It can be described using following figure.
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Measured data )
|
v v
Fast variationj Slow variationj‘

Time \ Hypothesis
test of standard |
Distribution - distribution /

variation /
of measured dataj N Ll /‘

Figure 3.1 The methods to study the characteristics of wind speed

The study on the characteristics of wind power has two parts. First, the slow wind
speed variation is used for wind power computation. This wind power is characterized
basing on time variation, frequency distribution of data, power spectral density (PSD), and
standard distribution function test as represented in below figure. Second, wind power is
computed from wind speed model, wind noise model, wind power (turbine) models, and
power system model which can be simulated using software PSCAD as represented in

below figure.

Slow wind speed Wind speed Constant WS
variation j models /_' ‘Weibull distribution
l Wind noise Gaussian random
Calculate models ™ Real NWS data
wind power
1 machine WT
Wind power 2 machines WT
1. Variation by time models / 1 machine aggregated
2. Data distribution Multiple machines
3. PSD
o Hypothesls_ te§t °f. Power system AC voltage source
standard distribution RS I’ SMIB with load

Figure 3.2 The processes to study the characteristics of wind power

Since we need to know how wind power impact to the power system stability and
power quality. We assume that different characteristics of wind speed cause the difference
of wind power which impact on the power system differently. Therefore, important
questions are what kind of characteristics and how they affect to the power system.

There are two main types of characteristic of wind speed to be considered, which

are, slow variation (slower than 10 minutes) and fast variation (faster than 10 minutes)



122

characteristics [42]. This thesis considers both the slow and fast variation characteristics of
wind speed and wind power especially for a long term.

The characteristics of wind power are studied which consider three main affecting
factors, namely, wind speed, wind farm modeling, and power system conditions. The wind
turbine technology is the other important factor. However, since the measurement wind
power data is not available, the simulation or modeling wind power is used instead for
every cases of study.

The wind speed can be considered to have slow and fast variations, therefore, wind
power in this case should be studied in term of slow and fast variations as well.

For slow variation of wind speed and without dynamic behaviors, the output wind

power (Py,) is calculated using following equations:

1

P, =Ecp1PAV3 where 3 <V <6 m/s Eq. 3-1
1

P =E pszV3 where 6 <V <25 m/s Eq. 3-2

For wind speed from 3 to 6 m/s, 3" order polynomial can be fitted as follows.

3 2
cp1 =0.016V -0.295V + 1.736V -2.994 Eq. 3-3

For wind speed from 6 to 25 m/s, 3™ order polynomial can be fitted as follows.

Cp2=- 0.004V3 - 0.001 V2 +0.302/ - 0.909 Eq. 3-4
where ¢, data is from specification sheet of Suzlon S64 wind turbine, p is air density
(standard air density is 1.225 kg/m’), and 4 is a swept area of wind turbine (for 50m
diameter turbine, 4 is 125 or about 1963.5 m?).

3.1.2 The probability distribution of wind power
The study of probability distribution characteristics of wind power can be influenced
by many factors, such as, wind turbine model, power system model, wind speed model and

noise model. Testing conditions are listed in Table 3.1.
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Table 3.1 Testing conditions for the study of probability distribution of wind power

Case Wind turbine | Power system Wind speed model Other conditions
model model
1 AC source Weibull distribution using | 2 values of Weibull scale
Al Ix2MVA SCIG without load inverse CDF parameter, 100x2 runs
A2 2x2MVA 1 AC source | Independent 2 wind sources | Weibull scale parameter =
SCIGs without load with Weibull distribution 10, for 10,000 runs
A3 5x10x2MVA 1 AC source | Independent 5 wind sources | Weibull scale parameter =
SCIGs without load with Weibull distribution 10, 100 runs
Ad 2x2MVA 1 AC source | The same wind source with Add Gaussian random
SCIGs without load Weibull distribution noise to WT2, 100 runs
AS 2x2MVA 1 AC source | Constant wind speed =6, 9, n?igg gi;slsﬂlzan“ggldlo 6n(; 0
SCIGs without load and 10 m/s for both WT run; ’
A6 1x50x2MVA | SMIB system | Weibull distribution using | 2 values of Weibull scale
SCIG with load inverse CDF parameter, 200x2 runs
A7 1x50x2MVA | SMIB system | Weibull distribution using g)SFnIflfg ILSIII}[}gl 1gvelr (S)%
SCIG with load inverse CDF Ui metod,

runs

3.2 The Characteristics of Power System Incorporating Wind Power

To study on the characteristics of the power system incorporating wind power, the
power system with different wind speed noise models is determined. There are two
different wind speed noise models, the random noise model and the ramp noise model. The
random noise models can be represented using different standard deviation and frequency

of noise signal. The ramp noise can be differentiated using frequency of signal.

State variables with

. . Freq.

different noise model —> 0.5Hz

Freq.
l l " 0.75Hz

PSCAD PSCAD
noise WS ramp WS Freq.
—r>
1.0Hz
v ¥
Same Stdev. Same Freq.

- . Freq.
_different Freq. different StdevJ ~  4.0Hz

Stdev =1.52

Freq = 0.5 and 2.0 Ij{J

Figure 3.3 The method to study on the characteristics of

Stdev = 0.19 and 1.86 ‘
Freq =1.0 Hz

power system incorporating wind power
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To study the characteristics of the energy of the power system, the energy function
is constructed first and then the relative energy is determined using energy function and
estimated stable equilibrium points. After that, the critical energy is computed using
relative energy and estimated unstable equilibrium points. This critical energy will be
evaluated under different wind speed conditions. During the process, rotor speed and phase

angle will be considered in form of phase portrait.

Construct Construct
State space ecy Energy function j Phase portrait
1 1 — rotor speed & f<—
phase angle
Estimate stable Determine
equilibrium points, relative energy
;1_/_' ;l——J‘__» Vary freq.
of noise WS /
Estimate unstable Determine ‘ Freq. = 0.1, 0.5, 2.0 Hz ‘
equilibrium points critical energy e
Vary stdev.

Change | . of noise WS

_Ws ) | Stdev. = 0.5, 1.0, 2.0 mls |

‘ Ws$=6,9,10,12 m/s ‘

Figure 3.4 The method to study the characteristics of the energy of the power system

Finally, the stochastic variation of the state variable is considered using basic
stochastic differential equations and its simulated solution. This process is the preliminary
study of stochastic differential equation of the power system incorporating wind power.

The small signal stability of the power system is the ability of the system to control
rotor angle and speed, and to keep normal synchronization of all generators after being
perturbed by any small disturbances. Therefore, the characteristics of power and rotor
angle will be analyzed using the methods representing in this topic. Since the continuous
and small disturbances are mainly caused by the variation of load, therefore, the relation
between power generation and load or power-load characteristics will also be analyzed.

3.2.1 Power-angle and power-load characteristics analysis

3.2.1.1 Power-angle characteristics analysis

The relationship between mechanical power output and the power angle of a
synchronous generator is an important characteristics to evaluate the performance of the
machine and the state of operation. Under normal or stable conditions, the power increase
with increasing angle. For critical condition, the power reaches its maximum value. If the

angle still increase continuously, the power become decrease and this situation is called
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unstable condition. Under steady state conditions when a single machine connect to an
infinite bus (SMIB), for salient pole synchronous generator (neglect internal resistance),

the power-angle equation is

EE E} Xpu—X
P =—LLsins+—L 2 —sin25 Eq. 3-5
X Totd 2 X Totd “™ Totq
EE,X E’
0, :Mcos5—+()(md sin” & — X, cos’ 5) Eq. 3-6
Totd Totd

For the round rotor machine (neglect resistance) with d- and g- axis total reactance

are equal (X7, = X7019), the power-angle equation becomes

E E,sino
p=—rt" " Eq. 3-7
XTotd
E E.cosé E?
Qe = g B —_ 4 Eq. 3'8

X X

Totd Totd

Where P, and Q. are active and reactive electrical power output of generator, E, is q-axis

internal voltage of generator, Ep is infinite bus voltage, J'is rotor or power angle.
X=X, + X, + X, Eq. 3-9

X

M:Xq+XT+XTL Eq. 3-10
Where Xt and Xt are d- and g- axis total reactance of the system, X4 and X, are d- and
q- axis stator reactance, Xt is transformer reactance, and Xty is transmission line reactance.
Assuming that Eg = 1.0 pu, and Zin = Rin + j X1, we get the simplified equations
B E, sino _Eqsiné'

< Xd + XT + ZLN - ZTotd

Eq. 3-11

Qe:

(E,coso-E] ) Eq. 3-12

Totd

Infinite Bus

Zin= Ry +jXixN

Figure 3.5 Schematic diagram and Phasor diagram of SMIB
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The Eqgs. 3-11, and 3-12, can be used to analyze the power-angle characteristics of
the system and we can vary voltage to see how power-angle changes with voltage.

To investigate the power-angle characteristics of the generator, two assumptions
should be considered. First is the active/reactive power-angle characteristic of single
machine power system with voltage varying and second is the active/reactive power-angle
characteristic of single machine power system with line reactance varying. Both cases use
the previous equations (Egs. 3-11, and 3-12) for modeling by using Matlab.

To analyze the power-voltage characteristics of the system, if we find o using
Eq. 3-11, we will get

S =sin"' {%} Eq. 3-13
q

From Eqs. 3-12 and 3-13, we can find Q. as a function of £y, Ztoq, and P, as follows:

E . | PZ 1
Q. =—"cos| sin”!| <=L | |- Eq. 3-14
ZTotd Eq ZTotd

Finally Egs. 3-11 — 3-14 are used to investigate the power-voltage characteristics of

the SMIB system which can be modeled using Matlab.

From the above equations, we will see that the power is related to voltage, internal
impedance, transformer and line impedance, and power angle. Voltage can be controlled by
increase or decrease reactive power. For example, in case over voltage, operator can
decrease reactive power to reduce voltage by change tab of substation transformers.

For the voltage drop or under voltage conditions, the technique to pull up voltage is
to inject reactive power by add more capacitive load into the line or to adjust power factor.
If the voltage decreases to less than the critical point, it cannot be controlled by regulating
reactive power normally and lost control finally. This unstable condition is called voltage
instability caused by large and/or small disturbances in the system.

3.2.1.2 Power-load characteristic analysis

The load and transmission lines and characteristics can be described using the
following figures and equations. For simple power circuit, the system consists of sending
end voltage (Es) of generator, line impedance (Z;y), and load impedance (Z;p). At the
terminal of load, receiving end voltage (Vz), active power (Pg) of load, and reactive power

(Og) of load, are characterized as follow.
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Figure 3.6 Circuit diagram of the power system with transmission and load impedance

ZLN:|ZLN|cos9+j|ZLN|sinH Eq. 3-15
ZLD:|ZLD|COS¢+j|ZLD|Sin¢ Eq. 3-16
= ES = ES. - N Eq. 3'17
Zv+Z, (|ZLN|COSH+|ZLD|COS¢)+](|ZLN|Sln9+|ZLD|Sln¢)
1 FE 1
I = S = I, Eq. 3-18
JFZz,, F
ES ZLD
=S Zib Eq. 3-19
Y JF Z,
z Y (z
F =1+[ﬂj +2[ﬂjcos(¢9—¢) Eq. 3-20
LN ZLN
E2
P, =V Icos¢= Zﬁ—fcos;ﬁ Eq. 3-21
F LN
Z,. E!
=V Ising =" "5 gin Eq. 3-22
QR R ¢ F ZLZN ¢ q
Find the normalized power using short circuit power, Py and Qs as follows:
2
P. =0, = ZE > Eq. 3-23

LN

Therefore, dividing Egs. 3-21 and Eq. 3-22 by Eq. 3-23, we get the normalized power as:

P, :%: Z - o
sc (LN+ZLD—|—2COS(9_¢)j
ZLD ZLN
0. :%: — sin ¢ Eq. 3-25
sc (w+w+2cos(9—¢)]
ZLD ZLN

The Eq. 3-24, and Eq. 3-25 can be used to analyze the power-load characteristic of

the system and we can expect that
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1) If Z,, > Z,, (normal or stable condition)
Load impedance is larger than line impedance. Increasing of load (or reduce Z,,))

causes active power, reactive power and current increase. Contradictory, load increase
cause voltage decrease whereas enlarge voltage drop along the power line.

2) If Z,, =Z,, (critical condition)

Load impedance is equal to line impedance. This situation causes power to reach
maximum point and be a critical operating point.

3) If Z,,, <Z,, (unstable condition or instability)

Load impedance is less than line impedance. This causes from over load or lost of
transmission line. Increasing of load decreases active and reactive power.

The load varying case assumes the relative load (or line impedance per load
impedance) vary slowly and hence, has no dynamical effects. Three conditions of relative
load (stable, critically stable, unstable) are assumed. This type of phenomena can occur
normally in the power system.

For the simplification in power system modeling, # always be neglected and
assume 90 degrees since the line has very small resistance compare to reactance. From this

assumption, the Eq. 3-24, and Eq. 3-25 become

Pu=7 ;054” Eq. 3-26
(“"+w+25in¢]
ZLD LN
On =7 ;‘w Eq. 3-27
(W+w+2sin¢}
ZLD LN

However, reality @ is not fixed at 90 degrees and can be changed when there is line
dispatching, line improvement, and fault or disturbance on the transmission line.

3.2.2 Power-angle characteristics when applying small signals

The single machine infinite bus (SMIB) system is selected for power angle
characteristic analysis, because it not complicated while representing only the relationship
between electrical power and power angle in the system.

3.2.2.1 Small signal from internal sources
For the case of small signal from internal sources, the original SMIB must be

modified by adding sources of small disturbances, for example, from governor, turbine,
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and excitation system under operating conditions. The system consists of one synchronous
machine with transformer connecting to an infinite bus through the transmission line.
When the system operating under small disturbances, the power-angle characteristics of

one generator can be examined using simple mathematical model.

.15 03 E
. |
il E

Figure 3.7 SMIB including internal sources of small signal

Assume losses of transmission line j 0.93,
x,=X,+X,+X,, =j0.3+;0.15+0.5=;0.95 Eq. 3-28
x, =X, + X, + X, =703+ ;0.15+j0.5=j0.95 Eq. 3-29

Where X7 is the transformer reactance, X7; is the transmission line reactance, X; and X, are
d- and g- axis stator reactance.
In the case of round rotor machine SMIB system, Ej is assumed constant at 1.0 p.u.,

therefore:

Pe:ESsiné‘ and Qe:EScos5_ 1 Eq. 3-30
0.95 095 095

Therefore, P, and Q, strongly depend on internal voltage of generator and power
angle. For convenience, the internal dynamic sources are not directly modeled, because
these small signals can be included in the variation of generator voltage and power angle.
Therefore, different characteristics of generator voltage and power angle will be modified
to represent different kinds of external dynamic sources.

The linear or low frequency increase of power angle is due to linear or slow
variation of turbine and governor. Variation of generator voltage in term of sinusoidal
signal is caused from interaction of the excitation system. The band-limited white noise
characteristics are caused from the stochastic nature of these small signals.

3.2.2.2 Small signal from external sources
In the case of small signals from external sources, the original SMIB must be

modified by adding sources of small disturbances, for example, from dynamic load, and/or

wind power under operating conditions. The system consists of one synchronous machine
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with transformer connecting to an infinite bus through transmission line, adding dynamic
load and wind turbine generator. When the system operating under small disturbances, the
power-angle characteristics of one generator can be examined using simulation model in

PSCAD.

EsZ5 :
246V JO.1S gy HV
A
E, 384.4km ' B o
24KV SO0V £
\f'o/
'ﬁ!ﬂ S0 j0.93 =
) j0.04 ¢ E 20
308km » 715km B
Pload )

Figure 3.8 SMIB including wind power and dynamic load

There are two cases to be considered. The first is the normal case when the system
operating under normal conditions reaches a steady state. The second is the case of wind
power being included. The load can be set as a fix resistance load for convenience. Only
small signal from wind power is considered.

3.2.3 Characteristics of the power system using simulation software

In this section, the single machine infinite bus power system is used. The power
system, including fluctuating wind power, leads to higher degrees of complexity. This
situation may affect the ac power system synchronization differently depending on
characteristics of wind power. Therefore, the power angle and rotor speed of synchronous
generator with various characteristics of wind power are investigated.

The original single machine infinite bus (SMIB) power system [52] is used for this
study but with the incorporation of wind power and with additional load as presented in
following figure. The software simulation for this study is PSCAD/EMTDC which suitable
for analyzing dynamic characteristic of the power system (www.pscad.com).

The system voltage is 500kV with load power 50% of 2220 MVA synchronous
generator. The simulation duration time is 100 seconds, which is enough for the system to
reach a steady state at about 20 seconds (without wind power). The time step of the
simulation is 50 micro seconds.

The synchronous generator model is an IEEE generic steam turbine model

supported in PSCAD (www.pscad.com). The wind power model consists of a wind source
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model and wind turbine model with pitch control. The wind source model generates mean
wind speed with noise. For wind turbine model, the 50x2 MVA squirrel cage induction
generator (SCIG) is used in this study. For noise wind speed (V,) model, seven parameters

are used to define its characteristics which are described in [46].
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BT X1 ) —

4x555 ) 5
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B2 X2 B3 X5 [¢]

o2 I X3 70.93 2 @
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wrg kv JOIS ! [

S0xo HV HV
MVA Load

Figure 3.9 Test power system including wind power and load

Table 3.2 Testing conditions for the study of characteristics of the power system
incorporating wind power

Wind turbine | Wind speed Noise conditions Load Base voltage
Case Bl | No wind power 10 m/s - 1100 MW 500 kV
Case B2 50x2MVA 10 m/s - 1100 MW 500 kV
Case B3 50x2MVA 10 m/s - 1100 MW 230 kV
Case B4 50x2MVA 10 m/s Stdev 0.19 m/s, frequency 1 rad/s | 1100 MW 500 kV
Case B5 50x2MVA 10 m/s Stdev 1.86 m/s, frequency 1 rad/s | 1100 MW 500 kV
Case B6 50x2MVA 10 m/s Stdev 1.52 m/s, frequency 0.5 rad/s | 1100 MW 500 kV
Case B7 50x2MVA 10 m/s Stdev 1.52 m/s, frequency 2 rad/s | 1100 MW 500 kV
Case B8 50x2MVA 10 m/s Ramp +1 m/s, 0.5 Hz 1100 MW 500 kV
Case B9 50x2MVA 10 m/s Ramp +1 m/s, 0.75 Hz 1100 MW 500 kV
Case B10 50x2MVA 10 m/s Ramp £1 m/s, 1.0 Hz 1100 MW 500 kV
Case B11 50x2MVA 10 m/s Ramp £1 m/s, 4.0 Hz 1100 MW 500 kV

For wind turbine model, the wind speed (¥, m/s), mechanical speed of generator
(o, rad/s), and pitch angle (f, °) are input while mechanical torque (7,) and power of
turbine (P) are the output. The wind turbine has torque-w characteristics (or equation of
power coefficient) vary with ¥, using standard model of wind turbine.

For synchronization system stability, important parameters to be studied are rotor
speed and power angle (use power angle, o, instead of actual rotor angle). The sources of
small signal are from the different characteristics of wind speed. The 11 testing conditions

with different characteristics of wind speed are represented in Table 3.2.
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3.2.4 Characteristics of energy and critical energy of the power system

To study the characteristics of energy and the critical energy of the power system,
the system dynamic equations are determined first. The steady state values of state
variables can be computed from the solution of algebraic equations or using power system
simulation software. The energy function can be formulated using the first integral method
and applying steady state variables to compute the energy value. Finally, the critical
energy can be approximated using the method of M. Ribbens-Pavella and B. Lemal (1976).

3.2.4.1 The power test system and conditions

The power test system in this paper is designed to clearly represent the effects of
wind power on a nearby synchronous generator and load bus, which are connected to the
infinite bus through long transmission lines. The per unit base power is 100 MVA. From
the one line diagram below figure, there are aggregated synchronous generators (G2) and
aggregated DFIG wind turbines (G3), connecting on bus B2 and B3, respectively. Bus Bl
is an infinite bus and B4 is a load bus. The system is assumed lossless which the line
resistance can be neglected. X4 is a line reactance (tie line) connecting between bus Bl
and B4. X4 and X34 are line reactances including transformer’s reactance. The electric load
is a dynamic load which has ¢ at about 0.05 [13]. The other values of system parameters

and constants are list in Table 3.3.

Table 3.3 System Parameters and Constants

M=17.0sec @y=3142rad/sec | Ln=3.95279 p.u.

L,=0.09955 pu. | Ly=0.09241 p.u. To=2.343 p.u. S omo, 81\\
X=40pu. X'=0.1pu. X:=05pu. @—'—@D—‘ N
ka=0.8868 ky=7.372 k, = 0.274P,, + 0.346 DFIGWT 53 xas alad §

ly=1.0 kop=056 | ¢, =-0.022 P,, +0.006 %@—'—@D—{ N
|E'|=Vy=1.05pu. | ko =0.97396 ke = 1.90308 %77 smn;,\or
Vo=1.0 (p.u.) Vo= 1.0 (p.u.) k= 1.017 " infinite bus
XI4=075pu. | X24=02pu. X34=02pu.

3.3 A study of effects of Wind Power on Small Signal Stability using Eigenvalue
Method

The eigenvalue method is the conventional and well-known method for the small

signal stability analysis in the power industry.
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3.3.1 Eigenvalues of single machine power system

In this section, wind power is modeled using a squirrel cage induction generator
(SCIG) and doubly-fed induction generator (DFIG). The swing equation and voltage
behind transient reactance are focused regarding the synchronization stability problem. The
difference between synchronous generator and induction generator is the slip (s,,) which is
the difference between angular speed of rotor and electrical field at stator of induction
generator. Moreover, in the swing equations, damping coefficient (D) is diminished in the
case of SCIG, but occurs in the case of DFIG. The state space equations for induction
generator from are rewritten here:

3.3.1.1 Wind turbine with squirrel cage induction generator (SCIG)

To analyze the small signal stability of an induction generator wind turbine, the

state space equation will be represented in a new form as follows.

If we represent system equations in the form of a matrix:

X =AX +BU
We will get:
Ax, -K, o, Ax,, 0 —
= + AP Eq. 3-31
Ayw _KS /M _KD /M Ayw l/M

e

Where K| :% is synchronizing power coefficient, and K, = is damping power
X

coefficient of induction generator.

P - & == oP
K.=—%=V VB cos(x!—-x)and K,=—%=0 Eqg. 3-32
N axw wj_;jiw Jj o wi ( W _/) D ay q
K, =k, k,cos(k,x; +c,) Eq. 3-33

magnitude of damping power coefficient (Kp) and synchronizing power coefficient (Ks).
Eqgs. 3-32 and 3-33 can be represented using block diagram as in the following

figure.

y 1 | A 1] Ax

]

)

Figure 3.10 Block diagram representing state space equation of the SCIG wind turbine
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Even though, induction generator has no damper circuit, its oscillation is less than

synchronous generator and can improve oscillation stability of the power system when

replace synchronous generator [45]. From the above figure, the flux decay effect (term with

cosine function causing from varying of E’) and K causing the negative feedback control

of xy can finally improve small signal stability of the system. This conclusion can be

examined by the following simulation.

IGWT  v2 Vj\:
o) N
| X, |\

S

Infinite

Figure 3.11 Single machine infinite bus power system

The induction machine parameters for computation are as follows [45]:

Given:
M=17.0sec ay=314.2 rad/sec Ly, =3.95279 p.u. L.,=0.09955 p.u.
X=40p.u X'=0.2p.u. To=12.343 |E’| =V4=1.05p.u.
kq=0.8868 ky=7.372 k,=0.61 ca=-0.05
K, = —_{'lVl_ cos(va)
(X'+X,)

K, =4.4977,, cos(0.61x;,~0.05)

bus

Ly=0.09241 p.u.

7. =0.95

Xr=0.75p.u.
Eq. 3-34
Eq. 3-35

Table 3.4 The computation conditions of induction machine (SCIG) parameters

Vs (pu.) 1.00 0.50 1.00 1.00 1.00
Vo (p-u) 1.0 1.0 0.5 1.0 1.0
\X7| (p-u.) 0.1 0.1 0.1 0.4 0.1
x! (rad) 0.3 0.3 0.3 0.3 0.6
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3.3.1.2 Wind turbine with doubly-fed induction generator (DFIG)
To analyze the small signal stability of the induction generator wind turbine, the
state space equation will be represented in a new form as follows.
If we represent system equations in the form of a matrix:

X =AX+BU Eq. 3-36

Axw KE] KEZ A‘xw 0 D
ol n AP Eq. 3-37
Ay w _KS / M _KD / M Ay w 1/ M

Eq. 3-37 can be represented using a block diagram as in the following figure.

We will get

1 Axw
S
K, =

Figure 3.12 Block diagram representing state space equation of the DFIG wind turbine

Even though the induction generator has no damper circuit, its oscillation is less
than that of the synchronous generator and can improve oscillation stability of the power
system when replacing the synchronous generator [45]. From above figure, the flux decay
effect (term with cosine function causing from varying of E’) and K causing the negative
feedback control of x,, can finally improve small signal stability of the system. This

conclusion can be examined by the following simulation.

IGWT  v2 Vl\;
e —I N
| Xr |

Infinite bus

Figure 3.13 Single machine infinite bus power system for DFIG WT

The induction machine parameters for computation are as follows [45]:
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Given:
M=17.0sec @y =3142rad/sec Ly, =3.95279 p.u. L,=0.09955 p.u. L;=0.09241 p.u.
X=40p.u X =02pu. Ty=2.343 p.u. |E’| =V, =1.05pu. 7.=0.95
ka=0.8868 ky=7.372 ka=0.61 ¢a=-0.05 Xr=0.75p.u.
ferg = 0.0056 kop = 0.56 ker = 0.97396 ke = 1.90308
K, =-323.45863y.7,,sin(0.61x] —0.05) - 4.496927,, cos (0.6 1x;, —0.05)
_ (1+)
K, =42.82303+530.26, cos(0.61x;, —0.05)+1 74767
7 77 7y Eq. 3-38
K, =-—="% cos(va)+ s cos(va)yfvz L cos(xi,)(1+y;)
(X, +X,) (X, +X,) (02+X,)
Ky =2 gin(x)
(02+X;)

Table 3.5 The computational conditions of induction machine (DFIG) parameters

| Variables | Basecase | Reducel, | IncreaseVy | Increase Xy | Increasew, | Increaseyy |

V. (p.u.) 1.00 0.50 1.00 1.00 1.00 1.00
Vo (pou.) 1.0 1.0 0.5 1.0 1.0 1.0
Xl (pou.) 0.3 0.3 0.3 0.6 0.3 0.3
X (rad) 0.3 0.3 0.3 0.3 0.6 0.3
¥ (pu) 0.15 0.15 0.15 0.15 0.15 0.2

3.3.2 Eigenvalues of multi-machine power system including wind power

In this section, wind power is modeled using a doubly fed induction generator
(DFIG), on which the swing equation and voltage behind transient reactance are focused,
regarding the synchronization stability problem. The difference between the synchronous
generator and the induction generator is the slip (s,) which is the difference between
angular speed of rotor and electrical field at stator of induction generator. Moreover, in the
swing equations, damping coefficient (D) is diminished in case of SCIG but occur in case
of DFIG.

Even though an induction generator has no damper circuit, its oscillation is less
than that of the synchronous generator and can improve the oscillation stability of the

power system when replace synchronous generator [45]. From above figure, the flux decay



137

effect (term with cosine function causing from varying of E’) and K causing the negative
feedback control of x,, can finally improve small signal stability of the system. This
conclusion can be examined by the following simulation.

The induction machine parameters for computation are as follows [45]:

Given:
M, =M;=17.0sec wo = 314.2 rad/sec L, =3.95279 p.u.
L:=0.09955 p.u. L;=10.09241 p.u. Ty=2.343 p.u.
X=40p.u. X' =02p.u Xr=0.75p.u.
kq=0.8868 ky=17.372 k,=0.61
ky=1 kop = 0.56 c,=-0.05
|E’| =V,=1.05 p.u. k.1 =0.97396 koo =1.90308
Vs=1.0 (p.u.) Vo=1.0 (p.u.) kn=0.98
If we represent the above equations in the form of a matrix:
X =AX+BU Eq. 3-39
We will get:
A% ] [0 0 0 0 o, [[Ax, ] [ 0 ]
A)E:w O KEwl KEW2 KEW3 0 Axw O
Ax, |=| —Kg, —Kg, —Kg 0 Ax, |+| -AF, / S Eq. 3-40
Ay w _KSwi _KSWW _Kka _KDw Ay w Apmw / M
LAY | | Ky Ky, K 0 -Kp Ay, | | _ml/M i
Al [0 0 0 0 o, [A,] [ 0 ]
Ax 3 0 KEwl KEW2 KEw3 A)‘/‘3 O
Ax, |=| Ky —Kgyy Ky 0 Ax, |+ _AB4/Ck Eq. 3-41
Ay, 0 Ky Ky —Kp 0 Ay, AP, /M3
_Ayz_ __Kszz 0 —K,, 0 _KDZ_ _Ayz_ _Asz/Mz_

The eigenvalue analysis of induction generator models of wind turbine.
From Eq. 3-41, rearranging by using the following form and taking a Laplace
transformation yields:

X(s)=(sI - A)"'BU(s) Eq. 3-42
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Ax, (S) s 0 0 0 -, 0
Ax, (s) 0 s-K,, -K,, -K.; 0 0
Ax4(s) =Ky, K s+Kg, 0 0 —Af_§4(s)/ck Eq. 3-43
Ays (s) Ken Ky Kgy  s+Kp 0 AP, (S)/M
Ay, (S)_ | Ksnn Ky Ko 0 S+Kp | | P, (S)/M_
(T-A)'=— L (s1-A) Eq. 3-44
det(sI - A)

The solutions of det(sI-A) = 0 are the eigenvalues of this state space equation, therefore:

det(sI-A)=s(s—K,, )(s+Kgu)(s+Kp; ) (s+K,, )0y (5+ Kgpy ) KKK s =0

Eq. 3-45

Table 3.6 Testing conditions for the study of the effects of wind power on multi-machine

power test systems

Load (p.u.) 4 4 4 4 4 4
P of Gs (p.u.) 1 1 1 0.4 0.6 0.8
Py of Gy (p.u.) 3 4 2 3.6 3.4 3.2
Pexchanged (Pma) 0 -1 1 0 0 0

3.4 A Study of Effects of Wind Power on Small Signal Stability using Stochastic
Stability Method: The Mean First Passage Time (MFPT)

The mean first passage time (MFPT) is used as an index to evaluate the stability of
the power system when perturbed by any small signal. This section applies the method of
C.O. Nwankpa [9] to formulate the stochastic differential equations (SDE) and compute the
MFPT of the power system incorporating stochastic wind power. The MFPT of stochastic
power system is studied by varying noise intensities and wind speed. The measurement
wind speed data in Thailand is used as an example for implementation.

The MFPT is a solution of following problem:
eCW (W) +[eC,~CW |2y (W) = —1} Eq. 346
7,(W.)=0, 7,(0)<o0

Therefore, the solution is:
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T() (0) z CZ/CI |:J‘ CZ/CI 1 ! sz/ﬂcl )dt:|€(C§WC/€IC1*) Eq 3_47

0

We . . . . .
T(O) ~ 1 : (WC )—CZ/CI J‘ t(cz/Cl )—1 'e_(CSZ/g/CI >dl e(cch/gzq ) Eq. 3-48
BC; 0

Where critical energy (W) computational technique is presented in the previous Progress

Report I1 and coefficients C; , Cy, and C; are stated in Appendix A.

From Sections 2.4.1 —2.4.2 and Appendix A, MFPT can be calculated the using next
process:

(S1) Stable equilibrium points and critical energy are computed as represented in

previous topics.

(S2) Matrix H can be constructed using Eqgs. A-3 to A-6 in Appendix A.

(S3) Find eigenvalues and eigenvectors of matrix H. After matrix H is constructed

explicitly, software Matlab can be used to find eigenvalues and eigenvectors.

(S4) Construct set of matrix D and matrix F using Eqgs. A-29 to A-33 in Appendix A.

These matrixes will be used in the formulation of MFPT.

(S5) Compute C coefficient using Egs. A-25 to A-28 in Appendix A.

(S6) Compute MFPT using Eq. 3-48. Each step from (S1) — (S5) is done completely.

(S7) Change conditions of wind power, such as wind speed and noise intensity and

repeat (S1) — (S6) again to see the variation of MFPT.

The MFPT with different wind speeds (or wind power) and noise intensity is
determined and explained in the next chapter. The case study of Thailand is examined for
MFPT implementation. The testing conditions are

e Wind speed 4, 6, 8, 10, and 12 m/s

e Noise intensity varies between 0.0 — 4.0

e Wind speed data is from the 90m-height monitoring station locating in
Chumporn province of Thailand, during October 2011 and May 2012.

e The wind power in this case is calculated using VESTAS V90 2000kW

specification
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3.5 A Study of Effects of Wind Power on Small Signal Stability using New Stochastic
Stability Method

Objectives and scopes

To develop new methods for the study of effects of stochastic wind power on power
system stability using less computational effort.

To study the effects of different wind power characteristics, wind turbine type and
the exchanged power on the small signal stability of the power system using a new

method.

Methods

The new method is developed based on the theory of stochastic stability. The

following list are the processes to formulate stochastic stability index as a new alternative

method.

Formulate the stochastic differential equations of the power system incorporating
wind power using power system dynamic equations from Sections 3.1 — 3.3.

Find steady state values of state variables at different conditions, such as different
wind power and its noise intensity, different exchange power. It can be done by
using simulation software or by solving the power flow problem using Newton-
Raphson’s method.

Formulate stochastic well-defined energy function as described in Sections 3.3 and
3.5

Compute critical energy using method of Ribbens as described in Section 3.5.

Find the derivative of mean of stochastic well-defined energy function and
formulate a new stability index and compute.

Evaluate the results of new stability index under different testing conditions

Expected results

Steady state values of state variables at different conditions, such as different wind
power and its noise intensity, different exchange power.

Critical energy and the derivative stochastic well-defined energy of the power
system with different conditions

The new stability index with different testing conditions and the evaluation results
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Improve induction gen.
wind turbine model

'

Determine state space eqj

!

Determine energy function/

|

Develop Stochastic Stability
Index (SSI) for wind power

'

Apply SSI on power test systeny

Figure 3.14 Process to study effects of wind power using SS/

Testing conditions

The power test system (details are in Section 4.2.2)

e Two machines infinite bus power system (TMIB)
The wind turbine types (details are in Section 4.1)

e Squirrel cage induction generator (SCIG)

e Doubly-fed induction generator (DFIG)
The noise model conditions (details are in Section 4.3)

e White noise wind power (normal distribution with infinite bandwidth)

e (Colored noise wind power (normal distribution with limited bandwidth)
The power flow conditions

¢ Different wind power without exchange power to/from infinite bus

e Different exchanged power of infinite bus

In Figure 3.15, G2 is generation bus with synchronous generator (SG), G3 is wind

power bus with DFIG or SCIG. X24 is reactance of lines B2-B4 including transformer,
X34 is reactance of lines B3-B4 including transformer. Load bus is constant active power

load. For bus 1, x; is a reference angle of infinite bus generator and y; is reference speed

deviation (&, — @, ~0) which is close to zero. The details of the test system is in Section

4.2.2.
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Table 3.7 System Parameters and Constants for TMIB

M=17.0sec @y=3142rad/sec | Lm=3.95279 p.u.
L;=0.09955p.u. | L;=0.09241 p.u. Ty=2.343 p.u.
X=40p.u. X' =0.1p.u Xt=0.5p.u.
kq=10.8868 ky="7.372 k.= 0.274P,, + 0.346
ky=1.0 kop =0.56 ¢, =-0.022 P, +0.006
|E’| =V4=1.05 p.u. ke =0.97396 ke =1.90308
Vs=1.0 (p.u.) Vo=1.0 (p.u.) kn=1.017
X14=0.5p.u. X24=0.2p.u. X34=0.2p.u.
G B4 B1
B2 x24 N
(o —-QD— \
X14 ‘c\\
B3 X34 N
\\\\
o~
AN
Swing or
infinite bus

Load

Figure 3.15 The two machine infinite bus power system (TMIB)

Table 3.8 Power flow and noise conditions for SSS analysis of TMIB

Load (p.u.) 4 4 4 4 4 4
P of Gs (p.u.) 1 1 1 0.4 0.6 0.8
P of G, (p.u.) 3 4 2 3.6 34 3.2
Exchange (Pp,) 0 -1 1 0 0 0
Noise %}ensity, 00—1.0
Bandwidth, BW 0-20

3.6 A Study of Effects of Wind Power on Voltage Stability using New Stochastic
Stability Method

Objectives and scopes

e To develop new methods to study the effects of stochastic wind power on power
system voltage stability.
e To study the effects of different noise intensity of wind power, wind turbine type,

and conditions of exchange power on the voltage stability of the power system.
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Methods

Formulate power system dynamic equations and stochastic differential equations,
incorporating DFIG wind turbines, and with dynamic voltage equation at load bus.
Find steady state values of state variables at different conditions such as different
wind power and its noise intensity, different exchange power.

Formulate stochastic well-defined energy function using DFIG WT, colored noise
model, and with dynamic voltage at load bus.

Compute critical energy using method of Ribbens.

Formulate new voltage stability index and compute using the derivative stochastic
well-defined energy function and the critical energy.

Evaluate the results of new voltage stability index under different testing

conditions.

Expected results

Steady state values of state variables at different conditions such as different wind
power and its noise intensity, different exchange power.

Critical energy and the derivative stochastic well-defined energy of the power
system with different conditions.

The voltage stability index with different testing conditions and the evaluation

results.

Testing conditions

The power test system

Two machines infinite bus power system

The wind turbine types

Doubly-fed induction generator (DFIG)

The noise model conditions

Colored noise wind power

The power flow conditions

Different wind power without exchange power to/from infinite bus

Different exchanged power of infinite bus

Therefore, the power test system and parameters are the same as in Section 3.5.
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Table 3.9 Power flow and noise conditions for VS analysis of TMIB

Load (p.u.) 4 4 4 4 4 4
P of G; (pu) 1 1 1 0.4 0.6 0.8
Pop of G; (pu) 3 3.5 2.5 3.6 34 32
Exchange (Pug) 0 -0.5 0.5 0 0 0
Noise %;ensily, 00—1.0
Bandwidth, BW 0-20

3.7 A Study of Effects of Wind Power on Voltage Variations using Probabilistic
Method

Objectives and scopes

e To study the relation between the random wind power and voltage of the power
system

e To study the effects of different noise intensity of wind power on voltage and
frequency of the power system

e To study the effects of type of wind turbine on voltage of the power system

Methods

e Formulate wind power dynamics models using DFIG

e Apply MCS for the study using PSCAD and Matlab

¢ Run the simulation for 1000 rounds comparing between DFIG and with the
different noise intensity of wind power

Expected results

e The probability distribution of wind power with different noise intensity of DFIG
e The probability distribution of voltage at load bus under different conditions
The effects of wind power on the power quality, especially voltage, will be
determined using the probabilistic method called Monte Carlo Simulation (MCS). There
are two main topics which will be studied: (1) the effects of wind power with stochastic
noise on load voltage, and (2) the effects of various noises on load voltage. The testing

conditions for these two topics are stated in the following tables.
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Table 3.10 Testing conditions for a study of effects of wind power on load voltage

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
PrLoad 4 4 4 4 4 4
P 1.0 1.0 1.0 0.4 0.6 0.8
P 3.0 3.5 2.5 3.6 3.4 32
Pexchange (Pmc) 0.0 -0.5 0.5 0.0 0.0 0.0

Table 3.11 Testing conditions for a study of effects of various noises on load voltage

Variable Case T1 | Case T2 | Case T3 | Case T4 | Case TS All 1 All 2
Proad 4 4 4 4 4 4 4
Prw 1.0 1.0 1.0 1.0 1.0 1.0 1.0

P 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Pexchange 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OLoad 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NLBW Py, | 0.1,10 - - 0.1,0.1 - 0.1,10 0.1,10
NLBW Py - 0.025,0.1 - - - 0.025,0.1 0.025,0.1
NLBW Ol oad - - 0.1,0.1 - - 0.1,0.1 0.1,0.1
Weibull WS - - - - yes yes -




CHAPTER 4
METHODOLOGY PART 2

The methodologies in part 2 are the techniques used for the studies in Chapter 3
(Methodology Part 1). These methods are adapted from the studies in the past except the
stochastic stability index which is a new developed method. The following topics are the
main issues described in this chapter.

e Power system modeling

e Power system simulation

¢ Noise modeling and stochastic differential equations formulation
e Energy function formulation

e (Critical energy estimation

e Figenvalue determination

e Mean first passage time (MFPT) determination

e Stochastic stability index (SSI) determination

4.1 Power System Modeling

For the study of power system stability, it is reasonable to neglect dynamics
occurring at stator while focus only on rotor dynamics. The swing equation is focused
regarding the synchronization stability problem (for example, small disturbance around
equilibrium operating point).

4.1.1 Wind power modeling using SCIG wind turbine

In this section, wind power is modeled using squirrel cage induction generator
(SCIG), on which the swing equation is focused regarding the synchronization stability
problem. The voltage behind transient reactance is also included. The different between
synchronous generator and induction generator is the slip (s,) which is the different
between angular speed of rotor and electrical field at stator of induction generator.
Moreover, in the swing equations, damping coefficient (D) is diminished for SCIG.

4.1.1.1 Relationship between rotor angle (0 ) and phase angle (&)
For three phase electrical system (abc), terminal phase voltage (v,, v, V¢) can be

represented as follows:
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v, =V, cos(w,+0)
v, =V, cos(wit—27/3+0) Eq. 4-1
v, =V, cos(wt+27/3+6)

For rotating reference frame, dg transformation of phase voltage is:

v, =V cos(ot+60—-a

oo (@ ) Eq. 4-2
v, =V, sin(of+0-a)

Where V;, is maximum phase voltage, #is angle of terminal voltage phasor which leads

angle of reference bus voltage, «ais angle which d-axis leads axis of phase a

anda = ot + 6, (where 6, is initial angle and assumes zero).

For synchronizing reference frame, d-axis is assumed in phase with phase a.
Therefore, terminal phase voltage on dg axis of synchronizing reference frame is
v, =v, =V, cos(wt+ 9)} Eq. 4-3

v, =V, sin(a)st + 9)

For a synchronous machine, ¢ is the rotor angle or power angle, which is the same
with the angle of voltage behind the transient reactance. But for an induction machine, o is
determined as the angle of voltage behind transient reactance for synchronizing reference
frame and is not the rotor angle. The difference between the angle of terminal voltage and
angle of voltage behind the transient reactance is called internal phase angle (6') as
follows:

6=6"+6 Eq. 4-4
$=6-6, Eq. 4-5
Where 6, is angle of terminal current and @is power factor angle which is the difference

between fand 6, .

4.1.1.2 Electromagnetic torque under steady state conditions
The dynamical electromagnetic torque (7;) in per unit is stated by Olimpo Anaya-

Lara, et al. (2009):

S Al Eq. 4-6

Where E’and E; are voltage behind transient reactance in d and ¢ axis, respectively.

i, and i  are stator current in d and g axis, respectively.
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However, if the magnetic field of rotor rotates at synchronous speed in which g-axis
in-phase with voltage behind transient reactance, only q components of voltage behind
transient reactance is occurred. Eq. 4-6 becomes [6]:

T, ~E] Eq. 4-7
Where @, is assumed to be one.

Under steady state conditions, the electromagnetic torque (7)) of SCIG can be

expressed as follows [45]:

P
T =3£_%> Eq. 4-8
£ 2s.0 a

I - V. Eq. 49

Where (;{‘,+%7j+j(Xg+XF)

If we assume 7, X, X, are very much less than 7. /s, , [73], hence:

AN A
r
n/s, T,

Eq. 4-10

When replacing /; in Eq. 4-10 into Eq. 4-8, the relationship between power output and slip

of SCIG can be approximated as follows:

2 2
T3Pt [Vs ) 3Pl Eq. 4-11
¢ 2 S, Wy, . 2 ra,
For per unit base
_ T P 2 2
T =P = g ___8 z3£ I/ssw :3£V\‘SW Eq'4_12
¢ ¢ Sbase/ a)sw Sbase 2 rerase 2’ 7}’

Where S, ,1s apparent base power and the slip (s,,) can be represented by
2 o, o, 10)

N s

Where p is number of pole,®, is revolution speed of rotor in mechanical radians per
second, @, is angular speed of rotor in electrical radians per second and @, is angular

speed of electrical field at stator in electrical radians per second.
4.1.1.3 Swing equation of induction generator
For swing equation (or rotor mechanic equation) of induction generator, Newton’s

second law is applied to the rotating machine as follows.
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From Y F, =ma , F is force which is torque (7) over distance () from the center of

rotating in Newton (N), m is mass in kilogram (kg), and a is acceleration (m/s%). The

relationship becomes:
T
ZE=&+{——gJ=ma=l(T —T) Eq. 4-14
r

Where T1, is mechanical torque and 7, 1s electromagnetic torque.

We know thata =r(da,/dr), replacing in the above equation yields

4o, jdo_p g Eq. 4-15
de de ¢

mr
Where J is moment of inertia (kg.m).

Eq. 4-15 is the rotor dynamic equation which can be explained as the relationship
between torque balance and deviation of frequency (angular speed of rotor). To express it

in per unit base, the inertia constant H (seconds) is proposed and rearranged.

2
=2 or j = 2B Eq. 4-16
28 @’
base s

Placing Eq. 4-16 into Eq. 4-15, we will get

2HS,,, |do,
—we | =T —T Eq. 4-17
( o J e " # q

s

Rearrange Eq. 4-17, yields

) T -T _
L da)r — da)r — 1 mn 8 or da)r = @y (Tm -T ) Eq 4-18
o, d¢ dt 2H\S,,/ o, dt 2H ¢
In per unit system T = r__ T T, P P Eq. 4-19
T;wse Sbase/ a)base S base Sbase

Therefore, in per unit system, torque is equal to power.

From Eq. 4-18, we have found that [45]:

d | o d 1 (= =
— | = =g =——(P -P Eq. 4-20
dt[a)sj ar 2H( " g) 1

If assumes @, is constant or change very small, replace Eq. 4-20 into 2-27, we have

found that
Eq. 4-21

Where M =2H.
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4.1.1.4 Voltage behind transient reactance of induction generator
When neglecting rotor circuit, equivalent circuit is based solely on stator voltage
behind the transient reactance (£°) of induction generator can be represented by following

diagram.

Y-axis

14 NP

d-axis

Figure 4.1 Single-line (left) and phasor (right) diagrams of induction generator

In the above figure, for system reference axis or XY-axis, it can be represented

using following relationship.

E = E;qej[&_;[j =FE'e? Eq. 4-22
V, = \_que'j(g_’;] =(V,- jv,)e" =ve” Eq. 4-23
I = que,-[@ =(I,-jI,)e"” =T Eq. 4-24

From above figure, neglecting stator resistance, for d-q reference axis (machine

reference), the Kirchhoff’s law can be applied and yield
E;lq = ‘_]dq + jX’qu Or E:cy = ‘_]xy + ij’Txy Eq. 4'25

If we give E, =E} + jE! , V, =V, +jV, and T, =1, + jI,, Eq. 4-25 becomes

E, +jE! :(\_/d +jV, )+)_('(—Tq + 51, ) Eq. 4-26
E, =V,-XT Eq. 4-27
E =V +XT, Eq. 4-28

Since g-axis is in-phase with E', E; is assumed zero, therefore, from Eq. 4-27, \_/d =X Tq )
Given V, = Vsin(&")and V, = Vcos(8"), 6'=5—0, replace into Eq. 4-27 and 4-28, yield

E! =E'=Vcos(&')+ XT, Eq. 4-29
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Vsin(8')=XT, Eq. 4-30
If we giveE| =E' +/E/ , V_ =V +,V and I =1 + JI,, Eq. 4-25 becomes
E;+jE;=(\_/X+j\7y )+)_(’(jTX—Ty ) Eq. 4-31
If the stator resistance is very small and can be neglected, for induction motor in x-
y reference axis (system reference), the deviation of voltage behind transient reactance (£)
can be represented as follows [23]:
dE|, 1

A )
0

Where 7j is the per unit transient open circuit time constant of induction machine
(seconds), X is the per unit open circuit reactance, X° is the per unit transient short circuit
reactance.

For the induction generator, only the sign of the current term of the above equation

is changed to be [6]:
dE’ 1 r— — - _
Xy — ! . _ ’ _ 7 ’ _
=7 [E, +j(X-X)L, |- js,0E, Eq. 4-33

However, to represent Eq. 4-33 in the form of magnitude and angle of

E’ separately, placing Eqs. 4-22 to 4-24 into Eq. 4-33, yields
sAB = 5dS L= s = Tar T s =
e’ —+ jE'e’ —=——|Ee”’ + j(X-X')(I —jI,)e”’ |- js wFE'e” Eq.4-34
dt ] dt T(,)|: ]( )(q .]d) :| ]ws q

Divide above equation by ¢/,

dE’ —,d6  lr= ;= =n/~ =~ —
—+ B —=——|E'+(X-X")(I,+jI )|- js, @FE' Eq. 4-35
o HE, To|: ( )T, +J1,) |- s, q
Separate real and imaginary parts, becomes
dE’ Ir=, ;= =n-
— =——|E'+(X-X' Eq. 4-36
X-X')1
E = —Q—SWCUS Eq 4-37
dt T,E'
where
- L L+L
Oz_rr: V_ mn Eq.4-38
7, F

X=oL,=0,L+L,) Eq. 4-39
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e (- I
Xr:a_)S(Lm— %J Eq. 4-40

4.1.1.5 Relationship between internal phase angle of voltage behind
transient reactance and phase angle of terminal voltage
In the SMIB model, replacing synchronous generator by induction generator, the
simulation result using PSCAD can reveal the relationship between internal phase angle of

voltage behind transient reactance and phase angle of terminal voltage as follows.

Reference Bus

B2 TR B3 154.?_ krm] B1
. | A=0.15 pu TLined| -
A
elr A H | g
i = s TLines L
1843 [km] Infinite hus gen.
0.2 pu e A00 kW A0Hz 0.0 rad

Figure 4.2 Single-line diagram of power test system in PSCAD

Where Xt is transformer reactance and Xy is line reactance, wind speed is 8, 9, 10 m/s.

Assuming thatd’ =k, +c,, from the above figure we found that &> 0. For the

linear relationship between internal phase angle (IntA, ¢') and angle of internal voltage
(AolV, ¢) during the time 0.3 — 10.0 seconds, &, is about 0.624 and c, is -0.048.

From the result of simulation, 4, (positive) and c, (negative) have small increases
with increasing wind speed. This is due to an increasing wind power resulting in rotor
speed deviation acceleration and finally causes an angle of voltage behind transient
reactance (9 ) to increase. The relationship between deviation of 6’, & and Gare as follows

0=0'+0,0'=ko+c, Eq. 4-41
the above equation becomes

S =k, and 6=05"+0 Eq. 4-42
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Table 4.1 The slope (k) and offset (c,) of the linear relationship between internal phase
angle of voltage behind transient reactance and phase angle of terminal voltage during the

time 0.3 — 2.0 seconds.

0.6 oo oo oo e
Wind speed ka Ca 0 b
|
8 m/s 0_613 -0‘053 02 I"————----—————————----—————————--
/”
9 m/s 0.614 | -0.051 0 ¥z
02 J} ,,,,, S e PHASIL
10 m/s 0.622 | -0.049 Lo o
04 —f'—f‘— ——————————————————————————————————————————————— INtA:T -----
A AolV:1
R et T e
0 5 10 15 20 25 30 35 40 a5 50
Time (seconds)
06 PHAS Relationship between internal phase angle and
0.4 - = R angle of internal voltage during 0.3 -10.0 sec
% 02 i IntA ~ 01
'-';“ Y S ..\ ~~~~~~~~~ AolV g 0 —— V=0.§324x -0.048
B0 et 3 01 R?=0.999
% V"N e T TS == g -02
g -02 § 03
--------------------------- = -
-0.4 . £ 04
® -05
06 5 0.6 0.4 0.2 0 0.2
0 02 04 06 08 1 12 14 16 18 2 € ’ ’ ’ ’
time (seconds) angle of internal voltage (rad.)

Figure 4.3 The relationship between internal phase angle (IntA, ¢") and angle of internal

voltage (AolV, ¢) and phase angle of terminal voltage (PHA, 6,)

4.1.2 Wind power modeling using DFIG wind turbine
This report focuses on the variable speed wind turbine using DFIG which has the
largest share in the market. The DFIG third-order model is represented for a study on the
small signal stability analysis.
4.1.2.1 Steady state characteristics
If we neglect iron losses (from stator and rotor) and air gap loss, the power balance

of DFIG can be represented using the following equation
+P Eq. 4-43

ol

]3”1:136: K

Where P, is mechanical input power, Py, is power generation to the grid, P; is electrical

power on stator and P; is electrical power on rotor (per unit).
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Equation of motion:
The equation of motion (relationship between torque balance and the deviation of
frequency) of DFIG is similar to the general induction generator (IG), except for the power

on rotor (P;). This equation becomes [45]:

dfo) dp 4 Lip 5
dt\ @, ) dt dt M ‘

Where o, and ws are angular speed of rotor and of electrical field at stator (electrical

)zﬁ(f;n _F,) Eq. 4-44

vl

radians per second). P, is mechanical input power and P is electrical power on stator (per
unit). M = 2H is inertia constant of generator (second). sy, is slip ((®; — ®s) / ®s). The over
bar represents per unit value and p is the derivative over time operator.

The P; can be represented in the following equations:

PP _p-_n Eq. 4-45
P=~P.—P = G q
s G r (1_SW)
BT, 7, +I,7, ~sB [45] Eq.4-46
P.~P,=E,YV B,sin(5,-0,) Eq. 4-47
Jj=1

Where P, is electrical power generation of machine, P; is electrical power on rotor, ¢ is an
angle of voltage behind transient reactance (E’), € is angle of voltage (V)) at reference
point, 0’ 1s an angle between E’ and V, Xr is line reactance, B, is susceptance between

internal bus w and network bus j. The other variables are described below.

IGWT  v2 Vj\1
&t )— N
| XN
S

Infinite bus

Figure 4.4 Single machine infinite bus power system for wind power modeling

For synchronous generators, the damping power decreases with increasing line
reactance [44]. For SCIG, the damping power due to the current flow in the rotor circuit
(i*r) is very small. For DFIG, however, its damping power may larger than that of SCIG
due to the rotor voltage (V;) which is in-phase with E’. Therefore, Eq. 4-47 is used to relate
the effect of line reactance on the damping power and is replaced into Eq. 4-46, yields

M, py,=(P,, -P,) Eq. 4-48

ew

Where yy, = -5y, is state variable which represent speed deviation.
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4.1.2.2 Equation of voltage behind transient reactance
The deviation of voltage behind transient reactance, E’, of DFIG in x-y reference
axis (system reference) can be represented as follows [45]:
dE;c 1 I A I\ 7T . Nl . bed
= - _E[EW +j(X =X, |- js,0E, +jo, 2V, Eq. 4-49

~

I~

If representing Eq. 4-49 in the form of magnitude and angle separately, the new

forms in d-q axis reference are

dE’ S o o L -
d_F;:_T%[ '—(X—X’)Isd]—wé—: 3 Eq. 4-50
@:—%—swq +o, _Z’”_ 4 Eq. 4-51
d T.E "LE "

Where I is stator current, o is phase angle of E’, 7y is the transient open circuit time
constant of induction machine (seconds), X is open circuit reactance, X~ is transient short
circuit reactance. V,, V are rotor and stator voltage, respectively. L,, is mutual inductance
and L, (when L, = L; + Ly,) 1s rotor circuit inductance. E,, is assumed in-phase with g-axis

and following equations are also stated:

o R = =N =
E = E;qe/( ) (E, - JjE,)e” =Ee” Eq. 4-52
V=V, Y =(7,-j7,)e" =T Eq. 4-53
- eE s -
I, = quej( ). (7,-J1,)e" =Te™ Eq. 4-54
The steady state voltage balance of stator can be represented as follows
v,=(E,-T,X)-17 Eq. 4-55
I7sd = E:l +Zq)?,_7sd7y Eq. 4-56
R N Eq. 4-57
sd 5SZSS sq ZSS rd q'
- L _
qu = __mqu Eq 4-58
YL

Assuming pE’ in Eq. 4-50 and the terms with 7 in Eq. 4-55 and Eq. 4-56 are very
small and can be neglected and V; has only q-component. Replace /i, from Eq. 4-56 into

Eq. 4-51. Finally, Eq. 4-51 becomes
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%:——(X__)_{)Vm -5 0 +0 ="
dt X' e

<

q
'

M| |
ol

rr

Eq. 4-59

Eq. 4-59 reveals the relationship between Vi, sw, £, and po while Vyq in Eq. 4-50 is

very small and not affect to £’. These assumptions are necessary for the following topics.

The dynamic control of this DFIG model is applied using current-mode control

technique [45]. For the study of small signal stability, only torque and voltage control

models is discussed.

From Eq. 4-56, if @ less than 0.7 p.u., then 7§, will be zero, but if «; is larger than

1.2 p.u., the T, will remain at 0.81 p.u. until @, reach the shut down speed at 1.33 p.u.

which T, becomes zero, where [45]

4.1.2.3 Torque control model

Eq. 4-60

Eq. 4-61

Eq. 4-62

From Eq. 4-51 and Eq. 4-59, we have found that speed (po) and terminal voltage

(Vsq) can be controlled by adjusting V;q and Vyq4 , respectively. Therefore, the torque control

model has a purpose to regulate torque by adjusting Vi automatically. The following

equations, Eqs. 4-63 — 4-71, are used as follows:

— 2| _ _
T;p - Kupa)r cut—in = a)r < a)llmll
T;/’ = O ‘ a)r < a)uutfin H wr 2 wshutdown
T, =T, |&z2a,

sp imit r limit
T — T a)sLss

rq _ref ST 17

Lm sq

224 1 =1 rq_ref rq

;4 can be calculated using Eq. 4-55 and Eq. 4-57 to be

Eq. 4-63

Eq. 4-64
Eq. 4-65
Eq. 4-66

Eq. 4-67
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I, = ( ZZ)—(jE + [ 512 - Zf)‘(jﬁ Eq. 4-68
I;q can be calculated using Eq. 4-56 and Eq. 4-58 to be

I, = Lj)—( v, Eq. 4-69
where

V= Vi+V. Eq. 4-70

Vg =Vt . Eq. 4-71

Where T, is an optimum torque (set point torque, p.u.), K,y is an aerodynamic performance
constant from manufacturer, /g r 1S g-axis rotor current reference value, V. is

compensator value of g-axis rotor voltage, and W, and V" are any variables.

Replacing /4 in Eq. 4-68 and /i in Eq. 4-57 into Vyq . in Eq. 4-67, we have:

Or Vo =8, (kaE +ko7, ) Eq. 4-73

Where

Eq. 4-74

The Vg in Eq. 4-66, in order to be used in the torque-speed control (PVrq) scheme, can be

represented as follows:

Zq:K{?Vss S J+K,Z, Eq. 4-75

Where T, is the set-point torque at any generator speed (@) and can be represented using

Eq. 4-60. The function with Kp and K are the PI control parameters.
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However, for the simulation purposes, instead of using /’rq — Irq , we can use T, - T
(the latter is per unit torque output) for the simplified control function to avoid the difficult

task but still remain the same purpose. In per-unit base, 7 is equal to Ps (per unit electrical

power output on stator). Therefore, we can develop a new V' as follows

P ~ £ -~ sin(5") and ¥, =V, sin(&"), Therefore isl = VSd,
X X
Placing the above equation into Eq. 4-75 yields
_ I T P\ (GL T p
7=k, Gt e L B g 1] Ot e L By Eq. 4-76
m sq Lm E 0 Lm sq Lm E

I7r,q :KP C_Os[;ss T;p_ Lss' e K]J‘(ws_l’ss _SP _ Lss_ e
Lml/sq LmE (1_Sw) 0 Lm Vsq m

=k (T, - P )+k, (T, - P )a
0

Where Kp and Kj are constants. The parameter kp and 4; are provided to represent the new

convenient form of PI control. The P’ is a modified value of P.

L L - P L
koo iz e foctele pog Lo and ket Eq4-78
V. LV, (1-s,) L.E

Lm sq
Where k, is a constant using to adjust P’s to be equal to 7, when reach the maximum

value.
Eq. 4-79

Vg =su(kaB' ko, ) £k T, P )+ ki 2,
Eq. 4-79 will be used in the state space equations formulation. However, for an
energy function formulation, the Ty, is assumed to operate under normal conditions for

which rotor speed is not beyond the rated value and not less than the lower limit.

4.1.2.4 Voltage control model
The voltage control model has a purpose to regulate voltage by adjusting Vi

automatically. The following equations will describe voltage control and are stated as

follows:
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i wy = Kye ( s vt VS ) Eq. 4-80
_ _( 1
I, =V|—— Eq. 4-81
rd _mref N (ESLm J q
_rd ref = Z‘dﬁgref 7{/7771)‘(;[ Eq' 4-82
sz = I_rd_regf - 7rd Eq 4-83
V=K, (Trd_ref _I_rd)+K1W2 Eq. 4-84
_ _ I \—
Via e =5, KL —Z—’"j 14 Eq. 4-85
V,=Vi,+V,. Eq. 4-86

Where Kvc is a constant, Iiq ror 1S d-axis rotor current reference value, Iy meer 1S @
magnetizing component of generator, /rq grer 1S a terminal voltage control (grid) component,
V:id ¢1s compensator value of d-axis rotor voltage, W, and V"4 are any variables.
4.1.2.5 Relationship between internal phase angle of voltage behind
transient reactance and phase angle of terminal voltage
To simplify the DFIG model, the Vg and Vq can be represented in the form of
trigonometric functions:
V,=Vsind'=V sin(5-6,) Eq. 4-87

V, =V,cos8 =V, cos(5-0,) Eq. 4-88
Where dis angle of internal voltage or voltage behind transient reactance (E’), &, is angle
of stator voltage (V) and ¢’ is an internal phase angle (different angle between o and 6,).

From the DFIG wind turbine model in PSCAD, the simulation result can reveal the

relationship between o and 6, as follows.

Reference Bus

X4

\VAAe) VBZHRQ)« =0

Figure 4.5 Single-line (left) and phasor (right) diagrams of induction generator
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Where Xt is transformer reactance and Xy y is line reactance, wind speed is sinusoidal

signal of magnitude 1142 m/s with period of about 6 seconds.

0.4
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Delta:1

i 2 e anie
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Figure 4.6 Variation of internal phase angle (Deltai, ") and angle of internal voltage

(Delta, 0') and angle of stator voltage (PAdfig, € ) when wind power is 1.0 p.u.
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Figure 4.7 The relationship between internal phase angle (Deltai, 8"), angle of internal

voltage (Delta, ¢'), and angle of stator voltage (PAdfig, 6, ) at four wind powers (WP)

The above figure shows the linear relationship between the internal phase angle
(Deltai, 6') and angle of internal voltage (Delta, ). We find that ¢’ increase with
increasing ¢ and vice versa. The slope (k,) and offset (c,) of the linear relationship are

computed by varying wind power and the result is shown in next table.
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Table 4.2 The slope (k,) and offset (c,) of the linear relationship between internal phase
angle (Deltai, 6") and angle of internal voltage (Delta, o) of DFIG

Wind o~k'6 +c! o'=kd+c,
Power (p.u)| g, ¢’ R? k, Ca R’
0.3 1.698 | 0.002 | 0.996 | 0.413 | 0.0012 | 0.993
0.5 2.004 | -0.014 | 0.998 | 0.502 | -0.007 | 0.998
0.8 2.363 | -0.034 | 0.998 | 0.577 |-0.0144 | 0.999
1.0 2.539 | -0.037 | 0.993 | 0.608 |-0.0146 | 0.997

From the result of simulation, &, increases while ¢, decreases with increasing wind
power. This is due to increasing wind power resulting in rotor speed deviation acceleration,
finally causing the angle of voltage behind transient reactance (o) to increase. The
relationship between deviation of &', & and fare as follows:

0'=6-6,90 =ko+c, Eq. 4-89

The above equation becomes

pd'=k,po and  pd=pd'+ pb, Eq. 4-90

It has to be mentioned that, in the case of a generator, ' must not less than zero. If
the angle o is less than zero (such as when import power from the infinite bus), the Eq. 4-
89 is invalid and has to be modified to let 0" not be negative. Therefore, the reference angle
of DFIG wind turbines for the computation of 6’ should be the phase angle of the main bus

for which the branch of wind turbines is first connected. As a result, the new equation of o’

should be
5'~k,|6-0,

+c, Eq. 4-91

Moreover, k, and ¢, can be approximated using a linear relationship with wind
power (WP), as follows:
ka=0.274WP + 0.346 Eq. 4-92
¢, =-0.022WP + 0.006 Eq. 4-93

The slopes and offsets are from the simulation result using PSCAD.
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y=-0.022x + 0.006
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Figure 4.8 Linear relationship between k, (left) and ¢, (right) with DFIG wind power.

4.1.3 Synchronous generator modeling

For electrical models of synchronous generator for power system stability, only
swing equations (equation of motion) and power flow equations are applied to represent
only the synchronous stability parameters (rotor angle and speed) due to small disturbances
and to reduce the complexity of solutions to focus only on the physical meaning as a

concept. Therefore, for synchronous generator, the dynamics of voltage and current are

neglected.
o=mt-wnt+o, Eq. 4-94
do =0 -0, =Ao, Eq. 4-95
dr
d’s  dAew, Ea. 4-96
a7 dl 4
i—f =0,A®, [52] Eq. 4-97

Where o is rotor angle (electrical radians) of generator at bus i, w,is electrical
angular velocity of rotor of generator at bus i and @, is synchronous speed at its rated value
(27 f,, electrical radians / second), and J,is the initial rotor angle of generator at time

t=0.The over bar represents the per unit value.
In per unit system, mechanical (and electrical) torque is equal to mechanical (and

electrical) power [52].

T,=P,andT, =P =y, I -y, I, i=12,..,m Eq. 4-98

i i gi
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WhereT,. is mechanical torque and Tg,- is electrical torque in per unit base at bus i,

W -¥, are flux linkage in d- and g-axis, and Tdi’]qi are stator current in d- and g-axis,

respectively.

From the above equations, in per unit system, state space equations are [52]

S, = w,A®,
— i=1,2,....m Eq. 4-99
Mz_&Aa—)ri_,_L(_mi_ﬁi)
dt M, M, ¢
1 dy, - .
o Zdl :rs[di-'-aa))n TV
g g i=1,2,....m Eq. 4-100
1 dl//q[ T .,
— =l ——Zy +V.
w dt s qi w lf//dz qi

Where Iz,i, 17(11, are stator voltage in d- and g-axis, respectively.

The simplified voltage equations on the stator circuit (two-axis model) are:

E,+jE, =(V,+/V, )+ X'(1,-/1,) Egq. 4-101
E;=\7d+)?@} Eq. 4102
E =V, -XT,

Where E;i,E;,. are the voltages behind transient reactance in d- and g-axis, respectively.

This voltage equation can be shown in the figure below.

Reference Bus IGXa)

1(iX1+ZiN)

qué‘ EB éngefZ 0

Figure 4.9 Single-line (left) and phasor (right) diagrams of synchronous generator

4.1.4 Dynamic load modeling

For a load model, static constant power load and frequency dependent load model
are applied. The frequency dependent load model is used according to the assumption that
real power changes nearly linear with frequency [9].

6, =—~(B,+P,) Eq. 4-103

C.

i

Where ¢; is frequency coefficient of load bus i and 6, is phase angle of voltage (V) at bus £.
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For a static constant power load, P, and Q, are constant values. The power load Py

can be modeled depending on voltage. For the constant impedance load, Py = Pjok( Vk)z.
For voltage stability analysis, the voltage on the load bus can be formulated as

follows: [11]

=1, -
Vi= A7 (_Qlk +Qek) Eq. 4-104

Where O, is reactive power load, Vi is voltage on load bus, Ay is reciprocal of the

convergence speed of the voltage magnitude to its equilibrium value.

0, =V, >.V,B, cos(xk —xj) Eq. 4-105

=

0u =0, (Vi /7)" Eq. 4-106

For the constant impedance load, ak = 2, for constant power load, ak = 0, and for
constant current load, ak=1 .

4.1.5 Network modeling

The network equations assume a structure-preserving model for which both active
and reactive power neglect transferred conductance terms (terms with Gj = 0 for simplicity
in calculation but not overlook the main purpose). The network equations (per unit) can be
represented as follows.

For the active power generation,

P, =Re[EI |= Re{E?Zn;YgE?} Eq. 4-107
J=
where Y, =G, +jB, =Y, " =|Y,| 2o, Eq. 4-108

Where Ele’” =|E]

Z6,, G, = ‘YH ‘ cos@;is conductance, B, = ‘Yii‘sin @;1s susceptance
(imaginary part of admittance) and ¢, is angle of admittance linking between bus 7 and ;.

If placing Eq. 4-108 into Eq 4-107, yields [44]:
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~
I
=
o

. _i(|Yij|cos% —j|§ﬂj|sin¢7y)(|gi'|cos§i +j|Ei'|sin5[)(|Ej'.|cos5j —j|Ej'.|sin§j)}
L=

=R

aQ

_Zn:(|Yij|cos¢),j —j|Yl.j|sin(p,j)|E’||Ej’.|((cosé} cosd; +sind, sin5j)+j(sin5l. cosd, —cosJ, sinJ, ))}
=

=R

a

Zn:|Ef||E/’.||YU|(cos(0i,- —jsingoi,)(cos(d. —5,)+jsin(§i _51_))}
=
= -nl |EI.’HE;||Y,-]|(COS ?; cos(é‘i —5j.)+sin @, sin (5, —5,))

Z,:

= |Ei,|2 G, + i@'“E;”Y/KCOS 9, c08(6, -, ) +sing; sin(8, -5, ))
=1
Ji

- |Ef,|2 Gi+ Zn:@”EJIKGy cos (8,8, )+ B, sin(8, -5, )) - |E"|2 Gy +
=

J#i

Eq. 4-109
Eq. 4-109 can be used for all generator buses (both synchronous and induction

generators). From this equation, assuming zero conductance, it becomes:

Pgi =k, = Z
=1

J#i

Evir

E'
J

B,sin(5,-35,) Eq. 4-110

For the load bus:

P, =Re[V,I; |= Re{Van:Y,;V;} and 0 =Im[V,I;]|= Im{Van:Y,;V;}EQ 4-111
Jj=1 Jj=1

P, :Re{iWkHVJHij‘(cosq)ki —jsingoki)(cos(é?k —6?].)+jsin(9k —91.))}
j=1

Eq. 4-112
0, = Im{ZHVkHViHY,g‘(cos% —jsinq)ki)(cos(@k —0].)+jsin(6’,c —9}))}
=
by = i|Vk”VJ‘(GkJ cos(6; 0, )+ By sin (6, _‘9/‘))
- Eq. 4-113
0, = Z|Vk”Vj‘(ij sin(@k —Hj)—Bkj cos(@k —Hj))
=
when assuming zero conductance, Eq. 4-113 becomes:
P, =Z":|Vk|\vj\3,g. sin(6, - 0,)
= Eq. 4-114

0, = —Zn:|VkHVj‘Bkj cos(@k —Hj)
j=1
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4.1.6 Dynamic power system equations
The power system equations in this section are the structure-preserving model for
multi-machine infinite bus power systems. Given i = 1, ..., (m-p) and w = (m-p)+1, ..., m

and k = m+1, ..., n. and approximate o, by using @,. These power system equations are

applied from the previous section and can be represented as follows:

4.1.6.1 For SCIG, included in the power system

do, _
L o3, Eq. 4-115
N :_EAw’i+Vi<ai_ ) Eq. 4-116
4, __ (X :{w)]"‘” +0,AD, Eq.4-117
dt TE,
dAw 1 /= =
o= - Eq. 4-118
= P P) q
dE!, 1=, S\
= ?i[g +(X,-X,)T,, ] Eq. 4-119
de, 1, - =
dtk :_Z([;k_i_f:k) Eq 4-120
E! =V, cos(k,5, +c, )+ X1, Eq. 4-121
V,sin(k,68, +c,)=X.1, Eq. 4-122
Z|E’HE"B s1n 5 5 Eq. 4-123
j#l
. =SIE|E 8, sn(s,-5) kg 4121
j¢w
Z|V||V|B sin(6, -6, ) Eq. 4-125

o
For reasons of simplicity and convenience in mathematical modeling, several
assumptions can be made as follows:
Al) In the case of the generator bus, replace E; and E\, by V; and V,,, respectively.
The transient reactance are included into Bjj and By;. Therefore, Eq. 4-123 and Eq. 4-124

become:
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Pgi:zl/;l/jBijSin(é‘i_é‘j) Eq. 4-126
i

P,.= ] V.V,B,sin(5,-5,) Eq. 4-127
=
JEW

A.2) For the load bus, just replace angles & and & by ok and &, respectively.

A.3) Generator bus no.1 can be set as a reference bus and new variables (x and y)

(relative on reference bus) can be stated as follows

X, =6,-0,,x,=0,-0, »x,=0,—0, »y, =Ad,,y,=Ab,, Eq. 4-128

A.4) The reference angle is assumed and therefore, the deviation of Eq. 4-128 is
X=0-0=w,(y,-»),%,=8,-6,=8,~0y »% = @, >3 =Ab,,p, =Ab, Eq.4-129

A.5) Furthermore, the deviation of magnitude of internal voltage in Eq. 4-119 is

assumed to be very small and can be neglected. Furthermore, both internal voltage

(£) and terminal voltage (V) are assumed to be constants of around one. Therefore,

from Eq. 4-117 to Eq. 4-122, the simplified results are:

¥ X
9, _,ap LX), sin(k,5, +c,) Eq. 4-130
dt TX'E

0“Fww

the results are:

X, = o, (yi_yl) Eq. 4-131

D. 1 = =

p=——="Lp +—(P.—P, Eq. 4-132

yl Miyl+Mi(”1[ el) q

x, =, (v, —»)-kV,sin(kx, +c,) Eq. 4-133
1 -  _

) =1 (P _P Eq. 4-134

ylV M( mw L’)V) q

X, = _i(l_)lk +13ek)_w0y] Eq. 4-135
S

P,=V, Y V,B,sin(x-x,) i=12,..,m-p  Eq.4-136

P, =V, Z V,B,sin(x,—x,) w=(m=-p)+L(m=-p)+2,..m  Eq.4-137

wj
J=Lj#w

P, =V, z V_,B;g-Sin(xk—x,) k=m+1,m+2,..n Eq.4-138

J=Llj#k
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Where i = 1, ..., (m-p) and w = (m-p)*+1, ..., m and k = m+1, ..., n. ¢, =k,0,+c,, k,is
normally positive withk, = ()_( =X ) / T,X'E,
In many cases, the mechanical power of an induction generator wind turbine can be

approximated using the value of wind speed and power coefficient from the manufacturer

as follows:

-
28

base

pc, AV Eq. 4-139

ws

The pis air density (kg/m’), Ais the swept area of the turbine, c,1s power

coefficient (provided by manufacturer), and ¥, is wind speed at hub height.

4.1.6.2 For DFIG, included in the power system
From the assumptions of A.1 to A.5, the power system equations incorporating

DFIG become:

M;py, =(B,; ~F;)-Dy, Eq. 4-140
px. =0, (v, -v..) Eq. 4-141
M,py,=(P, ~F,) Eq. 4-142
px, =a,(y, -y, )-kV,, sin (ka ‘xw — X, +c, ) +ay kY, Eq. 4-143
pZ;=T,-P, Eq. 4-144
cpx, =—(B,+P,)-c,o,v,, Eq. 4-145

V. ==V, (k, V "‘kczsz cos(ka

xw - gref

+ca))+k,,(_ P, )+kZ] Eq.4-146

sp_ w

P,=k,P,/(1+,) Eq. 4-147

e 2

T, =k,(1+»,) Eq. 4-148

B, =7 Y 7B, sin(x, ~x) Eq. 4-149

o7 n _l._y.sin(x[—xj) Eq. 4-150
J=lj#

Py =V, l‘k‘jﬁ,{jsm(xk—xj) Eq. 4-151
J=LJj#*

k,=L,/(L,E") and &, =(X,-X,)/(T,X.E,) Eq. 4-152
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Eq. 4-153

|3

k.= r L I—Z“‘+_
=T L\elL, LX) alL,

k, ~0.274P, +0.346 and ¢, ~-0.022P, +0.006 Eq. 4-154

Where 7 is the number of network buses, w is wind power bus, k is load bus, V' is terminal
voltage, Bj; is susceptance component between bus i and j, Py is a constant power load,
Py ,and P are electrical power at wind power bus and load bus, respectively. ci is
frequency dependent coefficient of load.

4.1.7 Dynamic power system equations for voltage stability analysis

For the power system incorporating DFIG wind turbines, the dynamic power

system equations for voltage stability analysis are represented as follows:

M;py, =(F,; ~F;)-Dy, Eq. 4-155
px; =@, (yi _ycoi) Eq. 4-156
M,py,=(B,, ~P,) Eq. 4-157
pxw :a)O (yw _ycoi)_kaw Sin(ka ‘xw_xref +ca)+a)0kdl7rq Eq 4-158
pZ =T,-P, Eq. 4-159
Ce DX, = _(Ek + Ek ) TCk DY i Eq. 4-160
ka = (ﬂkvk)il (_sz +Qek) Eq. 4-161
I7H] __yw( cll7w+kL'2I/sw COS(ka xw grgf +ca ))+kp(TSp _E’W)'Fk[Z; Eq 4-162
P, =k,P,/(1+,) Eq. 4-163
— 2
T,=k,(1+y,) Eq. 4-164
P, =7, Y 7B,sin(x,-x,) Eq. 4-165
B,=7. 3 Bsin(x —x) Eq. 4-166
J=L,
P, =V, y I7j§kjsin(xk—xj) Eq. 4-167



170

0, =V, I?il_?k/. cos(xk —xj) Eq. 4-168
Jj=1

0y =0 (7 /7 )" Eq. 4-169

k,=L, /(L,E and k, =(X,-X,)/(T,X.E,) Eq. 4-170

Eq. 4-171

k, ~0.274P, +0.346 and ¢, ~-0.022P, +0.006 Eq. 4-172

Where 7 is the number of network buses, w is wind power bus, k is load bus, V' is terminal
voltage, Bj; is susceptance component between bus i and j, Py is a constant power load,
Py, ,and Pg are electrical power at wind power bus and load bus, respectively. ¢ is the
frequency dependent coefficient of load. Qo, Vok, and ak are constant reactive load, initial

voltage and exponential component representing characteristic of load, respectively.
4.2 Power System Simulation

4.2.1 Power system simulation using PSCAD

In this part, an overview of PSCAD/EMTDC is given first. After that, the six main
components of power system models in PSCAD/EMTDC are explained. These components
are generator model, power line model, transformer model, load model, excitation system
model, and turbine and governor model.

4.2.1.1 Overview of PSCAD/EMTDC

The PSCAD is the graphical user interface linking to the EMTDC (Electromagnetic
Transients including DC) solution engine. The PSCAD was first known in 1988 and was
first commercialized in 1994. The EMTDC was first written in 1975 to solve differential
equations in a time domain based on fixed time steps.

EMTDC, which differs from many other programs, can serve all frequencies not
only fundamental frequency. This tool can represents electrical circuits using steady-state
equations, which represent machine mechanical dynamics using actual differential equation

solutions. Its network solution is solved using LU decomposition method, which can
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reduce the size of the sparse conductance matrix. Moreover, user-defined EMTDC code
can be written in Fortran, C and MATLAB languages.
4.2.1.2 Generator model

PSCAD represents four rotating machine types: a Synchronous Machine, a Squirrel
Cage Induction Machine, a Wound-Rotor Induction Machine and a DC Machine. This
report describes only synchronous and squirrel cage induction machines because they are
major parts concerning the wind power system.

1) Synchronous generator

There are two types of synchronous generator (SG), round rotor (high speed)
represents only one damper winding and salient pole rotor (low speed) represents second
damper winding. Mathematical models of SG are represented in the previous section.

For the simulation of rotating machines, the initialization conditions must be

specified. Machine initialization in PSCAD consists of

— Initialisation for Load Flow (start with generator mode when de-energized
condition is investigated),

— Starting as a Voltage Source (to shorten starting time into a steady-state
condition and then can switch to a generator mode),

— Locked Rotor Operation (Rotor dynamics is disabled when applied to enhance
start-up speed disregarding mechanical dynamics after switching from voltage
source modes), and

— Free Running Rotor (The mechanical dynamics from torque and windage, and
friction losses are considered in this case).

The following topics describe the parameters and configuration options of SG,

which consists of six main parts, B1 — B6, as shown in the next figure.

L)

Figure 4.10 Block of synchronous generator model in PSCAD
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B1 : Rotating machine parameters

e Basic data (for example rated rms V', rated rms /1, Base angular frequency,
inertia constant, number of coherent machine)

e No. of Q-axis damper winding (one is for round rotor, two for salient pole
rotor)

e Data entry format (Generator data from manufacturer provided with per unit
d- and g- axis reactance and time constants, equivalent circuit data base on
d- and g- axis synchronous machine equivalent circuits)

e Initial conditions (when starting as generator and as voltage source)

e Output variable name (active and reactive power, neutral voltage and
current to ground, load angle, rotor mechanical angle, internal phase A
angle, steady electrical torque)

B2 : Input/Output multi-mass shaft model interface

e Rotor angular speed (w) signal from multi-mass shaft model can be a direct
input with positive value

e FElectrical torque (Te) and mechanical torque (Tm) output are used for the
multi-mass shaft model

B3 : Input/Output excitation system parameters

e The initial output field voltage (Ef0)

e The input field voltage (Ef) from excitation system under operating
conditions

e The output field current (If) to excitation system under operating conditions

B4 : Terminal voltage and current feedback parameters

e The three phase terminal voltage and current signal can be supplied to the

exciter model to set the terminal constraints
BS5 : Input/Output turbine and governor parameters

e Rotor angular speed (w) signal from turbine and governor model can be as
direct inputs with positive values

e Mechanical torque (Tm) outputs are used for the turbine and governor

model
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2) Squirrel cage induction generator (SCIG)
The input of squirrel cage induction generator can be either
from rotor angular speed (W, rad/s) signal or from mechanical

torque (T, kW-rad/s) signal. The switch signal (S, speed or torque

control) is used to switch between torque and speed input. Its
Figure 4.11 Block of

SCIG model in
PSCAD

output is single or three phase wires with electrical parameters.
Configuration data are similar to rotating machine parameters of

synchronous generators.

Configuration data
e Rated RMS Phase Voltage [kV] (from design)
e Rated RMS Phase Current [kA] (from design)

e Base Angular Frequency [rad/s] (from design)

e Data Generation/ Entry (as follows)

e Multi-mass Interface (when sub-synchronous oscillation is considered)
e The saturation condition can also be modeled

Data Generation/Entry

Data generation or data entry is the method of specifying the electrical components
of the generator. There are 3 methods as follows:

e Typical : Specify horse power of the generator in case no other information is
available.

e Explicit : Specify winding resistances, reactance, polar moment of inertia (J=2H), and
mechanical damping in the case that information is available (recommended).

e EMTP type 40 : Specify characteristics of Torque-Slip Curves from the manufacturer,
such as power factor and efficiency at rated load, slip at full load, starting current,
starting torque, maximum torque, number of pole, polar moment of inertia (J=2H), and
mechanical damping.

Internal OQutput Variables

When electrical outputs data are required, the names of the following variables are

listed.
Real Power (+=in) (p.u.) Reactive power (+=in) (p.u.) output rotor angle (rad)
Output Mechanical Torque (p.u.) output speed (p.u.) Electrical Torque (p.u.)

Torque Angle (rad) Slip Angle (rad)
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Explicit Information

£ K E e
A
W m e 3) Second Cage Resistance(R’r(1-s)/s)
y 4) Stator Unsaturated Leakage Reactance (Xls)
R’“% Ko @ 5) Unsaturated Magnetizing Reactance (Xm)
6) Rotor Unsaturated Mutual Reactance (X’Ir)

X'r2
o 7) Second Cage Unsaturated Reactance (X’12)

Figure 4.12 Equivalent circuit of SCIG in PSCAD

EMTP type 40 Information (Example)

1 . .
. 1 —— ' R, is rotor resistance
m[ """ -l
1
R, H Starting
y 2R, ! torque curve
g s | g % X,
e i S
I : £
' e T, (max) atR, = X,
1 Slip Corresponding ¥ =45°
':‘(to starting torque
" — ' > 0 Rotor Resistance, Ry=Y, Ry
o 02 04 06 08 1 ) ’ .
Slip— U] (if)

Figure 4.13 Torque-Slip Characteristics Figure 4.14 Variation of starting torque with

rotor resistance
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Figure 4.15 Variation of torque and stator Figure 4.16 Performance curves of 3-phase
current with slip squirrel cage induction generator

4.2.1.3 Transmission line model
There are two types of power line models described: the PI section model and
distributed transmission line model. The underground transmission line model and
mutually electrical wires are also provided, but not used in this thesis, therefore,

unexplained.
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1) PI section model
There are two types of PI section line model, the nominal PI section and the
coupled PI section components. Nominal PI section model represents voltage measured to
local ground. The coupled PI section model represents voltage, which always measured to

earth (true ground).

COUPLED COUPLED
|
SECTION SECTION
—— T
e e
—a == E = Lk

Figure 4.17 Schematics of nominal PI section (left) and coupled PI section (right) models

2) Distributed transmission line model

The three models of distributed transmission lines are provided in PSCAD: the
Bergeron model, Frequency Dependent (Mode) model, and Frequency Dependent (Phase)
model, depending on increasing accuracies.

The Bergeron model represent the transmission line with lumped R, and distributed
L and C components. It is wuseful when requiring the correct steady state
impedance/admittance at fundamental frequency. This model has computational time faster
than the other two.

The Frequency Dependent (Mode) model is useful for studies of behaviors
involving transients or harmonics. It uses curve fitting to represent the frequency response
of the line. It works very well with the transposed lines but should not be used for
untransposed lines or when the multiple towers are modeled in the same right of way.

The Frequency Dependent (Phase) model represents the full range of the frequency
responses of the lines. It is useful for study behaviors involving transients or harmonics. It
is the most advanced time domain transmission line model and is used for most studies.

Five steps of distributed transmission line modeling are described.

Step#1: Enter a line name and numbers of conductors by double-clicking on the Tline (1)
interface components. This name must be unique for this circuit.
Step#2: Double-click on the TLine (T) component and enter the same name as in STEP 1.

Then enter the line length, steady state frequency and number of conductors.
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Step#3: Open the TLine configuration by double-click on "Edit Configuration" or
"Edit...." and then copy desired line constants components onto the sub-page.
Step#4: Select only one line model (Bergeron model, Frequency Dependent (Mode) model,

Frequency Dependent (Phase) model) and give conditions.

] <<j—\ ] W[W""? ¢ cz,\“wn[m]
o T o 01, v 5[{21 _____ c 3).
HW TLine WE o

Tline Tline TV 38

> Conductors: chukar

Ground_Wires: 1/2"HighStrengthSteel
0m]
-»

Ground Resistivity, 100.0 [ohr=m]

Relative Ground Permeability. 1.0
Earth Return Formula: Analtical imati %

R

Figure 4.18 Tline and TLine Figure 4.19 The conductor geometry method

components

Frequency Dependent (Phase) Model Options Frequency Dependent (Mode) Model Options

Bergeron Model Options

Travel Time Interpolation:

Travel Time Interpolation: On
Reflectionless Line (e Infinite Length): Mo

Curve Fifling Starting Frequency:
Curve Fiting End Frequency:

Total Number of Frequency Increments
Maximurm Order of Fitting for YSurge:
Maximum Order of Fitting for Prap, Fune.:

on
0.5[Hg
1.0E6 [Hz]
100

20

20

Travel Time Interpolation: On

Curve Fitting Starting Freguency:

Curve Fitting End Freguency:

Maxirurm Order of Fiting for Z5urge
Maximumn Order of Fitting for Prop. Func.
mayimumn Fitting Error for Z5urge:

05[Hz
1.0E6 [Hz]
bl

bl

2%

Maimum Fitting Error for YSurge: 2 [%]

L] Fitting Error for Pi F 2%
Maimum Fitting Error for Prop. Func.: 2 [%] asimu Fiting Exfor for Prop. Func.: 2 (%]

Figure 4.20 Bergeron, Frequency Dependent (Mode and Phase) models and options

Step#5: Select the data entry method. The manual entry is used only for Bergeron model
by providing R, X1, and Xc. The conductor geometry with ground and tower
components methods is suitable for Frequency Dependent (Mode) model and
Frequency Dependent (Phase) model.

4.2.1.4 Transformer model

ad

The transformer models in PSCAD are 3-phase 2- winding, 3-
phase 3-winding, and 3-phase 4-winding transformer models. For

these models, the two different core geometries are provided, which

T Jiy
are the Classical transformer model and the Unified Magnetic
#1 Sy . Equivalent Circuit (UMEC) transformer model. The classical model
- normally considers the magnetic coupling between winding of the
~

same phase while the UMEC transformer model additionally

considers the magnetic coupling between winding of different phase.
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The transformer core structures which can be modeled using UMEC are, for

example, single phase 4-winding, 3-phase 3-limb unit, and 3-phase 5-limb unit.

+ Iz + 4 + 5

D V4 @ Vg 3

P— = P—

WU

+ N + i3 + ig
= [=
Vi I Vy I3 Vs 3

P f= T = o—

O

TR

Figure 4.21 Example of 3-phase 3-limb transformer schematic

Input: Output:
\:?’rgrefo Vet V.t 1s reference voltage Ve 1s initial reference voltage
Exciter (AC1TA
S ‘TLTTj e Ep is initial field voltage Eris field voltage
foof )
| T Ir is field current

AC exciter models [V1/Ir] is 3-element of terminal

voltage and current

N Input: Output:
vrere et Vet 1s reference voltage Ve is initial reference voltage
Exciter (DC1A
\‘IfT R . . .o, . .
SfEfy, 7 I Ey is initial field voltage Eris field voltage

| [V1/I1] is 3-element of terminal

DC exciter models

) Input: Output:
\YSr,efO e Vet is reference voltage Viep s initial reference voltage
_;,E:O(;er (S:\% 2 Ey is initial field voltage Eris field voltage
T It is field current

Vi/lr] is 3-el t of terminal

Static exciter models [Vi/li] is 3-clement of termina
voltage and current

Figure 4.22 AC exciters (top), DC exciters (middle), and Static exciters (bottom) in

PSCAD.
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4.2.1.5 Excitation system model
PSCAD provides 8 standard AC exciter models, 3 standard DC exciter models, and
5 standard Static exciter models. AC exciter models use an alternator, and either stationary
or rotating rectifiers to produce the direct current needed for the synchronous machine
field. DC exciter models use a direct current generator with a commutator as the source of
excitation system power. Static exciter models have no rotating parts, but excitation power
is supplied through transformers or auxiliary generator windings and rectifiers.
4.2.1.6 Turbine and Governor model
PSCAD provides 4 hydro turbine models, 4 hydro governor models, 2 steam

(thermal) turbine models, and 5 steam (thermal) governor models as shown in Figure 4.23.

Hydro Description
Turbines
TUR1 Mon-Elastic Water Column without Surge Tank
TURZ Elastic Water Column without Surge Tank
TURS3 Mon-Elastic Water Column with Surge Tank
TUR4 Elastic Water Column with Surge Tank
Thermal Description
Turbhines
TUR1 Generic Turbine Model
TUR2 Generic Turbine Model Including IV Effect
Hydro Description
Governors
GOow1 Mechanical-Hydraulic Controls
GOvz2 FID Controls including Pilot and Servo Dynamics
GOov3 Enhanced Controls for Load Rejection Studies
HGOW18 V2 Compatible Hydro Governor (HGOW18)
Thermal Description
Governors
GOow1 Approximate Mechanical-Hydraulic Contrals
GOWZ Mechanical-Hydraulic Controls (GE)
GOov3 Electro-Hydraulic Contrals (GE)
GOov4 DEH Controls (Westinghouse)
GOvs NEI Parsons Controls

Figure 4.23 Hydro and steam turbine and governor model descriptions in PSCAD
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These models have inputs and outputs as follows.

L] Input: Output:

A W is per-unit speed Tm is mechanical torque (which is input
— H;dm Ea Wit is per-unit speed reference to the Synchronous Machine)

5 Z is gate position zi is initial gate position (which is input
hydro turbine to the Hydro Governor for initialization

L Input: Output:

" z [~ w is per-unit speed z is gate position

Fyaro GOVZ::, = W..t is per-unit speed reference
Wref

z0 is gate position during

hydro governor initialization
L] Input: Output:
S T Cv is per-unit control valve Tml and Tm2 and are output from the
= Si\t;eamjur_z position HP and LP turbines respectively
Wiref Tm2

| Iv is per-unit intercept valve

_ position from the corresponding
steam turbine

Thermal (Steam) Governor.

L Input: Output:
" Cv — W is per-unit speed Cv is per-unit control valve position
Steam Gov 1 . .
W.et is per-unit speed reference
Wraf

steam governor
Figure 4.24 Hydro turbine (top), hydro governor (upper middle), steam turbine (lower
middle), steam governor (bottom) models with input and output in PSCAD

4.2.1.7 Load model
However, PSCAD represents only fixed P and Q loads and passive R, Xi, and X¢

S

PiQ 1.0 W] 10[MVAR]  1.0[MVAR]

load as presented in the figure below.

Fixed Load 3 phase loads
{Resistive, Inductive and Capacitive)

Figure 4.25 Fixed P and Q load and passive R, Xi, and X¢ load model
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4.2.1.8 Wind Source, Turbine and Governor model
- Wind source model
The wind source model generates wind speed with 4 different signal patterns, mean
wind speed, gust wind, ramp wind, and noise wind. There are four parameters to define
gust wind and ramp wind. These are the peak or maximum velocity, gust or ramp period,
start time, and number of gust or ramp. The gust and ramp are described in Section 2.2.
For noise wind speed (V},), seven parameters are defined as [46]:

Number of noise component (N): this number is a probability density function

counter limit.

Noise amplitude controlling parameter (Aw): controlled values in range 0.5 — 2.0 .

Surface drag coefficient (cq): the ratio between drag force and incident force (or

kinetic energy) of fluid on the surface, in this case ¢4 = 0.004 .

Turbulence scale (L): the length scale that the turbulence is important, and L = 2000

feet.

Random seed number (k): an initial number 1 — 99 using for generate N random
number (@) of the interval 0 to 27 .

Time interval for random generation: a new set of N random number will be

generated after the end of this time .

Mean wind speed at reference height (#): this number is previously defined with

internal or external conditions.

The noise wind speed is generated using the following equations.

v, =Z(i(,/S(a)i)Aa))cos(a)itJrQ)j Eq. 4-173

i=1
o, =(i-0.5)Aw Eq. 4-174

2¢,L | 2%0.004x2000° ||

S(w,)= or [ j
[1 20000, }

Eq. 4-175

W
[SSREN

A

Where S(@) s spectral density function at frequency @; .

- Wind turbine model

The wind speed (Vy, m/s), mechanical speed of generator (W, rad/s), and pitch
angle (Beta, °) are input while the mechanical torque (Tm) and the power of the turbine (P)

are output. The wind turbine has torque-W characteristics (or equation of power
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coefficient) varies with V,, using standard model called MOD 2 wind turbine-generator
system. This standard model is developed by Purdue University.

Input parameters are Rated power of the wind turbine (MVA), Rated MVA of the
machine (MVA), Rated mechanical speed of the machine (rad/s), Radius of the wind
turbine blades (m), Rotor blade area (m?), Air density (kg/m’), Efficiency of the turbine
gearbox (p.u.), Gearbox speed ratio, and equation of power coefficient (MOD 2 for three-
blade and MOD 5 for two-blade wind turbine).

- Wind turbine governor model

The inputs are mechanical speed of the machine (Wm, rad/s) and the power output

of the machine based on the machine rating (P, p.u.). The output is pitch angle (Beta, °).

Initial

Pitch
Wrat Rate Angle Angle
oD 5 Limitar Limitar
= ST
ACTUATOR

Lirniter

Figure 4.26 Transfer function of wind turbine governor model

Where W, is reference speed (rad/s), Prr is power demand (MW), Kg is gain (°/p.u.), Kp is
proportional gain (°/p.u.), Kj is integral gain (°/p.u.), Gy 1s gain multiplier (°/p.u.), and K4
is blade actuator integral gain (s).

The wind speed, wind turbine, and governor models are presented in following figure.

Wind Source Wind Turbine
Meéﬂst— i Vi MOD 2 Type

ENE

12

Ramp

MNolse
Beta
Bata

Wﬁ Wind Turbine
Gavemor
MOD 2 Type
Pg|

Figure 4.27 Schematic of wind source, turbine and governor model
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4.2.2 The power test system

Many small signal stability studies use the test system from the Power System
Stability and Control by P. Kundur (1998). These test systems can represent the stability
problems with the simplicity designed by using fundamental concept and can clearly reveal
the small signal stability problems. Two types of interesting test system are single machine
infinite bus (SMIB) system and Four machine power system (FMPS) system.

4.2.2.1 Single Machine Infinite Bus (SMIB)

This system can represent problem of small signal disturbance using eigenvalue
analysis method, for example, by P. Kundur (1998). Eigenvalue can describe the damping
and oscillation characteristics of the system. The mode of oscillation involving only one
machine is called local area oscillation mode. Present technology of stabilizer can control
and eliminate this kind of oscillation efficiently.

The test system is used to give an example of small signal and transient stability.
The single machine can represent the only local oscillation mode of generator interacting
with the rest of power system (or infinite bus). The base voltage and power of the system
are 24kV, 100MVA. The wind power and load buses, with line reactance 0.04 p.u., are not
previously presented in the original test system.

Wind power is latter designed to have rated power of 5% of generator (Total
capacity 2,000MVA). The 2MW wind turbine is selected because it has the largest share of
40% of total as by GL Garrad Hassan (one of the world's leading wind energy consultants)

and posted on the Website: www.wind-energy-the-facts.org . Load power can vary to

assess the power system performance.
The test system is based on SMIB test system by P. Kundur except the wind power
and load of circuit CT3. This model neglects the resistance (very small part) and represents

only reactance. The transmission line reactance (xp = jolL/ Z¢) is in per unit.

H=3.5 MW.s/MVA 20 kv J0.15 5oy 500kV
24kV 60Hz @ ‘Q’ 105
=Xg= 0.3 “4km 11
24kV SO0V
E\l’ (JD—ouo0 0.93
) j0.04 o I

E
A 715km B
Pload 30.8km

N Infinite Bus

(e)

Figure 4.28 Single machine infinite bus (SMIB) system including wind power and load
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The line reactance can be implied to line length using the base impedance of the
system, that is, characteristic impedance Z. = sqrt(z/y) ohms. If the line has series
impedance per unit length (z) is 0.35 ohms/km and shunt admittance per unit length (y) is
4.8x10-6 ohms/km, therefore, Z. is 270 about ohms. These per unit length values can be
found in Matlab Simulink SimPowerSystem. The line length can be computed from

Z 1

Z=7Z.AL or L=—
Z. A

Eq. 4-176

where Z/Zc is per unit impedance (neglect line resistance) , A = sqrt(zy) is phase velocity,

L is line length (km).

However, this test system will be modified to suit the objectives and scope of each section.
4.2.2.2 Four Machines Power System (FMPS)

This system can additionally represent oscillatory interaction between machine and
group of machines or so called inter-area oscillation mode, for example, by P. Kundur [52].
However, it is still difficult to control and eliminate this kind of oscillation.

This test system is used to give en example of small signal and voltage stability.
The generator in this case is the equivalent sum of coherency generators to have totally
4x900MVA rated group capacity. The four machines can represent the both local mode of
generator and inter-area mode of oscillation interacting between area 1 and 2.

The base voltage and power of the system are 230kV, 100MVA. The active and
reactive loads at buses 7 and 9 have capacitive impedance compensators, as shown in the
figure below. The wind power is not previously presented in the original test system. The
180 MW wind power is latter designed to has rated power of 5% of generator (Total
capacity 3,600MVA) connecting on bus 9. Load power can be varied to study the effects.
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: Py=1,76TMW

Q=100MVAr  Q;=100MVAr

Qc=200MVAr  Qc=350MVAr
| I

Figure 4.29 Four machine power system (FMPS) including wind power and load

The test system provides line length and r-l-c impedance per unit length. To
represent line impedance in per unit value, multiply z = r+jl ohms/km with the line length
to result per unit impedance. In this case, resistance can be neglected. The system data are

shown in next table.

Table 4.3 System data of FMPS test system

No. System Data Vaule Unit
1 Line base power 100 MVA
2 Line base voltage 230 kV
3 System Frequency 60 Hz
4 The Number of Bus (Nodes): Load bus : Generators 11:2:4 -

5 Sum of the Generator Rated Capacity 3600 MVA
6 Sum of the Generator Output (Active power) 2819 MW
7 Sum of the Generator Output (Reactive power) 798 MVAr
8 Sum of the Load (Active power) 2734 MW
9 Sum of the Load (Inductive power) 200 MVAr
10 Sum of the Load (Capacitive power) 550 MVAr
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Table 4.4 Parameters of four machine power system

Generator
Generator rated capacity 900 MVA
Generator base voltage 20 kV
Step-up transformer impedance 0+j0.15 pu
Step-up transformer voltage 20/230 kV
Sum of the Generator Rated Capacity 3600 MVA
Sum of the Generator Output (Active power) 2819 MW
Sum of the Generator Output (Reactive power) 798 MVAr
Parameters Value Parameters Value Parameters Value

Xd 1.8 Xq" 0.25 Asat 0.015

Xq 1.7 Ra 0.0025 Bsat 9.6

Xl 0.2 TdO' (s) 8 yT1 0.9

Xd' 0.3 Tq0' (s) 0.4 H (G1,G2) s 6.5

Xq' 0.55 Td0" (s) 0.03 H (G3,G4) s 6.175

Xd" 0.25 Tq0" (s) 0.05 KD 0
Transmission system Parameters  Value unit
Line base power 100 MVA r 0.0001 pwkm
Line base voltage 230 kv xL 0.001 pwkm
Base line impedance 529 ohm Bce 0.00175 pwkm
Load P (MW) QL(MVAr) Qc(MVAr)
Sum of the Load (Active 2734 MW Load Bus7 967 100 200
Sum of the Load (Inductive 200 MVAr Load Bus9 1767 100 350
Sum of the Load (Capacitive 550 MVAr
Excitation system KA TA KF TF TE Aex Bex TR TB
Self-excited dc exciter 20 0.055 0.125 1.8 0.36  0.0056 1.075 0.05 -
Tyristor exciter with high transient gain 200 - - - - - - 0.01 -
Tyristor exciter with transient gain reduction (TGR) 200 1 - - - - - 0.01 10

KA Kstab ™W T1 T2 T3 T4 TR

Tyristor exciter with high transient gain and PSS 200 20 10 0.05 0.02 3 5.4 0.01
Wind Power
Wind Farm Rated Power 180 MW
Number of wind turbine 90
Wind Turbine Rated Power 2 MW
Type of Wind turbine Fixed speed
Generator model of wind turbine SCIG
Wind speed mean value 3,5,10,15 m/s

Wind speed characteristics

Rayleign
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4.3 Noise Modeling and Stochastic Differential Equations Formulation

4.3.1 SDE of the power system incorporating SCIG wind turbines

From power system equation in Section 4.1, if we apply stochastic part ( 1+y W ,

W is white noise, j%, is noise intensity = standard deviation / mean value) into mechanical

wind power (Pmyw), we will get stochastic differential equations as follows
) 1
yW:M_( mw (1+;/WW) [ZW) Eq- 4-177

w

1 1 .
) =— (P —P Y\+—P v W Eq. 4-178
yw M ( mw ew)+M mwj/w q

w w

If we use noise scaling factor (&) for the above equation as:

. V4 ]/ I Tmw
& =inf = >0 and /¢, Eq. 4-179
\/—1 {M 2P g } A 2P¢,
Where w is wind power bus = 1, ... , g. f=D,/M, is damping coefficient which is the

same for all generators and is used to rescale intensity of noise.
Since D of SCIG is very small as compared to the synchronous generator, the
parameter « 1s presented here to scale D of SCIG. Therefore, we will get the standard form

of the stochastic differential equation of SCIG as:

J =—Pay, +ML(P P )42l Eq. 4-180

w

From Egs. 4-131 — 4-138, if wind power is applied on one bus (bus w=2), the

matrix form of the state space equation, including noise term, is represented as follows:

i Y=V 1
pvy
1=
2P,R, (y2 ) * _
_‘xl_ 0 0
X 1 0
Xj _Z(B4+Pe4) Y3 0
d|x | 1 0 |aw Eq. 4-181
@l x| —Z(Pzﬁpgs)—yz +42p¢, o Iar
Y 0
- —P
y2 ﬂyl Ml( ml el) \/:ﬂ
1
) pay, v (PP -0
2
1
By, +V(Bn3 _Pe3)
L 3 a
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Or
dx = f(x)dr+g(x)dw Eq. 4-182
If we define ¢, (X,y3)=ci(P,k +P,)+y,and ¢, (X)= ML(PW—PG,.).Then
k i
_x1_ i =W |
)2?2 y;_yS
%, 0
X, ~4.(X.03) - Eq. 4-183
= ’ +205,0W ’
Xs _¢15(X y3) Fal,
.).}1 _IByl ¢m6( )
0 —poay, - ¢m7(X)
_yS_ _IByS ¢m8( ) i

2

Where y, =a(y,-1) , a 222 , and Q,, is m+n x | matrix with q71=\/g .

4.3.2 SDE of the power system incorporating DFIG wind turbines
4.3.2.1 White noise model

From the state space equation in Section 2.1, if we apply stochastic part ( 1+a W ,

W is white noise, a,, is noise intensity which is the standard deviation divided by mean
value) into mechanical wind power (Pny), we will get stochastic differential equations [74]

as follows

(B (1+a07)-P,) Eq. 4-184

(P, —P )+%P a W Eq. 4-185

P
v = ;\"}aw = J2pe ¢ Eq. 4-186

) P a
g, =inf { —"==a, >0 £, _fw Eq. 4-187
M2 and 255,

Where ¢, is the noise scaling factor of wind power bus which has the lowest value and &,

is the noise scaling factor of wind power bus w. £ is a parameter to rescale the intensity of

noise for mathematical convenience.
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Furthermore, when the load fluctuation is represented, the stochastic differential
equation of the dynamic load is:
. 1 ,-= = 1 .
%, =——(B,+B,) - oy, +—a, W Eq. 4-188
c

Cr 3

1
7w =—0o by =\2P¢,¢, Eq. 4-189
c

k
b )
ak>0} NP Eq. 4-190

—infl %lu
\/7 " {%x/i 2Py

Where ¢ is the noise scaling factor of load which has lowest value and & is the noise
scaling factor of load bus «.
Therefore, the matrix form of stochastic differential equations will become the

dynamic perturbed system in a matrix form as follows:

[ x, ] @, (¥, =) | [0 ]
d X, a)o(yw_yo)"'¢a{f(vax) 0 dw
—|x |= , = 4
v X (/)k(V x) + 7 a Eq. 4-191
Vi 0, (V.x)- B, 0
_yw_ i ¢w (V, X) | _j/W_

(/)dj.(V,x):a)o de —k,V, Sm(k (xw _xmf)-'_ca)

1
Py (V’X) = __(Plk +Pek)_a)oy0
o Eq. 4-192
?; (V’X) :ﬁ(Pmi _Rn‘)

Pu (V’X) = ML(ﬁmW _EW)

where fi = Di/M; . The above equation can be represented in the standard stochastic

differential equation as:
dx = f(x)dr+g(x)dw Eq. 4-193
Where f'is a nonlinear drift function, the matrix g is the diffusion function, and matrix x is
the state variable matrix.
4.3.2.2 Colored noise model
The colored noise represents the normal distribution signal which has limited
bandwidth. From the state space equation in Section 4.1, if we apply the stochastic part into

the mechanical wind power (Pnw), we will get stochastic differential equations [74] as

follows:



189

BP,=P, (l+ayp,) Eq. 4-194

pv, =-w v +r.v pW Eq. 4-195

Where Py, = aPnsL, Ly, represents colored noise applying to wind power, a,, and i, are
noise intensity (the standard deviation divided by mean value) and bandwidth of low
frequency component of wind power. vy, is scaling factor of wind power noise which is

formulated using the method in [11] as follows:

P
v = M;“W = J2p¢ ¢ Eq. 4-196

Pmsaw
aw>0} ond ﬁz— Eq. 4-197

P «a
—infd—m%
| Ve

Where &, is the noise scaling factor of the wind power bus that has the lowest value and &,

is the noise scaling factor of wind power bus w. £ is a parameter to rescale the intensity of
noise for mathematical convenient.
For power load, when the load fluctuation is represented, the stochastic differential

equation of dynamic load is

1, - = 1 =
px, = ——(B +P )—a)oy0 +—PB, a0, Eq. 4-198
Cr Cr
Uy =W, 0, + 1, bW Eq. 4-199

Where Pik (1- oxvk) 1s stochastic power load, vk represents colored noise applying to power
load, ax and y; are noise intensity and bandwidth of power load, yx is scaling factor of

power load which is formulated using the method in [11] as follows:

P
y, =% = Be & Eq. 4-200

Cr

(94
ol o e

Where g is the noise scaling factor of the load bus that has the lowest value and & is the

noise scaling factor of load bus k. S is a parameter to rescale the intensity of noise for
mathematical convenient.

Furthermore, it is assumed that

Jeué, P, =
]/wk = 7_” = At =—== aW Ck = PM’/m aWCk Eq 4-202
yk \/g]kgk 131 Mw akMW
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The system equations will become the dynamic perturbed system in a matrix form

as follows:
1 @iw) ] 1 oo
X, Wy (ywv_y0)+¢df (V,X) 0
A ®, (V,x)+}/kuk 0 AW
E Yi | = o, (V,X)—ﬁiyi + 7 0 ? Eq. 4-203
yw ¢w (V’ X) + 7kywkuw 0
UW —(//WUW 7/ wkvlw
_Uk | L _l//kuk i L l//k n
0 (Vox) =7, T sin(r, (.5, )+,
O (VBX):__<Ek+Ek) DYy
Cr Eq. 4-204

where fi = Di/M; . The above equation can be represented in the standard stochastic
differential equation as

pX=1(X,t)+g(X,t)pW ,x(t,)=x, ,t>1 Eq. 4-205

where f(X,t) is a nonlinear drift function, g(X.t) is a diffusion function in matrix form.

4.3.3 SDE of the power system incorporating DFIG wind turbines for voltage
stability analysis

From the state space equation in Section 2.1, if we apply the stochastic part into the

mechanical wind power (Ppnyw), we will get stochastic differential equations [74] as follows:
P, =P (1+a,u,) Eq. 4-206
pv, =-w v +r.w pW Eq. 4-207
Where Py, = aPnsL, Ly, represents colored noise applying to wind power, a,, and i, are
noise intensity (the standard deviation divided by mean value) and bandwidth of low

frequency component of wind power. vy, is scaling factor of wind power noise which is

formulated using the method in [11] as follows:

yw = % = V 2IB‘C"IW‘C"W Eq' 4-208

w

. P a, P,
\/a =inf {m a, > O} and \/g = M/L—\/% Eq 4-209
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Where g, is the noise scaling factor of wind power bus which has lowest value and ¢, is
the noise scaling factor of wind power bus w. £ is a parameter to rescale the intensity of
noise for mathematical convenience.

For the active power load, when the load fluctuation is represented, the stochastic

differential equation of the dynamic load is:

1 - - 1 =
px, = __(Ek +Pek)_w0y0 +—hFa,0, Eq. 4-210
& C,
POy =W U ¥V W PW Eq. 4-211

Where Py (1- apopi) 1s stochastic power load, vy represents colored noise applying to
power load, a,x and y,; are noise intensity and bandwidth of power load, yy« is scaling
factor of power load which is formulated using the method in [11] as follows:

P

a
Vo =—— = 2fe, &, Eq. 4-212

Gk

@:inf{c;% Ay > } and F ckm

Where g is the noise scaling factor of the load bus that has the lowest value and & is the

Eq. 4-213

noise scaling factor of load bus k. f is a parameter to rescale the intensity of noise for
mathematical convenience.
For reactive power load, when the load fluctuation is represented, the stochastic

differential equation of dynamic load is:
ka:(ika)il(_Qk(l_aquq )+Qek) ( sz Q ) /17«_ sz A Eq 4-214

POy =Yy + YW g PW Eq. 4-215
Where Qi (1- aqq) 1s stochastic reactive power load, vg represents colored noise

applying to O, ag and y; are noise intensity and bandwidth of reactive power load, yq is

scaling factor of power load using the method in [11] as follows:

0.«
Yoo = # =256, Eq. 4-216
k" k

Qlk qk
Jeu Eq. 4-217
o~ } and V¥ = 7 iz

Furthermore, it is assumed that
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7/W _ \Iglwgw

P _
]/wpk = - = _Wmaw Ck = Pw,’m aWCk Eq 4-218
ypk \/glpkgpk Plkapk Mw apka
N 0.« .c _ a,c
Yo = Yok _ NGk _ Oy s _ 0! aCr Eq. 4-219

== = U
Y pi Epk€ pi B AV, AV,

The system equations will become the dynamic perturbed system in a matrix form

as follows:
[ e ]
x, @y (¥, = 20)+ @y (V.X) 0
Xy ¢xk (V9X)+7/pkupk 0
d Vi (p[(V’X)_IBiyi 0 dw
- Iy/w =l o, (VoX) 47700 |7 8 o Eq. 4-220
k Dy (V’X)+7/qkuqk
UW —l// v 7/wpkWW
Zpk _l// pk Upk 7/ ka
| Yak | i l//qkuqk | L qpkl//qk_
¢df (V, X) _a)O kdIZq _kh_.s3 Sin(ka ('xw _'xref)+ca)
1 - -
Do (V,X) = _C_(Plk +Pek)_a)oyo
3
1 ,—  —
. =—(P.—P, Eq. 4-221
o,(V.x) 7 (B, -P,) q
1 -  —
=—-1(P_—P
¢W (V,X) MW( mw ew)
1 _
¢vk(V’X):/,L = (_ lk+Qek)
"k

where fi = Di/M; . The above equation can be represented in the standard stochastic

differential equation as:
pPX=f(X,t)+g(X.t) pW ,x(t,)=x, ,>¢, Eq. 4-222

where f(X,t) is a nonlinear drift function, g(X.t) is a diffusion function in matrix form.

4.4 Well-defined Energy Function Formulation

4.4.1 Well-defined energy function preparation
The stochastic stability index is developed for the study of the impact of wind

power on the power system stability. Energy function method, basing on Lyapunov’s
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theory, is used to determine the region of attraction of stable equilibrium points and the
critical values which beyond these values, system become unstable.

The cumulative effect of continuous small disturbances on the power system (such
as load and wind power) can finally make the system reach the critical values and become
unstable. An important step for energy function construction is to ensure that this function
is a type of Lyapunov function. If then, this is called well-defined energy function which
the theory of system stability of Lyapunov can be described. However, since now, there is
no complete or exact solution of energy function. Carefully checking the existence of an
energy function ( W(x;) ) should be considered by using the following conditions [9][30].

C.1 U(x,)=0 when operating points are the stable equilibrium points ( x; = x; )
C.2 U(x,)<0 when trajectories of operating points are within the region of

attraction and asymptotically moving to equilibrium points

C.3 U(x,)1s bounded, which means x, is also bounded.

There are two methods to construct an energy function: the two-step procedure and
the first-integral method [30]. This thesis uses well-known first integral method to
construct the energy function.

To construct a well-defined energy function of the induction generator, a new
method was developed in this study.

The well-defined energy function can start from the power balance equations of the
power system without loss (neglect conductance terms). These equations consist of the
power flow, load, and generation terms. The generation terms can be separated to be
generation from synchronous generator and induction generator.

4.4.1.1 Energy function of synchronous generator

For synchronous generators, if the reference bus is an infinite bus (y; = 0), the terms

of power (from equation of motion) will be integrated to be the energy balance as follows:
My ,=P,-P,-Dy, Eq. 4-223
multiply by y., M. p,y,=P,y,—P,y,— Dy} Eq. 4-224

Replace y, =, /w, + y, into the right side of the above equation except for the last
term yields:
oM, 3.y, —B,% + P, = _a)oD;yiz T 0, (F - Fe:) Eq 4-225

mi”vi ei”’i mi

The electrical power of a synchronous generator can be stated as follows
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P, =V V B sin (x,—x,) Eq. 4-226
j=1

Placing Eq. 4-226 into Eq. 4-225, and summing all the machines, we will get
m—p mp _ mepon mp mp m—p
> oMyy,— Y P+ Y D VY Bsin(x,—x, )% == @Dy + @, [Z P, - ZPE,}Eq. 4-227
i1 i=1 =1 j=1 i=1 i=1 i=1
4.4.1.2 Energy function of induction generator

For induction generator, the speed of the rotor is faster than the synchronous speed,
which is called the slip. If the slip is constant, the rotor angle increases continuously with a
fixed rate. Therefore, the rotor angle is generally not defined for induction generator.

Since the torque-slip characteristics of induction generator is important for the
power and energy balance, the speed of rotor (and/or slip) should be state variables for the
energy function instead of the angle. Consequently, the power flow equations cannot be
included in the swing equations as the same with the case of synchronous generator and the
energy function of power flow equations at induction generator bus is also different. This
study proposes a new method to construct energy function of induction generator as
follows:

1) For SCIG with colored noise, the swing equation of the induction
generator is represented in the form

M.y, =P, (1+ap,)-P Eq. 4-228

mw wow ew

multiply above equation by i,

x, =y, —kV,, sin(kx, +c,)— o, Eq. 4-229

Replace above x, into the term on the left of Eq. 4-229, yields

M, y,op, —M y.kV, sin(kx, +c,)-P, (1+aw, )%, +P.%, =oyM, 5,

mw wow ew " w

Replace My, on the right with Pp,,, — P.,, and multiplying above equation by d¢

we will have

kY, sin(kx,+c,)-P, (1+a,p, )%, +P,.%, =0y, (13 —EW) Eq. 4-230

sw mw wow ew”w mw

Mwyww())')w - Mw.)./v

m

The electrical power of induction generator can be stated as follows
Pew = sz I/ijj sin (.xw - xj ) Eq 4-231
J=l

Replace Eq. 4-231 into Eq. 4-230, and summing all machines, we will get
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y M.y o, - y M y kY., s1n kx +c 1+awuu X,
0

w=m w=m w=m

—p+l —p+l -p+l Eq. 4'232
+Z ZV VBW/ Sln(x — X ))( woyo Z mw Z

w=m j=1 w=m

—p+l —p+l —p+1

For white noise model, the vy, is zero, the above equation becomes

m n

y M.y o, - y M y.kV., sm k,x, +c P x, + V.,V.B, sin|x, —x |,
J j J

w=m w=m w=m w=m j=1

-p+l —-p+l —-p+l —-p+l Eq. 4_233
_a)OyO z mw z ew

w=m w=m

-p+l -p+l

2) For DFIG with colored noise, the swing equation of the induction
generator is represented in the form
M.y, =P, (1+au,)-P Eq. 4-234

wow ew

multiplying above equation by i and sum all terms of induction machines to get

M x.y, =P (l+au, ), -P X, Eq. 4-235

%, = @y, oy k7, sin(k, (v, =x., )+, ) +o k.7, Eq. 4-236
Replace above x, into the term on the left of Eq. 4-235, yields

Mwyw a ().).}w Mwyw sw E xw xre C a mw ¢ w L w ew”w wyMLL d” r a ()yO w.).}w
of rq
Eq. 4'23 ;

Replace My, on the right with P, — Py we will have

Mwywwoyw - wywk sz SHI (k ( w xref ) + ca) mw (1 + amuw )x + I)ewxu + Mw).}wwo kdI7rq = waO (Enw - EW)
Eq. 4-238

7, (%o 2) = =0, (a7, o8 (k, (3, =%, )+ €, )+ ka7, )+ Kok, (3, 1) =B,
P, ~k,P, [(1+y,)

Where k, =L / (Iz SZW) 1s a constant and By, is the susceptance including transient

reactance of stator and susceptance connecting between terminal of stator and the reference
bus (in this case is load bus).

The electrical power of induction generator can be stated as follows

P, =V ZVB s1n(x - X, ) Eq. 4-239
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Replace Eq. 4-239 into Eq. 4-238, and summing all machines, we will get

i M.y o, - Zm: M y kY., sm(k ( " x,,ef) ) z - 1+0(anw .

w=m w=m w=m

" " " Eq. 4-240
m m —
+Z ZV VBW/ 51n<xw _x/)xw + Z M\Aﬂ)o derq a)()y() z mw z ew
w=m j=1 w=m w=m w=m
—-p+l —-p+l —-p+l —-p+l

For white noise model, the vy, is zero, the above equation becomes

i M.y, o, - Zm: M.,y.kV.,, sin(ka (xw - xref) ) z mw Xy

w=m w=m w=m
o “p Eq. 4-241
m_n m
+Z ZVVBW Sln(‘x —X; )‘X ZMwa)Okd yw a)OyO z mw z ew
w=m j=1
—-p+l 7p+1 7p+1 7p+1

4.4.1.3 Energy function of load |[8]
1) For load equations with colored noise
The active power load is

c %, =—P, (1 —a,0, )_ P, —c,w,y, formloadbus Eq. 4-242

multiply by %, and sum all terms of load and rearrange to yields

n

Y B(l-au, )5+ Y Puk, ==Y i — Y oyt EQ4-243

k=m+1 k=m+1 k=m+1 k=m+1
n+m
Where P, = Z V.V.B, sin(xk —X j) , k 1s load bus number
j=l

Rearrange above equation

Z By (l_apkupk)xk+ Z ZVijBkj Sin<xk_xj)xk =" Z ¢ — oy, Z ¢, Eq.4-244

k=m+1 k=m+1 j=1 k=m+1 k=m+1

The power load Py can be modeled depending on voltage. For the constant

impedance load, Py = Piow(Vi)*.

Y PR (1=a0, )%+ Y Y ViV,B,sin(x, —x; )%,
k=mtl k=mtl j=1 Eq. 4-245

n n
_ 2 .
==Y Xy, Y, oX

k=m+1 k=m+1

For white noise model, the vy is zero, above equation become

n

D, Boli%+ i inVjBkj sin (v, =2, ) =~ i‘, ¢ — oy, i ¢x,  Eq.4-246

k=m+1 k=m+1 j=1 k=m+1 k=m+1
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2) The voltage dynamic of load with colored noise

It can be formulated as follows:
A7 - 7 )71 (—Qk (1=, )+ Qek) for m load bus Eq. 4-247
multiply by Z and sum all terms of load and rearrange to yields
Z sz (1 - aquqk)Vk_lI?k - Z szVlBkl Cos(xk Y ) Vk_lﬁk == Z /kakz Eq. 4-248
k=m+1 k=m+1 I=1 k=m+1
O is modeled depending on voltage. For the constant impedance load, QIk = Qu(V4)*.
For white noise model, the vy is zero, above equation become
Z Qlka_lI?k - Z ZVleBkl Cos(xk _xl)Vk_lﬁk == Z /1/{22 Eq. 4-249
k=m+1 k=m+1 =1 k=m+1
4.4.1.4 Colored noise parameters
If the colored noise model is applied to both wind power and load, its derivative

equations are

v, =-Y., Eq. 4-250
Oy =W 40 Eq. 4-251
Uy =W Uy Eq. 4-252

multiplying by P

mw

a,v EOkapkupk and Q)kaqkuqk to Egs. 4-250 — 4-252, respectively,

w

rearranging to yield:

_mwawuwow = _pmwawl//wuli Eq 4-253
B0, 0,0, = _BOkapkkaU;k Eq. 4-254
QOkaququqk = _QOkaqk'//qu;k Eq. 4-255

4.4.2 Well-defined energy function of the power system incorporating SCIG
wind turbines
From Section 4.4.1, the involved equations are

4.4.2.1 Energy function and its derivative with white noise model

Combining and rearranging the equations in Section 4.4.1, yields



m—p m—p

z a)OM ylyl Z Pmlxl + S

+ Z Mwywwo}.}w

m—p+1

m
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p n

i=l j=1

l.V/.Bg./. sin (x,. - X, )x,.

Z M,y kV, sin(k,x, +c,)
- m—pei

Z > X, + Z ZV VBWsm(x —x)

w= w=
m—p+1 m— p+1

n n+m

+ZPZ,ka+ Z ZVVBk]sm( )x

k=m+1 k=m+1 j=1

m—p n
== Z CAxk za)oDyl ""a)o)’l(z mi Z‘Dei_ Z ¢ X,
im1 -

k=m+1

Eq. 4-256

J

When expressing the above equation in the form of differential equation (first

integral method), we will get an energy function derivation:

WV = i ijV s1n( ( X, xre_f.)+ca)dyw

[ m—p 1 m—
ZEC[)OMI_)/IZ ml z+ Z lk‘xk
i=l = k=m+1

d
E +Z a)o po
7p+1 —p+l Yow
—ni: Zn: VV.B; cos(xl. —xj)+K

L i=l j=i+l

m-p
Z_Za)ODiyl Z Ckxk T, [z

i=1

k=m+1

ZPx

—p+1

Z ey

k=m+1

|

Eq. 4-257

The term in the bracket is the energy function of the power system (U) where a

constant K is defined in which U will equal zero at the equilibrium point (y,

x; = x;), therefore:
"’Z’f’ 1
P 2

m

7}7+1

i=1 j=i+l

_z a)OMw

z"’”’

w=m
—-p+l

+Z}“MkV

w=m
7p+1)0

+"Z_3 i ViV,B; cos(xf —xjﬁ)

Z mw w

n
Ay
Z Fyx;

k=m+1

sin (ku (xw =X, ) +

c, )J dy,

=y;and

Eq. 4-258

The integral terms in the above equations can be approximated using the trapezoidal

rule. The term with y;’ is close to zero and can be neglected. Therefore, the energy function
(U) of the power system including SCIG wind turbines with white noise can be stated as

follows:
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U =%mfwoM,-yf +% i oM., (v, —yi?)—nfﬁ,,-(x,- =
i=1 w=m—p+l i=1
_wwz—pﬂ e (xw _x>w)+k:2m+1 i (Xk —x;‘.) Eq. 4-259
- Z Mw . (sin(ka (xW —x,,qf.)+ca)+sin(ka (xi —xre/.)+ca ))(yw —yfv)
—p+1
—’i i IZVE.[cos(x,. —xj)—cos(x,tY —xj)]
i=l j=i+l

The derivation of the energy function can be stated as

dUu & O — < .
E = _Z wODiy Z Ckxk + @Y, [Z i ZPe/ - Z ck'ka Eq. 4-260
P =

k=m+1 k=m+1
The last term on the right of Eq. 4-260 is diminished as proven by [9]. The

derivation of the energy function is

dU &
E Z @,D,y} ~ Z ¢ Eq. 4-261
i=1 k=m+1

4.4.3 Well-defined energy function of the power system incorporating DFIG
wind turbines
From Section 4.4.1, the involved equations are

4.4.3.1 Energy function and its derivative for colored noise model

Combining and rearranging the equations in Section 4.4.1 to yield:

m—p m-=p n n
Za)My,y, Z - ,+ZZVVBU sm(x —X, )x + Z B,x, — Z B,au.x,
i=l j=1 k=m+1 k=m+1

n n+m

+ Z ZVijBkjsin(xk—xj)kar iMwywa)wa—iMwy KV, sm(k (xw n/)+c )

k=m+1 j=1
—-p+l —-p+l

m_ n
Z mw w Z meawuwxw + Z Z VWV BW] Sln(xw _xj )‘xW

w=m w=m j=1
—p+1 —p+l —p+l
m _ mo n_oo_
+ z M wa)O kd I/rq Yw ™ z P, mwawaUw - Z P//( akUkUk
w=m w=m k=m+1
-p+l —-p+l
m—p m-p m-p m
= _z wODiyz Z ckxk + a)OyO Z mi Z + a)OyO Z mw Z })ew
i=1 k=m+1 w=m w=m
—p+l —p+l
n m 1 _ ) n 1 _ )
—Wy Yy Z CieXy — Z p,.a,0, - Z Py 0,
k=m+1 w=m ¥ k=m+1 ¥k
i Eq. 4-262

Rearranging the above equation, we will get



200

m—p
Z a)OM y y Z mi 1 X+ Z })lkxk Z mw w + Z lkakukxk Z meawuwxw
k=m+1 w=m k=m+1 w=m
—p+l -p+l
m _
+ZMwywa)0yw Zka I/vw SIn(k ( w xref)+ca)yw+ ZMwa)OkdI/rqyw
w=m w=m w=m
—p+l -p+l —p+l
n—-1 n
+Z Z VleBl/ Sln(xi —-X; ) Z mw w wa + Z lkakUkUk
i=l j=i+l w=m k=m+1
—p+l
m—p ) n ) 1 n 1 _ ) m m n
= _Z a)ODiyi - Z ckxk - meauuw - Z _})lkakuk +a)0y0 ZRm’ _Zl)e/ - Z ckxk
i=1 k=m-+1 w=m ¥\, k=m+1 W i=1 j=1 k=m+1
—p+l
Eq. 4-263

When expressing the above equations in the form of differential equations (first

integral method), we will get the energy function derivation

m—p 1
Z ZwoMy z miXi T Z Fyx; - szwxw_ Z _[ Faudy, - z IPrnwavawdx
i=1 k=m+1 Y;_)Tl k=m+1 x,, w;_)ml Youw
d m , ,,, Yy m Y
E +Z Ewonyw_ I M KV, sm(k ( X, mf)+c )dy + z j Mwa)okd dyw
El;:_"l _Wp:_’il Yow Mpml Yow
—’i Zn: VV.B, cos(xl. —x.)+ i lpmwawui_ + i lﬁkaku,f +K
i=l j=i+l Y ! w:m1 2 k=m+1 2
L -p+
=] 1 P <
= _Z a)oD;y, z Ckxk —meawl)i_ - Z _Plkakulf + @), [Z Z Ckka
i=1 k=m+1 Lv;:nl w k=m+1 ¥ | i=l j=1 k=m+1
Eq. 4-264
[m—p 1 m—p
ZEQ)OMiyL Zijmtxt - mw w+ z Ek‘xk z J. lkakukd’x z J‘meawuudx
i=l k=m+1 k=m+1 x,, w=m x,
7p+| —p+l
+Z a)OMHy Zm: I[M k V\wSln(k ( X, x,ef)+caﬂdyw
d —p+1 RO
dr m_ Yy
+ Z I |:Mwa)0 kd(kPkap (y ) k k Pew (1+yw) yw (kc sw COS(k ( w xref) )+ kcle)):| dyw
Epml Yow
—2 Z Vl.VjBl.j cos(xl. —xj)+ i% > WO Z 4 Z ,kakuk +K
| i=l j=i+l ‘—t;Tl k= m+l
=_r§ a)oDzy[Z Z Ckxk 1 mea‘w’)»2 - i L]_)zkakokz T+ @, [i})mi —iP i ckxk]
i=1 k=m+1 Xv;:n] w k=m+1 ¥ | i=1 Jj=1 k=m+1

Eq. 4-265
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The terms in the brackets is the energy function of the power system (U) where a

constant K is defined in which U will equal to zero at equilibrium point (y,

=y;and
x; = x;), therefore
_,g%a)OMiyéz—i_zp x + Z mwXw Z P/kxk+ Z J. ”‘akukdx + z .I-R’”‘awu”dx
i=1 YPTI k=m+1 k=m+1 Yok 2[,:’.1] Xow
_i%% iy z J.[M kY., sm(k ( X, x,.g,-)+caﬂdyw
K=1 Spa

-p+l

—Z I {M a)okd( ( ” (yw +1) ~k, P, (1+yw)71)—yw(kezl7w cos(ka (xw—xm/.)+c )+k V. ))}
MEECE

cl
+Z Z VV/BU cos(x -X, )+ i

15 52 15 s2
E meawuw + z N Plk ak Uk
i=1 j=i+l w=m

dy,

Eq. 4-266
If vy, does not relate to xy, the following solution is acceptable
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_Zj .00 dx, + Zj .o, 0 dx, — Z'[Pa dx+ZIPaudx

el —P+1 o —p+1 Tow
_Zm: yJ‘ _kamesin(k (x -X /,)+c )}dyw+ Z J[M kV. sm(k (xw—xré_,f)+ca)}dyw
e MWELE

+y j M, kd(kpkop (3, +1) =k, B, (14 9,) " - yw(kjm cos(k, (x, —xref)+ca)+kcll7w))

_Z j _Mwa)o kd(kP (kop (yw + 1)2 _kmﬁew (1 +y, )_1 ) -, (kczlzw cos(ka (xw —xref)+ c, ) +kcll7w))

W=mn y,,, =

:—kE ]J.[lkakukdx E J. Lo, dx — E J[M k., sm(k (xw—xref)+ca)}dyw
m+ —p+l o pﬂyf
+ Em J‘:(Mwa’okdkpkop (Y +1)2)dyw - E IMWCUOkdkPkm_ew d((;;W:ll))
et = F, -

—Z '[Mmp)okdk 7.3,dv, —Z jM,kadk 7, cos(k, (x,—x, )+¢, ) v,dy,

w= S
—p+l e p+l Yw

- Z P.a,v, (xk —x,i)— z P.o.v, (x , —va)

k=m+1
s K
'xw - xrgf + Ca Yy w Y w

—p+1

—

—Z —M KV, (sm(k (xw—xref)+ca)+sin(ka
wn 2

w=m =,
—pl -p+

—Z Mwﬂ)Okde(y yw)

w=m
—p+l

5 bt fos(k () vl 5 )

—p+l

Eq. 4-267

The integral terms in the above equation can be approximated using the trapezoidal

rule. The term with y;® is close to zero and can be neglected. Therefore, the energy function
(U) of the power system including DFIG wind turbines with colored noise can be stated as

follows:

i o) i gl
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U= lz[f oMy} +%mﬁ @M, (5, —yf)—gaf (% —xf)‘wziﬂ P, ‘xi-)J’k; ACREY
_z M V. (sm(k ( X, xref)+ca)+sin(ka(xj,—xref)+ca))(yn,—yfv)
2
# 3 3k, (1) (0341 )
-
_E M,k kpk, £(y_+1)+(y§il)](yw—yi)
—% 2M ook, V(2 - i)
e
_:in %anokdkczzw(cos(k (x,—x.,)+e, )yw+cos(ku (x;j,—quf.)+ca)yj,)(yw—yj.)
e
—Z i. 77,8, [ cos(x,~x,) ~cos(x’ —x})]
g
- v; P auv, (xw —xj,)—kzzn:m] P.a,v, (xk —x;z)
o
SR )t B e (o)

The derivation of the energy function can be stated as:

dU m—p n . moo1 ) 1 = m.o m n
E == a)ODiyiz - Z ckxlf - Z _meawui - Z _Plkakuk yO {ZPH’U Z g ]
i=1 1

k=m+1 w=m w k=m+1 ¥

Eq. 4-269
The last term on the right of Eq. 4-269 is diminished as proven by [9] where j

denotes both synchronous and induction generators. The derivation of the energy function

1S
dU & ) T T
b Dy’ - Z X — Z meawuj,_ > —P a0 Eq. 4-270
dt =1 k=m+1 w=m ¥ w k=m+1 ¥ |
-p+l

4.4.3.2 Energy function and its derivative for the white noise model
For the white noise model, all the terms with v are zero, the well-defined energy

function becomes:
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U=oSaMyi+s 3 oM, (5E-32)- 2 -x)- ¥ Buln-x)+ 3 Aln-x)
i=1 w=m-p+1 i=1 w=m—p+1 k=m+1

— i %ka;,Vm (sin(ka (xw —xmf)+ c, ) + sin(ku (va —xref)+ c, ))(yw —yfv)

w=m
—p+l

+ ﬁ:%MMwokdkpkop ((yw+1)3_<y;+1) ) Z M @,k ok [(yPH)JF(yP;l)}(J’W yj,)

—p+l —p+l

_ i %Mwﬂ’o kdkczlzw (cos(ka (xw =X, ) +c, )yw +cos (ka (x; =Xy ) +c, )yj,)(yw - yfv)

w=m

—p+l
n-l n
-y 2M ki 7, (v —yi?)—zl ZlKI/jBU [cos (v, ~x,) ~cos(x’ —x})]
w=m i=l j=i+
—p+l

Eq. 4-271

The derivation of energy for the white noise model can be stated as

d_U:_"’i" Dy’ - Z s Eq. 4-272
d¢ p flamtt
4.4.4 Well-defined energy function of the power system incorporating DFIG
wind turbines for voltage stability analysis
From Section 4.4.1, the equations involved in voltage stability analysis are:
4.4.4.1 Energy function and its derivative for voltage stability analysis
applying colored noise

Combining and rearranging the equations in Section 4.4.1, we will get

mi{: a)OMiyiyi - mif Pmixi - i }_)mw (1 +a,v, ) xw
i=1 i=l

—p+l
n n__ I
2 .
+ Z FoVy (l_apkupk)xk+ Z O (l_aqkuqk)Vka
k=m+1 k=m+1
m m _
+Z My, o, Z M kV, s1n(k (xw —xmf)Jrca)yw + z Mwa)oderq Vo
w=m w=m
—p+l —p+l —p+l
n-1 n n n.o_ .
2 2V Bysin(x —x, ) (5, -5, )= 30 > ViBycos(x, —x,);
i=l j=i+l k=m+1 [=1
+ZP al)l)-}-ZP,OkOlpkUk +ZQOk0{UU
w=m k=m+1 k=m+1
—-p+l
m—p 2 ’71 _ 5 n 1 _ 5
:_Za)ODiyl Z Ckxk Z 2’ V meawuw_ Z P/Okapkupk
i=l k=m+1 k=m+1 w=m ¥ k=m+1¥ pk

-p+l

-y L0, a0y, +woyo[2 Z Z ckxkj Eq. 4-273
=1

k=m-+1 qk k=m+1
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If given

Z z V.V.B,sin(x, —x,)(% - ;)

i=l j=i+l
m=1 m
F,=F,+F,+F.=Y Y VVB,sin(x -x)(f -x,)
o Eq. 4-274
+z VV,.B,sin(x, —x, )(% —%,)
i=1 k=m+1
n—1 n
+ V.V,B, sin( (%, —%,)
k=m+11=k+1

F, = Z ZVBk, cos(x, xl)l7k

k=m+1 [=1

n

m—1 .
F FzB+F2C+F20+FzE Z Z VBikCOS(xi_xk)Vk

A Eq. 4-275
+ > . ViBycos(x, —x, )V,
k=m+11=k+1
n -1 . n .
+ VB cos(x, —x,)V, + Z B, V.V,
I=m+2 k=m+1 k=m+1
d m-1 n
FsB = FlB +F23 - 5 VinBik cos(xl _xk)
i=1 k=m+1
m-1 n
> > VVB,sin(x,—x,)(% -%)| Eq.4-276
i=1 k=m+1
- m=1 n_ .
+ VB, cos(x; —x, )V,
i=1 k=m+1
d n—l n

m+1 I=k+1 Eq 4-277
1 n

Therefore
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Z ZVszz cos(xk —x,)l7k
) k=m+1 [=1

n-1 n

—Z z VV,B, sm(x —X. )()'cl.—fcj)

i=l j=i+l
__(FzB"'cm"'FzD"'FzE_F;A_EB_Ec) Eq. 4-278
__(F'33+F'30+F25 _FIA)

When expressing the above equations in the form of differential equations (first

integral method), we will get the energy function derivation

’i’szyl mel'xl_ mw1+ z QOkV2+Z Q)Myw
i=l )= k= m+l w=m
—p+l —p+1

/"w_ n I7/<_ _
- Pmuawuwdx‘ + z J‘IDIOkV 1 apkupk)dxk_ Z IQOkaququde;c

k=m+1 ¢ k=m+1 ¢

M=

w=,

3
o

1

d| i }_r kabew sin (ka (xw T Xr ) te, ) dyw + i ‘:r MWCUO kdﬁrq dyw
0

- w=m w=m ()
dt —-p+l —p+l
m—1 _ n—1 n.o_ _
- VV,Bycos(x,—x,)~ D, > ViV,Bycos(x, —x)
i=1 k=m+1 k=m+11=k+1
m=1 m —,
—Z VV.B; cos(x -X, ) z Bka
i=l I=i+l k= m+1
m 1 _ ) n 1 )
+ Z _])mwawuw + z PlOk kUpk + Z QOka qu +K
w=m 2 k=m+1 2 k= 1+1
—-p+l B
m—p m n 1 _ E 4_279
_ [/ 2 -2 q-
- _Z a)OD yl Z ck‘xk Z /1 V meawuw - z Eokapkupk
i=1 k=m+1 k=m+1 = w k=m+17¥ pi
—p+1
n m m n
3 Lo van|Sh-SE Y o,
k=m+1 V/q] i=l Jj=1 k=m+1

Where
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Fur |
ZEwOM[y! Z mi l mw w+ z QOkV2+ Z a)O wyw
i=1 EpT] k= m+l EpT]
—ZI P,.a,v,dx, _[P,OkV (l—a Z IQOk AUy v.dv,
Eu;:_nl 0 k=m+1 ¢ k=m+1 ¢
_i I [kame sin(ka (xW re/) )}dyM
=X
m Y
% +ZJ[M a)Okd(kk (v +1) =k, B, ( yw)—yw(k 7, c0s(k, (%, -, ) +c, ) +k, V))}dyw
w=m_ ()
—p+l
m—1 n n—1 n
—Z Z V.V B, cos(x xk) z z VV.B, cos(xk —x,)
i=l k=m+1 k=m+11=k+1
—EiVlV/B cos(x - X, ) Zn: lBkkl7kz
i=1 I=i+l k=m+1 2
m 1 _ n 1 _ n l _
+§ EmeaWuj +k:215P,0kapkuf,k +k§:15aqu0kU;k +K
—p+l
~ ’" = . S|
:_ZwoDiyiz Z ck'xk Z A V2 meawu‘i— Z PlOkap/c z onaqkuqk
i=1 k=m-+1 k=m+1 ‘jp:nl w k=m+1 ¥k k=m+1 ¥k
Ty, [ZPmi _ZPL‘j Z Ckxkj
i=1 j=1 k=m+1

Eq. 4-280
The terms in the brackets are the energy functions of the power system (U) where a

constant K is defined in which U will equal to zero at the equilibrium point (y; = y;and

_ S
x; =x;), therefore
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1 52 <5 s 5 s - 1= 17 s2 Sl 52

_z Ea)OMiyi + Z Pmixi + Z mexw - z EQO/(I/k - Z Ea)OMwyw
i=1 i=1 w=m k=m+1 w=m
—-p+l —-p+l

m X _ no % _ n _ _
+ Z J meawuwdxw - z J.PIOkI/kZ (1 OO )dxk + Z _[ QOkaququdek

3pTl 0 k=m+1 o k=m+1
iy j | Mk, sin(k, (x, =%, ) +<,) [dv,
K={ "'
_ i yj I:Mwa)o kd(kP (kop (yw + 1)2 ~k, P, (1-y, )) -y, (kﬂzlzw cos (ka (xw — X, ) +c, )+ kclz,))} dy,
w=m_ (
—-p+l
+mi1 Zn: VV:B, cos (xf - X ) + S Zn: V:V:B,, cos (x,ﬁ - xf)

i=1 k=m+1 k=m+11=k+1
1 m n 1 =5 m 1 _ _ n 1 _

s s s 52 52 52

+>. > VV,B,cos(x) —x})+ Y 5BV -5 TP Py, U= > —a, 0,05

1
i=1 I=i+1 k=m+1 w=m k=m+1 2 k=m+1
—p+l

Eq. 4-281
The integral terms in the above equation can be approximated using the trapezoidal
rule. The term with y;® is close to zero and can be neglected. Therefore, the energy function

(U) can be stated as follows:
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U=lr§%Mﬁ)’iZ+% i a)OMW(yfv—yiz)— ]_Jm[(x[—xf)— > P, (l+awvw)(xw—va)

w=m-p+1 i=1 w=m-p+1

+z o (72 +722) (1= 0, ) (5 =3 )+ S 20y (1- a0, ) (72 =72

k= m+l k=m+1 2

+ Z ngﬂ)o kdkPkop ((yw +1)3 _(y‘s“ +l)3)

w=m

-p+l
S b o o~ o)
—-p+l
BB
Y —M @,k Kok, M ok k7, (y2 =
WPZTI Do kg {(y +1)+(y +1)J(yw ) %12 WOkd (yw yw)

3 Eht b sk (5,5, e s (5 )32 0 -2)

—p+l
s
+ Z Emeaw (Uw UVL )+ 5 lOkapk (U ) Z QOkaqk ( qk qu )
w=m k=m+1 k= m+1
—p+l

m— n n 1

- Z ViVjBU(cos(xi—xj)—cos(xf—x‘;))— Z B

i=1 j=i+l k=m+1

By (sz - Vksz)

Eq. 4-282
The derivation of the energy function can be stated as
dU ~ ’" 1 = i
., _Z a)ODy - Z Ckxk Z /1 V2 W_meawuw - Z _PZOkapkU;k
k=m+1 k=m+1 vainl w k=m+1 ¥k Eq 4-283
- z QOkaqk e T @Y, [ZP ZP - z ckxk]
k=m+1 k i=1 k=m+1

The last term on the right of Eq. 4-283 is diminished as proven by C.O. Nwankpa
where j denotes both synchronous and induction generators. The derivation of the energy
function is

—p m n 1
ZwODy - Z Ckxk Z /1 V2 W_Rwanu\/\ - Z lOk z QOA
=1

k=m+1 k=m+1 w=m ¥ k=m+1 ¥ k=m+1 k
—p+l

Eq. 4-284
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4.4.5 Existence of Lyapunov function candidate

From Sections 4.4.2 — 4.4.4, three conditions are needed for well-defined energy
function to be suitable for power system stability analysis are

I. U =0 when operating points are at the stable equilibrium points

From Eq. 4-282, if x = x* ,»;=0 and yy, =y, , every term is exactly zero, which is

defined already using K, , Ki; and Kpr. Therefore, energy function is zero (U = 0) when
reach stable equilibrium state.
II. U<0 (negative-definite) when trajectories of operating points are within the

region of attraction and asymptotically move to stable equilibrium points

m—p n ) n . moq n 1 n 1
T 2 _ w2 2 - D 2 - D 2 - Y <2
U= _Z a)ODiyi Z ckxk Z ﬂ’kl/k Z Rnwawuw z PlOkapkUpk z QOkaquqk
i=1 k=m+1 k=m+1 w=m w k=m+1 ¥ k=m+1 ¥

Zp
Eq. 4-285

In normal operations when U is not larger than the critical energy, D; , cx and Py,

are normally positive. Since y’ y. and X, are always greater than or equal to zero,
therefore, the term terms on the right are negative except at the stable equilibrium points

(whichUis zero). Consequently, Uis negative-definite and is satisfied for this case.
Therefore, the energy of this system is always dissipated [8]. The disturbance can cause the
energy of the system to increase which, if not larger than critical energy, the energy will
decrease until reaching zero at steady state condition. However, if energy increases to reach
critical value, sign of D; or ¢k or Ps, can be changed, the energy become increase
continuously which means the system is unstable.

III. U(x,)is bounded which means x, are also bounded.

From the function of U, it always bounded whenever state variables are not
approach to infinity (or U is not larger than critical energy) and vice versa. Since U =0 at
the stable equilibrium points and U <0 for the other operating points, it can be concluded

that the energy of the system is bounded and state variables x, are also bounded [30].

For summary, an energy function (U) of this system, when apply structure-
preserving model by neglecting transferred conductance terms, is an acceptable well-
defined energy function in the sense of Hsiao-Dong Chiang (2011) and can be used for the

voltage stability analysis.
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4.5 Critical Energy Estimation

The critical energy is used in this study to evaluate the limit of the power system to
gain energy when perturbed by any disturbances. For convenience, it can be estimated
using method of M. Ribbens-Pavella and B. Lemal (1976) which requires the
determination of energy function, stable equilibrium points, and unstable equilibrium
points. Energy function can be determined using methods in Section 4.4 . The stable
equilibrium points can be determined using the power system simulation software or by
solving the power flow problems. Basing on power-angle characteristic of generator,
unstable equilibrium points of angle can be approximated using the value +7 - x* where x°
is the stable equilibrium point.

Four cases of approximation of unstable equilibrium points are represented as
follows:

Case 1: For m machines, only one machine is loss of synchronization and its angle
of internal voltage is approximated by 7 - x* where x° is the stable equilibrium point before
unstable. Therefore, Case 1 has totally m sub-cases.

Case 2: For m machines, only one machine is loss of synchronization and its angle
of internal voltage is approximated by -r - x°. Therefore, Case 2 has totally m sub-cases.

Case 3: For m machines, all machines are loss of synchronization and their angles
of internal voltage are approximated by 7 - x°. Therefore, Case 3 has no sub-cases.

Case 4: For m machines, all machines are loss of synchronization and their angles
of internal voltage are approximated by -r - x°. Therefore, Case 4 has no sub-cases.

These unstable equilibrium points are called interested unstable equilibrium points.
When replace these stable equilibrium points and interested unstable equilibrium points of
Case 1-4 into the well-defined energy function, totally 2xm+2 values of energy of the
system will be determined. The lowest energy from 2xm+2 values is used as a critical

energy.

4.6 Eigenvalues Determination

4.6.1 Eigenvalues of single machine power system
The eigenvalue method is the conventional and well-known method for the small
signal stability analysis in power industry. For the system equations in this section, wind

power is modeled using squirrel cage induction generator (SCIG) and doubly-fed induction
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generator (DFIG). The swing equation and voltage behind the transient reactance are
focused regarding the synchronization stability problem.
4.6.1.1 Squirrel cage induction generator (SCIG) wind turbine
To analyze the small signal stability of a SCIG wind turbine, the linearization of the

system equations is formulated as follows:

px, =, (v, - v ) -k, sin(k,x +c,) Eq. 4-286
M,py,=(F,,~F,) Eq. 4-287
P, = Lsin(x',) Eq. 4-288
(X+Xp)
k=(X,-X.)/(T,X,E,) Eq. 4-289
f=te Ltl Eq. 4-290
a)OI/;’ a)O r
X=oL,=0,L+L,) Eq. 4-291
e (7 I
X'=a, (LSS ~ e J Eq. 4-292

Where x/ =x, —x, . » Xref 18 the reference angle. For example, an angle of infinite bus

voltage. In the following details, x/ will be replaced by only x, .

Linearization of Eq. 4-286 and Eq. 4-287 are represented in the form:

dAd;W = 0)Ay, — k7, k, cos(k,x, +c,) Ax, Eq. 4-293
Ay, 1, =  — 1 =

S o~ (AP, —AP )=—AP, —K.Ax, —K, Ay, Eq. 4-294
dt M( mw Lw) M mw N w D yw q

If we represent the above equations in the form of matrix:

X =AX+BU

Al T-K, o Tax, 1707 -
= + AP Eq. 4-295
Ay w _KS _KD Ay w 1/ M

Where Ks is synchronizing power coefficient, and Kp is damping power coefficient of

We will get

induction generator.

©~0  Eq.4-296
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K, =k, k, cos(k,x, +c,) Eq. 4-297

magnitude of damping power coefficient (Kp) and synchronizing power coefficient (Ks).

Eq. 4-296 and Eq. 4-297 can be represented using block diagrams as in the

following figure.

|

=
e
Y | =

S
S

-t}

_KE

Figure 4.30 Block diagram representing state space equation of the SCIG wind turbine

Take Laplace transformation, yields
X(s)=(sI - A)'BU(s) or

{Ax“’(s)}{HKE _ﬂ{ 0 }Aﬁm(s) Eq. 4-298
Ay, () K, s /M
X(s)= 1 oo | 0 p Eq. 4-299
()= s’ +sK, +o K )| -Ks s+K, || I/M (5) 4%

_ 1 o, /M —
X(S)_(S2+SKE+G)OKS {(LHKE)/M} 2 (5) Eq. 4-300

The determinant of matrix (sI — A) can be used to find eigenvalues using the

following equation
det(sI-A)=s"+sK, + 0,K; =0 Eq. 4-301

Eq. 4-301 is called the characteristic equation of this state space equation and can

be represented in the following form
s’ +2lws+w =0 Eq. 4-302

where ¢ is damping ratio and @, is natural frequency.
K Eq. 4-303

o, =, 0o,K, and ¢ =
2w,
20w, ++)(2{w,) 4!
J2eO NGO TR0 g oo Bq 4304

Identify s, s
Y 2
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If§2>l, K, >2am,, therefore s=otw where o=-{w, and a)=a)n\/g”2—1

If £*=1, K, =2aw,, therefore (s—0)’=0 where c=-w, and ®=0
If £*<1, K, <2, therefore s=octjo  where o=-— and w=w,1-
If £*~0, K, <2w,, therefore ~ s=*jo where 0~0 and w=0,

4.6.1.2 Wind turbine with doubly-fed induction generator (DFIG)
To analyze the small signal stability of the DFIG wind turbine, the linearization of

the system equations is represented as follows.

P, =@ (yw _yO) kiV o sm(k X, +¢ )+a)0 derq Eq. 4-305
=(B,,~P,) Eq. 4-306

— v

P, =r=ysin(x, Eq. 4-307
“ (X, +X )Sm( ) q

17”1 = _yW (kCIVW + kaVSw Cos(kax\CV +Ca ))+kP (]_-;P _]_)::/V) Eq~ 4'308
P, =k, P [(1+,) Eq. 4-309
T 2

T;p:knp(l—i_yw Eq' 4_310

and &, =(X,-X,)/(T,X.E,) Eq. 4-311

Eq. 4-312

(= I? 1 L L
kczz o er___m __—_SS_ +_ﬂ
LSS a)?Lm LmX' a) L S

k, ~0.274P, +0.346 and ¢, ~-0.022P, +0.006 Eq. 4-313

Where x! =x, -6

s> Orr 18 the reference angle. For example, an angle of infinite bus

voltage. In the following details, x/ will be replaced by only x, .

Linearization of Eq. 4-305 and Eq. 4-306 are represented in the form

dAx, o, ,
P a)okda——kblfmka cos(kx +c) Ax, +| @, +o,k, ayw Ay, =K, Ax +K, Ay,

w

Eq. 4-314

s TV N YN It
dd M M ox,, M oy, M

Where Ky is synchronizing power coefficient, Kp is damping power coefficient of

DFIGURE
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o, _
Ky =0, k=L~ k7, K, cos(k,x, +c,) Eq. 4-316
aX:w
o,
K, =, +o,k; — Eq. 4-317
.,
pem P L W o) Eq. 4-318
M ox, M(X,+X,)
K, =% g Eq. 4-319
M oy,
. _ v
ko k7 sin(kx, +e,) - el Vo o) Eq. 4-320
axw ’ A <X\:V+XT)(1+yM)
o7 o
ayq =—(kV, +k,V,, cos(k,x, +c,))+2kk,, (1+3,)
" __ Eq. 4-321
V. Vosin(x,)
+hkpok, ——— .
If we represent the above equations in the form of a matrix,
X = AX +BU
We will get
A)ij KE] KEZ Axw 0 D
D= + AP, . Eq. 4-322
Ay w _KS _KD Ay w 1/ M
Eq. 4-322 can be represented using block diagram as in the following figure.
i
y Ay Ax

B g [T SO 5
== L

D El

Figure 4.31 Block diagram representing state space equation of the DFIG wind turbine

From Eq. 4-322, rearranging using the following form and taking Laplace
transformation, yields

X(s)=(sI - A)'BU(s) or
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O ] e

(s1-A)" = sL-A)' Eq. 4-324

det(sI - A) (
The solutions of det(sI-A) = 0 are the eigenvalues of this state space equation, therefore
det(sI-A)=(s—K; )(s+K,)+KK;,=0 Eq. 4-325

4.6.2 Eigenvalue method for multi-machine power system including wind
power
4.6.2.1 Power system equations
In this section, wind power is modeled using a doubly fed induction generator
(DFIG) which the swing equation and voltage behind transient reactance are focused

regarding the synchronization stability problem. The system equations are rewritten as

follows:
px; =y (v, =) Eq. 4-326
px, =, (v, —,)-k7., sm(k ‘xw — X, |+c, ) +o,k,V,, Eq. 4-327
cpx, =—(B, +P,)-c,m,y, Eq. 4-328
M;py,=(B,;—P,;)-D.y, Eq. 4-329
wayw :(me Pew)_Dwyu Eq 4'330
pZ;=T,-P, Eq. 4-331
7, ==y (ki + kP, cos(k,[x, =0, +c, )+, (T, = P,)+K,Z] Eq. 4332
P, =k,P, [(1+,) Eq. 4-333
T =k, (1+y,) Eq. 4-334
P-7 Y VB, sin(x, —x,) Eq. 4-335
7 n 73 sin(xi —X_,») Eq. 4-336
Jj=Lj#i
I_)ek _ I7k n _jékj sin(xk —xj) Eq. 4-337
J=Lj#k

k, =L, /(L,E )and k, =(X,-X,)/(T,X.E') Eq. 4-338
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_ _ Eq. 4-339

- T l_lil 1 LS‘S‘ m

kLZZ 0 er___ —__——, +__

LSS S Lm Lm X a)s LSS
k, ~0.274P, +0.346 and ¢, ~-0.022P, +0.006 Eq. 4-340
- L L+L S - =\ = - P
-ttt ¥_GL -a(L+L). ¥-a (L —L% j Eq. 4-341
Wy’ Wy7, ) ‘ h L,

However, the k; in Eq. 4-332 is very small compared with the other terms. Therefore, k12’
is neglected for convenient.
4.6.2.2 Linearization of power system equations
To analyze the small signal stability of the power system, including induction
generator wind turbine, the state space equation will be represented in a new form as
follows.

Linearization of Eq. 4-326 to Eq. 4-330 are represented in the following form

dAx,
— L —w Ay Eq. 4-342
a Y a
dAx _ o,
dt w o_ a)oAyw - kaswka COS(ka ('xw - xref ) + Ca ) Axw +CO0 kd axrq Ax"ef
3 " Eq. 4-343
i , ,
+k,V,_ k, cos(ka (xw =X, ) +c, )Ax,,pf +@, k, 5 Ay, +a,k, . Ax,
— 0P, oP, oP,
dAv, __ 1 AP, +—k Ax, +—k Ax, + —% Ax Eq. 4-344
dt C, ox, Ox, ox,,
dAyz _ L A]Smi _ aPel Axl. _ aPei AXW _ apei Axk _&Ayi Eq 4-345
d M, Oox, ox,, ox, M,
dAyw — L Af_znw _ aPe‘w Axw _ aPew Axl. _ aPe‘w Axk _ Dw Ayw Eq 4-346
dd M ox, Ox, Oox, M,

Where o7, . / ox,,, 0. Ks is synchronizing power coefficient.

From Eq. 4-343 and Eq. 4-346, we can represent in the following form
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dAx,
d =\ Wy kyg

—k, v, k, cos (k (xw — X, ) +c, )J Ax,,

w

v,
( k, ax—ref+ kaéwka COS(k (XW _xref ) +c, )mef

o,
+ (a)o +a)0 ay JAyw KEwlew + KEWZAxref + KEW3Ayw

dAx 1(,= 0P oP, oP.
ko APlk+ ekAxk+ ekAxi+ ekAxW
dt C, Ox, ox, ox,,
1 —
= _C_ABk _KSkkAxk _KSkiAxi _KSkwaw
k
Ay, 1 (. = &P, P, P, D
LY/ N PN N N/ I I
dt M, ox, ox, ox,, M,
1 —
= VAsz - KSqut KSikAxk _KSiwaw _KDiAyi
dAyw _ L —m ) 1 8P ow px _i oP,, Ax, 1 6Pew Ax, D, Ay,
dd M M ox,, M o, M ox;, M,
= %Apmw - KSwwaw - KkaAxk - KSmAxt KDwAyi
v,
K, =ojk,— . —kk V., cos(k (xw —x,,ef)+ca)
v,
K., =0k, 3 — Ltk k7, cos(k (xw =X, ) +c, )
xref
Ky =0y toyk, .
o _ OP 1
q 3 _ _ ew
aXW - kakCZI/sw sin (ka (xw xref ) + ¢, )yw kP m axw (1 4 yw)
v, _ P
- =—k k_,V_ sin (ka (xw =X, )+ c )yw +kpk, oR, 1
axref a‘xref (1 + yw)
o

1 oP [
Sww :VKEW :M_VWZ I/JBWI COS(xW _xf)

w

1 P, _ 1
swi M, ox M

w

I7wz IZgwi COS(xW - xi)

L= 2kink, (3, +1) = (KT, kT, co(k, (x, =%, ) +¢, )+ ok, B,

1

Eq. 4-347

Eq. 4-348

Eq. 4-349

Eq. 4-350

Eq. 4-351

Eq. 4-352

Eq. 4-353

Eq. 4-354

Eq. 4-355

— Eq.4-356
(1 +, )2

Eq. 4-357

Eq. 4-358
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UM, ox, l 7

o o= LB cos(—x,)
Koy = 0= L7 37 B cox(s )
Ko~ D L7 B, cos(5, )
Ksm,zi%:—ézzzvﬁmcos(xk—xw)

4.6.2.3 Eigenvalue computation

If we represent the above equations in the form of the matrix,

X =AX+BU
We will get
i Ax, 11 o0 0 0 0 , T Ax; i
Ax, 0 K Kpn  Kps 0 Ax,
Ax, |=| Ky, —Kg, —Kg 0 0 Ax,
Ay, K —Ksw —Ksu =Ko, Ay,
L Ay, 1 L -Kg, —Kg, —Kg 0 K, AL Ay, |

From Eq. 4-367, rearranging and taking Laplace transformation, yields

X(s)=(sI - A)'BU(s)

Ax, (s) s 0 0 0 —,
Ax, (S ) 0 §=Kpy  —Kp, K 0
Ax, (S) =| K K, s+Kg, 0 0
Ay, (S ) K, Sww K., s+K,, 0
_Ayi (S)_ _Ksn' K, K, 0 S+KDi_
o 1 .
(sI-A) =m(sl -A)

Eq. 4-359
Eq. 4-360
Eq. 4-361
Eq. 4-362
Eq. 4-363
Eq. 4-364
Eq. 4-365
Eq. 4-366
0
0
~AP, /e, Eq. 4-367
AP, [M
AP, /M
or
-
0
~AP, (s)/c, | Eq.4-368
. (5)/M
| AP, (s)/M |
Eq. 4-369

The solutions of det(sI-A) = 0 are the eigenvalues of this state space equation, therefore
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det(sI-A)=s(s—K,, )(s+Kg )(s+Kp, ) (s+Kp)—a,(s+Kg, ) KK, K

Sii ™ Sww™ Ew3

=0

Eq. 4-370

4.7 Mean First Passage Time (MFPT) Determination

The mean first passage time (MFPT) is used as an index to evaluate the stability of
the power system when perturbed by any small signal. This section applies methods of [9]
to formulate the stochastic differential equations (SDE) and compute MFPT of power
system incorporating stochastic wind power.

4.7.1 Formation of stochastic differential equations

From the state space equation in Section 4.1.7, if we apply stochastic part ( 1+ y W

, Wis white noise, ¥, is noise intensity = standard deviation / mean value) into mechanical

wind power (Pnyw), we will get stochastic differential equations as follows:

mw

b= (B (1 70)- ) Eq. 4371

1 1 -
o= p _p Py W Eq. 4-372
y‘v M ( mw ew ) + M mw. 7/11' q

w w

If we use noise scaling factor (&) for the above equation as:

. 7
g =inf ik >0} and /&, =——F=— Eq. 4-373
vei {M Nevid } N
Where w represent wind power bus = 1, ..., and g=D,/M, is the same for all generators

and use to rescale intensity of noise. Since D of SCIG is very small comparing with
synchronous generator, the parameter « is presented here to scale D of SCIG. Therefore,

we will get standard form of stochastic differential equation of SCIG as:

).}w = _'Bayw +ML(Rnu P )+ \) Zﬂglwa Eq. 4'374

From Egs. 4-131 — 4-138, if wind power is applied on one bus (bus w=2), the

matrix form of the state space equation, including the noise term is represented as follows:
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I =N |
Py
2P62R’,2( 2 ) Vs ] ]
_xl_ 0 0
X 1 0
xz _C_4(B4+['24) Y3 0
X 1 0 |. Eq. 4-375
e __(PIS +Pes)_y3 +2p¢, 0 w
X5 cs
B 1 0
: ~pn+—(b,—F,
7, 1 Ml ( 1 1) \/g
) 1 0
L5 ] -pay, +E(Rn2 _PeZ) - -
1
I -y, +E(Pm3 _Pea) |
Ifweset ¢, (X, ;)= L(P,k +P,)+y,and ¢, (X) :ML(PW. —P,). Then
Cx i
_).Cl_ I =N |
X, V= Vs
X, 0
X, ~#4(X05) : Eq. 4-376
= ’ +2B5,0W )
X5 _¢/,5 (X5y3) :
yl _lByl _¢m,6(X)
j)z _ﬂayZ _¢m,7 (X)
_)>3_ L _:Bys _¢m,8(X) ]
pvy
Where y) = a(y2 —1) , a=—=>—_ and Qy is m+n x 1 matrix with q71=\/g_w .
21)62R7"2
4.7.2 Asymptotic solution to MFPT
The MFPT (7) is defined as follows:
e = E(inf {e: 1 (x(0),y (1) =W | x(0) = x,y(0) =) Eq. 4-377

The MFPT is known to be a solution of following boundary value problem which is

based on the Backward Kolmogorov Equation (BKE).
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2

0 , 0 0

pee, §+(y1—y3)8—;+(y2—y3)é+(ys—ya)a—£

or or or

- X - X _— X))—

(s (X22)) 3= s (X)) G~ (B0 (X)) 3 Eq. 4378
or or

_ X)) —-— X))—=-1 Q

(Bay, +4, (X)) o (By:+4,5(X)) o (x.y)e

=0 (x,y)e&Q

To solve this problem, the asymptotic method is applied. Using this method, the
second order differential equation is reduced to a first order differential equation and then

the asymptotic expansion of 7 can be computed more easily:

Firstly, 7is expanded as a function of S

TZ%TO+Tl+ﬂT2 +... Eq. 4-379

Replace 7in Eq. 4-379 into Eq. 4-378 while D, is zero for induction generator.

o (;ro+rl+,6’z'2+..j )8(;%+q+ﬂr2+..)

Pes, =y
: ox. ( b Ox,
1 1
a(ﬂro+rl+ﬂrz+..) 8(ﬂr0+rl+ﬂrz+...j
+(»5-»s) Py ~(4.4(X. )
2

ox,

8[;r0+rl+ﬂr2+...j 8(;2’0+T1+ﬂ2'2+...j
_(¢1,5 (X’y3)) o _(,By1 T Pus (X))

oy,

6(,18% +7,+ fr, +]
_(ﬂys + mS(X)) =-1

0y,

;Z’O +17,+ B, +j

oy,

~(Bay,+4,,(X)) a(

Eq. 4-380
For the terms with the coefficient #' , a homogenous first order differential
equation is a result as follows:

0Ty (s oz, 07, 07,
LI(TO):(yl_y3)é+(y2_y3)6; _(¢1,4 (X,y3))a—2-—(¢1’5 (X,)@))TT
5 1 5 ? 5 ! > Eq.4-381
s % (s (XN (4 (x1%% g
(¢m,6( )) ayl (¢m,7( )) ayz (¢m,8( )) ay}

From Eq. 4-381, its characteristic equations are [21]:
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07, _ 07, dy, %dx2 0t dx, 8z'odx 82’0 dy, 870 dy, 870 dy;

=0 Eq.4-382
Os Ox, ds oOx, ds 0Ox, ds éxsds Gylds 8y2ds 8y3
and
%:y -y
dS 1 3
%w’—y
s 2~ Vs
dx
E“:_%A(X’)@)
dx
Kj = _¢175 (X, y3) Eq. 4-383
d
£:_¢m,6(x)
d
%=_¢m,7 (X)
dy
§:_¢m,8 (X)

We will see that Eq. 4-383 is similar to Eq. 4-376 when S s set to zero. This means
that the system has no damping force of generator and has no perturbation part. The system
in this case does not converge to its equilibrium points but across the surface (s) which is
the solution of Eq. 4-383 .

Since the trajectories in the region of attraction following Eq. 4-376 is bounded by
the critical energy (W) which has the same boundary of Eq. 4-383. Therefore, we can
conclude that 7 1s a function of W or

= (W) Eq. 4-384
Therefore, on the boundary of the surface (s) or energy contour, the 7 is constant.
For the terms with coefficient /4, an inhomogenous first order differential equation

1s as follows:

or, or, or, or,
L =(y —y,)— - X ! —L
1(71) (y1 y3) o +(y2 y3)8x2 (¢14( y3))8 (¢15( )) or,
or, ot 0T, o’r or, or or
- ¢m X — - ¢m X — - ¢m X _lz_ggw 0+y O+ya 0+y 0_1
( ,6( )) ayl ( ,7( )) ayz ( ,8( )) ay3 i axj 1 ayl 2 8)/2 3 ay3
Eq. 4-385

If the integration along time is the same with the integration along the energy

contour, then the solution of the above equation is
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870

sl &

or,

or or,
yl 0 i
6yl

V0 —=— ), +1st 0
’ oy, oy,
Where T (W

is defined here to form the solvable boundary value problem.

Since 7 1s a function of W, thus

Jr, ow oty _ ow ot _ ow
o o )8y1 oy, o )6yz oy, (7 )5y3
oz, ow ok oW ow'Y
o — ()L and L5 = () L 4 ()| 2
ox, TO( )ze an 6x§ TO( ) 8x22 +TO( )( ﬁxZ]

Substituting Eq. 4-388 and Eq. 4-387 into Eq. 4-386, yields

2
" aW ’ 82I/I/ ] aW
&,6,7, (W) +e6,7,(W)——-nw (W)
1 q} ox, 0ox, oy, ds =0
T(w) I oW s o\ OW C
-y,at, (W)a——y32'0 (W)§+l
2 3

Eq. 4-389 can be represented as the boundary value problem as follows

[ﬁ § e, (ZTW] dsc,Jr(;’(W)

+(T(W)<.f>w£8/€2 g—yl g—yzaa—yz—)@ 8_)/3]dSCJTO (W) =—1

TO(WC)=0, ro(0)<oo
g 1(W) +[51C2(W)—C3(W)]r(;(W):—l}

(0)<oo

Where

Eq. 4-386

= 4>W ds, and s. is the surface element in a Cartesian coordinate system. 7(W)

Eq. 4-387

Eq. 4-388

Eq. 4-389

Eq. 4-390

Eq. 4-391

Eq. 4-392
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Since the energy function cannot be used directly for the solution of the problem in
Eq. 4-391, thus an approximate energy function based on the ellipsoidal surface is

represented instead. This takes [9]

W= 'Hszl ”Z”:" %Mﬁijjj ( _yj)2 +%C°S(x: -x;)VV,B,(z. -z, )2 Eq. 4-393

=1 j=i+l

n
where M, =ZM[ and z, =x,—x; if i=1,2,...,ntm

i=1
This form of energy function can be used to find coefficients C;', C», C; which are

occur in the MFPT solution as follows:

eCWzy(W)+] £C, —CiW |zy (W) =~-1 Hq. 4-304

7,(W.)=0, 7,(0)<o

We . ] —

JORIUARS [I (G (el )dt}e(q%/ " Eq.4-395

3 0

1 ,/C; GG HCotfec CiWe/eCt
T(O)zﬂc ) D (i) / )dt}( velaci) Eq. 4-396
0

Where critical energy (W) computation technique is presented in the previous Progress
Report I1 and coefficients C; , Cy, and C; are stated in Appendix A.

4.7.3 Computation of MFPT

From Sections 4.7.1 — 4.7.2 and Appendix A, MFPT can be calculated using the next

process

(S1) Stable equilibrium points and critical energy are computed as represented in the
previous topics.

(S2) Matrix H can be constructed using Egs. A-3 to A-6 in Appendix A.

(S3) Find eigenvalues and eigenvectors of matrix H. After matrix H is constructed
explicitly, software Matlab can possibly be used to find eigenvalues and
eigenvectors.

(S4) Construct set of matrix D and matrix F using e Egs. A-29 to A-33 in Appendix A.
These matrixes will be used in the formulation of MFPT.

(S5) Compute C coefficient using Eqs. A-25 to A-28 in Appendix A.
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(S6) Compute MFPT using Eq. 4-396. Every steps from (S1) — (S5) is done
completely.
(S7) Change conditions of wind power, such as wind speed and noise intensity and

repeat (S1) — (S6) again to see the variation of MFPT.

4.8 Stochastic Stability Index (SSI) Determination

The new method is developed in this study based on the theory of stochastic
stability. The following list is the processes to formulate stochastic stability index as a new
method.

P1. Formulate the stochastic differential equations of the power system
incorporating wind power using power system dynamic equations from
Sections 4.1 —4.3.

P2. Find steady state values of state variables at different conditions such as
different wind power and its noise intensity, different exchange power. It
can be done by using simulation software or by solving the power flow
problem using Newton-Raphson’s method.

P3. Formulate stochastic well-defined energy function which is described in
Sections 4.3 and 4.5

P4. Compute critical energy using method of Ribbens which is described in
Section 4.5

P5. Find the derivative of mean of stochastic well-defined energy function
and formulate a new stability index and compute.

P6. Evaluate the results of new stability index under different testing
conditions.

Since the processes P1 to P4 are described in the previous Sections 4.1 — 4.5, this
section will give the detail of how to formulate the derivative of stochastic well-defined
energy function or the derivative of stochastic energy (DSE).

For deterministic differential equation,

x=f(x) X(t)=x, Lt=t, Eq. 4-397

If there exists a positive-definite function U(x) (U(x¢) = 0 and U(x)>0 for all x # xo)
such that

dU(x,?)
dt

oU &.0U
_ £ (x.£)<0 Eq. 4-398
or +;6x (%1) 4

i
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The equilibrium of this system is called stable. A function U which satisfies these
conditions is called the Lyapunov function.

For probabilistic or stochastic differential equations,

dx =f(x,7)dt+g(x,/)dW, x(f,)=%x, .t=¢, Eq. 4-399
Where f(x,7)is nonlinear function, g(x,¢)is diffusion function, and dWis Weiner

process.

If there exists a positive-definite function with continuous partial differentials,

u (X, t) = U, such that the expectation of its differentiation less than or equal to zero.
E(dU)<0 forall ¢>¢, Eq. 4-400
This condition will be used for a stochastic system stability analysis in the sense of
Lyapunov. The function u(x,t) is called the Lyapunov function belonging to the particular

equilibrium state of the stochastic differential equation [26].
The differentiation of U of the stochastic system becomes:
d m U
dU(x,2)=(Lu(x,z) )dz+zz;a— )g, (x,1)dW, Eq. 4-401
i=l j=

The L u(x,t) is a stochastic differential operator according to Ito’s sense.

2
Lu(x,t)—aa—l;+2—zf(x t)+;Trace{gT(x,z‘)Z;zl

g(x, t)} Eq. 4-402

The stability condition dU(x,t) <0cannot be applied directly since the indefinite

sign of the stochastic term. Therefore, the expectation of the function assumes the
trajectory of x stay around equilibrium points radially. Therefore, the above stability

condition becomes
E(dU)=E[(Lu(x.t))d <0 forall ¢>1, Eq. 4-403

which finally yields the stochastic stability condition
Lu(x,1)<0 forall 1>1, Eq. 4-404

[ x, ] fl(x,t) g (x,t)
X, fz(x,t) gz(x,t)
d| x; |=| fo(x,2) |di+| g (x,2) [dW Eq. 4-405

X, £, (x,t) g, (x,t)
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f n
8—Uf(x,t){a—U 9u . a—U} 2(?”) ZZa—Ufi(x,t) Eq. 4-406
0x ox, Ox, ox, : o OX,
f (x,1)
lTrace gT(x,t)az—ug(x,t) =
2 ox’
U U U |
ox,0x,  Ox,0x, Ox,0x, (1)
x’
| QU PU U g‘(x )
E[gl(x,t) gz(x,t) gn(x,t)] 0x,0x,  Ox,0x, 0x,0x, £ f, Eq. 4-407
: : : : .y
U U U & (x1)
| Ox,0x,  0x,0x, ox,0x, |

2 n n 2
%Trace{gT (x,2) lezl g(x,t)} = %{Zzgi (x.t)g, (x.1) f;@jf }

j=1 i=l

The stochastic stability condition equation becomes

n n n 2

oU &oU 1 0’U
Lu(x,t):§+za—fi(x,t)+5{22gi(x,t)gj(x,t)axax}SO Eq. 4-408

i=l i J=1i=l iy

4.8.1 The derivative of stochastic energy (DSE) for small signal stability
analysis
To find the stochastic stability of the power system incorporating SCIG wind

turbines, it can be started with the power test system as follows:

SG B4 o
(oo \
N
X14 SS
[SCIG WT_3 X34 N
N
N
I
Swing or
infinite bus

Load

Figure 4.32 Test power system including wind power and load for DSE determination
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For bus 1, x; is a reference angle of infinite bus generator and y, is reference speed

deviation (@, —@®, ~0) which is close to zero. The matrix form of stochastic differential

equations of the test system becomes:

23 (ys

@y (¥, =)

k

_&yﬁL(

M2

MZ
1 ,—
w5

_CL(ISM +1364)—a)0y1

)

—»)—kV,sin(k,x,+c,)

dr+ dwW

S O o O

Eq. 4-409

The next step is to find partial derivative functions of the energy function U as follows:

U _p
ot
au
ox,

+V,V,b,, sin(x, —x,)

Y
ox,

=—P,, +V,V;b,ysin(x, —x, )= V,V,b, sin(x, —x,)

=—F,;-VVb, Sin(x1 _x3)_ V,Vsb,, Sin(xz _x3)

. 1 ,
+VV,by, Sm(x3 _x4)_§M3kaka/3 (y3 - )Cos(kaxs +cb)

ox,

oU
P a)oszz
oy,

ou_
0y,

M, (a)o (75 —yl)—ka3sin(kax3 +cb))

ou B, ~VVb, Sin(xl _x4)_V2V:1b24 Sin(x2 _x4) P +P
_V3V4b34 Sin(x3 —x4) c

% Mk, (sin(k,x, +¢, ) —sin(k,x; +¢, )

o’u
=
2

U

)Y
2

Ox;

+ Mk, (v, =y )sin (k,x; +c,)

=V,V;b,s cos(x, —x; )+ V,V,b,, cos(x, —x, ) +V,V,b,, cos(x, —x,)

— =V Vb, cos(x, —x; )+ V, Vb, cos(x, —x; )+ V.V, by, cos(x; —x,)

Eq. 4-410

Eq. 4-411

Eq. 4-412

Eq. 4-413

Eq. 4-414

Eq. 4-415

Eq. 4-416

Eq. 4-417
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—-=WV,b, cos(x,—x,)+V,V,b,, cos(x, —x,) +V;V,by, cos(x; —x,)

o°u  oU

Ox,0x, - 0x,0x,

o°u  oU

0Ox,0x, - Ox,0x,

U U

Ox,0x, - 0Ox,0x,

U U

0x; 0y, - 0y;0x,

U U

= —V,V,b,, cos(x, —x,)

=—V,V,b,, cos(x, —x,)

=—VV,b,, cos(x; —x,)
1

_EM3k"ka3 cos(k,x, +c,)

U U U U

o°’U

o°’U

0y, nox, oy, Ody, Ondx, ondy, dy,  ndy,

Therefore, the 6_U f (X) is

0x

28 (ys

23 (yz _yl)

—yl)—ka3 sin(kax3 +cb)

_i(ﬁm +13e4)_a)0y1

P,)

6_Uf(x){a_v U au U a_U} ¢
0x ox, Ox; Ox, Oy, Oy _&yﬁi(}_)mz—
M, M,
1 ,— -
E(Pm3_ e3)
oU oU oU .
)=S0 () + 5 () -hFisin(l v, )
ou 1 ,- = oU oU D ou 1 ,=
———(Py+Py)——oy —— v, +——(P,
ox, Ck( t 64) ox, W oy, M, y2+ay2 Mz( "
ou 1 = =
__(Pm3_Pe3)

-P

Eq. 4-418

Eq. 4-419

Eq. 4-420

Eq. 4-421

Eq. 4-422

Eq. 4-423

Eq. 4-424

0 Eq.4-425

Eq. 4-426

) Eq.4-427
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St(x) =Dt~ B+ B (B Ba)+ o (- P)

Cr

_%M3kaka3 (y3 —yg)cos(kax3 +c, )(a)o (ys—») —kaQsin(kax3 +e, )) Eq. 4-428

+%ka (P -P )(sin(kax3 +c,,)—Sin(kax3s +Cb))

m3

2

The %Trace{g (x,1)=— 5 - ~g(x, t)} can be stated as follows:
x’

1 o’u
—Traces g’ (x,t)—g(x,t
el (1) a0
_Ux2x2 Ux2X3 UX2x4 UXz)’z sz}z | O
_ Ux3x2 Ux3x3 Ux3x4 UX})’Z UX}Y} O
1 P 0
=—Traceq|0 0 0 0 2o (U U U U, U, Eq. 4-429
) ]\43 4%2 4%3 4%g 4)2 4)3 0
U‘zxz U‘zxz UYZXA UYz)’z U}'z,"_z D 3
UY3“2 UY3X3 U,V3x4 U)’3Y2 Uys}’s B M a3

— 2
1 P O, (= 2
= 5 U)’})’s [Va 0(3 J - 2]\; (P’”3a3 )

3

Therefore, from the stochastic stability condition, L u(x, t) <0, the above equations

can be summarized to have

Lu(x,t) =
_C‘)oDzyz2 ! ([_? 13 )2 T W) [(Enz _Ez)_(ﬁm +ﬁe4 )] + 23); (Fm3a3 )2
“ 3 Eq. 4-430
q. 4-
_%M3kakbl/3 (y3 - )Cos(kax3 6, )(a)o (J’3 gl ) - kassm(kax3 TG ))
+%ka3 (}_’m3 —E3)(sin(kax3 +cb)—sin(kax§ +c, )) <0
Simplifying the power balance terms to yields
Lu(x,t) =
1, — - —
~,D,y; —Z(Aﬂ)z T @), (AP2 - 4)+ 2aA)/0[3 (Pm3a3 )2
1 Eq. 4-431

_§M3kaka3 (J/3 —yi)cos(ka)@ +Cb)|:a)0 (s _y1)_ka35in(kax3 TG )}

+%kb (Af%)[sin(kax3 +cb)—sin(kaxéT +c, )} <0

Where AI_)4=1334__ @232—323@233—23

14|
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This equation is the stability condition of this stochastic system, but it is still too
complicated to analyze, therefore, the following two assumptions are applied
1) Trajectories of x3 and y; are around and close to their equilibrium points.
2) The last two terms are very small (due to reason in 1)) when compared to the others
and can be neglected.
The above condition becomes
Lu(x,1) = —@,D,)? —i(m’j)2 + (AR, —AE)+2LA;3(E,30¢3 )'<0  Eq.4-432
This equation is the stability condition of this test system but it is not convenient for
analysis. Therefore, the following assumptions are stated. The trajectories of x3 and y; are
around and close to their equilibrium points. The last two terms in Eq. 4-432 are very small
when compare to the other terms and can be neglected. The speed deviation of SG is very
small and can be neglected. Accordingly, the derivative of stochastic energy (DSE) can be

formulated from Eq. 4-432 as follows

a)O

DSE ~-—(dB,) +
C

k

" (P.a) Eq. 4-433

If considering the effects of fluctuations of wind power on the stability of the power

system, the above equation can be represented in the form of the limitation of o;as

(o < 20 [i(mﬂwoazy;—woyl(@—@] o

- I3mz3a)0 Cr
o (06313,”3 )2 . Eq. 4-434
2M, (CI(AE)Z +oyD,y; ~ o, (AP, —AE))
k

Furthermore, if we assume a constant angle of load bus (x,=0,P,=P,) and

¥, =0, — o, =0, the limitation condition of «;1s only

— 2
2
(a,) < 2M3_12)2y2 or (Pm3a3)2 <1

P 2M.D,y;

4.8.2 The Stochastic Stability Index (SS7) for small signal stability analysis

Eq. 4-435

This sub-section focuses on the study of the effects of stochastic wind power using
the new stability performance index which is called the stochastic stability index (SS7). The

following conditions are used to formulate SS/.
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The power test system incorporating doubly-fed induction generator (DFIG) wind

turbines is represented as follows:

SG B4 o
B2 x24 §
(% N
X14 E
DFIGWT g3 x34 %
Iy
N
e

Swing or

infinite bus

Load

Figure 4.33 Test power system including DFIG wind turbine and load

For bus 1, x; is a reference angle of infinite bus generator and y, is reference speed
deviation (a_)r1 -0, = O) , which is close to zero.
4.8.2.1 For DFIG wind turbine applying Gaussian distribution white noise

1) The well-defined energy function
From the well-defined energy function of the power system including DFIG WT:

U =%woM2y§ =P (%) = B (3 =)+ By (3, - x7)
+%a)OM3(y32 —ygz)—%M3kaS3(sin(ka (%, —x,)+¢,) v, —sin(k, (=] —x;i)+ca)y§')
+%M3a)o Kok, (( yi+1) =(» +1)3)
—%Mﬂ)o K, [(1\;21753 cos(k, (x, =x,)+¢, )+ ka2 3 = (kT cos(k, (x; - x)) +, ) + k7, )yﬂ
— Mook, (Bo (3-20) - Payi (3-233)

N S
-V 14(cos(xl—x“)—cos(x1 —x4))

~V,V,B,, (cos (x,—x,)- cos(xg -Xx; ))

&

[N}

7B (cos (5 ) ~cos(x x)

Eq. 4-436
2) The partial derivative components of the energy function are
au =0 Eq. 4-437
ot
ou = == . = =
—=—P,+V,V,b,sin(x,-x,)=-P,, + P, Eq. 4-438

ox,
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a_U = _}_)mz + 173174b34 sin(x3 - x4)
Ox,

+%M3a)0kdk k.,V.ysin(k, (x,—x,)+c,)y:

avc2
1 __
_ZMﬁ)o kykok, V3V by, cos (x; —x4)<3y3 _2y32)
3 —
_ZM3kaka/s3 COS(ka (%, —x,)+e, )y3

:—f_:n3 +I_)e3 —fl(x3,x4,y3)

U
ox,

ave2

—%Mﬂ)o kgk ko Vs sin(k, (x,—x,)+c,)y;
1 __
+ZM3(00 kykok, ViV by, cos(x, _x4)(3y3 - 2y32)

+§M3kakh7s'3 COS(ka (x3 —x4)+ca)y3

4
= ]_)14 +E4 +/ (x3,x4,y3)
oU
A a)oszz
oy,
oU 3 )
g = 0,My; + Mgk kk,, (s +1)2 —ZM3ka3 sm(ka (x —x4)+ca)
3
— My ky (k02l7s3 COS(ka (2 —x,)+ Ca)+ kY, )y3
1 — — .
_ZMsa’o kakph, Vs Vy by sin (x; —x, ) (3= 4y;)
U —-
o =V,V,b,, cos(x, —x,)
o°U ==
o =V,V,by, cos(x; —x,)
+%M3a)0 kdkjkczﬁﬁ COS(ka (x3 —x4)+ C, )y32

1 == .
+ZM30)0 kg kpk, V3V by, sm(x3 _x4)(3y3 —2)/32)

+%M3kjkbf7s3 Sin(ka (x,—x,)+c, )y3

= ﬁ14 - I71174[)14 Sin(xl X ) - I721741724 Sin(xz _x4)_ 1731741[734 Sin(x3 _x4)

Eq. 4-439

Eq. 4-440

Eq. 4-441

Eq. 4-442

Eq. 4-443

Eq. 4-444
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o°U

2
ox;

=V Vb, cos(x, —x, )+ V,V.b,, cos(x, —x, )+ V.V,b, cos(x, —x, )
+%M3a)0 kdkjkczﬁss COS(ka (xs — Xy ) +c, )Y32

1 == .
+ZM3500 kg kpk, V3V by, Sm(x3 —x4)(3y3 - 2y32)

+%M3k5kb17s3» Sin(ka (x3 _x4)+ca )J’3

R
o'U o
o> = oM +2M ok kpk,, (y3 +1)+ Mgk kpk,Vy V, by, sin (x; —x,)
- M, k, (k6217S3 cos(k, (x;—x,)+c,)+ kdl73)
U oU

= = O
Ox,0x;,  Ox,0x,

2 2
v = a =—V,V.by, cos(x2 —x4)
ox,0x, Ox,0x,

2 2
66 ;] = 66 (;] =-VVb, cos (x, - x, )
x,0x,  Ox,0x,

a'vc2

_%Mﬂ’o kg k Vs cos(k, (x,—x,)+¢,)y;

1 =
_ZM@O kykpk, ViV,by, Sln(x3 _x4)(3J’3 _2Y32)

_%Mskjkbzs Sin(ka (x, _x4)+ca)y3

2 2
OY _ TY _ Mahgk kT sin(k, (x,—x,)+¢, ),
ox,0y, Oy,0x,

1 __
_ZM@() kykok, VV,by, cos(x, _x4)(3 —4y; )

_%M3kakbl7s3 Cos(ka (x3 - X, ) +c, )

2 2
v = oy =-M, kdkak0217s3 Sin(ka (x3 _x4)+ca)y3
Oy;0x,  Ox,0p,

1 __
o Mook ok, ViV b, cos(x, - x,)(3- 4y, )

+%M3kakbf753 cos(ka (x3 —x4)+ ca)

Eq. 4-445

Eq. 4-446

Eq. 4-447

Eq. 4-448

Eq. 4-449

Eq. 4-450

Eq. 4-451

Eq. 4-452
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U o*U U o*U U U oU U
= = = = = = = =0 Eq.4-453
ox,0y, Oy,0x, 0Oy,0x; Ox;0p, Oy,0x, O0x,0p, Oy,0p; 0Oy;0),

oU
3) Find —f
) Fin - (x)

@, (yz _yo)
@y (3= 2,) = kY5 sin(ka ‘x3 _x4‘+ Cq ) tay, kdI7rq

_CL(E4 +f_ﬁ,4)—a)0y0

+—U(a)o (vs=¥,) -k, Vs sin(ka X, —x4‘+ca)+co0 k., ) Eq. 4-455

ou ou 1 s 5
e e

@, (y3 _yo)
+(_}_)m3 + Py~ f, (x3,x4,y3)) Vs Sin(k“ ‘x3 —x4‘+ca)
+w0kdl7rq

_(1314 +f_)e4 +/ (x3,x4,y3))cL(I_3,4 +E4)_(B4 +F,+ (x3,x4,y3))a)0yo
’

1 = = D
+(a)oM2y2)V(Pm2_Pez)_(a)oszz)szz
3 .
oM.y, + Mgk kok,, (v, +1) - Mk, sin(k, (x,—x,)+¢,)
_ _ 1 .-
+ _Mza)okd(kczVs3COS(ka(x3_x4)+ca)+kc1V3)y3 _( m3 e3)

1 = — .
_ZMﬂ)o kakpk, V3 V, by sin (x; —x,)(3-4y;)

Eq. 4-456
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If yy is close to zero, it can be neglected,

ST =R B = ) (B B D
Wy V3
—((En3—f’e3)+ﬁ(x3,x4,y3)) ka/S3s,1n(ka‘x3—x4‘+ca)
+oy k7,

@,y; —kV s sin(k, (x;—x,)+c,)

ok kk,, (v;+1)

oy kg ko, V, V, by, sin(x, —x, ) (1- ;)
+(_m3 - _3) ~wyk, (/’cczlz3 cos &, (x, —x4)+ca)+kcll73)y3 Eq. 4-457
+%ka/§3 sin(k, (x; —x,)+¢,)

oy kg ko, V7, by sin(x, —x, ) (1- ;)

| = = .
~ 2 @ka kpk, Vi V, by, sin (x; —x, ) (3—4y,)

ou 1, =y 1 = =
—f(x):——(1314+Pe4) __f x3,x4,y3 P/ P ~,D,y;
o0x C, c,
@3
— fi (x5, x5, 05) kaS351n x3 x4‘+c Eq. 4-458
+a)kV
kK351n -x,) +c
5 5\l 4
+(Pm3_Pe3)

%a)okdk k,V, V, by, sin(x; —x,)

2
dx d{x, —x d
a—xf(x)z—ck [d—;j —w,D,y’ fl(x3,x4,y3)(%]+fz(x3,x4,y3)% Eq. 4-459
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1 .
A (x3,x4,y3) = _EM@() kak Vs Sln(ka (x3 _x4)+cu)y32
+ iM@O kg ek, ViV,by, cos (x, = x, ) (3, =237 Eq. 4-460

+%M3kakbf7s3 cos(ka (x3 - X, ) +c, )y3

1 .
f‘z(x39x43y3):ZM3thS3 Sln(ka (x3 _x4)+ca)

| Eq. 4-461
+ ZM@() kykpk, V, V, by, sin (x; —x,)
4) Find lTrace gT(X t)az—ug(x t)
2 " ox? ’
2
_Trace{gT (x,7) o g(x,t)}
_szxz Ux2x3 szxA UXz)’z Ux2y3 il O ]
Ux3x2 stxz Ux3x4 U-"z)’z U"zY} 0 Eq 4-462
= %Trace |:0 0 00 M:| UX4X2 UX4X3 wa; UX4}’2 Ux4y3 8
3 Uyzxz Uyzx3 U)’zxA UYz)’z U}'zy_z P 3a3
_UJ/3X2 UY3X3 UJ’3X4 UJ’3Y2 Uys}’s J0 M 3
1 o%u P )
ETrace{gT (x,t)ﬁg(x,t)} =U,,, [ }”\343 3 }
o, 1+ 2k k ok, (3 + 1)+ kyk ok, Vy V, by, sin (x; — x) (B} Eq. 4463
My | —k, (k6217s3 cos (k, (x; —x4)+ca)+kc1173) e
=/ (x3,x4,y3 )(Pm?aa_’a )2
Where
142k k ok, (15 +1)+kykpk, V, V, by, sin(x; — x,)
f3(x3,x4,y3): @, d™p p( 3 ) d"™p 374 %34 3 4 Eq.4-464

M\ -k, (kczlz3 cos(ka (x3 —x4)+ ca)+ kcllz)
5) The derivative of well-defined energy functions
Therefore, from the stochastic stability condition, L u(x,t) <0, the above equations

can be summarized to have
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2 d(x, —x,
Lu(xat):_ck [%j ~a,D,y; fl(xzaxwys)[gl

dr dr Eq. 4-465

d
+/5 (xS,x4,y3)%+f3(x3,x4,y3)(Pm3a3)2 <0

It can be noticed that the first two terms on the right of Lu are the same as the
derivative of the energy function of the deterministic system (pU). Therefore, the Lu is the
derivative of stochastic energy function and has the stability condition the same as the pU
in deterministic system. However, it can definitely prove that the pU is less than or equal to
zero but not for Lu. If we multiply Lu by the scaling factor ¢ = (1/Py)” ,the Lu becomes

d(x3 —x4)

2
, dx
Lu =¢Lu=—¢ck(d—;] —(ﬂwoDzyf—coﬁ(xssxpya)( P

} Eq. 4-466
dy, , 2
+of, (x3ax4=y3)g+f3 (x3,x4,y3)(Pm30£3)

Where P’n3 = Pus / Pis is the penetration ratio of wind power compared with the load.

Conceptually, the derivative of the energy function is the rate of change of energy
when perturbed by small or large disturbances. Its negative value is the stable condition in
which the energy of the system is dissipative. After disturbance in such condition, this total
energy will reduce and be zero when the state variable reaches its equilibrium point. In
contrast, the positive value of the derivative of energy will result in an increasing of energy
until beyond the critical value and the system becomes unstable.

The Lu, compared with the derivative of the deterministic energy function (pU), is
possibly the same concept as pU and can be used to formulate the stochastic stability index
as follows.

4.8.2.2 For DFIG wind turbine applying Gaussian distribution colored noise
1) The well-defined energy function
From the well-defined energy function of the power system, including DFIG WT:



240

8] =%a>0M2y§ +%a>0M3(y§ ~37)=By (%= x3) =Py (x, =33 )+ By (3, = x3)

_%M3kbl/;3 (sin(ka (x, —x4)+cu)+sin(ka (x;' —x4)+cu ))(y3 —y;')

1
+§M3a)0 kykpk,, ((y3 +1)’ —(y§ +1)3)

1 __— [sin(x;—x,) sin(x§—XZ) s
§M3a)0kdkpka3V;B34[ (y3+1) + (y.;+1) ](% y3)

—%Mzwokdkdﬁ (J’32 _y;z)
L @okdkczﬁs(COS(ka(xz—x4)+ca)y3+005(ka(X§—XE)Ha)yi)(yryi)
-VV,B, (cos(x —-x,)- cos(xf—xj))

7177 R s s
-V,V,B, (cos(x2 x4) cos(xz—x4

)
_ EV“_“(COS(% )=l =x) . I Eq. 4-467
— b, 050, (x3 —x;)—B4a4U4 (x4 —xj)+§P 3% (032 _032)+ B, (U4 U42)
2) The partial derivative components of the energy function are
ou = O TR
§=— +V/Z,+:1VB sm(x —-X, ) VIJ;IVJBij sm(xj —xl.) Eq. 4-468
ou - - & == . o -
poa =PtV 'ZleBw. s1n(xw —xj)— § 'leijj s1n(xj —xw)
w J=w+ J=w=
1 s
_EM szwkacos(k ( X, xref)+c )(yw—y‘w)
Eq. 4-469
1
_EMMﬂ)okdk k, [ x —x].)J
1 N\ =
+— 5 M g,k k. szka sm( (x ) ) ( Y, — y;) -P a.uv,
a—U—Ek+V ZVB s1n(xk—x ) ZI:VJEkjsin(xj—xk)—Bkakuk
ox;, Jj=i+l ’ j=i-1 ‘
m 1 s
+Z§ka V. k, cos(k (x, —xk)+ca)(yw—yw)xrx/
—p+l "
I; | L (y —ys,) Eq. 4-470
+ WZ EMM% kykok, V.V B,, cos(x, —x,) (;w N 1”)

—-p+l

_i%Mwa)Ok k KwkaSIH(k (xw_xk)-’_ca)yw(yw_yfv)

X =X,
—p+l ref
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z—? =w,M,y, Eq. 4-471
ou
g = a)OMwyw +Mwa)0 ka' kPkop (yw + 1)2
_%kaszw (sin(ka (xw — X, ) +c, ) + sin(ka (xi, =X,y ) +c, ))
P (v +1 p _ ]
- lea)O kd kPkm =~ (yw 2 ) + ?’W B Mnﬂ)O kdkcleyw Eq 472
2 (41 (0 +1)
1 _ cos(ka (xw—xre,.)+ca)(2yw,—yj,)
_EMMQ)OkdkCZI/SW )
+cos (ka (x; — X,y ) +c, )y;
S—U =-P a, (xw - va) +P, av, Eq. 4-473
v,
ou = =
P ~Ba (%, - x} )+ By, Eq. 4-474
k
2
20? =P «a, Eq. 4-475
’U o
ol . Eq. 4-476
k
The next step is to find a partial derivative function of the energy function U as follows:
au =0 Eq. 4-477
ot
ou = == . = =
Fo —P,,+V,V,b,sin(x,—x,)=—P,,+P, Eq. 4-478
2
ou = == .
P =—F+VV,by, s1n(x3 - x4)
3
1 s
- §M3kbl/s3ka cos (ka (xz R ) +c, )(J’3 s )
! - . s
= Mok ok, V.V B, cos (x, = x,) (v +1) " (35— 31) Eq. 4-479

N

1 = =
+§M3(‘)0 kgk .,V sk, Sm(ka (x3 —x4)+ ¢, )y3 (y3 ) ) — B, 00,

:_EnS (1+0!3U3)+1563 _fl(x3ax49y3)
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U = —— . N __
g = P14 - V1V4b14 Sln(xl _x4)_ V2V4b24 Sm(xz _x4)_ V3V4b34 Sm(x3 _x4)
4

+%Mskas3ka COS(ka (xs _x4)+ca)(y3 _y;)

1 717 D - s
+2 Moy by Kok, V7. B, cos (x, = x, ) (s +1) " (35— 1) Eq. 4-480

1 — . s
—5M3a)0 kgkaoV sk, Sln(ka (x—x,)+c, )J’3 (y3 — Vs )_P/4(X4U4

:FM (1—0!41)4)4‘[_14 +4 (x3,x4,y3)

U _ oy, Eq. 4-481
V2
ou 1 . . s s
g =w,M,y, —EMSk,,VS3 (sm(ka (x —x4)+ca)+sm(ka (x3 —x4)+ca ))
3
+M3a)0 kdkPk()p (y3 + 1)2 _M30)0 kdkclzy:i
_lMﬂ)O kdkPka;ZEM Sin(X3 _X4)(j/; +1) T Sln(f; _x:) Eq 4_482
(»,+1) (y3 +1)
1 _ cos(ka(x3—x4)+ca)(2y3—y§)
— > M@y kyk oV ,
2 +c0s(ka(x§—xj)+ca)y§
Pl ~P .a, (x3 - X; ) +P a0, Eq. 4-483
ou;,
ch =-h,a, (x4 — X, ) +Ba,0, Eq. 4-484
ov,
2
0 (2] =V,V,b,, cos(x, —x,) Eq. 4-485
0x;
2
0 (2] =V, Vb, cos(x; —x,)
ox;

1 . ~
o Mok ok sin (, (x5 =x,) +¢, ) (v =21) Eq. 4-486

1 — _ .
+EM3500 kykpk,ViV,B,, Sm(xs _x4)(y3 +1) 1 (ys _y3)

+%M3wokdkczl7s3kj Cos(ka (x3 _x4)+ca)y3 (y3 —y§)
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U

ox? = ’71’74’?14 cos(xl —x4)+ I721741724 cos(x2 —x4)+ I73V4b34 Cos(x3 —x4)
4

+%M3ka;3k5 Sin(ka (xs _x4)+ca)(J’3 _y3s)

— =M
PY OpM,
U
— = O M; +2M @,k kpk,, (75 +1)
0y,
- (25 +1)
+ My kg kpk, ViV, By, sin (x, —x,) 3
(y3 +1)

—M3600 kdkclz» —M3600 kdkc2[7s3 COS(ka (xs _x4)+ca)

2

)
a
I

= m a

ov; 0
o°’U =

al)f =h,a,

o°u U
Ox,0x;  Ox,0x,

2 2

oU_ _ oU =-V,V,b,, cos(x, —x,)
ox,0x, Ox,0x,

o’U o’U

= =V, Vb, cos(x, —x
Ox,0x, Ox,0x, iy cos(x, =)

_%M3kas3kj Sin(ka (x3 _x4)+ C, )(y3 _y;)

1 —— - s
_§M3a)0kdkPka/31/4B34 Sln(x3_x4)(y3 +1) 1(y3_y3)

1 _
_EMswo kdkczVsakj COS(ka (xa _x4)+ C, )y3 (ys _y;)

2 2
oU _ ouU :1M3kas3kaCOS(ka(x3_x4)+ca)
Ox,0y;  Oy,0xy 2

1 _ B
_EMsa)o kykpk,VyV,Bs, COS(X3 _x4)(y3 +1) ’ (y; +1)

+%M3a)0 kyk oV sk, sin(k, (x,—x,)+c, )(2)’3 —)’;)

Eq. 4-487

Eq. 4-488

Eq. 4-489

Eq. 4-490

Eq. 4-491

Eq. 4-492

Eq. 4-493

Eq. 4-494

Eq. 4-495
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2 2
oU _ oU :lM3kas3ka cos(ka (x3—x4)+ca)
30x,  Ox, 0y 2

+%M3a)0 kyhok, ViV, By, cos(x, —x, ) (y3 +1) 7 (35 +1) Eq. 4-496

_%Mﬂo kdkCZIZ‘Ska sin(ka (x3 —x4)+ ¢, )(2y3 _y;)

2 2

U _ U _ 5 q Eq. 4-497
o0v0x;  0Ox;,0V,

2 2

U __ 90U _ B, Eq. 4-498

ov,0x, - ox,0v, -

2 2 2 2 2 2 2 2
6U_6U_8U_8U:8U:8U:6U28U _0 Eq. 4-499
ox,0y, Oy,0x, 0Op,0x; Ox;0p, Op,0x, Ox,0v, Op,0¥; Oy;0p,

., ou
3) Find a—Xf(x)
@, (J’2 _yo)
@, (13 =2,)+ 0y (V,X)
Pi (V,X)+1_)l4a4u4/ck
} o, (V.x)= By, Eq. 4-500
@, (V.x)+P, 0,0,/ M,

W y[2u v v v v v o
ox ox, Ox; Ox, 0Oy, Oy, Ov, 0y,

ViU,

L Y., ]
ou oUu oU — _
a—xf(X):a—szDO (_)/2—’))0)4‘8—)63(0)0()/3—yo)—kas3 Sll’l(ka X3 —x4‘+ca)+a)0derq)

ou 1 = -\ oU ou 1 -~ =\ oUD
_8_364;(34(1_0{404)4_1364)_8_)640)0%+8_)/2V2(Pm2_1362)_52iy2
ou 1 /= = oU oU
+6_y3E(P”‘3(1+a3U3)_Pe3)_%U36_03_%046_04

Eq. 4-501
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So(0=(Pa P (32 0)
@, (v3=,)

Jr(—}_’m3 (1+aw,)+ Py — f; (x3,x4,y3)) —k, V. sin(ka ‘x3 —x4‘+ca)
kv,

_ _ 1 ,— _
_(]314(1—a4u4)+Pe4+f1(x3,x4,y3))(c—(]’;4(1—a4u4)+Pe4)—a)Oy1]

k

@My, _%M3kbl/s3 (Sin(ka (x3 —x4)+ca)+sin(ka (x33 _xj)—i_ca))
M@y kykok,, (v3+1) =M@,k k7,

1 ___ |[sin(x,— s +1) sin(x; —x, 1 /=
+ _EMﬂ)OkdkPka;VélBM{ (xzyf_:igz% )+ (E/§3+1;4)J V(Pm3(1+a3u3)_

i . {cos(ka (xa—x4>+ca)(2y3—y§)}

-—M k.,V.
2 Pofakeals +cos(ka(x§—xj)+ca)y§

+pm3a3 (x3 - x3s )‘//303 - En3a3'//3032 +h,a, (x4 - xi )‘//404 - [?;4&41//41)5
Eq. 4-502

1 ;
A (x3,x4,y3) :EMSka/S?aka COS(ka (x3 _x4)+ca)(y3 —); )
1 — -
+2 Mgk kok, V7B cos (x, = x,) (7 +1) " (35— 31) Eq. 4-503

1 = .
_5M3a)0 kyk.oV sk, Sm(ka (x3 _‘x4)+ca )y3 (y3 _y;)

If yy is close to zero, it can be neglected, and the 2 conditions are assumed
differently,
e Operating points are near and around the steady state values.

e Operating points are not close to the steady state values.
For the first condition, when operating points are near and around the steady state

values
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@).Y5
+(—En3(l+a3l)3)+1363—fl(x3,x4,y3)) ~k,V s sin(ka (X3 —x4)+ca)
0, kg,
_ _ 1, - _
_(34(1_a4u4)+Pe4 +f1(x3,x4,y3)){c—(1’,4(1—a4u4)+Pe4))

k

1 = = D
+(a)0M2y2)V(sz _Pez)_(a)oszz)szz

2 2
Dy Y3 =k Vs Sin(ka (x, _x4)+ca)
+| @y kykpk,, (y3 +1)2 ) kdkPkaZEM sin(x3 —x4)(y3 +1)71 (13”13 (1+0(3l)3)— _63)
B kdkclzys —0 kdkczzz COS(ka (xs _x4)+ C, )ys

D s 2 s D 2
+F,5, (xs — X )‘//303 - B sasy505 + By, (x4 X )1/1404 = Faay,;

m

oU 1, = = 1 = =
a_f(x) =-a,D,y; __<B4 (1—0541)4)+Pe4)2 -——/ (x3,x4,y3)( 14 (1—0!41)4)+Pe4)
X I e

—h (x3,x4,y3)<a)oy3 — ks sin(ka <x3 —x4)+ca)+a)0 kv, )

D s D 2 s D 2
+F, 50 (x3 —X )‘//303 —Fsonp05 + By, (x4 X )l//4U4 —Fay

2 2 2 2
a_Uf(X)z_& & —G &y _Lﬁmzas 4o _Ll_)zkaéx dv,
ox w, \ dt dr v, dt W, dr

2
4) Find %Trace{gT(x,t)%g(x,t)}



247

2

%Trace {gT (X,t)%g(x,t)}

0
—UX2X2 U)sz; UXZXA szyz Ux2y3 ] O
szxz Ux3x3 U"z X4 styz UVsyz O
B %Trace [0 0000 VW J/ka] UX4X2 UX4X3 UX4V4 UX4Y2 U‘%J’z 0
U)’z X2 U)’z X3 U}’z X4 UY p) U} 23 O
_UYsz UJ’3X3 Uy3x4 UYsJ’z UYsJ’3 a 7/WWW
LYW |
Eq. 4-506
1 o’u 1 > 1 >
ETrace{g (x,0)— e ~g(x, I)} > “Usu, (75) +§Uu4u4 (rv4)
Eq. 4-507

1= 1 —
:EPm3a3 (73‘//3 )2 +§E4a4 (74W4)2

Where

P.a /
75 :# =20¢,&, and y, =—1—"=/20¢,¢, Eq. 4-508
3

pa=looNS Bt G _p o Eq. 4-509
74 €48, sy M, a,M,

S and £ U7 Eq. 4-510
L R L 70

5) The derivative of well-defined energy function

k

Therefore, from the stochastic stability condition, L u(x,t) <0, the above equations

can be summarized to have

2 2 2 2
Lu(x,t):—& % G ﬂ _mesas av, _L}_jzkcﬁ av,
w, \ dt dt ¥, dt v, dt

d(x, - _ _
- A (x3,x4,y3)[M]Pm3a3 (x3 _x;)ddL;_Plka4 (x4 _xi)d04

dt

_ 1 —
Fa (7/3‘//3) 534054(74%)2@

l\)l»—

Eq. 4-511
The first four terms on the right of Eq. 4-511 are in the form of the dissipative

derivative of the energy function. The last five terms on the right are additional terms that

represent the variation of power on bus 3 (wind power bus) and bus 4 (load bus).

If replacing the scaling factor with y, = “u% and y, = R

w
ck w
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2 2 2 2
Lu(x)t)z_& % _Ck ﬂ _LI_)m3a3 d& _L}_)lka“ di
w, \ dt dt v, dr v, dr

d(x. — _ _
—ﬂ(xpxwys)LMJ_Pmsaf*(%_x;)d:; —131;(064(364—964?)(1i

dt

Eq. 4-512
If only wind power is perturbed by stochastic wind, the load is assumed to be

constant during the studied period. Eq. 4-512 becomes

2 2 2
Lu(x’t):—& % G % _if_)m3a3 av,
o, \ dt dt v, dt

2
fl(x3,x4,y3)£MJﬁm3a3 (X3 _X;)d% +l(]3mSa3)3 [%J <0

dz de 2 3

Eq. 4-513
If only the electric load is perturbed by stochastic variation, the wind power is

assumed to be constant during the studied period, Eq. 4-512 becomes

2 2 2
D, ( dx dx 1 — dov
s =g ] ol ) Rl
0 4
d(x3—x4) — ndo, 1,= sy, ?
_fl(xsaqu’s) T —P,ka4(x4—x4) +—(Pl4a4) 4 <0

Eq. 4-514

For the condition when operating points are not close to the steady state values:
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Z—Zf(x):(—sz +P,) oy,
@5

+(—}_)m3 (1+aw,)+ P, - f; (x3,x4,y3)) —k, V., sin(ka (x3 —x4)+ca)
+o, k,V,,

_(F;“ (1-a0,)+ Py £, (x35x4’y3))(i(pl4 (1_a4u4)+1_)e4)j
c

k

o, — kW, sin(k, (x, = x,) + ¢, ) v kgkk,, (v5 +1)
sin (x; —x, )

(s +1)
Wy kdkczzs Cos(ka (x3 —x4)+ Cy )J’3

—Wy kdkclzys —aykykpk I73174534

m

+ +%kas3 (sin(ka (x3 —x4)+ca)—sin(ka (xg —xj)+ca))

+la)0kdkpk V.V.B, sin ( x, —x4)(2y32—y§ +1)_sin()f3s —xj)
? (v +1) (y3+1)

1 I7S3{cos(l\‘fa(x3x4)+ca) ] )

2T ol () ve,) )

D s D 2 s D 2
+F,30, (x3 —X3 )V/3U3 = Fsoqp05 + By, (x4 X )W4U4 TR

—

]3”13 (1+0(3U3)— 3

|
SN—

Eq. 4-515

ou 1, = = 1 = =
G_Xf(x) =-o,D,y; _c_(P;4 (1_a4u4)+Pe4)2 _c_fl (x3,x4,y3)(P,4 (1_a4u4)+Rz4)
k k

-/ (x3,x4,y3)(a)0y3 ~kJVs Sin(ka (x3 —x4)+Ca)+a)0 derq )+fz (x3ax4ay3)(13ms (1"'05303)_1[_23)

D s D 2 s D 2
+F,50, (x3 X )‘//303 — B says0; + Bua, (x4 X )l//4U4 - By,

m

Eq. 4-516
2 2 2 2
a2 8] o) S8 e
d(x, —x,) b5 Ao 5 4 do
- (x3,x4,y3)[TJ+f2(x3,x4,y3)M3d—t3—Pm3a3(x3 _x3)d_t3_Bka4 <x4—x4)d—t4
Eq. 4-517

The Lu of condition two, when operating points are not close to the steady state value, is
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2 2 2 2
Lu(x,[’)z—&(%j _ck (%j _me3a3 [d&] _Lplkaét (dij
w, \ dt dt v, dt v, dt

d{x, —x d _ d _
—fl(x3,x4,y3)[%]+f2(x3,x4,y3)M3%—Pm3a3(x3—x§) (;); _Bka4(x4_xi)_

Ci
Eq. 4-518

1 : .
fz(x3,x4,y3):Eka3(51n(ka(x3—x4)+ca)—s1n(ka(x‘3“—xj)+ca))
+la)0 ok 7B, sin (x, —x4)(2yz - +1) B s1n(x3 —x4) Hq. 4-519

2 (vs+1) (y§+1)

cos(k, (x;—x,)+c

+%a)0kdk6217s3 ( “( : 4) a) Vs

—cos(ka (x3s —xj)+ca)

Therefore, the difference between these two conditions are the existence of the
function f>(x, y). It can be noticed from Eq. 4-511, Eq. 4-512, Eq. 4-513, Eq. 4-514, and Eq.
4-518 that the first two terms on the right of Lu is the same with the derivative of the
energy function of the deterministic system (pU). Comparatively, the Lu has concept
similar to the derivative of stochastic energy function. However, it can definitely prove that
the pU is less than or equal to zero but not for Lu. Clearly, the Lu relationship describes
similar meaning of the average rate of change of energy. When Lu is negative, after
disturbance, the system energy will decrease and the state variables will move toward
equilibrium point. When Lu is positive, the energy may increase beyond the critical energy
and the system become unstable.

Since Lu in Eq. 4-518 is quite complicated, it is assumed that the system is started
from the equilibrium state in which the derivative terms are small enough and can be
neglected. Therefore, Lu will be diminished by focus only on the non-derivative terms and
becomes Lu’.

By dividing the critical energy (U,) with the Lu’, the time that the energy takes to
reach the critical value can be perceived. This conceptual time is then called the Stochastic
Stability Index (SSI). This SSI is improved from the previous section (DSE) and has the
same concept with the mean first passage time (MFPT) which is the performance index to
quantify the average time a state-space trajectory takes to change from a given operating

point to the boundary of its domain of attraction (the set of all possible trajectories which
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converge to equilibrium points) under the influence of small perturbations.

Compared to DSE in the previous section, Lu’ is always positive while DSE can
probably be positive or negative. Theoretically, without corrective action, any continuously
perturbed system will surely be unstable within a definite time even under an influence of
small perturbation [74]. The larger Lu means the faster the energy increases and reaches the
critical value. Therefore, the Lu’ is the term which has negative effect on the power system
stability or can cause the system become less stable.

4.8.3 The Stochastic Stability Index (SS7) for voltage stability analysis

To study the effect of wind power on the voltage stability of the power system using
SS17, the following conditions are applied.

4.8.3.1 The well-defined energy function

The energy function of the power system can be represented as follows

U :%C()()szz2 +%a)0M3(y32 —y‘;z)—sz (Xz _x;) m3 (1+“3”3)( x.;)

+l_)z4 (l_ap4up4)(xp4 _x;4)+%éo4 (1_aq4uq4)(l742 _Zsz)
_%M3ka;3 (sin k, (x, —x4)+ca)+sin(ka (x‘3V —xj)+ca))(y3 —y‘3")

1 3
+§M3a)0kdkpkop (y;+1

k0217s3 (C S

(
( ~(» +1)3)—%M3wokdde3 (v2-27)
L Moo ko ke [
_5 Wy kg Kpry,

1
——Mw, k
> Wy kg

)
(x3—x4)+ca)y3+cos(ka (x3s —xj)+ca)y§)(y3—y§)
)+

(.

P; ;
o (y;il)}(%_%)
1 —

1
2 s2 2 52
EPI4ap4 (U -v 4)+E O4aq4(uq4 _Uq4)

0
(J’3

D 2 52
+ Pm3a3(u3 -0 )+

N N =

V,B, (cos(x1 x4)—cos(xf—x4'))—172174§24(cos(x2— ) cos( —x4))

-V,V,B,, (cos(x3 x,)- cos(x3 - x; )) %344 (1742 _17;2)
Eq. 4-520
4.8.3.2 The partial derivative components of the energy function
The partial derivatives of the energy function to state variables are:
a@f P +VZB v, sin(x, —x,) +ViVB.sin(xi—xj)+VlthB sin(x, - x, )
k=m+1 j=m =

Eq. 4-521
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a—U:—}_’ Y ZVB sm(x —x) VZVB sin(x, —x,)+7, z V,B,, sin(x, —x,)

6)6 J=w+l k=m+1

_%kabl/swka cos(k (x - X, -)+C )(yw—yf;)

- ! —M o,k kpk, [ P ]
2 x
+;M wy kk LV k, s1n( (x ) ca)yw(yw—y;)—ﬁmwawuw
Eq. 4-522
oUu 1 o
= P (477 )(1-a,0,)
k
+I7k Zn: VlEkl Sin(xk _xl)_Vk ’i I711§1k Sin(xz _xk)_ZiIZEik Sin(xi _xk)
I=k+1 I=m+1 i=1
+ f %kameka cos(k, (x, —xk)+ca)( y, - y;) Eq. 4-523
1 (v.-»)( P,
— Mk (6xk j
Xref
m 1 _
= 2 M apkakaV ok, sin(k, (x, = x )+ e V(30 =20
Y;+l e
‘27? _ oM.y, Eq. 4-524
ouU
o, =My,

_%kabV (sm(k (xw — X, ) +ca)+ sin(ka (va —x;;f)+ c, )) + M w,k,kpk,, (yw + 1)2

1 R.(n+) B -
—EMMp)OkdkPkm( (yw+])2 +(y;+1)}_Mwa’okdkc1waw

—%Mwa)okdk V. (cos(k (xw—xref)+ca)(2yw—y;,)+cos(k (x —-X), )+c )y )

Eq. 4-525
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(v.—¥.)aP,
(y,+1) ov,

o)}
c

=BV (1 Uy )(xk _xli)—'— QOk (1 _aquqk)I7k - i‘, %Muﬂ)o kg kpk,

—-p+l

o)}
o

1 n _ k-1 _ _
=Y V:By cos(x;—x, )= D BV, cos(x, —x,)— > BV, cos(x,—x,)-B,V,

3
|

i=l I=k+1 I=m+1
Eq. 4-526
S_U = _pmwaw (XW - Xf‘/) + pmwawuw Eq' 4_527
UW
ou = s
o B, (xk Xk ) +ha,0, Eq. 4-528
pk
ou 1 = e —
o0 = _EQOkaqk (Vk2 -V,” ) + 00y i Eq. 4-529
qk
o O - 0’U = U -
al)i = meaw > E = Plkapk ’ K;k = QOkaqk Eq 4-530
Next step is to find partial derivative function of energy function U as follows
aa—ll] =0 Eq. 4-531
ou = = . - —
Fo —P,,+V,V,b,sin(x,—x,)=—P,, +P, Eq. 4-532
X
ZTU = _]_)m3 + I73174334 sin(x3 —x4)
3
1 A
_EM3ka/s3ka COS(ka (xs X ) e, )(J’3 — Vs )
Ly e (7 -») -7
— o Moo ka ek, W(V% 4 c08(x, - x, )

1 _ ) N =
+5M3a)0 kyk o Vsk, Sln(ka (x3 _x4)+ Ca )y3 (ya Vs ) —bB,;00;

= _I_)m3 (1+a303)+13@3 - A (x3,x4,y3)
Eq. 4-533
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B, (1742 + 17:2)(1_0[ v )_ I71174[)14 Sin(xl _x4)_ I72174[724 Sin(xz _x4)_ Vb, Sin(x3 _x4)

P4~ p4

+%M3kbl/;3ka COS(ka (x3 _x4)+ca)(y3 _yi)

(3 -23)

(y3+1)
1 — . s
_EM!‘)O kak o Vsk, Sm(ka (x3 _x4)+ca )y3 (y3 —Vs )

:ﬁm (l_ap4up4)+f_)e4 +f1(x3,x4,y3)

1 __
+5M3a)0kdkpkm (V3V4834 cos(x3—x4))

Eq. 4-534
U _ oM.y, Eq. 4-535
,
oU —
—— =M.y, —Mwkk. Vs,
s
_%M3kas3 (sin(ka (x3 —x4)+ca)+sin(ka (xg —xj)+ca))+M3a)O kykpk,, (y3 +1)2
—1M3a)0 k7B, V,sin(x, —x, )2(y§' +1) N Ve sin(x§ —xj)
2 (5 +1) (y§ +1)
1 — : S ,
_§M3a)0ka,kc2Vs3 (cos(ka (x3 —x4)+ca)(2y3 —y§)+cos(ka (xSs —xj)+ca)y§)
Eq. 4-536
ou = - 1 Vs=Vs)— _ _
ﬁ = Q04V4 _EMsa)o kg kPkm ((;3 +13)) V3334 Sln(x3 _x4)_Qo4aq4Uq4V4 Eq. 4-537
~V,B,, cos(x, —x,)—V,B,, cos(x, —x,) ~V;B,, cos(x, - x,) - B,,V,
v -P .a, (x3 - X3 ) +P o0, Eq. 4-538
ov,
oU = s\ =
20, =-h,,, (x4 —x4)+P,40(p4z)p4 Eq. 4-539
oU 1 = = = =
P === 0, (V42 -7 ) + 00,240, Eq. 4-540
Uy 2
U = U — U —
81)32 =Fa; , @ =h,a,, . E = Ql4aq4 Eq. 4-541
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oU
1) Find —f
) Fin o (x)
a)o(yz_yo)
@y (3 =¥, )j P (V.x)
¢xk (V’ X) + Pl4ap4Up4/Ck

@(Vax)—/fzyz
QU o \_|8U 8U 8U 6U oU 8U U U U || 4 (v.x)+Paw, /M,

(x)= U
0x dx, Ox, Ox, dy, dy; OV, odv; Ovu, Ovu, §9vk(VoX)+Q4aq4Uq4/(/1sz¢)

YUy
_l//p4Up4
L “V4aya J
Eq. 4-542
oU S — —
8_Xf(x) = (_an +F22)a’o (7, _y0)+(_Pm3 (I+ev)+ Py - f, (x3,x4,y3))(a)0 (33 =20)+ @y (V’X))

_(}_)14 (1 _ap4Up4)+E4 +/i (x3,x4,y3 ))((ka (V,X) + E4ap40p4/ck)+(a)0MzJ’z )((Di (Vax)_ﬁz)’z)
oMy, — M, kdkclz.%

_%M3kas3 (sin(k, (x,—x,)+¢,) +sin(k, (x =} ) +c, )+ Mok hok,, (5 +1)°

} (DW(V,X)

V,sin(x, —x4)(y‘3’ +1)+ v, sin(x‘3v —xj)

1 _
+| —=Mw,k, k.k,V,B [ - P .ap
2 0 P 3734 (y3+1)2 (y3 +1) ]3\4;5 3
1 B cos(ka(x3—x4)+ca)(2y3—y3s)
_EMsa)okdkczVﬁ o s
+cos(ka(x3—x4)+ca)y3
0, V—lMﬂ) k, k,k (y3_y;)178 sin(x, —x,) = 0,40,V 0.0,
4| =TS o Ka KpKoy (y3+1) 334 3 Xy 04%440447 4 Lq)vk(vax)"’ 141;; q4J
g

—V,B,, cos(x, —x,)—V,B,, cos(x, —x,)—V;B,, cos(x, - x,) - B,V
+(1_)m3a3 (x3 —x;‘)—l_’m3a3u3 )‘//303 + (1_)l4ap4 (x4 _xi)_l_:;4ap40p4)‘//p40p4

1 = N —
+ (E Q04aq4 (V42 -V, 2 ) - Q04aq4vq4 j V4V
Eq. 4-543
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_f(X) = (_sz +E2)a)o (J’2 J’O)
@y (v~ ,)
—k,V,, sin(ka X, —x4‘+ca)

W, kdy3kc’2[753 cos (ku (x3 Xy ) +c, ) —a, kdy3kcll73
+w, kdkPkop (y3 + 1)2 —y kkp km1333/(1 + s )

_(E“ (l_ap4up4)+l3e4 + 1(x3,x4,y3))cL(]_3,4 (l_ap4vp4)+1_)e4)
k

oMy, — M, ka'kcll73y3

1 sin(ka (x3—x4)+ca) )
——M.kV M k. k 1
2 3% 53 +sin(ku(x§—xi)+ca) + 3a)0kd P ap(y3+ )

V, s 75 s P.(1+
_lMﬁ)O k, kpkaBM V4 Sln(X3 — Xy )2(y§ +1) N V4S smgxg —xi) L( _3( ,0; )J
? (¥3+1) (yg +1)
1 ' {COS(’% (xrx“)*%)(zys—ﬁﬂ

M k.V
> Oy kgk oV o +cos(ka(xl3g_xi)+c")y§

(J’3 _y;)
(y3+1)

~V,B,, cos(x, —x,)—V,B,, cos(x, —x, ) = V;By, cos(x, —x, ) - BV,

— — 1
OnV, _EM@() kykpk,

0.y

173334 Sin(x3 _x4)_éo4aq4uq4l74 1 QI4 (l_aq4uq4)
2,

— R _ N =
+ (Pm3a3 (x3 — X3 ) = F,3050; )V’3U3 + (Pl4ap4 (x4 X ) —h,a,.0,, ) ¥ palpa

1~ = = —
+ (E Q04aq4 (V42 - V4 ? ) - Q04aq4uq4 j V/q4Uq4
Eq. 4-544
If yy 1s close to zero, it can be neglected, and 2 conditions are assumed differently.

For the case when operating points are near and around the steady state values:

lk , {sin(ka (x, —x4)+ca) J

2 +sin(k, (x) -x})+c,) =kTsink, (1 —x) e, Eq. 4-545

b’ s3
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v, sm y3 +1)
+1
a)okdk k V.B,, y3 ~ o,k kp k, Py (14 3;) Eq. 4-546
V sin x3 —x4
y3 +1
1 cos k, (x;—x,)+c, 2y3 yg) 3
M@k k. Vs oy kg V3KV cos(ka (x3 _‘x4)+ca)
2 +c0s(k ( ) )
Eq. 4-547
Q04I74 _Q04aq4uq4V : Mﬂ’ok k k ﬂ@% Sin(x3 _x4)
(5 +1)
—V,B,, cos(x, —x,) =V, B,, cos(x, —x,) =V, B, cos(x, —x, ) - B,,V, Eq. 4-548
(y3 _y;)

1 _ 1 _
7(Q14 (1 —aq4Uq4)_Qe4)_5M3600 k, kpkm WVEBM SlIl()C3 —x4)

If yo 1s close to zero, it can be neglected:
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g_zf(x):(_énfrézy‘%(yz_yo)
oy (5= 1))

P,(l+a0,)-P, _ka3Sin(ka
_[+ (53250035 ) J ok Vsl cos(k, (x, = x,) + ¢, ) oy ky ko7,

X, —x4‘+ca)

+w0 kdkPkop (y3 + 1)2 _(00 kdkP kmpﬂ/(l +y3)
@, (¥3-¥,)

—k, V., sin(ka X, —x4‘+ca)

+(P,(1+aw,)-P — V,
( m3( ’ 3) 63) 0, kg Y3k oV cos(ka (X3_x4)+ca)_a)okdy3k“V3

+Cl)0 kdkPk()p (y3 + 1)2 _a)O kdkP kmpe?a/(l + y3)

_(E“ (l—ap4l)p4)+13e4 + (x3,x4,y3))ci(15,4 (l_ap4')p4)+}_)e4)
k

+(w0M2J’2)ML(sz _éz)_(woszz)%)b +%I72<Q4 (l_aq4uq4)_ée4 )2
2 2 g
M@, kykpk, MZBM sin(x3 - x4)(é14 (1 TV ) - QM)

+—
24V, (y;+1) Eq. 4-549

_ N = _ N =
+(Pm3a3 (x3 X3 ) — P, a50; )W3U3 + (B4ap4 (x4 Xy ) - Pl4ap4up4 ) W aUps

1 = —, —
+(5 Q04aq4 (V42 -V, 2 ) - Q04aq4uq4 j V 44Uy

oU 1 /= = 1 = =
gf(x) = __(P14 (1_a404)+Pe4 )2 —— /i (x3,x4,y3)(f}4 (1—0541)4)+Pe4)—a)0D2y§

C, c,
@y)3
_ 1 — — \2
_fl(x3,x4,y3) —ka/S3sin(ka‘x3—x4‘+ca) +W(QZ4(1—0{q4Uq4)—QG4)
_ "4
k7,

s D s =
+ (Pm3a3 (x3 —X; )_ Fs00; )‘//303 + (Pz4ap4 (x4 ! ) —F,a,0,, )l//p4Up4

1 = — = —
"(E Q04aq4 (V42 -V, ’ ) - Q04aq4uq4 j V4l

Eq. 4-550
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oU ., Dy(dx,) dv, ) d(x, —x,) dv, a7, Y
L) =- 22 g S5 f1<x3,x4,y3>[Tjf3<x3,x4,y3> s

ox o, \ di dr

2 2
= ando, 1 = do — ado 1 - do
—F,; (xs =X )d_;_l//_3pm3a3 (d_;] - ha, (x4 _x4)7p4__Plkap4[ d:4J

2
1 = —, —ndo 1 = dov
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4.8.3.3 The derivative of well-defined energy function
Therefore, from the stochastic stability condition, Lu(x,t) <0, the above equations

can be summarized to have:

2 2 2 2 2
— — d — d
LU(X,I)Z—&[%j _Ck(%j _Lﬂﬂ%(dl}}] _Ll)lka;ﬂ ﬁ _LQmaqéx ﬁ
w, \ dt de ¥, dr V4 de W4 de
d(x3 —x4)

_ _ 2
d dr, dr,
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_ - d — d
—Pm30(3(x3—x§)d:; _Plka4(x4_x:) Zt4 1Q04 q4( VYZ) (ll)t

I - 1 - 1 =
EPm (7/3W3 )2 +5Pl4ap4 (7p4Wp4 )2 +5Q140‘q4 (7q4‘»”q4) <0

Eq. 4-567
If replacing the scaling factor with
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- m3a3(’x3 x3) dt3 _Bka4(x4_x4)d—:_EQO4aq4(V V42) P
2 2
l 5 1 55V 4
+Ea;Prj3 (;Z_ZJ +Ea;41)li [C_p:j q4Ql4[lk(;4} <0
Eq. 4-568
Where
1 s
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fz(x3,x4,y3)=%kas3(sin(ka(x3 —x,)+¢,)-sin(k, (x; —xj)+ca))
sin (x, —x4)(2y3 - +l)_sin(x§ —xj)

(s +1)2 (y‘; +1)
1 _ cos(ka(x3—x4)+ca)

+5a)0kdkczVS3 —cos(ka (x§—xj)+ca) s

Eq. 4-571

Since the first two terms on the right of Lu are the same with the derivative of the
energy of the deterministic system (pU), the Lu has the concept similar to the derivative of
the stochastic energy function. However, it can definitely prove that pU is less than or

equal to zero but not for Lu.



CHAPTER 5
RESULTS AND DISCUSSION PART 1

From the scopes and methodologies, the results have 2 parts. The first part consists
of the characteristics of wind power, characteristics of power system incorporating wind
power, effects of wind power on the small signal stability using eigenvalue method, and
effects of wind power on the small signal stability using stochastic stability method: the
mean first passage time (MFPT).

The second part focuses on the stochastic stability, which consists of the study of
the effects of wind power on the small signal stability using new stochastic stability
method: the stochastic stability index (SSI), the study of effects of wind power on the
voltage stability using new stochastic stability method, the study of effects of wind power
on voltage variation using probabilistic method.

This chapter focuses only on the first part of the results.
5.1 The characteristics of wind speed and wind power

The wind speed data, which is used in this section, is collected from the monitoring
stations in Thailand and from modeling. The wind power is estimated using power curves
from the manufacturers and the provided wind speed. There are two main types of
characteristic of wind speed, which are, the slow wvariation and the fast variation
characteristics.

Slow and fast variation components of wind speed can be determined using spectral
analysis of measurement wind data. They can be separated at a cycle time about 10 minutes
or 1.67 mHz. Faster than 10 minutes is a type of fast variation and slower is for slow
variation wind speed [42].

For wind data from two monitoring stations in Thailand, the first station is located
in Chumporn Province (CHMP1) in the South of Thailand, and the other station is located
at Bangkhuntian Campus (BKT1) of King Mongkut’s University of Technology Thonburi
(KMUTT) in Bangkok. Wind speed data is recorded every minute during October 2011 —
March 2012. The power spectral density (PSD) of wind speeds are shown in the following

figures.
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Figure 5.1 PSD of wind speed data from BKT1 station with frequency range of
0 - 8.3 mHz or ~2 minutes/cycle (left) and 0 - 0.14 mHz or ~120 minutes/cycle (right)
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Figure 5.2 PSD of wind speed data from CHMP1 station with frequency range of
0 - 8.3 mHz or ~2 minutes/cycle (left) and 0 - 0.18 mHz or ~92 minutes/cycle (right)

In the above figures, significant parts of wind speed occur at frequency about 0.012
mHz (about 24 hours per cycle), 0.023 mHz (about 12 hours per cycle), and 0.035 mHz
(about 8 hours per cycle). These cycles are influenced from the diurnal effect. Higher than
1 mHz, PSD decrease slowly and quite flat at frequency higher than 8.4 mHz (about 120
seconds per cycle). The 0 mHz component is neglected due to there is no data exist at that
frequency. The fast variation components of wind speed have quite the same power and

can be called turbulence wind speed.
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5.1.1 Variation of wind speed

5.1.1.1 Slow variation wind speed

Slow variation wind speed can be considered the when wind speed has a cycle

slower than 10 minutes. Therefore, 10-min data is an averaging interval which is used

generally to record wind speed data [42]. Generally, slow variation wind speed

characteristics can be characterized using variation and probabilistic behaviors in the long

term. For time variation characteristics, wind speed can change slowly due to diurnal

effects and seasonal effects. For example, hourly average and monthly average of wind

speed of BKT1 and CHMP1 stations.
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Figure 5.3 Hourly average (left) and monthly average (right) of wind speed of BKT1
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Figure 5.4 Hourly average (left) and monthly average (right) of wind speed of CHMP1

station

For probabilistic behaviors of long term wind speed, the distribution function of

wind speed is generally determined. The level of fluctuation of wind speed can be
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determined by the standard deviation of wind speed. The distribution data of standard
deviation can also be considered to represent the long term deviation of data. The following

figures show an example of the distribution of wind speed and standard deviation.
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Figure 5.5 Distribution of wind speed (left) and standard deviation (right) of 1-min data of
130,000 samples at CHMP1 station at 90 m-height

This wind speed distribution can be approximated using the Weibull distribution
function with scale parameter is 4.77 and shape parameter is 1.96 . For these samples,
maximum standard deviation of wind speed can reach about 1.94. The standard deviation
of 1-min wind data varied between 0.1 — 2.0 . The standard deviation within a range 0.5 —
2.0 will be used in the power system modeling of this thesis.

The formation of the probability distribution of wind speed is also investigated in
this section. The frequency distribution of measured wind speed data are estimated using
Matlab. To understand its distribution type, one-sample Kolmogorov-Smirnov method is
used to compare the measured wind speed data with the six types of distribution. This is
called hypothesis test. The six distribution types are Weibull distribution, Exponential
distribution, Normal distribution, Log-normal distribution, Generalized-extreme value
distribution, and Extreme value distribution. The resulting p-value which greater than
significant value of 0.05 is an acceptable case or can be said that it cannot reject the
hypothesis that this data is such kind of distribution function.

The sample wind data consist of three cases. The 1-sec data run from 10 to 900
seconds which the hypothesis is computed every 10 seconds. The 1-min data run from 10

to 800 minutes which the hypothesis is computed every 10 minutes. The 1-hour data run
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from 10 to 800 hours which the hypothesis is computed every 10 hours. For each step of
computation, the p-value was reported and compared.

For the 1-sec wind speed, the hypothesis test result is presented in Figure 5.6. From
the result, when time increase with increasing sample, the p-value seems high for the
starting run but all fall to zero after 350 seconds. Therefore, it is possible to reject the
hypothesis that the distribution function matches with the measured wind speed data.

For the 1-min wind speed, the result of hypothesis test shown in Figure 5.7 is the
same with the 1-sec data. The p-value seems high for the starting run but most cases fall to
zero after 350 minutes except the case of Generalized-extreme distribution which fall after
600 minutes.

For the 1-hour data, the result of the hypothesis test is shown in Figure 5.8 is
different from the previous two cases. The p-value seems high for the starting run but most
cases fall to zero after 350 minutes, except for the case of Generalized-extreme distribution
and Weibull distribution which increases continuously. Therefore, for this case, it cannot
reject the hypothesis that the 1-hour data distribution can be approximated by Generalized-
extreme distribution and Weibull distribution. The number of sample of 1-hour wind speed

which is enough to represent Weibull distribution should be larger than 100 hours.
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Figure 5.6 Hypothesis test of every second wind speed data
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Figure 5.8 Hypothesis test of every hour wind speed data

5.1.1.2 Fast variation wind speed
The fast variation characteristics of wind speed are from the interactions between
wind speed, terrain, land cover and other obstacles. Generally, fast variation characteristics
are studied with a short time scale from a millisecond to several ten minutes.
Examples of wind speed at time scale in seconds and minutes are represented in
Figure 5.9 and 5.10. For Figure 5.9, a short term wind speed data is recorded every second
for about one day and represented here only 600 samples. This 1-sec data is averaged every

60 samples (or 1 minute) to show as mean parts surrounding by fluctuating parts.
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Figure 5.9 Wind speed at 90 m heights of BKT1 station with second (left)

and minute (right) time scale.

In Figure 5.10, the fast variation data is represented in the long term period. The 1-

minute data for 10,000 samples show highly fluctuation both wind speed data and standard

deviation data. The cycle of deviation data occurs obviously due to diurnal effects.
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Figure 5.10 Wind speed (left) and its standard deviation (right)
at 90 m heights of CHMP1 station

It 1s well known that fast variation wind speed, which is called turbulence, can be

approximated using zero average normal distribution [42]. However, we found that

measurement data of turbulence wind speed is quite different. Figure 5.11 shows the PSD

and data distribution of 1-sec wind speed at 90 m heights of BKT1 station for 2000

samples. Since it is too short a time, the wind speed cannot approximated by the Weibull

distribution. At this level of frequency, the PSD is very small with less than zero dB.
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Figure 5.11 PSD (left) and histogram (right) of 1-sec wind speed at 90m heights
of BKT1 station for 2,000 samples

To represent the turbulence more clearly, the 1-sec wind speed data is subtracted by
60-sec average wind speed to reveal only the turbulence part. The results are noise wind
speed and its distribution, which are shown in Figure 5.12.

Noise wind speed (turbulence) = wind speed — average wind speed every 60 samples

Eq.5-1
2 . A L
Noise wind speed e
1.5
1 Il l
l 1000 -
05 i
0 [%

5 1 50 2000

wind speed

Figure 5.12 Noise wind speed 1-sec data 2,000 samples (left) and its histogram (right)

Figure 5.13 represent the turbulence term of wind speed but with 1-min data for
26,000 samples. For this figure, turbulence term seems not a type of zero average normal
distribution, but look like Generalized Gaussian Distribution (GGD) instead. Therefore, the
modeling of turbulence wind speed using Gaussian distribution may stimulate significance

CITOor.
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Figure 5.13 Wind speed distribution (left) and turbulence or noise wind speed distribution

(right) of 1-min data for 26,000 samples at CHMP1 station (upper) and BKT1 station (lower)
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Figure 5.14 Example of gust wind speed of 1-min data for 10,000 minutes at BKT1 station
(left) and CHMP1 station (right)



273

Wind Speed @ 20mim/s)

I
I — &0min WS 12l
|

Stdev wind Speed @ 90m(m/s)
T T T T T

[=]
@

[=]
m

Wind Speed(m/s)
]
Stoev wind Speed(m/s)

ik

o i
u} 1000 2000 3000 4000 5000 6000 7000 2000 8000 10000

o 1 L 1 I 1 1 1 1 1 -
a 1000 2000 3000 4000 5000 6000 7000 9000 2000 10000 tirne (rinute)
time (minute)

Wind Speedavg @ 0m{mis) Wind Speed stoev @ 20m(ms)

2.5

o

Wind Speadim/s)
]

=
WS stdavim/s)

B

0.5

L]

o L L L L L L L L L 0 il L i | | N B PR 1 L
1] 1000 2000 3000 4000 S000 €000 7000 G000 G000 10000 0 1000 2000 3000 4000 S000 E000 7000 G000 S000 10000
tirne (minute) time (minute)

Figure 5.15 Wind speed (left) and its standard deviation (right) of 1-min data for 10,000
minutes at BKT1 station (upper) and CHMP1 station (lower)

The other case of fast variation of wind speed is the transient characteristic from
gust wind speed, which is an abrupt change of wind speed within a short time. Gust wind
speed can be estimated by the difference between maximum and average wind speed
within 1 minute or less. The level of gust wind power can be estimated by the different of
maximum and average power of wind (W/m?) at standard air density (1.225 kg/m?) within
I minute or less. Examples of gust wind speed and wind power are represented in above
figures.

For example, if the 1.6MW wind turbine (with swept area about 2,000 m”) has an
alert level of wind power change at 50% of rated within 1 minute. Therefore, the serious
level of gust wind power should be within a range of 600 — 800 W/m? or larger. However,
the transient phenomena are not considered yet because it is out of the scope of the thesis

and does not occur frequently in nature.
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5.1.2 Variation of wind power

In this section, characteristics of wind power are studied, which consider three main
affecting factors, namely wind speed, wind farm modeling, and power system conditions.
The wind turbine technology is the other important factor. However, since the
measurement wind power data is not available, the simulation or modeling wind power will
be used instead for every cases of study.

5.1.2.1 Characteristics of estimated wind power

From the previous section, wind speed can be considered to have slow and fast
variation characteristics. Therefore, wind power in this case should be studied in term of
slow and fast variation too.

For slow variations of wind speed and without dynamic behaviors, the output wind
power (Py) is calculated using Eq.3-1 to Eq.3-4 .

For example, hourly average wind data for 7,000 hours during August 2008 — July
2009 at coastal site in the South of Thailand are represented in Figure 5.16.

From this figure, the maximum, minimum, and fluctuation of wind power can be
noticed. More than a half of time, wind power normally varies within a range 100 — 800
kW. However, it can reach as much as 1,000 — 1,200 kW (rated of wind turbine) during the
stormy season in the South of Thailand.

The distribution of wind speed and wind power data at the coastal site in the South
of Thailand are represented in Figure 5.17. These results can be used to compare with wind

speed and wind power data at BKT1 station as shown in Figure 5.18 — 5.20.
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Figure 5.16 Hourly average wind speed (left) and wind power (right) from Eq.3-3 and 3-4
at the coastal site in the South of Thailand
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Figure 5.17 Histogram of 7,000 hours wind speed (left) and calculated wind power (right)
at the coastal site in the South of Thailand
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Figure 5.18 Hourly average wind speed (left) and calculated wind power (right) at BKT1

station
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Figure 5.19 Hourly average wind speed (left) and calculated wind power (right) at BKT1

station
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Figure 5.20 PSD of 800 hours wind speed (left) and calculated wind power (right)
at BKT1 station

For Figure 5.20, at frequencies of about 12 uHz and 22 uHz show significant level
of PSD. These frequencies refer to the time cycle of about 24 hours and 12 hours
respectively. Therefore, it is again an influence of diurnal effect.

The following figure can represent the formation of probability distribution of wind
power for 800 hours samples. From this figure, it is possible to approximate probability
distribution of wind power by Weibull distribution and generalized extreme value

distribution.



277

0.9
Hypotesis Test of Wind Power from hour 10 - 800
0.8
07 —-WB2
0.6 -=-EXP2
—+=NM2
05 - y —<IN2 -
E /[ \ —GEV2
g o4 T X{ -EV2
Q
0.3 1\
02 WM\/‘-
01 significant value is > 0.05
0 0 RRERER ;
100 200 300 400 500 600 700 800
0.1
Time (hours)

Figure 5.21 Hypothesis test of hourly averaged wind power

5.1.3 The probability distribution function of wind power

The study of probability distribution characteristics of wind power can be influenced

by many factors, such as wind turbine model, power system model, wind speed model and

noise model. Therefore, testing with many conditions is listed in Table 5.1.

Table 5.1 Testing conditions for the study of probability distribution of wind power

Wind turbine Power system Wind speed model Other conditions
model model
Case 1 AC source Weibull distribution usin, 2 values of Weibull scale
Al IX2MVA SCIG without load inverse CDF : parameter, 100x2 runs
Case 2x2MVA 1 AC source Independent 2 wind sources Weibull scale parameter = 10,
A2 SCIGs without load with Weibull distribution for 10,000 runs
Case 5x10x2MVA 1 AC source Independent 5 wind sources Weibull scale parameter = 10,
A3 SCIGs without load with Weibull distribution 100 runs
Case 2x2MVA 1 AC source The same wind source with Add Gaussian random noise to
A4 SCIGs without load Weibull distribution WT?2, 100 runs
Case 2x2MVA 1 AC source Constant wind speed = 6, 9, Add Gaussian random noise to
A5 SCIGs without load and 10 m/s for both WT WT2, 400, 1600 runs
Case 1x50x2MVA SMIB system Weibull distribution using 2 values of Weibull scale
A6 SCIG with load inverse CDF parameter, 200x2 runs
Case 1x50x2MVA SMIB system Weibull distribution using WS noise using inverse CDF
A7 SCIG with load inverse CDF numerical method , 100 runs
Case Al Single wind turbine connecting AC voltage source power system without
noise

The one-line diagram of case Al is represented in Figure 5.22. In this case, wind

speed signal is generated from the inverse CDF method considering Weibull distribution.
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Figure 5.22 One-line diagram of test system of case Al

Where Uw is the uniform random number between 0 — 1 and Cparam is the scale parameter.

In this case, the Weibull shape parameter = 2 or called Rayleigh distribution.
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Figure 5.23 Wind speed (left) and wind power (right) of case A1 (WS1 and WPI use
Cparam = 5, WS2 and WP2 use Cparam = 10)
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Figure 5.24 Histogram of wind speed (left) and wind power (right) of
case Al (Cparam = 5)
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Histagrmm of Wind Speed with scale pammeter = 10 Histogram of Active Wind Power with scale pammeter =10

26+

o2 4 & 8 10 12 14 16 18 20 22 24 0 01 02 03 04 05 08 07 08 048 1
Wind Speed {m/s) \Wind Power (per unit)

Figure 5.25 Histogram of wind speed (left) and wind power (right)
of case Al (Cparam = 10)

It can be noticed in Figure 5.23 that at Cparam = 5, wind power is very low or
cannot generate electrical power. In Figure 5.24, the wind power distribution is again reveal
that wind speed is too low to start generate power. When Cparam increase to be 10 in Figure
5.25, the wind power distribution show large share of wind power greater than 0.3 pu.

Case A2 Two wind turbines connecting AC voltage source power system without
noise

The one-line diagram of case A2 is represented in Figure 5.26. Wind speed is
generated from the inverse CDF method considering Weibull distribution for both wind
turbines. Wind speed and wind power of case A2 are represented in Figure 5.27. Figures
5.28 and 5.29 reveal that wind speed with large samples can be exactly approximated by the
Weibull distribution, but wind power cannot. It can be concluded from these figures that, the
data distribution of wind power of single wind turbine cannot be approximated using
general probability distribution functions. It depends on the characteristics of wind speed

and the power curve of wind turbine including cut-in speed and rated speed.
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Figure 5.26 One-line diagram of test system of case A2
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Figure 5.27 Wind speed (left) and wind power (right) of case A2 (WS1 and WP1 from
WTGI1, WS2 and WP2 from WTG2)
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Figure 5.28 Histogram of wind speed (left) and wind power (right) of case A2 (from WTG1)
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Figure 5.29 Histogram of wind speed (left) and wind power (right) of case A2 (from WTG2)
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Case A3 Five aggregated wind farms connecting AC voltage source power system
without noise

The one-line diagram of case A3 is represented in Figure 5.30. Wind speed is
generated from the inverse CDF method considering Weibull distribution for all five
aggregated wind farms. Each wind farm represent 10 coherently wind turbines of capacity
2MVA each. The total wind power (Pwind) is then compared with the individual wind

power from each windfarm.
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Figure 5.30 One-line diagram of test system of case A3
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Figure 5.31 Sample of wind speed (left) and wind power (right) of case A3
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Figure 5.32 Histogram of wind power of WTG1 (left) and total wind power (right)
of case A3

In Figure 5.31, for random and independent wind speed, total wind power seems
smoother than individual wind power. Moreover, Figure 5.32 reveals that the total wind
power can be approximated by normal distribution while the individual wind power cannot.
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Figure 5.33 PSD of wind power of WTGI (left) and total wind power (right) of case A3

In Figure 5.33, the normal probability plot represents again that the total wind power
can be approximated by the normal distribution. This is because when the random signal
mixing together, the convolution of many sources can results to converge to normal

distribution.
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Case A4 Two wind turbines connecting AC voltage source power system with
normal random noise wind speed for one wind turbine

The one-line diagram of case A4 is represented in Figure 5.34. Wind speed is
generated from the inverse CDF method considering Weibull distribution for both wind
turbine (Cparaml = 10). However, wind turbine number two has normal random noise wind

speed add.
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source
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random
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Figure 5.34 One-line diagram of test system of case A4

Since the wind power distribution cannot be approximated by any standard
probability distribution, the noise wind power is then considered. The noise wind power is
calculated by the difference between wind power from wind turbine number one and
number two. Figure 5.35 shows that noise wind power have close to zero mean distribution.
In Figure 5.36, the noise wind speed seems like normal distribution. In Figure 5.37, noise
wind power distribution is very different from normal distribution. The result of normal plot
in Figure 5.38 reveals that noise wind speed distribution is close to normal distribution, but

noise wind power is not.
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Figure 5.35 Wind speed (left) and different wind speeds (WS2-WS1) (right) of case A4
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Figure 5.36 Histogram of wind speed (left) and different wind speeds (WS2-WS1) (right)
of case A4
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Figure 5.37 Histogram of wind power of WTG2 (left) and different wind powers (WP2-
WP1) (right) of case A4
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Figure 5.38 Normal probability plot of different wind speeds (WS2-WS1) (left) and
different wind power (WP2-WP1) (right) of case A4
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Case A5 Two wind turbines connecting AC voltage source power system with
constant mean wind speed and add normal random noise wind speed for one wind turbine

The one-line diagram of case AS is represented in Figure 5.39. Wind speed in this
case is fixed for both wind turbine (k = 6, 9, 10 m/s). However, wind turbine number two

has normal random noise wind speed added.

AC voltage
source

Normal
random

Figure 5.39 One-line diagram of test system of case AS

This testing condition interests an influence of mean wind speed on the distribution
characteristics of wind power. Figure 5.40 represent that there is specific mean wind speed
that can make wind power distribution symmetry. In this case is 9 m/s.

This is true also in the case of noise wind power as presented in Figure 5.41. For
both wind power and noise wind power, at mean wind speed fix at 9 m/s, the normal
distribution can be used to approximate its distribution. Figure 5.42 can confirm this
agreement.

It can be noticed that the distribution characteristics of noise wind power in this case
is different from the case A4. The difference between these two cases is the wind speed

model. However, wind speed model of case A4 is more close to the nature of wind speed.
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Figure 5.40 Histogram of wind powers for the case wind speed, k = 6m/s (upper left),

9m/s (upper right), and 10m/s (lower)
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k= 6m/s (upper left), 9m/s (upper right), and 10m/s (lower)

os




287

Maormal Prabability Plot
T T T

Maormal Prabability Plot
T T T T

: : : i ; : F o &
o.008f : : : ¥ : G i .00} 3
0,007 |- ; ; : S & el 0,907 -
0.8 | : ; : ¥ T g noe | : : : :
0.98 | .................... D38 b o
095 |-: ; 0.0 |
[i= 1 0.50
5 075 1 4 5075
N e e e s e e st e e S om0
g B
o
ooz & onos |
oo LA P nds s R L B R s Lol v v nm--‘-----f----'
0.0s b : : : ; 005 fi b
0.02 H a ooz b
0.01 | ] oot
0,008 [ 0003
0,001 [ 0.001 |
+ i i H i ; i i i i
006 0 005 04 045 02 026 03 036 0.4
Data
0,009 |
0,007 |-
0,60 [
0.98
0.95 b
090 F
5 078 ¢
2 080
2
[
o p2s
0.10 F--
0.05 b
0.02 |
0.01 b
0,003
0,001 |-

Figure 5.42 Normal probability plot of different wind powers (WP2-WP1) for the case of
wind speed, k£ = 6m/s (upper left), 9m/s (upper right), and 10m/s (lower)
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Figure 5.43 Different wind speed (WS2-WS1) for all &

Case A6 Aggregated wind farm connecting Single Machine Infinite Bus (SMIB)
power system without noise

The one-line diagram of case A6 is represented in Figure 5.44. Wind speed is
generated from the inverse CDF method considering the Weibull distribution. However, the

power system is different from the previous cases. The single machine infinite bus system is
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used to represent an influence of more complex power system on the distribution
characteristics of wind power.

In Figure 5.45, the Cparam = 5 is the case that wind power cannot be generated. The
distribution data in Figure 5.47 is in agreed with this conclusion. For Cparam = 10, the
results from Figure 5.47 can be compared with Figure 5.24 and 5.25 of the case Al. It can
be noticed that the distribution characteristics of wind power is very similar for these two
cases. For this condition, the power system may has less influence on the distribution of

wind power.
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Figure 5.44 One-line diagram of test system of case A6
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Figure 5.45 Wind speed (left) and wind power (right) of case A6
(WS1 and WPI use Cparam = 5, WS2 and WP2 use Cparam = 10)
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Figure 5.46 Histogram of wind speed of case A6 for Cparam = 5 (left)
and Cparam = 10 (right)
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Figure 5.47 Histogram of wind power of case A6 for the case Cparam = 5 (left)
and Cparam = 10 (right)

Case A7 Two aggregated wind farm connecting Single Machine Infinite Bus (SMIB)
power system with constant mean wind speed and add normal random noise wind speed for
one wind turbine

The one-line diagram of case A7 is represented in Figure 5.48. Wind speed is fixed

at 10 m/s with normal random noise is added and the power system is SMIB system.
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Figure 5.50 Histogram of noise wind speed (left) and wind power (right)
of WTG2 of case A7
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Figure 5.48 One-line diagram of test system of case A7
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Figure 5.49 Noise wind speed (left) and noise wind power (right) of WTG2 of case A7
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Figure 5.51 Normal probability plot of noise wind speed (left) and
noise wind power (right) of WTG2 of case A7

In Figures 5.50 and 5.51, both noise wind speed and noise wind power can be
approximated by normal distribution. This result agrees with the result of case AS.

5.1.4 The stochastic wind power simulation

The DFIG wind turbine model is simplified and represented by the two-order model
consisting of two differential equations. From the rotor dynamic equation, when applying
colored noise into the mechanical wind power (Py,), we will get the stochastic differential

equation (SDE) as follows:

1 1
- SW =- ])ms _Pe +_])msawuw E .5'2
P =5t AT, a
pr = _l//WUW + 7wWpr Eq5-3

where pW is a zero-mean Gaussian distributed white noise [9], and o, is noise intensity of
the wind power with its standard deviation divided by mean value. vy, is colored noise

parameter. y, and 4, are scaling parameter and bandwidth of wind power, respectively.

The power test system is a single machine infinite bus power system (SMIB). The
system parameters and equations are provided in Section 4.2. The single line diagram of the
power test system is represented in Figure 5.52. The simulation is done using Matlab to
characterize the variations in wind power and the state variables (speed and angle) when
applying colored noise. The stochastic wind power is simulated by vary bandwidths, noise

intensities, and scaling parameters. Furthermore, the probability distributions of wind power
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at different conditions are also determined. The results of the simulation are represented in

following figures.

Reference Bus
V.Z6,

— Xt
JXd

Vol VL Bhy=0

Figure 5.52 Single line diagram of SMIB with DFIG wind turbine
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Figure 5.53 The variation of wind power (left) and its power spectral density (right) when

varying bandwidth (upper), scaling factor (middle), and noise intensity (lower)
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(middle), and noise intensity (right)
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Figure 5.55 The data distribution of wind power when varying bandwidth (upper), scaling

factor (middle), and noise intensity (lower)

The simulation results using Matlab can be represented in the following figures.
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Figure 5.56 The variation (left) and data distribution (right) of wind power
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Figure 5.58 The data distribution of angle (left) and speed deviation or —slip (right)

5.2 The characteristics of power system incorporating wind power

5.2.1 Power-Angle and Power-Load on Steady State Analysis

5.2.1.1 Power-Angle Characteristic Analysis

The single machine infinite bus system (SMIB) is used in this section. The infinite

bus voltage is fixed at 1.0. To investigate the power-angle characteristics of the generator,

two assumptions should be considered. First is the active/reactive power-angle

characteristic of the single machine power system with varying voltages and second is the
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active/reactive power-angle characteristic of the single machine power system with varying
line reactance. Both cases use equations in Section 3.2 (Egs. 3-7 — 3-8) to model using

Matlab. Models and equations for this case study are stated again in the following figures:

j0.3 0.15 P E siné :Equno‘
() os b S S A A
E
E 0 =_= C()S(?—L
ZTofd Tofd

Figure 5.59 Schematic diagram of SMIB and equations

From the above figure, total impedance Zy,=j0.3 +j0.15 + 0.5 =j0.95. The results
are presented as follows.

1) Active/reactive power-angle characteristic with varying voltage

Power-angle chamcteristios when varies voltage (Eq, pu) and fix total impedance =0.95 pu
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Figure 5.60 Active power-angle characteristics of

SMIB system when varying voltage
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Figure 5.61 Reactive power-angle characteristics of

SMIB system when varying voltage

2) Active/reactive power-angle characteristic with varying line reactance
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Figure 5.62 Active power-angle characteristics of SMIB system when varying total

impedance
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Power-angle chamcteristios when varies total impedance and fix voltage Eq =1.2(pu)
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Figure 5.63 Reactive power-angle characteristics of SMIB system when varying total

impedance

In Figure 5.60, since the equation has the sine function of angle varying between 0
to m, that is the reason for the shape of active power-angle characteristic having such a
form. The peak value of power is when angle is 0.57 or sin0.57 is equal to 1.0 . This point
is called critical point. Beyond this point, generator cannot control power by normal
operation and lost synchronization finally. Furthermore, if infinite bus voltage is fixed, the
higher internal voltage, the larger active power can generate from machine.

In Figure 5.61, the reactive power-angle characteristic has a different shape from
the active power. However, it is clear that reactive power always has negative value. This
is due to the stator winding of generator is an inductive element. The larger angle, more
power is generated with increasing current, and therefore, the larger minus reactive power.
Before critical point is reached, the higher internal voltage causes the smaller minus
reactive power. But inversely, away from critical point, the higher internal voltage causes
the larger minus reactive power.

In Figure 5.62, if internal voltage is fixed, active power increases with decreasing
total impedance. For example, shorter transmission line (smaller impedance) can improve
power transfer from generator to the grid.

In Figure 5.63, when internal voltage is fixed at 1.2 (larger than infinite bus

voltage), reactive power is positive when power angle less than 0.5 radians. Reactive
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power is a little bit larger with smaller total impedance. If power angle larger than 0.5
radians, reactive power is negative and decrease with decreasing total impedance.

3) Reactive power-voltage characteristics

Power-voltage chamcteristics when varies active power (pu) and fix total impedance =0.95 pu
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Figure 5.64 Reactive power-voltage characteristics of SMIB system

with varying active power
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Figure 5.65 Reactive power-voltage characteristics of SMIB system

with varying line reactance

In Figure 5.64, at voltages less than the locus of critical operating point (LCOP) and
larger than the limit curve, voltage decreases with increasing absolute reactive power. If

higher than LCOP, voltage increases with increasing reactive power. This power-voltage
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characteristic is used for regulating voltage of the power system. Normal operating
condition always set voltage to larger than LCOP for the reactive power compensators can
control the system voltage possibly. The voltage drop, loss of compensators, and/or excess
negative reactive power will reduce capability of the system to control system voltage. This
is called voltage instability. With increasing active power, the system voltage (for example
at 1.5 p.u.) is closer to LCOP and become instability finally.

In Figure 5.65, when active power is fixed while total impedance varies, the larger
total impedance cause voltage closer to the LCOP and instability state. Beside, the limit
curves are different for different total impedance.

5.2.1.2 Power-Load Characteristics Analysis

The Power-Load Characteristics of power systems lead to understanding in
constraints of the system influenced by the load impedance, line impedance, load angle,
and line angle. Following section is the result of analysis basing on simple one machine
power system with one load and one line impedance. Testing conditions are listed in Table
52.
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Figure 5.66 Phasor diagram, circuit diagram, and equations of power test system

Table 5.2 Testing conditions for power-load characteristic analysis

Power vs Load Theta (0°) Phi (¢°) 0-¢ ° Load (Zin/ Z1p)

Casel (Pry, Qrn) 65:5:90 0 65:5:90 0.1:0.02:10

Case2 (Prp, Qra) 65:5:90 0:5:25 65 0.1:0.02:10

“
J
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1) Active/Reactive power-Load characteristics when varying Theta and fix Phi
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Figure 5.67 Active power-load characteristics when varying Theta and fix Phi
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Figure 5.68 Reactive power-load characteristics when varying Theta and fix Phi

In Figures 5.67 and 5.68, active power and reactive power-load characteristics have
the same shape of the curve, but with different magnitudes. For Z;n / Zip < 1 which is
normal operating condition, increasing Zjn/Zip can increase both active and reactive
power. At Zin / Zip = 1, active and reactive power reach the maximum or critical value.
For Zin/ Zip > 1, increasing of Zin / Zip result in decreasing of active and reactive power.

The larger Theta-Phi, the higher active and reactive power to be consumed.



301

2) Active/Reactive power-Load characteristics when varying Phi and fix

Theta —Phi

Active power - Load chamcteristics when fix Theta-Fhi=30 and vary Phi
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Figure 5.69 Active power-load characteristics when varying Phi and fix Theta —Phi
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Figure 5.70 Reactive power-load characteristics when varying Phi and fix Theta —Phi

In Figures 5.69 and 5.70, when varying load angle (Phi) and fix Theta —Phi,
increasing Phi causes decreasing of active power, but in contrast, increasing of reactive
power. Active and reactive power reach the maximum or critical value when line
impedance is equal to load impedance or Z;n = Zyp. It is important that, the reactive power
is strongly depends on load angle (Phi). An increasing of load angle for 5 degrees can

increase reactive power nearly 5% of base value.
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Moreover, it was found that the load voltage was influenced by Theta-Phi, not by

only Phi as shown in Figure 5.71.
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Figure 5.71 Voltage-Load characteristics when fix Phi varying Theta-Phi (left) and
when fix Theta-Phi varies Phi (right)

5.2.2 Power-angle and speed characteristics of simple power system
5.2.2.1 Steady state modeling with conventional generators
Using the SMIB model and steady state models, we can draw simple schematic

diagrams and phasor diagrams, as presented in Figure 5.72.
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Figure 5.72 One line diagram and testing equations of SMIB power system

This simple model is used, coupled with the mathematical models in Section 3.2, to
explain the relationship between electrical power and power angle, electrical power and
voltage, and electrical power and load. In case of round rotor machine SMIB system, Ep is
assumed constant at 1.0 p.u.

P, and Q. strongly depend on the internal voltage of the generator and power angle.
For convenience, the external dynamic sources (from wind power and load) are not directly

modeled because these effects are included in the generator voltage and power angle
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variation. Therefore, different characteristics of generator voltage and power angle are
modified to represent different kind of external dynamic sources.

The linearly or low frequency increase of the power angle is due to linear or slow
variation increasing of load. Variations of both generator voltage in term of sinusoidal
signal are caused from there are inductive and capacitive load of the system including line
impedance. The band-limited white noise characteristics are caused from the stochastic
nature of the load, wind power, and etc.The power-angle equation of machine is modeled

using Matlab as follows
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Figure 5.73 Block diagram (left) and function representing power-angle equation (right) of

active (upper) and reactive power (lower)

In Eq.3-30, by varying ¢ and E; , the power-angle characteristics can be analyzed

using following conditions.
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Table 5.3 Testing conditions for power-angle characteristic analysis

P& Q. Power angle, O (rad) Voltage of Generator, E (p.u.)

Case 1 | linearly increase 0.0314 rad/s from 0 to Pi | constant 0.95 p.u. + sin signal 7rad/s +/- 0.05
within 100 seconds p.u.

Case 2 | linearly increase 0.0314 rad/s from 0 to Pi | constant 0.9 p.u. + sin signal 7rad/s +/- 0.1
within 100 s p.u.

Case 3 | linearly increase 0.0314 rad/s + sin 0.1 rad/s | constant 0.9 p.u. + sin signal 7rad/s +/- 0.1
+/- 0.5 rad within 100 s p-u.

Case 4 | linearly increase 0.0314 rad/s + sin 0.2 rad/s | constant 0.9 p.u. + sin signal 7rad/s +/- 0.1
+/- 0.5 rad within 100 s p.u.

Case 5 | linearly increase 0.0314 rad/s + sin 0.1 rad/s | constant 0.9 p.u. + Band-limited white noise
+/- 0.5 rad within 100 s PSD 0.1, sample time 0.1s

Case 6 | linearly increase 0.0314 rad/s + sin 0.2 rad/s | constant 0.9 p.u. + Band-limited white noise
+/- 0.5 rad within 100 s PSD 0.3, sample time0.1s.

The results of the simulation are represented in Figures 5.74 — 5.76. Figure 5.74
shows Power angle, 0 and Voltage of Generator, E; for 6 cases of testing condition.

Figures 5.75 and 5.76 represent active and reactive power-angle characteristics,

respectively.

Baw

Figure 5.74 Electrical power (p.u.) and power angle (rad) of the case 1 (upper left) to case

3 (upper right) and case 4 (lower left) to case 6 (lower right).
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Figure 5.75 Active Power-angle characteristics for case 1 (upper left) to case 3 (upper

.| |PowerftangleCase1

right) and from case 4 (lower left) to case 6 (lower right).
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Figure 5.76 Reactive Power-angle characteristics for case 1 (upper left) to case 3 (upper

right), and from case 4 (lower left) to case 6 (lower right).

In Figure 5.75, Case 1 and Case 2 represent power-angle change with variation of

voltage but power angle is fixed. Interesting characteristics are Case 3 — Case 6 when power

angle is varied sinusoidal. The dark-blue strip occurs when the slope of power angle is
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negative. Therefore, higher frequency of power angle causes more dark- blue strips on
power-angle curve (for example, Case 4 and Case 6 have negative slope of power angle for
three ranges).

For all cases, Case 6 is closest to the real situation in the power system when
operating under wide range of power angle. For the occurring of dark-blue strip, if we
slowly replay the simulation, we will see the slowly increase and decrease of power when
the slope of power angle is positive and negative, respectively.

The same description is used for reactive power but with the different shape of
power-angle curve as shown in Figure 5.76.

For the real situation, operating point is fluctuated at some range when power angle
is quite far from the critical point to avoid instability occurring in the system. Therefore,
the generator is fixed to operate at some range, but not reach the maximum capacity.

5.2.2.2 Dynamic modeling with wind turbine generator

This section represents the result of simulation of power system using dynamics
models when includes small signal from external sources such as wind power. The
schematic diagram and one line diagram of power test system is represented in Figure 5.77.

The model is simulated using PSCAD as described in Section 4.2.
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Figure 5.77 Schematic diagram and one line diagram of power test system connecting to

an infinite bus and including wind power and load

There are two cases for the simulation conditions. First is the case when wind speed

1s zero at the first 30 seconds and is increased to be constant 10m/s for next 30 seconds.
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Second is the case when constant wind speed 10m/s has ramp winds of 1m/s 4Hz to be as
small signal.

For both cases, load is set as resistive load to fix value at 50% of rated capacity of
synchronous generator. Wind power is injected to the grid starting at the 30™ second.

Therefore, it can be seen that, for the first 30 seconds, the state parameters of the
system reach the steady state since 20 seconds.

For the first case with constant wind speed, the value of wind speed, power load
angle, rotor speed, active/reactive power, and voltage of generator bus are represented in
Figures 5.78, 5.80, 5.82, 5.84, 5.86, and 5.88, respectively. For the second case with ramp
wind speed, the value of state parameters are represented in Figures 5.79, 5.81, 5.83, 5.85,

5.87, and 5.89, respectively.
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Figure 5.82 Rotor speed of constant wind
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Figure 5.88 Voltage of constant wind Figure 5.89 Voltage of case small signal

In Figures 5.78 to 5.89, for the first 30 seconds, the steady state values of power
angle, rotor speed, active power, and reactive power are 20.525 degrees, 1.0 p.u., 980.2
MW, and -298.8MV Ar, respectively.

The power angle of generator without and with wind power is considered,
respectively. The power angle of base case swings at first 20 seconds and then reaches the
steady state at 20.525 degrees. For wind power case, the power angle swing seems to cease
before 20 seconds but replacing by decrease of power angle continuously.

5.2.3 Characteristics of the power system under different testing conditions

In this section, the single machine infinite bus power system is used. The power
system, including fluctuating wind power, leads to the higher degree of complexity. This
situation may affect the ac power system synchronization differently depending on
characteristics of wind power. Therefore, the power angle and rotor speed of synchronous
generator with various characteristics of wind power are investigated.

The system voltage is 500kV with load power 50% of 2220 MVA synchronous
generator. The simulation duration time is 100 seconds, which is enough for the system to
reach a steady state at about 20 seconds (without wind power). The time step of the
simulation is 50 micro seconds.

The synchronous generator model is IEEE generic steam turbine model supported
by PSCAD (www.pscad.com). The wind power model consists of wind source model and
wind turbine model with pitch control. The wind source model generates mean wind speed
with noise. For wind turbine model, the 50x2 MVA squirrel cage induction generator
(SCIG) is used in this study. For noise wind speed (Vn) model, seven parameters are used

to define its characteristics, which are [46]:
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Figure 5.90 Test power system including wind power and load

The PSCAD provides the 2MW wind turbine model (separate from 2 MVA squirrel

cage induction generator), as presented in Figure 5.90.
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Figure 5.91 Wind turbine model in PSCAD

For the wind turbine model, the wind speed (Vy, m/s), mechanical speed of
generator (@, rad/s), and pitch angle (£, ©) are input while mechanical torque (7;,) and
power of turbine (P) are the output. The wind turbine has torque-@ characteristics (or

equation of power coefficient) vary with V5, using standard model of wind turbine.

For synchronization system stability, important parameters to be studied are rotor
speed and power angle (use power angle, o, instead of actual rotor angle). The sources of
small signal are from the different characteristics of wind speed. The 11 testing conditions

with different characteristics of wind speed are represented in Table 5.4.



Table 5.4 Testing conditions for the study of characteristics

incorporating wind power
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of the power system

Wind turbine | Wind speed Noise conditions Load Base voltage
CaseB1 | No wind power 10 m/s - 1100 MW 500 kV
CaseB2 50x2MVA 10 m/s - 1100 MW 500 kV
CaseB3 50x2MVA 10 m/s - 1100 MW 230 kV
CaseB4 50x2MVA 10 m/s Stdev 0.19 m/s, frequency 1 rad/s | 1100 MW 500 kV
CaseBS 50x2MVA 10 m/s Stdev 1.86 m/s, frequency 1 rad/s | 1100 MW 500 kV
CaseB6 50x2MVA 10 m/s Stdev 1.52 m/s, frequency 0.5 rad/s | 1100 MW 500 kV
CaseB7 50x2MVA 10 m/s Stdev 1.52 m/s, frequency 2 rad/s | 1100 MW 500 kV
CaseB8 50x2MVA 10 m/s Ramp +1 m/s, 0.5 Hz 1100 MW 500 kV
CaseB9 50x2MVA 10 m/s Ramp +1 m/s, 0.75 Hz 1100 MW 500 kV
CaseB10 50x2MVA 10 m/s Ramp +1 m/s, 1.0 Hz 1100 MW 500 kV
CaseBl1 50x2MVA 10 m/s Ramp +1 m/s, 4.0 Hz 1100 MW 500 kV

Case B Base case without wind power

For the base case, the wind turbine does not generate power to the power system.

The power angle and rotor speed are represented in Figure 5.92. The power angle reaches

steady state of 23.14 degrees after 20 seconds. The steady state rotor speed is 1.0 pu. In this

figure, PSD of both cases are quite flat for wide range except at frequency 0.75Hz which

periodical fluctuation occurs and at very low frequency which the steady state component

occurs.
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Figure 5.92 The power angle and rotor speed for base case and PSD of power angle (black)

and rotor speed (blue) for base case in dB/Hz

Case B2 Aggregated wind farm with constant wind speed

In Case B2, the wind power is applied. The power angle is used instead of different

rotor angle for convenience and is presented in Figure 5.93. The rotor speed of generator

during 40 seconds of simulation is presented also in this figure.
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Figure 5.93 The power angle of generator for Case B2 in degrees (left) and the rotor speed of

generator for Case B2 in per unit (right).

In Figure 5.93, the oscillation ceases after 20 sec with decreasing power angle.
However, the rotor speed is increase continuously which may reach the steady state
depending on operating conditions. It is found that steady state can be reached after the 250
seconds of simulation depending on the capacity and configuration setting of infinite bus.

Case B3 Aggregated wind farm with constant wind speed incorporate in 230kV power
System

For Case B3, wind power I00MVA is connected to the power system with constant
wind speed 10m/s, and the system voltage is reduced to be 230kV. The load resistance is
the same with the other case. The power angle of synchronous generator is presented in
Figure 5.94. The rotor speed of generator during 40 seconds of simulation is also presented

in this figure.
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Figure 5.94 The power angle of generator for Case B3 in degrees and the rotor speed of the

generator for Case B3 per unit

In Figure 5.94, both power angle and rotor speed are oscillated and increase in
magnitude continuously. In terms of stability, this could be the undamped mode of

oscillation or instability. This instability causes from the losses in the very long
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transmission line with unsuitable system voltage. The i’R loss can reduce damping torque

and cause oscillation while i°X loss can reduce synchronizing torque and causes
continuously increase of rotor angle and speed [44].

For the cases B4 — B7, noise wind speed model is added into wind turbine model.
The default of noise model consists of N = 50, c¢d = 0.0192, L = 600, k£ = 50, and time
interval_ = 0.4 . The mean wind speed is 10 m/s which enough for the wind turbine to
operate continuously.

The standard deviation of case B5 is from the maximum of standard deviation of
measured wind speed data. The standard deviation of case B4 is set to be 10% of case B5
for comparison. The standard deviations of case B6 and case B7 are the median values of
measured wind data. For Aw , both case B4 and case B5 use the default value while case
B6 and case B7 use the possible minimum and maximum value of 0.5and 2.0, respectively.

For 100 seconds of simulation, before second 30th, the wind turbine generator is
connected to the power system but with zero wind speed. After second 30", the fluctuating
characteristics of wind speed are defined by mean value, standard deviation, and noise
amplitude, as shown in Table 5.4 .

The simulation results are analyzed using Matlab to investigate how power angle
and rotor speed changing with different testing conditions comparing Case B4 with Case
B5, and Case B6 with Case B7. The modified periodogram or Thomson multitaper method
(www.mathworks.com) is used to estimate the PSD in this thesis.

CaseB4 Vs. CaseB5: Different fluctuation deviation, the same noise frequency
amplitude

For Case B4 and Case B5, with the same mean wind speed and the same frequency
base noise amplitude, the standard deviations of wind speed are different. The results of
wind power simulation are represented in Figure 5.95. From the simulation using PSCAD,

the power angle and its PSD of the synchronous generator are represented in Figure 5.96.
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In Figure 5.96, the power angles are oscillated obviously with frequency about
0.75Hz. The amplitude of oscillation is larger for Case BS5 at frequency range from 0-5Hz.
However, shapes of PSD curve are comparable for both cases. Power angle of both cases
decrease with time which means wind power can share load from synchronous generator
but excite oscillated fluctuation.

From the rotor speed of the synchronous generator and its PSD in Figure 5.97, the
rotor speed increases with time and with the oscillated fluctuation frequency about 0.75Hz.
At frequency lower than 2.5Hz, rotor speed of Case2 has larger PSD than Case B4.
Therefore, rotor speed is sensitive to the different deviation of small signal at frequency
lower than 2.5Hz.

Case B6 Vs. CaseB7: Different frequency base noise amplitude, the same
fluctuation deviation

For Case B6 and Case B7, the standard deviation of wind speed is the same but
frequency base noise amplitudes are 0.5 rad/s and 2.0 rad/s, respectively. The results of
wind power simulation are represented in Figure 5.98. The wind power varies in a range of
+0.2 p.u.
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Figure 5.98 The wind power (left) and its PSD (right) of Case B6 (case 3) and
Case B7 (case 4)
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The simulation results of power angle and its PSD are represented in Figure 5.99.

The power angle decreases with time and oscillatory fluctuates within a small range of 22.2

- 23.7 degrees. In Figure 5.99 (right), PSD is almost the same for both cases. The small

difference occurs at frequency about 0.3Hz, and 4.75Hz which Case 4 has more influence.

Therefore, the power angle in this simulation is not sensitive for different frequency base

noise amplitude.

The rotor speed and its PSD from simulation results are represented in Figure

5.100. The rotor speed increase with time and oscillatory fluctuate in extremely small range

of 0.9994 -1.0006 per unit. From Figure 5.100 (right), PSD is the same for both cases.

There is no significant different between these two cases. Therefore, the power angle in

this simulation is not sensitive for different frequency base noise amplitude.




317

The standard deviation of fluctuating wind power has influence on power angle and
rotor speed of synchronous generator more than frequency base noise amplitude.
Fluctuating wind power cause power angle decrease, but increases rotor speed. For this
case, power generation of synchronous generator is shared partially by wind power,
therefore, its power angle reduce. An increasing of rotor speed is due to unbalance between
mechanical torque and electrical torque.

It is obvious that the deviation of wind power fluctuation has more influence to
synchronous generator than frequency of fluctuation. However, for rotor speed, only
frequency lower than 2.5Hz that deviation of wind power is significant.

For the future studies in the effects of wind power on the power system, the results
of the simulation should in agree with the measurement data. Many assumptions in
mathematical modeling may stimulate high magnitude of error

Case B8 — Case Bl1 Effects of ramp wind speed with different frequency

For cases B8 — B11, noise wind speed model is replaced by ramp wind speed model
to represent an influence of frequency of small signal on the power system parameters. The
four cases have ramp wind speed with amplitude 1 m/s and ramp frequency 0.5, 0.75, 1.0,
and 4.0 Hz for case B8 to B11, respectively. There are five variables which are compared:
wind speed, active and reactive power of wind turbine, power load angle of synchronous
generator, and rotor speed of synchronous generator.

In Figure 5.101, the ramp wind speed is applied after the 30" second with the same
magnitude. The mean wind speed is 10 m/s for all cases.

In Figure 5.102, active and reactive powers of wind turbine are represented. The
fluctuating signal or noise over the mean value is look different from the ramp wind speed.

For the case 4 Hz of ramp frequency, active and reactive powers almost never see the noise.

However, the mean values of active and reactive powers are the same for all cases.
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Figure 5.101 Wind speed (m/s) of the cases B8 — B11
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Active and reactive power of wind turbine
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Power angle of synchronous generator
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Figure 5.103 Power angle (degrees) of synchronous generator of the cases B8 — B11

In Figure 5.103, it can be noticed that the largest amplitude of oscillation occurs at
the ramp frequency of 0.75 Hz. It can be concluded that around 0.75Hz is the natural
frequency of the test system, because the largest response occurs at this frequency. The
resonance phenomena will occur when wind power fluctuate with the same frequency as the

natural frequency of the system represented by the state variables.
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Figure 5.104 Rotor speed (per unit) of synchronous generator of the cases B§ — B11

In Figure 5.104, this result agrees with the power angle case in Figure 5.103. In
terms of power system stability, if wind power has large share of this natural frequency
components, the power system is possibly become unstable within a finite time. From the

results of cases B4 — B7, the 0.75Hz frequency components of wind power are very small as
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compared with its mean part. However, it has been found that PSD increases with increasing
standard deviation of wind power. Therefore, understanding the characteristics of wind
power is an important issue for the power system to incorporate large scales of intermittent
power sources, such as wind power.

5.2.4 Characteristics of energy and critical energy of the power system

When applying approximated unstable equilibrium points (i.u.e.p.) using the

method of Ribbens, the result of the energy values are represented in the next table.

Table 5.5 Energy of the test system at interested unstable equilibrium points

Casel Energy ati.u.e.p.
x = {m —x{,x5,x3,x3,x} 2.3500
x = {x{,m — x5, x5, x5, x5} 20.8935
x = {x{, x5, m —x3, x5, x5} 8.9975
x = {x{, x5, x5, m — x5, x5} 129.6840
x = {x5, x5, x5, x§,m — x5} 157.7753
Case2
X = {—m — x5, x5, x5, x§, x£} 61.4748
x = {x{, -1 —x3,x3,x, x& 24.1985
x = {x7, x5, —m — x5, x5, x5} 15.9153
x = {x{, x5, x5, - — x5, x5} 129.6840
x = {x7, x5, x5, x§, — — x£} 89.7535
Case3
T — X, T — X3,
X = { s S} 14.7185
m— X4,T[ - xs
Case4
- — X{,—T — X3,
X = { X S} 16.0443
-1 — x4, -1 — x5

Therefore, the minimum energy value is 2.35, which will be approximated to be the
critical energy of the unperturbed system. This result can be implied that loss of
synchronization of generator at bus 1 (G1) cause more serious than the other machines. It
can be noticed that G1 share most of load at about 86.9% while infinite bus generator (at
bus 3) and wind power (at bus 2) share only 10.2% and 4.9%, respectively.

Since wind power is naturally inconsistent, fluctuations of wind power can lead the
total energy of the system to vary. The critical energy also varies depending on level of
small disturbance from wind power. The previous topic reveals characteristics of wind
power when wind speed fluctuates with low and high frequency. In term of data
distribution characteristics, the low frequency wind speed can be approximated by the

Weibull frequency distribution. In the other hand, the high frequency wind speed can be
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approximated by Gaussian normal distribution. Therefore, this topic will investigate the
characteristics of total energy and critical energy of the system when incorporate wind
power variations.
5.2.4.1 Initial relative energy of the power system

The result of the base case is shown in Figures 5.105 and 5.106. In Figure 5.105,
the total energy is close to zero when the system reaches steady state or stable equilibrium
state. It is obvious that the system is larger than zero at the beginning and then reduces to
be zero after a specific time. In Figure 5.106, the derivative of the total energy at the stable
equilibrium state is very much close to zero. These two figures confirm an existence of the
energy function, which is used in this study. The critical energy is shown in a previous

table.
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Figure 5.105 Total energy of the test system  Figure 5.106 Phase portrait plot of voltage
phase angle (x-axis) and rotor speed (y-

axis)

5.2.4.2 The energy of the power system when varying wind speed
When wind speed varies between 6 m/s, 8 m/s, and 12 m/s, the stable equilibrium
points can be presented in Table 5.6. Shares of power of each machine to the load are
shown in Table 5.7.
In Table 5.7, when wind speed increases, shares of G1 have a small change, while
share of infinite bus generator (at bus 3) decrease and wind power (at bus 2) increase. It
can be implied that, wind power has significant impact on external infinite bus more

influence than a nearby generator.
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Table 5.6 Variables at stable equilibrium point of the test system with different wind

speeds
Case wind speed 6 m/s
V1=0.998 p.u. x1= 0.330 rad P,=9.410 p.u., Qc=-1.416 p.u.
V2 =1.000 p.u. x2=-0.454 rad P, =0.002 p.u., Qe=-0.100 p.u.
V3 =1.002 p.u. x3= 0.000 rad P =1.606 p.u., Qe=-4.200 p.u.
V4=1.011 p.u. x4=-0.073 rad Py=0p.u., Qes=0p.u.
V5=0.992 p.u. x5=-0.455 rad P.s=10.786 p.u. Qes =0 p.u.
Case wind speed 8 m/s
V1=0.998 p.u. x1= 0.340 rad P.,=9.410 p.u,, Q.1=-1.539 p.u.
V2 =0.996 p.u. x2=-0.375 rad P, =0.219 p.u,, Qe=-0.134 p.u.
V3 =1.002 p.u. x3= 0.000 rad P =1.436p.u., Q=-4.216 p.u.
V4 =1.012 p.u. x4=-0.066 rad P4=0p.u., Qes=0p.u.
V5=0.995 p.u. x5=-0.440 rad P.s =10.841 p.u. Qe =0p.u.
Case wind speed 12 m/s
V1=1.001 p.u. x1= 0.366 rad P.,=9.410 p.u., Q.=-1.635p.u.
V2=0.939 p.u. x2=-0.194 rad P =0.674 p.u., Qe=-0.385 p.u.
V3 =1.005p.u. x3= 0.000 rad P =0.866 p.u., Q= -4.209 p.u.
V4 =1.015p.u. x4=-0.063 rad P,y =0p.u., Qu=0p.u.
V5=0.988 p.u. x5=-0.418 rad P.s=10.747 p.u. Qs =0p.u.

Table 5.7 Shares of generating power from synchronous generator, infinite bus generator,

and wind turbine generator at different wind speeds

Gen. to load share Generator 1 infinite bus generator wind power
Casel WS =6 m/s 87.2% 14.9% 0.0%
Case2 WS =8 m/s 86.8% 13.2% 2.0%
Case3 WS =10 m/s 86.9% 10.2% 4.9%
Case4 WS =12 m/s 87.6% 8.1% 6.3%

The total energy of the test system at interested unstable equilibrium points with

different wind speeds are shown in Table 5.8. From this table, the critical energy can be

estimated using the minimum value for each case of wind speed. As a result, the critical

energy increases with increasing mean wind speed. When wind speed increase, the wind

power can share more load from the other generator and make the system more stable. For

wind speed 6 m/s and 8 m/s, total energy and its derivative are almost the same with

524.1.
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Table 5.8 The critical values at different wind speeds

. Energy Energy Energy Energy
Unstable condition 1 (WS6m/s) (WS8m/s) (WS10m/s) (WS12m/s)
x={mw—xf x%,xf xI x7) 2.0361 2.1734 2.3500 2.5761
x={xi 7 —x, 28 x3, x8) 21.3480 21.3974 20.8935 19.8076
x =0 xd,m —xd, xi, xf) 7.3817 7.9341 8.9975 9.8015
x={xfxdxd,m—xI xI) 127.6626 128.6871 129.6840 129.2386
x={xd, 23 x%, x3m— xI) 154.9043 156.7525 157.7753 156.3999
Unstable condition 2
= {—mr—x 2%, x8 x x%) 61.1608 61.2982 61.4748 61.7009
x={xi-m—-x3,x5xix%)| 213605 22.7734 24.1985 24.0425
x = {xf,x],—7 — x§, xi, x§) 17.4725 16.9568 15.9153 15.2427
x={xdxlxl,—w—xixi) | 127.6626 128.6871 129.6840 129.2386
x={xfx3,x5, x5, —m—xI}| 87.1339 88.6365 89.7535 88.8745
Unstable condition 3
x= Ew_xé’w — %3] 15.2953 15.0710 14.7185 14.9734
w—xim—xk)
Unstable condition 4
x= E_TF - x; - xj.] 16.7530 16.4784 16.0443 16.2489
—r—xf,—m—xi)

5.2.4.3 The energy of the power system when varying noise wind speed

Since wind speed consists of mean part (slow variation) and turbulence part (fast

variation), the wind noise model is simulated to represent turbulence. Theoretically,
turbulence or noise wind speed can be approximated using Gaussian distribution random
noise. Two important parameters which will be varied are the standard deviation of noise
and the sampling frequency of noise.

An experiment assumes that mean part of wind speed is 10 m/s. This value is
suitable for wind power in the model to be varied without limit. The noise wind speed is
modeled using inverse probability distribution function method. The two conditions are
examined. First, the standard deviation 0.5, 1.0, and 2.0 are applied with constant sampling
frequency at 0.5Hz. Second, the sampling frequency is varied to be 0.1, 0.5, and 2 Hz with
constant standard deviation at 1.0. For these two cases, the phase portrait of machine speed
and voltage angle is investigated together with the total energy.

To compute the total energy of the system, the stable equilibrium points from the

previous study at wind speed 10m/s are used. The figure below shows noise wind speed

model in PSCAD.



326

2 x Sampling frequency

d
WL
1)

8

Output wind speed

Standard deviation

Figure 5.107 Block diagrams of wind speed model, including normal random noise wind

speed

1) Varying standard deviation

The results of the standard deviations of wind speed of 0.5, 1.0, 2.0 are represented
in Figures 5.108, 5.109, and 5.110, respectively. In Figure 5.108, after 20" second, the
total energy fluctuate varies around zero. The maximum energy is less than 0.1 after 20"
second. Rotor speed and voltage phase angle vary within a particular region, which is
called region of attraction. It can be concluded that this system is stable within the region
of attraction whenever total energy is not beyond the critical value.

In Figure 5.109, fluctuations of wind speed and total energy are larger than the case
in Figure 5.108. The region of attraction is also larger than the case in Figure 5.108 due to
the larger standard deviation of wind speed.

In Figure 5.110, it can be noticed that after about the 48" second, total energy
increase continuously. The phase portrait of wind turbine show the state variable goes out
of the region of attraction. The wind turbine is unstable for this situation. However, since
total energy is still less than the critical energy, the system still stable and can operate
normally.

If we extend the value of total energy, it will found that the maximum of total
energy in this case is about 2 — 3. Therefore, since the critical energy for this case is about

20.89, the system is still far from an unstable situation.
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2) Vary sampling frequency
The sampling frequency of noise wind speed is the measure of how frequently the
signal changes. This experiment assumes that noise wind speed change (with the same
standard deviation of 1.0) every 2 seconds (0.5Hz), 0.5 second (2Hz), and 10 seconds
(0.1Hz) which are presented in Figures 5.111, 5.112, and 5.113, respectively.
In Figure 5.111, the 2 seconds cycle of noise wind speed result in variation of total
energy not beyond 0.2 and the system still stable. In Figure 5.112, when frequency

increases, the total energy varies not beyond +0.15 which is smaller than the previous case.
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Figure 5.111 Total energy (upper left), wind speed (lower left), and phase portrait plot of
synchronous generator (upper right) and phase portrait plot of wind turbine generator

(lower right) when sampling frequency of wind speed is 0.5Hz
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(lower right) when sampling frequency of wind speed is 2.0 Hz
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synchronous generator (upper right) and phase portrait plot of wind turbine generator

(lower right) when sampling frequency of wind speed is 0.1 Hz

In Figure 5.113, when sampling frequency of noise wind speed is very low, the
system becomes unstable after about 230 seconds. The rotor speed of wind turbine increase
continuously and go out of the region of attraction.

In conclusion, the stability of wind turbine generator is influenced by the standard
deviation and sampling frequency of noise wind speed or turbulence. Larger standard
deviations and lower sampling frequencies cause the state variables of wind turbine to go
out of the region of attraction and become unstable. However, in this experiment, the
system is robust enough to withstand such disturbances when wind power is lost from the
system.

5.2.5 The stochastic power system simulation

When applying the colored noise wind power into the power test system, the system

equations will become the dynamic perturbed system in a matrix form as follows:

[ x ] a)O(yi_yO) F o ]
X, @ (¥, =2,)+ @y (‘;’X) 0
x, o, (V.x)+ B, e, 0
% Y |= o, (V.x)- By, + 0 dd—Vf Eq.5-4
Y o, (V,x)+meawUW/Mw 0
v, ., VwE
LY i —w,0, L 76k
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< Eq.5-5

where f£; = Di/M;. It can be represented in the standard stochastic differential equation as

pX=f(X,1)+g(X.t)pW ,x(t,)=x, ,t>1, Eq.5-6
where f(X,t) is a nonlinear drift function, g(X.t) is a diffusion function in matrix form.
From the one line diagram in the below figure, there are aggregated synchronous
generators (G2) and aggregated DFIG wind turbines (G3), connecting on bus B2 and B3,
respectively. Bus Bl is an infinite bus and B4 is a load bus. The per unit base power is 100
MVA. The system is assumed lossless which the line resistance can be neglected. X4 is a
line reactance (tie line) connecting between bus B1 and B4. X,4 and X34 are line reactances
including transformer’s reactance. The electric load is a dynamic load which has ¢ at about

0.05. The other values of system parameters and constants are listed in Table 5.9.

Table 5.9 System Parameters and Constants

M=17.0sec @y =314.2 rad/sec L, =3.95279 p.u. “ i B4 Bl\

L:=0.09955 pu. | Ly=0.09241 p.u. Ty=2.343 p.u. X24 N

X=4.0p.u. X’'=0.1pu. Xr=0.5p.u <> QD 14 N

kg =0.8868 ky=17.372 k,=0.274P,, + 0.346 DFIGWT g3 x34 %

k= 1.0 kop= 056 | ca=-0.022 P,, 10.006 <:<@—'—GD7 N
|E'|=Vy=1.05pu. | kq=0.97396 ke = 1.90308 %77 Mn;“or
Ve=1.0 (p.u.) Vo=1.0 (p.u.) ke =1.017 e infinite bus

X14=0.75 p.u. X24=02pau. X34=02pu.

When applying noise intensity 0.1, bandwidth 1.0, scaling factor 1.0, mean wind

power 1.0, power load 4.0, power of G2 1.78 p.u., the simulation period is 60 seconds and

4 trials, the results of simulation are represented in Figures 5.114 - 5.117 .
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Figure 5.115 Angular speed (left) of generator no.1-2 and phase angle (right) of bus no.

4 of stochastic system simulation during 60 seconds of trial no.1.

After 3600 seconds of simulation period for 10 trials, the first exit-times are 500,

3542, 2589, 11, 2910, and 452 seconds. The mean first passage (or exit) time is 1544.5

seconds.
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Figure 5.116 Example of wind power variation during 3600 seconds (left) and its

distribution (right) of simulation trial no.1
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5.3 A study of effects of wind power on the small signal stability using the eigenvalue

method

5.3.1 Eigenvalues of single machine power system
5.3.1.1 Wind turbine with squirrel cage induction generator (SCIG)
To analyze the small signal stability of induction generator wind turbine, the state

space equation will be represented in a new form as follows:
Ax,, -K, @, Ax,, 0 -
N + . |AP, Eq.5-7
Ay, -K,/M -K,/M || Ay, /M

P . . : oP. . :
Where K = 68‘ 1s synchronizing power coefficient, and K, =a—e 1s damping power
X 4

coefficient of induction generator.

P - & —— oP
K.=—&=V VB cos(x!—x')and K,=—2¢=0 Eq.5-8
S axW wj_;ﬁw J o wi ( w j) D ay q
K, =k, k, cos(k,x, +c,) Eq.5-9

magnitude of damping power coefficient (Kp) and synchronizing power coefficient (Ks).

Eq.5-8 and Eq.5-9 can be represented using a block diagram as in following figure.
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Figure 5.118 Block diagram representing state space equation of the SCIG wind turbine
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Figure 5.119 Single machine infinite bus (SMIB) power system

The induction machine parameters are as follows [45]. Given:

M=17.0sec o) = 3142 L,=3.95279pu. L,=0.09955pu. L;=0.09241p.u.
rad/sec
X=40p.u X' =0.2p.u. To=2.343 |E’| =Vy 1n.=0.95
=1.05p.u.
kq=0.8868 ky=17.372 k,=0.61 c,=-0.05 Xr=0.5p.u
K :%cos(xjv) Eq.5-10
(X'+X;)

K, = 44977, cos(0.61x;, - 0.05) Eq.5-11

Table 5.10 The testing conditions of SCIG wind turbine for SMIB power system

|

Vi (pu.) 1.00 0.50 1.00 1.00 1.00
Vo (p-u.) 1.0 1.0 0.5 1.0 1.0
X1 (pu.) 0.75 0.75 0.75 1.5 0.75

X’ (rad) 0.5 0.5 0.5 0.5 1
Ks 0.970 0.970 0.485 0.542 0.597
Ke 4352 2.176 4352 4352 3.810

In this table, when wind speed increase, speed deviation, power output, current and

power factor increase, but voltage decreases. These results agree with the torque-slip,

voltage-slip, and reactive power-slip characteristics of the induction generator [45].
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Figure 5.120 Results of simulation case 1. (base case) : Speed (left) angle (middle), and

phase protrait of speed (y-axis) and angle (x-axis).

Figure 5.121 Results of simulation case 2. (reduce stator voltage of SCIG) : Speed (left),
angle (middle), and phase protrait of speed (y-axis) and angle (x-axis).

Figure 5.122 Results of simulation case 3. (increase reference voltage) : Speed (left), angle

(middle), and phase protrait of speed (y-axis) and angle (x-axis).

Figure 5.123 Results of simulation case 4. (increase transmission reactance) : Speed (left),

angle (middle), and phase protrait of speed (y-axis) and angle (x-axis).
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Figure 5.124 Results of simulation case 5. (increase stator reactance of SCIG) : Speed

(left), angle (middle), and phase protrait of speed (y-axis) and angle (x-axis).

Table 5.11 The results of eigenvalue analysis of SCIG wind turbine

Parameters Case 1 Case 2 Case 3 Case 4 Case 5
Variables Base case Reduce V; Increase ¥V Increase Xt Increase x,,
Ks 0.970 0.970 0.485 0.542 0.597
Kg 4.352 2.176 4.352 4.352 3.810
w, (rad/s) 6.598 6.598 4.666 4.933 5.177
4 0.330 0.165 0.466 0.441 0.368
o -2.18 -1.09 -2.18 -2.18 -1.91
w (rad/s) 6.23 6.51 4.13 4.43 4.81
s -2.184j6.23 -1.0946.51 -2.18+j4.13 -2.18+j4.43 -1.91+j4.81
Natural freq. 1.05 1.05 0.74 0.79 0.82
Frequency (Hz) 0.99 1.04 0.66 0.70 0.77

5.3.1.2 Wind turbine with doubly-fed induction generator (DFIG)
To analyze the small signal stability of an induction generator wind turbine, the

state space equation is represented in a new form as follows:

oS I ad E A

Where Ky is the synchronizing power coefficient and Kp is the damping power coefficient

of DFIG:

Eq.5-12

Ve -k, k cos(kava+ca)

b”sw'ha

ox,, Eq.5-13
=,k k, V' k.,V., sin(kava +e, ) —kk, V. cos(kava + ca)

a sw

Ky =k,

Eq.5-14

Ky, =, +w0kd[(kczl7sw cos(kaxfv +ca)—kcJ7w)+2k k (1 _y’s”)]
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oP, OP, | R s s g ) s
K= 8x€w + 8x1 L=V, ,=1Z,;=w V.B,, cos( ; —xj)+ ( 4 +0_T) cos(xw)yw
K, =P, =l

_KS -
y 1 A 1 1Ax
— + 5 . yw‘ KEZJ = w
m Ms 3 S
KE] -

Eq.5-15

Eq.5-16
Eq.5-17
Eq.5-18
Eq.5-19

Eq.5-20

Figure 5.125 Block diagram representing state space equation of the DFIG wind turbine

The induction machine parameters for computation are as follows [45]

Given
M=17.0sec @ =314.2 Ln=3.95279 pu.  L.=0.09955 p.u.
rad/sec
X=4.0p.u X'=02pu T,=2343 pu.  E1=V
Op.u. 2p.u . D s
ks = 0.8868 ko =7.372 k,=0.61 ca=-0.05
Forg = 0.0056 ko = 0.56 k1 = 0.97396 ke = 1.90308

Ky =ayk, (07, Jox, ) —4.496927,, cos(0.61x;, - 0.05)

. (1+2)
K, =42.82303+530.26V,, cos(0.61x, —0.05)+ 1.7476°——=

sw

Ly=0.09241 p.u.

1. =0.95
Xr=05p.u

Eq.5-21

Eq.5-22

V.V, . Vi N 7 S S
K, :()?CVW—JFO)?T)COS(XW)+WCOS()CW))}W =mcos(xw)(l+yw) Eq.5-23
x - "N

Bq.5-24
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Table 5.12 The parameters of DFIG wind turbine under different conditions

V. (p.w.) 1.00 0.50 1.00 1.00 1.00 1.00
Vo (pu.) 1.0 1.0 0.5 1.0 1.0 1.0
Xal (p.u.) 0.75 0.75 0.75 1.5 0.75 0.75
X’ (rad) 0.5 0.5 0.5 0.5 1 0.5
¥ (pu) 0.05 0.05 0.05 0.05 0.05 0.1

For DFIG, when the controlled voltage on the g-axis of rotor (V) is not dependent on the

angle of internal voltage ( oV, . / ox, = 0), the results are represented in the following table.

Table 5.13 The results of eigenvalue computations of DFIG wind turbine

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Variables Base case | Reduce V; | Increase V, | Increase Xt | Increase x,, | Increase y,,
Kgi -4.375 -2.187 -4.375 -4.375 -3.762 -4.375
Kg, 514.503 435.565 514.503 472.285 584.762 522.604
Ks 1.229 1.229 0.614 0.614 0.756 1.229
w, (rad/s) 9.503 8.743 6.720 6.438 7.949 9.577
¢ 0.230 0.125 0.326 0.340 0.237 0.228
o -2.19 -1.09 -2.19 -2.19 -1.88 -2.19
w (rad/s) 9.25 8.67 6.35 6.05 7.72 9.32
s -2.194j9.25 | -1.09+j8.67 | -2.19+j6.35 | -2.19£j6.05 | -1.88+j7.72 | -2.19+9.32
Natural freq. 1.51 1.39 1.07 1.02 1.27 1.52
Frequency (Hz) 1.47 1.38 1.01 0.96 1.23 1.48
o, [ox, 0 0 0 0 0 0
5V,q /8yw 0.7188798 | 0.4355719 | 0.7188798 | 0.5673586 | 0.9710362 | 0.7479535

In the above table, it is clear that the real part of eigenvalue increases (moves from
negative to close to zero) with increasing angles of internal voltage and decreasing stator
voltage. The imaginary part of eigenvalue decreases with increasing of reference voltage,

transmission line reactance, and angle of internal voltage and decreasing of stator voltage.

When V4 depends partly on an angle of internal voltage ( oV, . / ox,, ~—0.01), the results are

represented in the following table.
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Table 5.14 The results of eigenvalue computation for DFIG when V;q depends partly on x,,

Parameters Casel Case2 Case3 Cased Case5 Case6
Variables Base case | Reduce V; | Increase V, | Increase Xt | Increase x,, | Increase y,,
K -7.161 -4.974 -7.161 -7.161 -6.548 -7.161
Kg, 514.503 435.565 514.503 472.285 584.762 522.604
Ks 1.229 1.229 0.614 0.614 0.756 1.229
w, (rad/s) 9.503 8.743 6.720 6.438 7.949 9.577
¢ 0.377 0.284 0.533 0.556 0.412 0.374
o -3.58 -2.49 -3.58 -3.58 -3.27 -3.58
w (rad/s) 8.80 8.38 5.69 5.35 7.24 8.88
s -3.584j8.80 | -2.49+8.38 | -3.58+5.69 | -3.58+5.35 | -3.274j7.24 | -3.58+j8.88
Natural freq. 1.51 1.39 1.07 1.02 1.27 1.52
Frequency (Hz) 1.40 1.33 0.90 0.85 1.15 1.41
517,q /axw -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
57,(, /ayw 0.7188798 | 0.4355719 | 0.7188798 | 0.5673586 | 0.9710362 | 0.7479535
It was found that the eigenvalue of the base case increases with

decreasing o7, / ox,, . The sensitivity of Viq to xy (or o, / ox,, ), which is influenced by the

controlled parameters affecting the small signal stability significantly. If oV, . /wa is

positive, the eigenvalues become positive and the system is unstable as a result. However,

sensitivity of Vq to speed deviation ( yw) or oV, . / oy, 1s not affect to real part of eigenvalue

but significantly influence to imaginary part or frequency.

Table 5.15 The results of eigenvalue computation for DFIG when V4 not depends on xy, yw

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Variables Base case | Reduce V; | Increase V, | Increase Xt | Increase x,, | Increase y,,
K -4.375 -2.187 -4.375 -4.375 -3.762 -4.375
Kgz 314.200 314.200 314.200 314.200 314.200 314.200
Kg 1.229 1.229 0.614 0.614 0.756 1.229
w, (rad/s) 7.426 7.426 5.251 5.251 5.827 7.426
¢ 0.295 0.147 0.417 0.417 0.323 0.295
o -2.19 -1.09 -2.19 -2.19 -1.88 -2.19
w (rad/s) 7.10 7.35 4.77 4.77 5.51 7.10
s -2.1947.10 | -1.094j7.35 | -2.19+j4.77 | -2.194j4.77 | -1.88+j5.51 | -2.194j7.10
Natural freq. 1.18 1.18 0.84 0.84 0.93 1.18
Frequency (Hz) 1.13 1.17 0.76 0.76 0.88 1.13
v, [ox, 0 0 0 0 0 0
v, [ov, 0 0 0 0 0 0
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The real part of the eigenvalue (o) is used to describe the stability condition of the
system. If the o is on the left side of complex plain (negative value), then the system is
stable but if it is on the right side (positive value), then the system is unstable. The zero o
represents the critical condition of the system. From above table, conditions that can cause
o move from the left side of complex plain to the right side are the reducing of terminal
voltage, speed, and reference voltage and an increasing of angle of internal voltage and line
impedance.

When comparing between the eigenvalues of SCIG and DFIG, the real part of the
eigenvalue of SCIG and DFIG are not much different, except when an angle of internal
voltage increases. It is clear that imaginary parts of eigenvalue of DFIG are larger than of
SCIG.

5.3.2 Eigenvalues of multi-machine power system including wind power

In this section, wind power is modeled using a doubly fed induction generator
(DFIG) which the swing equation and voltage behind transient reactance are focused
regarding the synchronization stability problem. The difference between the synchronous
generator and induction generator is the slip (s,) which is the difference between the
angular speed of the rotor and the electrical field at the stator of the induction generator.

The system equations can be represented in the form of a matrix as follows:

X =AX+BU Eq.5-25
or
A%, ] [ 0 0 0 0 o, [[A] [ 0 ]
Ax, 0 K., K., K.; 0 Ax, 0
Ax, |=| Ky  —Kg,, —Kgy 0 0 Ax, |+ _A]_)lk / Ck Eq.5-26
Ay, —Ksi K K —Kp, 0 Ay, Apmw / M
L Ay, 1 L -Kg, —Kg, —Kg 0 -K, 1L Ay, 1 L Af_:ni /M i

For example, the two-machine infinite bus power system can be modeled as follows:
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Figure 5.126 Two-machine infinite bus power system, including wind power and load

The system equations become

(A%, ] [ 0 0 0 0 o, A, ] [ 0 ]

Ax, 0 Kew  Kpo  Kpp 0 Ax, 0

A%, |=| Ky Koy —Kgyy O 0 ||Ax, [+]| -AP,/c, Eq.5-27
Ay, 0 Ky —Kgyy =Ko, 0 Ay, A}_)m3 /M3

LAY, | [ K 0 K 0 —Kp, || A, | _A]_sz/Mz_

5.3.2.1 Eigenvalue analysis of two-machine infinite bus power system,
including wind power

In Eq.5-27, rearranging using the following form and taking Laplace transformation, yields

X(s)=(sI - A)'BU(s) Eq.5-28

[Ax, (s)] [ s 0 0 0 o, T 0 ]

Ax3 (S) 0 S KEwl _Ksz _KEW3 0 0
Ax, (s) =K, Kg3 s+Kg, 0 0 —A_P,4 (s) ¢, | Eq.5-29
Or Ay, (S) K3 Ky K, s+K), 0 AIjm3 (S)/M

_Ayz (S)_ | K Ko K 0 s+Kp, | | AF, (S)/M_

(st-A)" - (sa-ay Eq.5-30
det(sI - A)

The solutions of det(sI-A) = 0 are the eigenvalues of this state space equation, therefore
det(sI - A)=
Eq.5-31

S(S - Ky )(S + Ky )(S +Kp, )(S + K, ) —, (S + Ky )K522K533K5w3 =0

Therefore, the results of eigenvalue analysis are represented in the following tables.
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Table 5.16 Testing conditions and steady state values of speeds and angles

Power Load or Py (p.u.) 4 4 4 4 4 4
Pz of G; (pu) 1 1 1 0.4 0.6 0.8
Py of G, (pou) 3 4 2 3.6 34 32

Exchanged power (Pyc) 0 -1 1 0 0 0

X8 0.64284 | 1.56986 | -0.23281 [ 0.79943 | 0.74450 | 0.69287
X3S 0.28896 | 0.93253 | -0.35487 | 0.10764 | 0.16780 | 0.22856
X48 -0.00053 | 0.64301 | -0.64434 | -0.00469 | -0.00302 [ -0.00138
V28 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 [ 0.00000
V38 0.19987 | 0.19987 | 0.19988 | -0.10627 | 0.02582 | 0.12358

Table 5.17 The results of eigenvalue analysis for six testing conditions

Conditions Eig 1 Eig2 Eig3 Eig 4 Eig 5
Case 1 -860.1000 -101.9051 -0.6267 + 7.28101 | -0.6267 - 7.2810i -0.3572
Case 2 -857.5000 -77.9554 -0.6043 + 6.45591 | -0.6043 - 6.45591 -0.3573
Case 3 -860.6000 -106.1014 | -0.7538 + 6.80961 | -0.7538 - 6.80961 -0.3573
Case 4 -1163.8000 -94.8657 -0.5632 + 7.12631 | -0.5632 -7.1263i -0.1969
Case 5 -1017.4000 -97.4260 -0.5883 + 7.18821 | -0.5883 -7.1882i -0.2583
Case 6 -926.2000 -99.7705 -0.6090 + 7.23881 | -0.6090 - 7.2388i -0.3110

In Table 5.17, it is found that eigenvalues Eig 5 are most significant due to they are
closer to zero which represents the critical value of small signal stability. For Cases 4-6
when wind power increase, the significant eigenvalues are decrease. For Cases 1-3, when
exchanged power (PL — Pmy — Pm3) are varied, the significant eigenvalues (Eig 5) are not
different but the other eigenvalues (Eig 1 — Eig 4) are increase with decreasing of
exchanged power. Furthermore, from Table 5.18 for all 6 conditions, it is found that the
significant eigenvalues are most influenced by the speed deviation (or slip) of wind turbine.
The subsequent significant eigenvalues (Eig4) are influenced by the speed deviation of

synchronous generator.
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Table 5.18 The participation factors

Case1 | Eigl | Eig2 | Eig3 | Eig4 | Eig5 | Case4 | Eigl | Eig2 | Fig3 | Eig4 | Eig5

x2 0.000 | 0.235 | 0.005 | 0.000 | 0.000 x2 0.000 | 0.248 | 0.004 | 0.000 | 0.000

x3 0.008 | 0.023 | 0.001 | 0.000 | 0.000 x3 0.011 | 0.018 | 0.001 | 0.000 | 0.000

x4 0.616 | 0.153 | 0.005 | 0.000 | 0.000 x4 0.735 | 0.169 | 0.005 | 0.000 | 0.000

y3 0.362 | 0.087 | 0.036 | 0.000 | 1.000 y3 0.248 | 0.054 | 0.021 | 0.000 | 1.000

y2 0.014 | 0.503 | 0.954 | 1.000 | 0.000 y2 0.007 | 0.512 | 0.969 | 1.000 | 0.000

Case2 | Eigl | Eig2 | Eig3 | Eig4 | Eig5 | CaseS | Eigl | Eig2 | Fig3 | Eig4 | Eig5

x2 0.000 | 0.201 | 0.004 | 0.000 | 0.000 x2 0.000 | 0.240 | 0.004 | 0.000 | 0.000

x3 0.011 | 0.019 | 0.001 | 0.000 | 0.000 x3 0.010 | 0.020 | 0.001 | 0.000 | 0.000

x4 0.607 | 0.133 | 0.005 | 0.000 | 0.000 x4 0.684 | 0.161 | 0.005 | 0.000 | 0.000

y3 0.371 | 0.095 | 0.037 | 0.000 | 1.000 y3 0.297 | 0.067 | 0.026 | 0.000 | 1.000

y2 0.011 | 0.552 | 0.954 | 1.000 | 0.000 y2 0.010 | 0.513 | 0.964 | 1.000 | 0.000

Case3 | Eigl | Eig2 | Eig3 | Eigd | Eig5 | Case 6 | Eigl | Eig2 | Eig3 | Eig4 | Eig5

x2 0.000 | 0.246 | 0.004 | 0.000 | 0.000 x2 0.000 | 0.237 | 0.004 | 0.000 | 0.000

x3 0.009 | 0.022 | 0.001 | 0.000 | 0.000 x3 0.009 | 0.022 | 0.001 | 0.000 | 0.000

x4 0.614 | 0.153 | 0.006 | 0.000 | 0.000 x4 0.646 | 0.156 | 0.005 | 0.000 | 0.000

y3 0.359 | 0.083 | 0.042 | 0.000 | 1.000 y3 0.333 | 0.077 | 0.031 | 0.000 | 1.000

y2 0.017 | 0.496 | 0.948 | 1.000 | 0.000 y2 0.012 | 0.508 | 0.959 | 1.000 | 0.000

5.4 A study of effects of wind power on the small signal stability using stochastic

stability method: the mean first passage time (MFPT)

The mean first passage time (MFPT) is the performance index to quantify the
average time a state-space trajectory takes to change from a given operating point to the
boundary of its domain of attraction under the influence of small perturbations [9][2].
MFPT can be used to evaluate the small signal stability of the power system when
incorporating stochastic wind power. This section represents the results of mean first
passage time (MFPT) computation according to different testing conditions. From Chapter

3, the MFPT is a solution of the following problem

sCWry (W) +[ C, ~CW |7, (W) =~-1 Eq.5-32
TO(WC)ZO’ T0(0)<w
The solution is
We « * * * -
3 0

1 2 1 3t &G el &eCt
Or 7(0)~ )y /e U (/e e C)dt}e(CW/ ) Eq.5-34

0




343

Where
2

1 ow
C(W)y=——- — | ds
l( ) T(W)¢Wgz[8x2] c

! oW Eq.5-35
CZ(W)=W¢W828_)C§dSC q.

1 ow ow ow
C,(W)=—— 9 a2y, g
3( ) T(W)éw(yl 6y1 +y206 ayz +J’3 ay}j c

Where critical energy (W) computation technique is presented in the previous Chapter and
coefficients C; , C, and C; are stated in Appendix A.

Since the energy function cannot be used directly for the solution of the problem in
Eq.5-34, thus an approximate energy function based on an ellipsoidal surface is represented

instead. This takes [9]:
n+m—1 n+m |:1 MtM/

W:ZZZMT

i=l  j=i+l

) ool =) (o) | Easas

where MT:sz and z,=x,—x; if i=1,2,...,ntm

=)
From Chapter 3 and Appendix A, MFPT can be calculated using the following steps

S1) Stable equilibrium points and critical energy are computed as represented in
previous topics.

S2) Matrix H can be constructed using Egs. A-3 to A-6 in Appendix A.

S3) Find eigenvalues and eigenvectors of matrix H. After matrix H is constructed
explicitly, software Matlab can possibly be used to find eigenvalues and
eigenvectors.

S4) Construct set of matrix D and matrix F using Eqs. A-29 to A-33 in Appendix A.
These matrixes will be used in the formulation of MFPT.

S5) Compute C coefficient using Egs. A-25 to A-28 in Appendix A.

S6) Compute MFPT using Eq.5-34. Every step from S1 — S5 is done completely.

S7) Change condition of wind power, such as, wind speed and noise intensity and
repeat S1 — S6 again to see the variation of MFPT.

To compute MFPT, several processes have to be done consisting of the
determination of steady state variables, estimation of critical energy, and formulation of

stochastic differential equations. Energy function method, based on Lyapunov function, is



344

used to determine the region of attraction of stable equilibrium points and the critical
values. Beyond these values, the system become unstable.

The critical energy can be estimated using the minimum value for each case of
wind speed. As a result, the critical energy increases with increasing mean wind speed.
When the wind speed increases, the wind power can share more load from the other
generators and make the system more stable. At mean wind speeds of 6, 8, 10, and 12 m/s,
the critical energies of the test system are 2.04, 2.17, 2.35, and 2.58, respectively. The total
wind power from several wind farms can be comparable with white noise. Therefore, the
Gaussian distribution of noise signal from wind power can be reasonably assumed for such
case.

The asymptotic method is applied to the solution of MFPT. Only the first order of
scale factor () is used to estimate MFPT. Since energy function cannot be used directly
for the solution of MFPT, therefore, an approximate energy function basing on ellipsoidal
surface is represented instead. The characteristic matrix of ellipsoidal surface has
eigenvalues and eigenvector, which are used for the computation of MFPT.

Finally, the MFPT is computed with the variation of wind speed and noise intensity.
MFPT is significantly low especially when wind speed higher or equal to 8 m/s. The lower
MFPT means the higher risk of power system instability.

To implement MFPT to the practical use, the test power system is modified and the
measurement data of wind power (or wind speed) is provided. After modification of the
test power system, the process of MFPT computation is done. There are several steps to
implement MFPT as follows

— First, measurement of wind power every 1 or 10 minutes of recording time interval
is used. In the case measurement data is not available, wind power simulation using
measurement wind speed data can be applied instead.

— Second, use moving average technique to compute average noise intensity and wind
speed. The time interval of averaging can be considered from the ability of power
system which can operate without regulation. For example, the reasonable
regulation which can possibly or significantly occur at every 10 minutes.

— Third, the results of mean wind speed and noise intensity of wind power from
moving average technique can be used to judge the possibility of instability of the
power system under different conditions of wind power. For example in the above

table, if the average wind speed is larger than 10 m/s while noise intensity is higher
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than 0.25, the MFPT will be less than or equal to 10 minutes. This is the situation

that should be avoided.

When varying wind speed and its noise intensity, the results of MFPT are

represented in the following figures and table.

250
> —o—Wind Speed 4 m/s
200 —=—\Wind Speed 6 m/s |
—4—Wind Speed 8 m/s
L 3 —>—Wind Speed 10 m/s
150 ) -
4 —¥—Wind Speed 12 m/s
3 )
<
= 100
™8
2
£
1
]
]

Noise Intensity

X —o—Wind Speed 4 m/s
—&—\Wind Speed 6 m/s |

3 +
—4—\Wind Speed 8 m/s
——Wind Speed 10 m/s

—#—Wind Speed 12 m/s

In(MFPT) hours

Noise Intensity

Figure 5.127 Log-scale of MFPT at different wind speeds and noise intensity

The results in Figure 5.127 and Table 5.19 show that MFPT decreases with
increasing noise intensity of wind power and mean wind speed. Noise intensity is larger
than 3.4, 0.88, 0.38, 0.24, and 0.18 with mean wind speed at least 4, 6, 8, 10, and 12 m/s,
respectively, are seriously considerable and can lead the system to be unstable within a

short time (less than 10 minutes).
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Table 5.19 MFPT at different wind speeds and noise intensity

noise

MFPT (hours) at mean wind speed

noise

MFPT (hours) at mean wind speed

intensity 4m/s 6 m/s 8 m/s 10 m/s 12 m/s intensity 4m/s 6 m/s 8 m/s 10 m/s 12 m/s
0.04 65535 32E+202 | 6.35E+34 | 3.77E+11 7677328 2.04 0.605985869 0.09941 0.090767 | 0.089748 | 0.089615
0.08 65535 7.97E+48 | 21983425 | 55.44486 | 4.568147 2.08 0.558612984 | 0.098979 | 0.090699 | 0.089726 | 0.089612
0.12 65535 4.13E+20 | 257.0525 1.172062 0.43399 2.12 0.517539572 | 0.098574 | 0.090635 | 0.089706 | 0.089611
0.16 4.0682E+186 | 6.28E+10 | 5.792008 0.346039 | 0.207364 2.16 0.481711836 | 0.098194 | 0.090575 | 0.089687 | 0.089613

0.2 3.5077E+118 2011752 1.10842 0.205336 | 0.150636 22 0.45028328 0.097835 | 0.090518 | 0.089669 | 0.089618
0.24 4.05638E+81 7869.855 0.476175 0.156892 | 0.127488 2.24 0.422568533 | 0.097498 | 0.090464 | 0.089654 | 0.089625
0.28 2.3031E+59 294.1306 0.293715 0.134123 0.11557 2.28 0.398008549 | 0.097179 | 0.090414 | 0.089639 | 0.089635
0.32 8.77701E+44 | 36.33701 0.217452 0.121428 0.10855 232 0.376144121 | 0.096878 | 0.090365 | 0.089626 | 0.089648
0.36 1.18259E+35 8.94814 0.178129 0.113551 0.104036 2.36 0.356595563 | 0.096593 0.09032 0.089614 | 0.089665

0.4 1.05819E+28 | 3.366507 0.154996 0.108293 | 0.100949 2.4 0.339046979 | 0.096323 | 0.090277 | 0.089603 | 0.089684
0.44 6.59911E+22 1.664309 0.140117 0.104593 | 0.098739 2.44 0.323234002 | 0.096068 | 0.090236 | 0.089594 | 0.089708
0.48 7.39249E+18 | 0.987714 0.129919 0.101883 | 0.097099 2.48 0.308934153 | 0.095825 | 0.090197 | 0.089586 | 0.089735
0.52 6.32629E+15 | 0.664913 0.122588 0.099834 | 0.095847 2.52 0.295959222 | 0.095595 0.09016 0.089579 | 0.089767
0.56 2.36049E+13 | 0.489405 0.117121 0.098246 | 0.094869 2.56 0.284149187 | 0.095376 | 0.090125 | 0.089573 | 0.089803

0.6 2.62565E+11 0.384311 0.112922 0.096988 | 0.094091 2.6 0.273367356 | 0.095168 | 0.090091 | 0.089569 | 0.089843
0.64 6679110727 0.316596 0.109621 0.095974 | 0.093461 2.64 0.263496431 | 0.094969 | 0.090059 | 0.089566 | 0.089889
0.68 321502762.5 0.270412 0.106974 0.095144 | 0.092943 2.68 0.254435331 0.09478 0.090029 | 0.089565 0.08994
0.72 25503572.6 0.23746 0.104816 0.094456 | 0.092513 2.72 0.246096594 0.0946 0.089999 | 0.089565 | 0.089997
0.76 3008347.051 0.213079 0.103031 0.09388 0.092152 2.76 0.238404247 | 0.094428 | 0.089972 | 0.089566 0.09006

0.8 488223.2844 0.194494 0.101537 0.093392 | 0.091846 2.8 0.231292055 | 0.094264 | 0.089945 | 0.089569 0.09013
0.84 102702.2931 0.179973 0.100272 0.092975 | 0.091584 2.84 0.224702064 | 0.094107 0.08992 0.089573 | 0.090207
0.88 26735.03873 0.168388 0.099193 0.092616 | 0.091358 2.88 0.218583401 | 0.093957 | 0.089896 | 0.089579 | 0.090291
0.92 8303.824468 0.158982 0.098262 0.092305 | 0.091162 2.92 0.212891262 | 0.093813 | 0.089873 | 0.089587 | 0.090384
0.96 2989.294566 0.151226 0.097455 0.092033 | 0.090991 2.96 0.207586063 | 0.093676 0.08985 0.089596 | 0.090486

1 1218.499628 0.144748 0.09675 0.091795 | 0.090841 3 0.202632734 | 0.093544 | 0.089829 | 0.089607 | 0.090598

1.04 551.8694178 0.139274 0.09613 0.091585 | 0.090708 3.04 0.198000114 | 0.093417 | 0.089809 | 0.089621 | 0.090719
1.08 273.4553054 0.134601 0.095583 0.091398 | 0.090591 3.08 0.193660441 | 0.093296 | 0.089789 | 0.089636 | 0.090852
1.12 146.3664073 0.130576 0.095096 0.091232 | 0.090486 3.12 0.189588915 0.09318 0.089771 | 0.089653 | 0.090997
1.16 83.73513745 0.127081 0.094662 0.091083 | 0.090393 3.16 0.185763327 | 0.093068 | 0.089753 | 0.089672 | 0.091155

12 50.75120579 0.124025 0.094273 0.09095 0.090309 32 0.182163745 0.09296 0.089736 | 0.089694 | 0.091328
1.24 32.34662103 0.121336 0.093923 0.09083 0.090233 3.24 0.178772233 | 0.092857 | 0.089719 | 0.089718 | 0.091515
1.28 21.54391028 0.118954 0.093607 0.090721 0.090165 3.28 0.175572619 | 0.092758 | 0.089703 | 0.089745 | 0.091719
1.32 14.91456046 0.116835 0.09332 0.090622 | 0.090103 3.32 0.172550291 | 0.092662 | 0.089688 | 0.089774 0.09194
1.36 10.68318965 0.114939 0.09306 0.090533 | 0.090047 3.36 0.169692015 0.09257 0.089674 | 0.089806 | 0.092181

1.4 7.886605914 0.113236 0.092822 0.090451 0.089996 3.4 0.166985787 | 0.092481 0.08966 0.089842 | 0.092442
1.44 5.980068156 0.1117 0.092605 0.090376 | 0.089949 3.44 0.164420695 | 0.092396 | 0.089646 0.08988 0.092727
1.48 4.643799946 0.110309 0.092406 0.090307 | 0.089907 3.48 0.161986801 | 0.092313 | 0.089634 | 0.089922 | 0.093035
1.52 3.683687624 0.109044 0.092224 0.090244 | 0.089868 3.52 0.159675038 | 0.092234 | 0.089621 | 0.089967 | 0.093371
1.56 2.978279295 0.107892 0.092055 0.090186 | 0.089833 3.56 0.157477122 | 0.092157 0.08961 0.090016 | 0.093735

1.6 2.449474388 0.106838 0.0919 0.090133 | 0.089801 3.6 0.155385469 | 0.092083 | 0.089598 | 0.090069 0.09413
1.64 2.045783234 0.105871 0.091757 0.090083 | 0.089772 3.64 0.153393126 | 0.092011 | 0.089588 | 0.090126 0.09456
1.68 1.732480636 0.104982 0.091623 0.090038 | 0.089745 3.68 0.151493708 | 0.091942 | 0.089577 | 0.090188 | 0.095026
1.72 1.485656487 0.104163 0.0915 0.089995 | 0.089721 3.72 0.149681343 | 0.091875 | 0.089568 | 0.090254 | 0.095533
1.76 1.288531316 0.103406 0.091385 0.089956 0.0897 3.76 0.147950625 | 0.091811 | 0.089558 | 0.090325 | 0.096083

1.8 1.129122125 0.102705 0.091278 0.089919 | 0.089681 3.8 0.146296565 | 0.091748 | 0.089549 | 0.090401 | 0.096681
1.84 0.99873242 0.102055 0.091178 0.089885 | 0.089664 3.84 0.14471456 0.091688 | 0.089541 | 0.090483 0.09733
1.88 0.890956333 0.10145 0.091085 0.089854 0.08965 3.88 0.14320035 0.091629 | 0.089533 | 0.090571 | 0.098036
1.92 0.801009942 0.100887 0.090997 0.089824 | 0.089638 3.92 0.141749991 | 0.091572 | 0.089525 | 0.090665 | 0.098802
1.96 0.725274755 0.100361 0.090916 0.089797 | 0.089628 3.96 0.140359829 | 0.091517 | 0.089518 | 0.090765 | 0.099635

2 0.660981179 0.09987 0.090839 0.089772 0.08962 4 0.139026471 | 0.091464 | 0.089511 | 0.090873 0.10054
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An example using existing test systems with wind power is calculated from wind speed
data is represented.

In Chumporn Province of Thailand, during October 2011 and May 2012, the mean
wind speed at 90 meters hub-height is about 5 m/s while noise intensity of wind power is
about 0.5. The wind power in this case is calculated using VESTAS V90 2000kW
specification. The distributions of wind speed and its noise intensities are represented in
Figure 5.128. The wind power and its noise intensities are represented in Figure 5.129. The
relation between wind speed and noise intensity of wind power is shown in Figure 5.130.

If wind power is operated without regulation control, the power system may
become unstable within 10 minutes under some conditions. The noise intensity larger than
3.4, 0.88, 0.38, 0.24, and 0.18 with mean wind speed at least 4, 6, 8, 10, and 12 m/s,
respectively, are such critical conditions to be considered. Figure 5.130 shows that within
shaded area, MFPT is less than 10 minutes. Therefore, outside a shaded area in which
MFPT larger than 10 minutes are occurred especially when wind speed higher than 6 m/s.
These serious conditions will occur during April — May and Nov — Dec when the monsoon

has much influence in that area.

. +  10minute-sample
Ssxm“ 10minute-sample Py . . p

o L L L . 1 . L
10 12 u] 0.z 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

4 6 5
Wind speed (m/s) Noise intensity of wind speed

Figure 5.128 Distribution of wind speed (left) and noise intensity (right) of wind speed
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Figure 5.129 Distribution of wind power (left) and noise intensity (right) of wind power
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Table 5.20 The results of MFPT implementation

1

1
3 35 4

16 2 25
Noise intensity of wind power

Results at different wind speed

Variables 4 m/s 6 m/s 8 m/s 10 m/s 12 m/s
Nlax 3.16 3.16 1.18 0.45 0.31
MFPT at Nljax (hours) 0.18 0.09 0.09 0.1 0.1
Rt (hours) 0.167 0.167 0.167 0.167 0.167
MFPT <Rt ? no yes yes yes yes

Nlpax 1s the maximum noise intensity of wind power occurring at each range of

mean wind speed. It is found that NI,,,x vastly decreases with increasing wind speed. Rt is

an imposed constraint of the power system (for example, the constraint which are used in

Area Control Error or ACE for power balancing and frequency control). In this case, Rt is

assumed to be 10 minutes (0.167 hours).

In Table 5.20, the maximum noise intensity (Nly.x) and MFPT at Nl.x with

different wind speeds are determined. When MFPT is less than Rt, the power system is

possibly unstable before the regulation or control system can serve for any small and

continuous disturbances.
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Figure 5.130 Relation between wind speed and noise intensity of wind power using the

wind data of the Chumporn wind monitoring station in the South of Thailand.

In conclusion, this section can explain the main problem of the thesis. The effects
of stochastic wind power on the power system stability can be determined reasonably using
the stability index, namely MFPT.

Considering wind speed data from the Chumporn monitoring station, the cases
when noise intensity larger than 3.4, 0.88, 0.38, 0.24, and 0.18 with mean wind speed 6, 8,
10, and 12 m/s, respectively, are seriously considerable and can possibly lead the system to
be unstable within a short time (less than 10 minutes). These serious conditions will occur
during April — May and Nov — Dec when the monsoon has much influence in that area.

However, this result is based on the assumption that wind power is Gaussian white
noise, and the power system is unregulated, which is not practical. The dynamics with
regulation system needs an improvement of the stability index. Furthermore, the energy
function, using for MFPT solution, is an approximated value which has ellipsoidal surface
shape. It cannot represent the complex surface problems, for example, the energy of the
power system when incorporate DFIG wind turbine model. Therefore, the other methods

will be developed and explained in the next chapter.



CHAPTER 6
RESULTS AND DISCUSSION PART 2

In Chapter 3 and 5, the stability index called mean first passage time (MFPT) was
determined to evaluate the small signal stability of the power system when incorporating
stochastic wind power. This method can reveal the effects of different wind power and
noise intensity on the power system stability using simplified elliptic surface energy
function. However, it cannot represent the complex energy function, for example, when the
DFIG wind turbine model is incorporated in the power system. Therefore, to overcome this
problem, a new method is developed and explained in this Chapter.

This chapter focus on the stochastic stability problems, which consist of the study
of the effects of wind power on the small signal stability using a new stochastic stability
method, a study of effects of wind power on the voltage stability using a new stochastic
stability method, and a study of the effects of wind power on voltage variation using a

probabilistic method.

6.1 The Study of Effects of Wind Power on the Small Signal Stability using New
Stochastic Stability Method

6.1.1 The Derivative of Stochastic Energy (DSE) for Gaussian distribution
white noise model

This sub-section will focus on the study of the effects of stochastic wind power and
load using the stability performance index, which is called the derivative of stochastic
energy (DSE). The wind power is modeled using Gaussian distribution white noise model.
There are two kinds of effects to be studied: first is the effect of stochastic wind power and
constant and second is the effect of stochastic load and constant wind power.

6.1.1.1 The effects of stochastic wind power and constant load
From Section 4.8, the DSE can be computed by applying the following conditions.
1) The power test system

From Sections 4.2.2 and 4.8.1, the power test system is represented in Figure 6.1.
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Figure 6.1 Test power system including wind power and load for DSE

The total n bus system consists of m bus of generation and n-m bus of load and
others. The bus 7 represents synchronous generator (SG) (total m-p bus), bus w represents
squirrel cage induction generator (SCIG) (total p bus) and k represents load bus. Bus no. 1
is a reference bus.

2) The stochastic differential equations (SDE)

From section 4.8.1, the matrix form of stochastic differential equations of the test

system is
I @, (v, = ») |
x, ] a)o(y3_yl)_kaGSin(kax3+cb) 0
- 0
X3 i(PM +F24)_a)oy1 0
d|x, |= , dr + dw Eq.6-1
8 __y2+L(sz_E2) —0
M, M, >
s 1 = = u,
3
I E(Pm_Pes) |

where D is damping coefficient of SG. V is terminal voltage. P (Pmi=Pi—Pmw) and

P, are mechanical input power of SG and SCIG wind turbine, respectively. Py is a

constant power load. P , Pew ,and Pg are electrical power at bus =2 , w=3 and k=4,

respectively. ¢, is frequency dependent coefficient of load.

3) The well-defined energy function

From section 4.4.2, the well-defined energy function of the power system and its

derivative are
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m-p m m—p

Lol 5 et} o

i=1 w=m-p+1 i=1

=3 Bo(x-x)+ Y B(n-x)

w=m—p+1 k=m+1 Eq.6_2

- i %kaszw (sin(ka (xw =X, ) +c, ) +sin (ka (x‘S =X, ) +c, ))(yw - yf)

w=m
—p+l

n=1 n

_;j;l VVB, [cos(x, —xj)—cos(xf —x! )]
" _mz_’j " z o Eq.6-3
=1 k=m+1

4) The derivative of stochastic well-defined energy function

From section 4.8.1, the derivative of stochastic well-defined energy function (DSE):

Lu(x,t)=
1, — _ _ _
~@,D,y; —Z(APA‘)Z T (APZ _AP4)+ 23);3 (P:nSaS )2
1 Eq.6-4
_5M3kaka; (J’3 —y§)cos(kax3 +Cb)|:a)0 (J’3 _J’1)_ka35in(kax3 TG )]
1 —\[ . . s
+Ekb (A]%)[sm(kax3 +cb)—sm(kax3 +c, )] <0
From Section 4.8.1, the DSE can be formulated as follows
1 — \2 a)O —_ 2
DSE = __(AP4) + (Pm3a3) ECI-6'5
c 2M

k 3
5) The testing conditions

The per unit base power is I00MVA, the fundamental speed, @y = 314.159 rad/s, an
inertia constant of induction generator wind turbine (IG), My, = 7.0 sec. [45], and the
damping coefficient of the synchronous generator (SG), D; = 0.21 [52]. The power
deviation on the load bus (AP4) remains constant at 0.04 throughout the simulation. The
stability of this test system can be investigated by varying the noise intensity of the wind
power (a3) from 0 to 0.1 and the mechanical wind power (Py;3) is set to 0.5, 1.0, and 2.0.
The frequency dependent coefficient of load, ¢ is 0.025. The power flow of the test system
with Load: Wind Power: power of SG is 4: 2: 2 p.u. .

The noise intensity (NI) of wind power depends generally on local wind
characteristics. For example, the yearly NI calculated with hourly average wind power of
four wind power plants in USA during 2000 — 2010 are 0.8 — 1.0 [70]. As a small signal,

the noise intensity of this test system will be varied from 0 — 0.1.
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6) The results

Since the stable condition of the stochastic system is DSE < 0, therefore, a larger
DSE means that the system has higher probability to become unstable and the stability of
the power system decreases. In Figure 6.2, it can be seen that the DSE gradually increases
with the wind power and its noise intensity. This result indicates that the highly fluctuated
wind power can reduce the rotor angle stability of the power system. When DSE is zero or
critically stable condition, the critical noise intensities at wind power 0.5, 1.0, and 2.0 p.u.,
are about 0.09, 0.045, and 0.0225, respectively. Therefore, the critical noise intensities of
wind power seem to linearly inverse to the changing of wind power. It can be implied that,

to avoid system instability, the wind power should be limited by its noise intensity.

0.03 /
~ 0.02
% 0.0
e .01
> O T i |
=1}
g -0.01
=
= _0.02
2
‘g -0.03
g -0.04
@ -0.05 / —Pm3=0.5, ck=0.025
S 006 . —Pm3=1.0,ck=0.025 |
g _— Pm3=2.0, ck = 0.025
£ -0.07 1
>
E 0 0.02 0.04 0.06 0.08 0.1
_ Noise Intensity of Wind Power

Figure 6.2 DSE compared with noise intensity of wind power (a3) at different wind

powers (Pp3, p.u.) when frequency dependent coefficient, cx = 0.025.

7) Verification of the results
To illustrate an example of DSE, the system equations in Eq.6-1 are studied using a
computer simulation. The energy in Eq.6-2 is computed and compared between 4 testing
conditions (C1 to C4) with the system parameters in Table 6.1. The testing conditions and
the results of the stochastic index, namely the exit time [9] (the time in which the
synchronized speed increases beyond the critical value, in this case is 1.02, and results in

lost synchronism) are represented in Figure 6.3.



354

Table 6.1 Testing conditions and results of exit times compared with DSE

Conditions Cl C2 C3 C4
Noise intensity () 0.2 0.5 0.2 0.2
Mechanical Wind Power (Pp3) , p.u. 2.0 2.0 2.0 3.0
frequency dependent coefficient (cx) 0.025 0.025 0.1 0.025
Exit time (seconds) 176 85 176 47
DSE 3.67 22.75 3.72 8.24
Rate of change of Energy 6667 8750 6667 | 16667
2.E+06 —
Energy_C1 _/
e 2.E+06 Energy_C2 C4/-/ //
2 Energy_C3
° 1E+06 Energy_C4 c2 //
g 5.E+05 / 1
& 0.E+00 L __.....—-"’""'/ ’J//
c3
-5.E+05 '
0 20 40 60 80 100 120 140 160 180 200 220 240
Simulation time (seconds)

Figure 6.3 Energy of the test system under 4 test conditions C1 — C4 .
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Figure 6.4 Phase portraits of slip-angle (left) and energy-angle (right) of IG wind turbine

when noise intensity increase from 0.2 (upper) to 0.4 (lower).
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From the results in Figure 6.3 and Table 6.1, it can be seen that the small but
continuous fluctuations of wind power and state variables can finally cause the system to
become unstable due to loss of synchronism. The energy of the system in Figure 6.3
increases with the different rate. If compare C1 and C2 when noise intensity increases 1.5
times, the exit time decreases 0.52 times, DSE increase 5.2 times and the rate of change of
energy increase 0.3 times. For C1 as compared with C4, when wind power increases 0.5
times, the exit time decreases 0.73 times DSE increases 1.25 times and the rate of change
of energy increases 1.5 times.

However, for C1 as compared with C3, the frequency dependent coefficient (cx) has
no significant effect on the exit time, whereas a small deviation on the system energy of
16.3% is observed at 240 seconds. Figure 6.4 represents the phase portrait of slip and angle
of IG WT and the phase portrait of energy and angle of IG WT of the condition C1. The
loss of synchronism occurs when the noise intensity of wind power increases from 0.2 to
be 0.4 .

When the Py is reduced to 0.5 p.u., while the other terms remain the same with the
case Cl. The loss of synchronism is not observed within the simulation time period 240
seconds. Furthermore, the contribution of each term in Eq.6-4 is provided in Table 6.2. The
contribution of the first (Lu_1) and the third (Lu_3) terms have shown to be more than

99.7%. This empirically justifies the formulation of the DSE in Eq.6-5.

Table 6.2 Contribution of Lu components

% Contribution of Lu components at time 60s
Conditions
Lu 1(-) Lu 2(-) Lu 3(+) Lu 4(-) Lu 5(+)
Case Al 51.9% 0.0% 47.9% 0.2% 0.0%
Case C1 2.4% 0.0% 97.3% 0.3% 0.0%

8) Conclusion
The derivative of stochastic energy (DSE) proposed in this section can be used to
estimate the impact of fluctuating wind power to the power system. The stochastic
differential equation and the energy function of the power system are used to compute
DSE. The wind turbine induction generator model (SCIG wind turbine) is included in the
formulation of the energy function and to the DSE. The stability of the power system which
is measured by the exit time, decreases with increasing of wind power and its noise

intensity. In this study, if mean wind speed is constant while its noise intensity is varied,
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the DSE is corresponded to the inverse of exit time. This index gives an alternative idea for
power system stability analysis by stochastically incorporating the wind power.

With the stated assumptions, the DSE can capture the system characteristics and
estimate the power system stability with less computational effort. The wind turbine model
may be improved in the future work for more accurate results.

6.1.1.2 The effects of stochastic wind power and stochastic load

In this subsection, the stochastic load is applied using almost the same methods as
described in the previous section. However, to focus mainly on the effects of wind power
and load, this section assumes testing conditions to be different from Section 6.1.1.1 as
follows:

1) The power test system
The single machine infinite bus power system is focused on the effects of wind

power and electric load. The single line diagram of this test system is shown in Figure 6.5.

X’=j0.148 B1
:é <G1 > [ @ : Q Figure 6.5 Single machine infinite bus
M—70 MV j0.25 j0.5 “%\ . . .
HV o power test system including wind power
HV

Load and load

Infinite bus
2) The stochastic differential equations (SDE)

The structure preserving model power systems in this section consists of differential
equations (rotor dynamics of IG of wind turbines and dynamic of load), and the algebraic
equations (network equation in power balance form, and stator voltage coefficients of IG).
The stochastic differential equations of the power system are applied from Section 4.8.1,

which can be represented as follows:

- o, (v, —y)—-kV,, sin(k,x, +c,) 0
d| x, |= —Ci(ﬁ,k +P,)- o, de+| 0 [dW Eq.6-6
Y, k 1 P ,,
M—W(ﬁm ~-P,) M, "]
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ﬁew = _w z I7j§wy' SIH(‘xw _xj)
j=1,j#w

P, =V, y VB, sin(x, —x,) Eq.6-6
Jj=1,j#k

¢, =k, +c,and k, =(X, - X.) /(T X.7,)

Where subscript n represents total number of network bus (n = 3), w is wind power
bus (bus 3), k is load bus (bus 2). Vy is voltage behind transient reactance. V" with subscript
k and j are bus voltage, ¢ is angle of V', and ¢’ is the different angle between V, and the
stator terminal voltage (V). Bij is susceptance component between bus i and j. Py is a
constant power load. P, is mechanical power of IG. P,y ,and P are electrical power at
wind power bus and load bus, respectively. ¢k is frequency dependent coefficient of load. &,
and c, are the slope and offset of the linear relationship between 6 and ¢’ during transient.
ay 1s rated angular speed (100m). 7y , X, and X’ are transient open-circuit time constant,
open-circuit reactance, and transient or short-circuit reactance, respectively [45].

3) The well-defined energy function

The well-defined energy function of the power system and its derivative are
1 s D s s D s
U :ECOOMW (yif _ywz)_me (xw _‘xw)_a)OMWyl (yw _yw)+Plk (xk _xk)

—%kabVw (sin (kx,+,)(v, - y;)) _%kabVW (sin(kax; +,) (v - ))

2 3

~3 2 V0B, cos ;) eos (! —xi) |
Eq.6-7
U=-ad Eq.6-8

4) The derivative of stochastic well-defined energy function

From Section 4.8.1, the derivative of the stochastic well-defined energy function is

— 2

Wy, (= 1 P,a
Lu(x,t) - 2]\; (Pm3aW)2 +E(V1V2b12 cos(xl —x,)+ViV,by, cos(x, _xz))( _12 kJ
3 k

__(1_312 +P, )2 _%M}kakbl/3 (y3 —y;)cos(kax3 +cb)(a)0y3 —/cbI/3sin(lca)c3 +c, )) Eq.6-9

+—k,V, (13 - 63)(sin(kax3 +cb)—sin(kax§+cb))30
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Multiplying Eq.6-9 by ¢} /P2, the performance index, which can be called the derivative

of stochastic energy (DSE), can be found as follows:

N2 2 2 _ 02
DSE =, (sz) + % ()
2M, Eq.6-10

+%(V1V2b12 cos(x, —x, )+ VV,b;, cos(x, —x, ))a,f

where P, is negative which can be replaced by —|P.;| and dP, = P, — |Pe2| 1s the deviation

of power on load bus, d}_’z' = d}_’2 /1_312 and f’”'l3 = Pm3/}_’l2 .
5) The testing conditions

There are mainly three cases to be examined, which are, Case #1 (base case) when
wind power and power load have no stochastic part (a,=0 and ax=0), Case #2 when only
power load has stochastic part (a,=0), and Case #3 when only wind power has stochastic
part (04=0).

The per unit base power is I00MVA, the fundamental speed, @y = 314.159 rad/s, an
inertia constant of 1G, M3 = 7.0 s. The frequency dependent coefficient of load, cx = 0.05 as
the base case. Assumes V', V>, and V3 are close to 1.0, by, is 0.5 and bs; is 0.25, x12 = (x1-
x7) and x3; = (x3-x2) can be varied between 0.1 to 0.5 radians. Py, is a real load and a is
noise intensity of load which can be assumed to vary between 0.05 and 0.2 .

The yearly noise intensity (NI) calculated with hourly average wind power of four
wind power plants in USA during 2000 — 2010 are 0.8 — 1.0 [70]. The stability of this test
system can be investigated by varying the noise intensity of wind power (a,, = 0.5 and 1.0),
mechanical wind power (Py3), and the power deviation on the load bus (dP»).

6) The results

For the Case #1, the terms with ax and a,, in Eq.6-10 are zero. The DSE always less
than or equal to zero and depends linearly on ¢k which has the same form of dissipative
energy as represented in Eq.6-8. The noise intensity when DSE is zero is called the critical
noise intensity. Moreover, the larger cx means the frequency deviation on load bus is less
affected by the deviation of power load which cause the system damping to increase and
become more stable. The results of DSE computation of Case #2 when fix wind power and
Case #3 when a fixed power load are represented in Figure 6.6. This figure represents the
relationship of DSE and noise intensity of power load at different bus voltage (V;) and

frequency dependent (cx) when fixed wind power (or a,= 0) and noise intensity of wind
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power at different penetration ratios and frequency dependent (cx) when the power load is
fixed (or ax=0).

For Case #2, the stochastic terms of wind power in Eq.6-10 (term with a.,) is zero.
The DSE is affected by ¢k , ax and the variables such as bus voltage and its phase angle. If
focused only on an influence of o at different ¢x and bus voltage (V3) as represented in
Figure 6.6, the DSE progressively increases with increasing ax, while linearly decreasing
with decreasing bus voltage. The critical noise intensities (DSE=0) are 0.25, 0.2, and 0.17
when voltage increases to be 0.6, 1.0, and 1.4 p.u., respectively. The larger ¢ results in the

smaller DSE (larger critical noise intensity of power load).
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Figure 6.6 The relationship of DSE and the noise intensity of the power load when wind

power is fixed (left) and noise intensity of wind power when power load is fixed (right)
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Figure 6.7 Phase portraits of slip-angle ( left) and energy-angle (right) of IG wind turbine

when noise intensity increase from 0.2 (upper) to 0.4 (lower) with constant load.
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For Case #3, the stochastic term of the power load in Eq.6-10 (term with a) is zero.
The DSE increase with increasing wind power (Pn3) and sharply increase with increasing
noise intensity of wind power (a,). The critical noise intensities (DSE=0) are >1.0, 0.95,
and 0.47 when wind power penetration are 0.2, 0.4, and 0.6, respectively. The effect of ¢y
is different from Case #2 and Case #1 such that, at small noise intensity of wind power, the
larger ¢y causes the smaller DSE. But for the large noise intensity, the larger ¢ causes the
larger DSE. Moreover, the larger ci causes the smaller critical noise intensity.

7) Conclusion

This section applies the stochastic stability analysis method to investigate the small
signal stability of the single machine infinite bus power system. The stochastic stability
index is proposed to describe the effects of stochastic load and wind power.

An increase of noise intensity of both wind power and load causes the stochastic
stability index to increase, and the system possibly becomes progressively unstable. When
only stochastic load is represented (fix wind power), the smaller load bus voltage and the
larger frequency dependent coefficient causes the lower DSE and the system possibly
becomes more stable. When only stochastic wind power is represented (fix power load),
the larger share of wind power leads to larger DSE and an increased in frequency
dependent coefficient causes the critical noise intensity to decrease, which causes the
system to be less stable.

Therefore, this method can estimate the effects of stochastic wind power and load
quantitatively while the general deterministic methods cannot.

6.1.2 The Stochastic Stability Index (SS7) with Gaussian distribution of white
noise

This sub-section will focus on the study of effects of stochastic wind power using
the new stability performance index, which is called the stochastic stability index (SS7). For
this section, the DFIG wind turbine with Gaussian distribution white noise model is
applied. The following conditions are used to formulate SS7 for implementation.

1) The power test system

The power test system in this section is the same as Figure 6.1 in Section 6.1.1.1,
except for the SCIG wind turbine being replaced by DFIG wind turbine. The single line
diagram of two machine infinite bus power system (TMIB) is represented in Figure 6.7.

In Figure 6.8, there are aggregated synchronous generators (G2) and aggregated
DFIG wind turbines (G3), connecting buses B2 and B3, respectively. Bus B1 is an infinite
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bus and B4 is a load bus. The system is assumed to be lossless for which the line resistance
can be neglected. X4 is a line reactance (tie line) connecting between bus B1 and B4. X4
and X34 are line reactances including transformer’s reactance. The electric load is a
dynamic load which has ¢ at about 0.05 [9]. The values of system parameters and

constants are listed in Table 6.3.

SG B4 o
B2 x4 %
X14 Q
DFIG WT B3 X34 Q
@%C)—HIF \
RN

Swing or

infinite bus

Load

Figure 6.8 Test power system including wind power and load for DFIG WT

Table 6.3 System Parameters and Constants for TMIB

M=17.0sec wp=3142rad/sec | Lm=3.95279 p.u.
L,=0.09955 p.u. | L,=0.09241 p.u. To=2.343 pu.
X=4.0p.u. X’'=0.1p.u. Xt=0.5pu.
kq=0.8868 ky=17.372 k,=0.274P,, + 0.346
ky= 1.0 kop = 0.56 ¢a = -0.022 Py, +0.006
E1=Ve=1.05pu. | ke = 0.97396 k2 = 1.90308
V.= 1.0 (p.u.) Vo=1.0 (p.u.) fon = 1.017
XI14=05pu. X24=02pu. X34=02pu.

2) The stochastic differential equations (SDE)
From Section 4.3.2, when the load is constant, the matrix form of stochastic

differential equations will become the dynamic perturbed system in a matrix form as

follows:
[ ’ 1 @y (yi _yo) | g
IR @y (yw_yo)"'(pd/‘(v’x) 0 dw
5 .Xk = (Dk (V,X) + 0 ? Eq6-11
7 o (V.x)= B, P a,
_yw_ i ¢w (V, X) i MW |
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P,=V. f l.jsm(xl.—xj)
J=1,j#i
—_— —_— n —_——
P, =V z ijjsm(x —xj)
J=Lj=w
Py=V, > VB, Sm(xk =X =V By

[ is a parameter to rescale the intensity of noise. For example, f; = Di/M,; .

3) The well-defined energy function

Eq.6-12

13

From Sections 4.4.3 and 4.8.2, the well-defined energy function of the power

system and its derivative are:

U:%a)ojuzyz2 -F, (xz _x;)_éﬂ (x3 —x§)+f_;4(x4—xj)

+%a)0M3(y32 _ygz)_%M3thS3(sin(ka (x —x4)+ca)y3 —sin(ka(x§ —xj)+ca)y§)

1 S
+§M3(00 kdkpkop ((y3 +1)3 _(y3 +1)3)

1 74 ' rr .
_5M3a)0 ky |:(kc2V53 Cos(ka (x, _x4)+ca)+kc1V3)y32 _(kc2sz Cos(ka (x; _xi)+ca>+kcll/3

_i M kykok,, (Boyy (3-2v,) = Boyi (3-273))
B o) <o)
-V, 24(cos(x2—x4)—COS(x§—xi))

~V.V,B,, (cos(x3 —x4)—cos(x§ —xj))

Eq.6-14

)7
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X m—p n
U=pU=-> oDy} - Y ¢ =-0,D,y; —c,X; Eq.6-15
i=1

k=m+1
4) The derivative of a stochastic well-defined energy function

From Section 4.8.2, the derivative of a stochastic well-defined energy function is

2
dx d(x, —x
Lu(x,t)z—ck(—d;j a)ODzyzzfl(xS,x4,y3)[—( ’ 4)J

d Eq.6-16
dy, 2
+f2(x3,x4,y3)?+f3(x3,x4,y3)(Pm3053) <0
1 = .
fl(x3>x4’y3):_EMfookdkakczVs} Sln(ka (x3_x4)+ca)J732
+%M3a)0 kq kPkaZbM Cos(x3 —x4)(3y3 _2y32) Eq.6-17
+%M3kakbl7;3 Cos(ka (x3—x4)+ca)y3
1 )
le(x3,x4,y3) = ZM3ths3 Sln(ka (x3 _x4)+ca) Eq.6-18
+ZM3w° kykpk, V, V, by, sin(x; —x,)
1+ 2k kpk, (v3 +1)+k kpk, V, V, by, sin(x; — x
Fi(oran) = @, akp p( 3 ) aKkpk, ViV, byysin (x; —x, ) Eq.6-19

M, —k, (kczlz3 cos(k, (x, —x4)+ca)+kcll73)

It can be noticed that, the first two terms on the right of Lu in Eq.6-16 are the same
with the derivative of the energy of the deterministic system (pU). Therefore, the Lu is the
derivative of the stochastic energy function which can influence the system stability the
same as the derivative of energy in a deterministic system. However, it can be definitely
proven that the pU is less than or equal to zero, but not for Lu.

Since Lu in Eq.6-16 is quite complicate, it is assumed that the system is started
from the equilibrium state in which the derivative terms are small enough and can be
neglected. Therefore, Lu will be approximated by focus only on the non-derivative terms

and becomes
Lu' =~ f,(x,%0, 0, ) (Psts)’ Eq.6-20

By experiment, function f; is always positive under normal operating conditions.
Comparing with DSE in the previous section, Lu’ is always positive and influences Eq.6-16

to increase Lu while DSE can probably be positive or negative.
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5) The stochastic stability index (SS7)

By dividing the critical energy (U.) with the Lu’ in Eq.6-20, the time that the energy
takes to reach the critical value can be perceived. This conceptual time can be scaled using
an appropriate parameter. For example, when Lu’ is scaled by the power load term y =
(ci/Pu)’, the penetration ratio of wind power (wind power over power load) can be
obtained as a result. This conceptual time is then called the Stochastic Stability Index (SSI)
and can be computed as follows:

SSI= U,.[(yLu') Eq.6-21

This SSI is improved from the previous work in the previous section and has the
same concept with the mean first passage time (MFPT), which is the performance index to
quantify the average time that a state-space trajectory takes to change from a given
operating point to the boundary of its domain of attraction under the influence of small

perturbations.

Remark:
The derivative of the energy of the stochastic system can be conceptually compared with
the deterministic system as follows:

U
Stochastic Deterministic
energy energy T :
/ deterministic stochastic
Uc ?
/ ! d U U ¢ ' U ¢
Critical : 2= Lu' ~ Ze
ritica : dt P Vs. p
energy ; 4 s
i time
ts tc

(Stochastic ~ (Deterministic
critical time)  critical time)

The ¢, is the critical time when the energy of the deterministic system increases to reach the
critical value (U.) while the # is for the stochastic system (SS7 = ;).

6) The testing conditions
The testing conditions are represented in Table 6.4. From this table, the steady state
value of speed and angle are represented according to six conditions. These steady state
values are from the simulation using Eqs.6-11 — 6-13. The power exchange (Pgxchange) 1S

calculated from the power load (Pjoaq) minus the generation power (Pp3 + Pma).
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Table 6.4 Testing conditions for DFIG wind turbine with white noise model

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
*) ) (&) (0) © (@)
Proad 4 4 4 4 4 4
P 1.0 1.0 1.0 0.4 0.6 0.8
P 3.0 4.0 2.0 3.6 34 32
Prychange 0.0 -1.0 1.0 0.0 0.0 0.0
V38 0.1129 0.1129 0.1129 -0.037 0.0174 0.0670
X)8 0.6435 1.7754 -0.4365 0.8038 0.7478 0.6945
X3S 0.2897 1.1385 -0.5584 0.1143 0.1723 0.2306
X4 0.0000 0.8480 -0.8481 0.0000 0.0000 0.0000
7) The results

The results of critical energy computation from the simulation corresponding 6 test
conditions are represented in Table 6.5. The phase portraits of state variables (speed and
angle) are represented in Figure 6.9. The results of Lu’ and SS/ computation corresponding

to 6 testing conditions are represented in Figures 6.10 and 6.11, respectively.

Table 6.5 Critical energy of the test system with DFIG wind turbine and white noise model

Unstable condition 1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
x={r-x,x.x.05,01) | 244 |275%10°| 056 1.42 1.74 2.08
X = {x;,yz —X3,X4, V5, )3 } 4.95 951.06 | 1503.56 5.44 8.94 7.06
X = {xz’ X3, T =Xy, V5, y§} 803.46 1733.92 694.02 158.20 99.84 434.65

Unstable condition 2

x:{—ﬁ—xg,xg,xj,yg,yg} 21.29 25.13 13.13 24.04 23.10 22.18
x={x§,—7z—x§,xj,y§,y§} 26.04 933.67 1519.41 0.13 14.71 21.56
X = {x;‘,x;‘,—;z—xj,y;',y;} 764.83 1703.79 733.01 175.14 72.72 400.41

Unstable condition 3
x:{ﬂ—xg,ﬂ—xg,ﬂ—xj} 1343.35 | 3811.57 | 24557.40 20.77 403.82 859.82

Unstable condition 4

—T =X, —T7T— X,
X= : : 1271.75 | 3694.66 | 23482.30 36.93 337.80 789.39
,—TT — X,
Critical Energy (Minimum) 2.44 2.75%10°° 0.56 0.13 1.74 2.08

From the results in Table 6.5, the critical energy has both positive and negative
values. For the Case 1-3, the critical energy decreases when the magnitude of the power

exchange increases, especially when export power to infinite bus. For the Case 4-6, the
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critical energy increase when wind power increases. Therefore, it can be found that under

steady state conditions, wind power can improve the stability of the power system.

0.5 T T T T T 0.5
04t

0.3}
02}
01f

01}
021

2 10 1 2 3 2 4 0 1 2 3
Figure 6.9 Phase portrait of speed (x-axis)-angle (y-axis) of G3 of Case 2 (left) and Case 3

(right) when noise intensity is 0.4 and 0.8, respectively

From Figure 6.10, the Lu’ increases gradually with increasing noise intensity (a3)
and wind power penetration (WPP). However, Lu’ cannot distinguish between Cases 1, 2
and 3 which have the same WPP but different exchanged power.

From Figure 6.11, the larger value of SS7 implies that the system is possibly more
stable. It can be seen from this figure that, SS7 decreases with increasing of noise intensity
(a3). For the Cases 4 — 6, when WPP increase, the critical energy increase while the SS/
decrease. For the deterministic method, the power system is more stable when wind power
increase [45] but for this stochastic method, the power system becomes less stable at the
same condition. However, for the Cases 1 — 3, the results of SS7 are corresponded to the
critical energy and exit time in Table 6.6. If the critical regulation time response (#r) of the
power system is 10 minutes (600 seconds), the critical noise intensities (N/c) in which SS/
= tr are 0.88, 0.67, 0.54, and 0.26 for the Cases 4, 5, 6, and 1, respectively. When noise
intensity is greater than NI , SSI will less than 7z and the power system is possibly unstable

before the regulation system can take action.



367

0.016
0.014 -+ —e—casel

0.012 -+ =—=—case2

0.01 + —=+—case3

3 0.008 - == case4 _ P
0.006 - . -cases —
0.004 =

= = caseb

0.002

0 01 02 03 04 05 06 07 08 09 1

Noise intensity
Figure 6.10 The results of LZu’ computation with increasing noise intensity

compared among 6 testing conditions for DFIG wind turbine with white noise model
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Figure 6.11 The relation of SS7 (seconds) and noise intensity compared among 6 testing

conditions for DFIG wind turbines with white noise model

8) Verification of the results
The results of Section (7) are verified by comparing with the averaged exit time
from 20 trials of simulation. The exit times of six different conditions are shown in Table

6.6.
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Variable Casel Case2 Case3 Cased Case5 Case6
*) ) (6] (0) © ()
P oad 4 4 4 4 4 4
P 1.0 1.0 1.0 0.4 0.6 0.8
P 3.0 4.0 2.0 3.6 34 3.2
PEXChanie 0.0 -1.0 1.0 0.0 0.0 0.0
ET, N1 0.4 >1000 63 >1000 >1000 >1000 >1000
ET, NI 0.6 >1000 47 321 >1000 >1000 >1000
ET, NI 0.8 >1000 46 74 >1000 >1000 >1000
SSI, NI 0.4 1097 0 252 6661 2926 1670
SSI, NI 0.6 488 0 112 2960 1300 742
SSI, NI 0.8 274 0 63 1665 731 418

* ET = Exit Time (average value of 20 trials of simulation), NI = Noise Intensity

From Case 2 and Case 3 in Table 6.6, when there is exchanged power, the exit time
from the simulation decreases with increasing noise intensity. The zero values of SS/ in
Case 2 represent the close-to instability condition according to the near-zero critical
energy. Furthermore, the exit time of Case 2 is less than that of Case 3, which corresponds
to the value of critical energy and the SSI. However, for the other cases, even the
simulation time is very much longer than 1000 seconds and the noise intensity is 1.0, the
system still be stable and need more experiments to verify. For Case 4 (base case), 5, 6 and
1, when wind power increase 50%, 100%, and 150%, the SSI decrease about 56%, 75%,
and 84%, respectively, comparing with base case.

9) Conclusion

This section proposes the stochastic stability analysis method, which is suitable for
the study of the effects of DFIG wind turbines on power system stability, and can capture
the effects of exchanged power with the infinite bus.

The wind power is modeled using aggregated DFIG wind turbines, which have the
largest contribution in the market at present. The stochastic stability index (SS/) can
quantitatively reveal the effects of increasing wind power and its noise intensity on power
system stability. When the stochastic wind power increases, SS/ will decrease and the
system is less stable, especially when there is exchanged power to or from an infinite bus.

The values of SSI correspond to the exit times from the simulation. This stochastic
stability analysis method can evaluate the nonlinear and stochastic power system stability

with less time and computational effort.
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6.1.3 The Stochastic Stability Index (SS7) for Gaussian distribution colored
noise
In the previous section, the Gaussian distribution white noise model is an ideal
noise model used in the stochastic stability analysis. However, this section will focus on
the Gaussian distribution of the colored noise model, which is more practical and can be
adjusted depending on bandwidth. The larger bandwidth results in being closer to the effect
of white noise. The following conditions are used to formulate SS7 for the study.
1) The power test system
The power test system in this section is the same as Section 6.1.2.
2) The stochastic differential equations (SDE)
The stochastic differential equations (SDE) of the power system will become the

dynamic perturbed system in a matrix form as follows:

x| a’o(yi_yo) | 0
X, a)O(y\¢'_y0)+¢df (V’X) 0
d Xi @, (Vax)"‘?/kuk 0 dw
o T e(vVvx)=By [t O - Eq.6-22
yw ¢w (V’ X)+7/k7/WkUW O
Uw —(//WUW ywk‘lyw
_Uk n i _l//kuk ] L V/k a
Py (V,X) =@, kdIZq k., sin(ka (xw —xref)+ca)
1 ,— —
o, (V,x)= _C_(Bk +Pek)_a)0y0
k
1 = = Eq.6-23
o,(V.x) —E(Pm,- -P,)
1 .- _
(Dw(Vi X) _E(me - em)

where f; = Di/M;. Pm = aPnsV, Ly, represents colored noise applying to wind power, a,, and
y;, are noise intensity (the standard deviation divided by mean value) and bandwidth of
low frequency component of wind power. Py (1- axvk) is stochastic power load, v
represents colored noise applying to power load, a; and y; are noise intensity and

bandwidth of power load.
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7y ==vu(kaPcos(k, (3, =, )+ ¢, )+ k7, )+ ko (K (2, +1) =K, B, (1-3,)
}_)ei = I7l]—l,j;ti _j _ij Sm(xi _xj)
B,=7, 3 PE,sin(x,—x,)
j=1,j#w
P, =V, z _j_kjsul(xk xj)]zk Ve _]_kJSIH(xk_x])
j=1,j#k Jj=1,j#k
k, =Zm/ erE') and =()_(W—)?‘:)/ ]_;))_(;E’)

Bq.6-24

Where v,, is scaling factor of wind power noise which is formulated using the method by

C.O. Nwankpa and S.M. Shahidehpour (1991) as follows:

P a I
7\4/2#: 2ﬁglw€w Eq6_25

w

\JE,, =Inf—"—== £, Lo, Eq.6-26
l {M \I } and Zﬂglw q

Where &, is the noise scaling factor of wind power bus which has lowest value and &, is
the noise scaling factor of wind power bus w. f is a parameter to rescale the intensity of

noise for mathematical convenience. The vy is scaling factor of power load as follows:

B.a
v =——=\2p¢g¢, Eq.6-27

G
Jeu =inf Fu, a, >0 Je = _ho Eq.6-28
28 and ¢\ 2Bz,

Where ¢ is the noise scaling factor of load bus which has lowest value and & is the noise

scaling factor of load bus k. f is a parameter to rescale the intensity of noise for
mathematical convenience.

Furthermore, it is assumed that

&_ Enéyy — Evmaw Ck :ﬁ’ M Eq6-29

7wk = - Y wm
Ve Newe, B M, oM,
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3) The well-defined energy function
From Sections 4.4.3 and 4.8.2, the well-defined energy function of the power

system and its derivative are:
U= ; oM, y; +;woM (y32 _ygz)_ﬁmz (xz _x;)_prn} (x3 _x;)+1314 (x4 _xi)

_%M3kas3 (sin(ka (x3 —x4)+ca)+sin(ka (x3s —x4)+ca ))(y3 —y;‘)

—%Mﬂ’ok k,V. (cos(k (x, x4)+ca)y3+cos(ka(x§—xj)+ca)y§)(y3—y§)

~V,V,B, (cos(x1 x)—cos(xf—xj))

. )
—21@dwq%—& ~cos(x; ~x; )
P, (5% ) - P, (x, - x)%m (02 =02)+ LBy, (02 -0)
Eq.6-30
S D} -t - B} - P Eq.6-31

w k

4) The derivative of stochastic well-defined energy function
From Section 4.8.2 and operating points are not close to the steady state values, the

derivative of stochastic well-defined energy function is:

2 2 2 2
D, [ dx dx 1 = do 1 = do
L -2 =2| —c | 2| ——P il ——P —
ue)= {dt) ck[ dt} 2 ’"3%[ dr j v, ”‘a{ dr j
d(x - x,) b, 5 Ao 5 s
—f,(x3,x4,y3) T +f2(x3,x4,y3)M3E—Pm3a3(x3—x3)?—131k0(4(x4—x4)—

Eq.6-32
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1 .
ﬁ(x3,x4,y3)=5M3ka;3ka COS(ka (xs _x4)+ca)(y3 _y;)

1 o .

+5M3a)0 kg kpk, V3V By, COS(X3 _x4)(y3 +1) 1 (y3 _yg) Eq.6-33
1 — . s

_EMﬂ)o kyk.V sk, Sm(ka (x3 Xy ) +c, )J’3 (y3 -0 )

fz(x3,x4,y3):%kbl/s3(sin(ka (x3—x4)+ca)—sin(ka (x§‘—xj)+ca))
sin(x3 —x4)(2y3 -, +1) ~ sin(xg —xj)
(s +1)2 (y; +1)

1 _ (cos(k, (x,—x,)+¢,)
+§a)0kdkc2 53

Eq.6-34

N

—cos(ka (x§ —xj)+cu) b

5) The stochastic stability index (SS7) formulation
By dividing the critical energy (U,) with the LU in Eq.6-32, the time that the system
takes to reach the critical energy can be perceived. This time can be scaled using an
appropriate parameter. This conceptual exit time is then called the Stochastic Stability
Index (SST) and can be computed as follows:

SSI= U,/(Lu) Eq.6-35

This SS7 is improved from the work in the previous section and has the same
concept with the mean first passage time (MFPT), which is the performance index to
quantify the average time a state-space trajectory takes to change from a given operating

point to the boundary of its domain of attraction under the influence of small perturbations.

6) The testing conditions
The testing conditions are the same as in Section 6.1.2. From Table 6.7, the steady
state value of speed and angle are represented according to six conditions. These steady
state values are from the simulation using Eqs. 6-22 — 6-24. The power exchange (Pgxchange)
is calculated from the power load (Piq) minus the generation power (Pm3 + Pm2). The
power load is assumed to be constant. Therefore, the terms which have stochastic load are
zero. The bandwidth is assumed to be fixed at 1.0. However, the variation of bandwidth

will also be analyzed.
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Table 6.7 Testing conditions for DFIG wind turbine with colored noise model

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
() () () © (©) @)
Proad 4 4 4 4 4 4
P 1.0 1.0 1.0 0.4 0.6 0.8
P 3.0 4.0 2.0 3.6 3.4 32
Prxchange 0.0 -1.0 1.0 0.0 0.0 0.0
X8 0.64284 1.56986 -0.23281 0.79943 0.74450 0.69287
X3S 0.28896 0.93253 -0.35487 0.10764 0.16780 0.22856
X4 -0.00053 0.64301 -0.64434 -0.00469 -0.00302 -0.00138
Vo8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
V38 0.19987 0.19987 0.19988 -0.10627 0.02582 0.12358
7) The results

7.1) The results of critical energy computation
The critical energy computation corresponding to the 6 test conditions are

represented in Tables 6.8 and 6.9 for the case when X4 is 0.6 and 0.5, respectively.

Table 6.8 Critical energy of the test system with DFIG wind turbine and colored noise

model when X4 = 0.6

Unstable condition 1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
X= {ﬂ—xj,x§,xj,y§,y§} 2.436 0.000 0.575 1.417 1.735 2.075
X = {xz",n—xg S 2 T } 7.500 3.725 4.031 9.266 8.666 8.078
X = {xi,xj,ﬂ—xj,yg,yg} 33.962 15.085 36.047 33.271 33.576 33.805

Unstable condition 2

x={—ﬂ—x§,x§,xi,y§,y§} 21.286 25.133 13.141 24.037 23.098 22.182
Xz{x‘;,—ﬂ—xg,xi,y;,y;} 13.783 10.008 10.314 11.779 12.436 13.104
x:{xj,xg,—ﬂ—xj,yg,yi} 8.829 -10.048 10.914 8.138 8.444 8.673

Unstable condition 3
X= {ﬁ—xﬁ,ﬁ—xg,ﬂ—xj} 179.851 | 1469.099 | 7002.342 | 71.448 | 107.288 | 143.577

Unstable condition 4

—TT =Xy, — 7T — X
X= : ’ 146.416 | 1399.267 | 7132.752 | 49.226 79.703 112.291
,—TT—X,
Critical Energy (Minimum) 2.436 0.000 0.575 1417 1.735 2.075
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Table 6.9 Critical energy of the test system with DFIG wind turbine and colored noise

model when X;4=0.5

Unstable condition 1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
X= {72' — x‘;,x‘;,xj ,y‘;, y;} 2.436 0.077 1.874 1.417 1.735 2.075
X= {x;,ﬁ—xg,xj,yg,yg} 7.500 4.733 5.236 9.266 8.666 8.078
X = {xg,xg,ﬂ—xj,yg,yg} 33.962 18.548 37.094 33.271 33.576 33.805

Unstable condition 2

X= {—ﬂ—xi,x‘;,xj,y;,y;} 21.286 25.209 14.441 24.037 23.098 22.182
X:{xj,—ﬂ—xg,xj,yg,yi} 13.783 11.016 11.520 11.779 12.436 13.104
X = {xg,xg,—ﬂ—xj,yg,yg} 8.829 -6.585 11.961 8.138 8.444 8.673

Unstable condition 3
X:{ﬂ—xg,ﬂ—xg,ﬂ—xi} 178.492 | 1408.681 | 7172.596 | 71.172 | 106.741 | 142.669

Unstable condition 4

—TT—X5,— T — X,
X= : ’ 145.302 | 1340.025 | 7262.738 | 49.041 79.296 | 111.578
,—TT — X,
Critical Energy (Minimum) 2.436 0.077 1.874 1.417 1.735 2.075

From Tables 6.8 and 6.9, the critical energy increases with increasing wind power.
Furthermore, when X4 decreases (or shorter transmission line), almost the conditions are
unchanged except in Case 2 and Case 3 in which the critical energy increases. The critical
energy of Case 2 is less than Case 3, therefore, the power when is transferred to infinite bus
has more influence to power system stability than when receive from infinite bus.

7.2) The results of SS7 and Lu computation

When assuming all the derivative terms in Lu are very small and be negligible, the
Lu becomes Lu’ and can be computed using non-derivative terms (such as the last two
terms in Eq.6-32) and be represented in Figures 6.12 and 6.13, respectively.

In Figure 6.12, Lu’ increase gradually with increasing of wind power and its noise
intensity. However, Lu’ of the Casel, Case2, and Case3 are not different according to the
same values of wind power.

In Figure 6.13, for Case 1 — Case 3, the SSI of Case 2 is the lowest, followed by
Case 3 and Case 1, respectively which are agree with the critical energy in Tables 6.8 and
6.9. For the Case 4 — Case 6, the SSI decreases gradually with increasing of wind power
and its noise intensity. These results conform to the results in Section 6.1.2 (when applying
white noise models), but with the different values of SSI. For this section (colored noise

with bandwidth 1.0), the critical noise intensities (N/c) in which SSI = tr (regulation time
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response is 10 minutes or 600 seconds) are >1.0, >1.0, 0.87, and 0.74 for the Case 4, 5, 6,

and 1, respectively.
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Figure 6.12 The results of Lu’ computation with increasing noise intensity

under 6 testing conditions for DFIG wind turbine with colored noise model
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Figure 6.13 The log-scale SS/ (y-axis, seconds) with increasing of noise intensity (x-axis)

under 6 testing conditions for DFIG wind turbine with colored noise model
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7.3) Investigation of state variables, energy, and Lu from the simulation

For Case 2 with noise intensity 0.3, bandwidth 10, and Trial no. 1, the 600 seconds
of simulation reveals that the exit time is about 318 seconds. The mechanical wind power
is represented in Figure 6.14 . The phase angle of synchronous generator (G2), DFIG wind
turbine (G3), and load are represented in Figure 6.15. The angular speed of synchronous
generator (G2) and DFIG wind turbine are represented in Figure 6.16.

In Figure 6.14, it can be seen that the wind power is decreases a lot at about 315 -
316 seconds. During this time, all phase angles are decrease vastly while angular speed of
G2 is increase gradually as be represented in Figure 6.15. Consequently in Figure 6.16, the
angular speed of G2 increases continuously until beyond the limit value at 0.02 p.u.

(unstable).
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Figure 6.14 The variation of mechanical wind power during 600 seconds of simulation
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Figure 6.15 The variation of phase angle of G2 (PA Syn.Gen.), G3 (PA DFIG), and load
(PA Load) during 600 seconds of simulation (left) and 311 — 323 seconds (right).
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Figure 6.16 The variation of angular speed of G2 (Speed Syn.Gen.) and G3 (Speed DFIG)
during 307 — 319 seconds (left) and 306 — 316 seconds (right).

During 0 — 318 seconds, the phase portrait of phase angle and angular speed of G2
and G3 are represented in Figure 6.17. From this figure, the trajectory (operating point)
seems to out of bound and back again during 314 — 317 seconds. After that, the trajectory is

completely out of bound.
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Figure 6.17 The phase portrait of phase angle and angular speed of G2 (left) and G3 (right)
during 0 — 318 seconds

For the energy of the system in Figure 6.18, the energy (ET = U from Eq. 6-30)
increases continuously corresponding to the energy component no.l (or E(1) = U(1) in
Eq.6-30). Before 318 seconds, the energy component no. 9 ( E(9) = U(9) ) and no.7 ( E(7)
= U(7) ) are most influenced, respectively. After that, the E(1) has more influence and

increases continuously due to an increasing speed of synchronous generator G2.
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Figure 6.18 The energy of the power system during 600 seconds of simulation (left) and
302 — 320 seconds (right).

For the derivative of stochastic energy (LUT) in Figure 6.19, the most influential
LU components are LU(5) and LU(6) in Eq.6-32, respectively. Comparing between
Figures 6.19 and 6.15, the variation of LU is corresponded to the variation of phase angle
of wind turbine (PA DFIG). It can be seen that, LU(5) in Eq.6-32 consist of the derivative
of phase angle PA DFIG and phase angle of load. It can be noticed that, LU(9) is constant
and always positive while the other components fluctuates alternatively.

The derivative of deterministic energy (pU) in Figure 6.20 is always negative and
decreases continuously at 138 seconds which causes the trend of LUT to decrease.
It can be noticed that even though the pU is negative, the power system can be unstable due

to the variation of wind power.
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Figure 6.19 The derivative of stochastic energy of the power system (LU) during 600
seconds of simulation (left) and 308 — 323 seconds (right).
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Figure 6.20 The derivative of deterministic energy of the power system (pU) during 600
seconds of simulation (left) and 310 — 329 seconds (right).

7.4) An investigation of variation and distribution of Lu

Theoretically, the positive value of Lu means the system will become unstable
within a finite time. From (7.3), the component Lu (9) is investigated due to it always being
positive and constant throughout the simulation period. Moreover, the Lu (9) consists of the
deterministic variables which are more convenient for the power system stability analysis.

To investigate Lu (9), the three cases of testing conditions are examined in which
the Lu (9) has the same value at 25.0 but Lu (5), Lu (6), and total Lu is different depending
up on the noise intensity (N/) and bandwidth (BW) of wind power. The Lu (9) is

represented as follows:
Lu (9) = 0.5 X Py x NI x (BW)* Eq.6-36

The simulation is done for 600 seconds with different conditions. From the results
of simulation, the mean and standard deviation of Lu are determined and compare with the
computation of Lu (9) using Eq.6-36. The testing conditions and the results are represented
in Table 6.10 . From this table, for the cases C1 — C3, the mean Lu corresponds to the Lu
(9) while the standard deviation of Lu corresponds to noise intensity. For Casel — Case6,
the mean Lu still corresponds to the Lu (9).

However, it was found that the standard deviation of Lu (Std Lu) does not
correspond to the noise intensity or even Lu (9). Therefore, it can be concluded that the

standard deviation of Lu is not clearly related to the variation of wind power.
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Table 6.10 The testing conditions and results of simulation to investigate Lu

Wind Power Noise Bandwidth
Case Mean Lu StdevLu | Lu(9)
(Pmw) Intensity(NI) (BW)

C1 1.0 0.5 10 22.76 17.47 25

C2 1.0 0.25 Sqrt(200) 24.46 7.34 25

C3 1.0 0.125 Sqrt(400) 24.84 3.65 25
Casel 1.0 (Exc. P.=0) 0.2 10 9.69 5.83 10
Case2 1.0 (Exc. P.=1) 0.2 10 9.69 5.76 10
Case3 | 1.0 (Exc.P.=-1) 0.2 10 9.69 5.78 10
Case4 | 0.4 (Exc.P.=0) 0.2 10 3.94 2.35 4
Case5 | 0.6 (Exc.P.=0) 0.2 10 5.92 1.28 6
Case6 | 0.8 (Exc.P.=0) 0.2 10 7.84 1.77 8

Exc. P. = Exchange Power between load bus and infinite bus
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500 [ ;
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% — 9_ / [ 1 —+—Freq. dist. Case5
= e
g ," \“\ E 2 / ;// \ \ ====Freq. dist. Case6
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Figure 6.21 Data distribution of Lu for the case C1 — C3 (left) and Case 1 — Case 6 (right)

Data distribution of Lu for the cases C1 — C3 and Casel — Case6 are compared as
represented in Figure 6.21 . The variation and data distribution of Lu for the case Cl
(upper), C2 (middle), and C3 (lower) are also represented in Figure 6.22 . From these
figures, the mean values of Lu are always positive which imply that the system will
become unstable within finite time.

In conclusion, the dominant components of Lu are component numbers 5, 6, and 9.
Since the state variables of the system are varied randomly, the Lu comparing with the
deviation of state variable is also random. The mean of total Lu is close to the value of Lu
component number 9. However, the standard deviation of Lu is not clearly related to the
standard deviation of mechanical wind power. It is found that, Lu cannot capture the
different of Cases 1-3 when the exchange power between load bus and infinite bus is

changed.
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Figure 6.22 The variation (left) and data distribution (right) of Lu for the cases C1 (upper),

C2 (middle), and C3 (lower)

8) Verification of the results

The results of section (7) are verified by comparing with the mean exit time from

20 trials of simulation. The exit time of 6 different conditions are shown in Table 6.11 . It

can be found from Table 6.11 that from Case 2 and Case 3, the exit time decreases with

increasing noise intensity. Furthermore, exit time of Case 2 is less than of Case 3 which is

correspond to the value of critical energy and the SS7 in Figure 6.13. However, for the other

cases, the exit time is longer than 3600 seconds and need more experiments to verify. For
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Cases 4 (base case), 5, 6 and 1 in this section, when wind power increase 50%, 100%, and
150%, the SSI decrease about 64%, 82%, and 89%, respectively, comparing with base case.
The SSIs in this section are larger than the values in Section 6.1.2, but however, the

percentage of decrease in SS/ is larger.

Table 6.11 The exit time (seconds) of six different conditions for DFIG WT with colored

noise
Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
*) () () 0 ©) ©
P oad 4 4 4 4 4 4
P 1.0 1.0 1.0 04 0.6 0.8
P 3.0 4.0 2.0 3.6 34 3.2
Prxchange 0.0 -1.0 1.0 0.0 0.0 0.0
Crz%cf)l E 2.436 0.077 1.874 1.417 1.735 2.075
ET*, NI =0.3 >3600 227.3 943.8 >3600 >3600 >3600
ET,NI=04 >3600 65.3 86.9 >3600 >3600 >3600
ET,NI=0.5 >3600 29.1 73.6 >3600 >3600 >3600
SSI, NI=0.3 8842 279.5 6802 80360 29150 14710
SSI, NI=0.4 3730 117.9 2870 33900 12300 6206
SSI, NI=0.5 1910 60.4 1469 17360 6297 3177

* ET = Exit Time (average value of 20 trials of simulation), NI = Noise Intensity

6.2 The Study of Effects of Wind Power on the Voltage Stability using New Stochastic
Stability Method

The voltage stability is the ability of the power system to control voltage when
perturbed by any disturbances. For the dynamic power system, the deviation of voltage is
related to the variation of reactive power depending on the characteristic and type of
electric load as be described in Section 4.1.4. This section will apply the dynamic load
model including voltage deviation equation for the power system incorporating DFIG wind
turbine. The colored noise of wind power and load are also modeled to represent the effects
with more applicable than white noise model.

6.2.1 The Stochastic Stability Index ($57) applying for voltage stability analysis

1) The power test system
The power test system in this section is the same as Section 6.1.2.
2) The stochastic differential equations (SDE)
From Section 4.3.3, the stochastic differential equations of the power system in

matrix form is
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_xi_ a)O(yi_yO) 0 ]
X, @, (yw _y0)+(pdf (V’X) 0
X, Dok (Va X) TV Vi 0
d Vi ¢i(V,X)_ﬂiyi 8 dw
" Yo I=| 0, (VLX) 47,700 | T 7 - Eq.6-37
v, 0o |d
k (ka (V’ X) + ququ
UW _W 1)) 7wpkl//w
Upk kaupk l//pk
| Yk | VO | Yok k|
Py (V,X) =w, kd_rq —k,V., sin(ka (xw —xrgf.)—lrca)
1 .- —
Pk (Vax) = _C_(sz + Pek)_a)oyo
3
1 - —
) =—(P. —P. Eq.6-38
o, (V.x) m (sz Pe,) q
1 -  —
O, (V’ X) - E(Rnw _Pew )
1 _
P (V,X) = PN (_Qlk +Qek)
"k
I7rq = _yw(kCZ_sw COS(ka (xw xref)+ca)+kcll7w)+kP (kop (y +1) _k Few (1 _yw))
Fei:Vz _j_ijsnl('xl_xj)
J=1,j#i
B,=7, S 7B,sin(x,—x,)
Jj=lLj#w
P, =V, Z _jf_?,gsin(xk—xj)lzkzlzc _J.Ek/sin(xk—xj)
J=Lj#k j=1,j#k
k=L, /(L,E') and k =(X,-X,)/(LX.E)

Eq.6-39

Where Qi (1- aqcuqk) is the stochastic reactive power load, vg represents the colored noise
applying to O, a4 and y; are noise intensity and bandwidth of reactive power load, yqx 1s

scaling factor of power load which is formulated using the method by C.O. Nwankpa and
S.M. Shahidehpour (1991) as follows:

0, a
qu =—//;k qu = ’2ﬂglquqk Eq.6'40
k" k
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. On o«

NERES o, >0 e, =—2 Eq.6-41

o {Mk 28] and “ AV 2oy
Furthermore, it is assumed that:
£ & P _
Vo = L= Nr P T pr et Eq.6-42
7/17]‘ \/glpkgpk Ekapk MW apka
Je ¢ 0.a.c _ a,c

Yok :Q: lgk“qk sz qk“k _Ql,k gk "k Eq.6-43

Y ok Epr€ i Bkapk/lka apkﬂ“ka

3) The well-defined energy function
From Sections 4.4.4 and 4.8.3, the well-defined energy function of the power

system and its derivative are:

U= M3+ oM (3 =35 - Fia (=) =B (1 e ) (- )
B (1-00) (550 500 (1 0, ) (72
—%M3kas3 (sin(ka (3, —x,)+¢, ) +sin(k, (x3 —xj)+ca))(y3 -%)

1 s l 7 s
+§M30)0 kd kPkt)p ((y3 +1)3 _(y3 +1)3)_§M3a)0 kdkcll/; (y32 _y32)

_%Msa’o kako Vs (COS(ka (x3 _‘x4)+ca)y3 +COS(ka (x; —xj)+ca)y§)(y3 _y;)

P, P; o
__M3a)0 kdkPkm [(y3 j—l) + (y36 j_l)J(y3 y3)

N | —

15 s 15 s 1~ K
+E m3% (032 _U3Z)+EPI4ap4 (01274 B Upi)+§ 0% g4 (034 _qu)
~VV,B, (cos()cl —x4)—cos(xf —xj))—l72174£_?24 (cos(x2 -x,) cos(xzY - X ))
g ooy L (o o Eq.6-44
_V3V“B34(cos(x3—x4)—cos(x‘3—x4))—5344(y42_V42) q
dU . = 1 = I = ) 1 = )
dr ~y,D,y; —c 3 = AV —— P 0] __340‘194”;4 ——Q040(q40q24 Eq.6-45

3 y2Z q4

4) The derivative of stochastic well-defined energy function

From Section 4.8.3 and operating points are not close to the steady state values, the

derivative of stochastic well-defined energy function is:
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2 2 2 2
_ — d — d
LU(X,I‘)Z__D2 (dxzj _Ck(dX4] = Pm3a3(d03] - 1 Fa,, Ops | 0., -
w, \ dt de v, de V4 de W4 dr

dlx, —x d dv, dv, ’
_fl(%ﬂ%)@)(%}*‘fz(x3>x4,J’3)%_f3(XS’x4’y3)d_t4+/1k( d;j

U (1,-x1) 2L g (7 )
dr

d B Q04aq4 V,

2 2 2
I 55w I 5 =5 Wos 1 5 =5 Vs
+5a3Pms( 3} +5ap4pl4 - +5“,,4Q14 /11}/4 <0

Eq.6-46

fl(x3’x4sy3):EM3thx3ka COS(ka (x3 _x4)+ca)(y3 _yi)

—)(I@ZB34 cos(x, —x,)) Eq.6-47

fz(x3,x4,y3):%kbl/s3(sin(ka (x3—x4)+ca)—sin(ka (x§‘—xj)+ca))
sin (x, —x4)(2y3 - +1) ~ sin(x‘; —xj)
(75 +1)2 (y; +1)

1 _ (cos(k, (x,—x,)+¢,)
ooy kgk SV S
2 —cos(ka(x‘;—xj)Jrca)

+%a)0 k,kok,V.V,B,, Eq.6-48

3

L2 2) 7,B,,sin (x, - x,) Eq.6-49

(y3+1)

5) The stochastic stability index (SS7)

/s (x3,x4,y3) :%Mﬂ)o kykpk,

By dividing the critical energy (U.) with Lu’ (last three components of Lu) in Eq.6-

46, the time that the energy takes to reach the critical value can be perceived. This
conceptual time is then called the Stochastic Stability Index (SSI):

SSI= U, /(Lu) Eq.6-50

6) The testing conditions
The testing conditions are the same as in Section 6.1.2. From Table 6.12, the steady
state value of speed and angle are represented according to 6 conditions. These steady state

values are from the simulation using Eqs. 6-37 — 6-39. The power exchange (Pgxchange) 1S
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calculated from the power load (Pjo,q) minus the generation power (Py3 + Pn2). The active

power load is assumed constant. The bandwidth is assumed to be fixed at 1.0.

Table 6.12 Testing conditions for voltage stability analysis

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
*) ) (6) (0) ©) ()
Proad 4 4 4 4 4 4
Pus 1.0 1.0 1.0 0.4 0.6 0.8
P 3.0 3.5 2.5 3.6 34 32
Prychange 0.0 -0.5 0.5 0.0 0.0 0.0
X8 0.587117 1.017949 0.239299 0.777726 0.702494 0.64083
X3S 0.280651 0.552676 0.046355 0.117212 0.171878 0.22612
X4 -2.7E-17 0.250562 -0.2265 -9.8E-17 -1.3E-16 -9.2E-17
28 4.01E-14 -2.2E-14 -1.6E-18 4.86E-09 1.39E-10 1.91E-11
V38 0.199901 0.200094 0.199831 -0.03097 0.05714 0.132831
7) The results

7.1) The results of critical energy computation
In Table 6.13, the critical energy increases with increasing wind power. The critical
energy of Case 2 is less than the other cases. However, the critical energy of Case 3 in this
case is larger than Case 1 which is different from the results in previous section.
7.2) The results of SS7 and Lu computation
When assuming that all the derivative terms in Lu are very small and close to zero,
the Lu and SSI can be computed from non-derivative terms and represented in Figures 6.23
- 6.25, respectively. From Figure 6.23, it can be seen that, Lu increase gradually with
increasing of wind power and its noise intensity. However, Lu of the Cases 1, 2, and 3
(with the same wind power) are not different. From Figures 6.24 and 6.25, for the Cases 4
— 6, the SSI decrease gradually with increasing of wind power and its noise intensity. For
the Cases 1 — 3, the SST of Case 2 is lowest, follows by Case 1 and Case 3, respectively.
The SSIs in this section are agreed with the results in previous section but with the different
scale of SSI. For this section, the critical noise intensities (NIc) in which SSI =
(regulation time response is 10 minutes or 600 seconds) are >1.0, >1.0, 0.94, and 0.86 for

the Cases 4, 5, 6, and 1, respectively.
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Table 6.13 Critical energy of the test system for voltage stability analysis

Unstable condition 1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
x:{ﬂ—xg,xg,xj,yj,yg} 3.115219 | 1.259305 | 3.881501 | 1.601228 | 2.128044 | 2.6292
X= {xé, T—=X;,X,, V5, y§} 4.357902 | 3.506202 | 4.175423 | 5.631103 | 5.234121 | 4.803396
X = {xé Xy, T =Xy, Vs, y§} 32.64797 | 24.95465 | 36.27428 | 30.58077 | 31.52095 | 32.18026

Unstable condition 2

X = {—7[ —X5,X3,Xy, V5, y;} 21.96478 | 23.25045 | 19.58946 | 24.2207 | 23.49087 | 22.73539
X = {x§ A A i U y;} 10.64109 | 9.789388 | 10.45861 | 8.144377 | 9.004032 | 9.829945
x={x‘2‘,x§,—7r—Xi,y§,y§} 7.515232 - 11.14154 | 5.448024 | 6.38821 | 7.047518

Unstable condition 3
X = {ﬂ—xg,ﬂ—x‘;,ﬂ'—xj} 22.47461 | 584.002 - 29.21134 | 27.91522 | 25.66381

Unstable condition 4

—TT =Xy, —TT—X;,
X = - - - - - -
,—TT—X,
Critical Energy (Minimum) | 3.115219 | 1.259305 | 3.881501 | 1.601228 | 2.128044 | 2.6292

* the negative
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Figure 6.23 The results of Lu computation with increasing noise intensity
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Figure 6.25 The results of SS/ computation with increasing noise intensity (0.6-1.0)

under 6 testing conditions for voltage stability analysis

7.3) An investigation of state variables, energy, and Lu from simulation
For Case 2, noise intensity 0.8, bandwidth 10, and Trial no. 1, the 200 seconds of
simulation reveals that the exit time is at the 148" seconds. The electrical active and
reactive power are represented in Figure 6.26. The phase angle of synchronous generator
(G2), DFIG wind turbine (G3), and load are represented in Figure 6.27. The angular speed

of synchronous generator (G2) and DFIG wind turbine are represented also in Figure 6.27.
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From Figure 6.26, at 69" second, the active wind power increases while the others

decrease. The reactive powers are increase except the exchanged reactive power.
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Figure 6.26 Active power (y-axis, left) and reactive power (y-axis, right).

For Figure 6.27, the phase angles are fluctuated and instantaneously reduce to zero
within a few seconds. The angular speed of synchronous generator (Speed Syn. Gen.) is
gradually jumped to reach maximum value and then back to zero while the angular speed

of DFIG is suddenly decrease to become zero. However, an increase of Speed Syn. Gen. is

beyond the limit at 0.02 p.u.
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Figure 6.27 Phase angle (y-axis, left) and angular speed (y-axis, right).

Figure 6.28 represents the relative energy with its components and the derivative of
stochastic energy (or Lu). For relative energy, the component numbers 10, 7, and 8 are the
most significant, respectively. For the derivative of stochastic energy, the component
numbers 6, 2, and 13 are most significant, respectively. It can be seen that, during 147" —

148" seconds, Lu is clearly fluctuated and swing back to zero state within a few seconds.
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Figure 6.28 Relative energy (y-axis, left) and derivative of stochastic energy or

Lu (y-axis, right).

For Figure 6.29, during 147" — 148" seconds, the voltage on load bus decrease
gradually and swing back until reach zero within a few seconds. At that time, the reactive
power load increase vastly and then return back to zero finally. This situation is called

Voltage Instability.
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Figure 6.29 Load voltage (p.u.) and reactive power (p.u.) on load bus

8) Verification of the results
The results of section (7) are verified by comparing with the averaged exit time
from 20 trials of simulation. The exit time of six different conditions are shown in Table
6.14 . It can be found from Table 6.14 that from Case 2, the exit time decrease with
increasing of noise intensity. However, for the other cases, the exit time is longer than 3600

seconds and need more experiments to verify. For Cases 4 (base case), 5, 6 and 1 in this



391

section, when wind power increase 50%, 100%, and 150%, the SSI decrease about 61%,
79%, and 84%, respectively, comparing with base case. The SSIs and the percentage of
decreasing of SS7 in this section are less than the values in Section 6.1.3. However, the exit

times are larger than the values in Section 6.1.3 which conflict with the results of SSI.

Table 6.14 The exit times (ET) and SS7 for DFIG wind turbine with colored noise

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
@) @) (@) (0) © )
Proad 4 4 4 4 4 4
P 1.0 1.0 1.0 0.4 0.6 0.8
P 3.0 3.5 2.5 3.6 34 32
Prxchange 0.0 -0.5 0.5 0.0 0.0 0.0
Critical E. (Uc) 3.115219 1.259305 3.881501 1.601228 2.128044 2.6292
ET (s), NI=0.6 >3600 2523.3 >3600 >3600 >3600 >3600
ET (s), NI=0.8 >3600 699.4 >3600 >3600 >3600 >3600
ET (s), NI=1.0 >3600 79.1 >3600 >3600 >3600 >3600
SSI(s), NI =0.6 1761 571.4 1413 11350 4470 2330
SSI (s), NI =0.8 742.9 241 596.3 4789 1886 982.9
SSI(s), NI=1.0 380.4 123.4 305.3 2452 965.5 503.2

ET is Exit Times which are averaged from 20 trials of simulation

6.3 The Study of Effects of Wind Power on Voltage Variation using Probabilistic
Method

The effects of wind power on the power quality, especially voltage, will be
determined using the probabilistic method called Monte Carlo Simulation (MCS). There
are two main topics that are studied: (1) the effects of wind power with stochastic noise on
load voltage, and (2) the effects of different noises on load voltage.

6.3.1 The effects of wind power with colored noise on load voltage

1) Testing conditions

The testing conditions in this section are the same as in Section 6.2 in Table 6.12.
The additional conditions are the three cases of colored noise conditions. First, the noise
intensity (N/) 0.6 and bandwidth (BW) 10. Second, NI 0.3 and BW 10. Third, NI 0.3 and
BW 1.0.

2) The stochastic differential equations (SDE)
The SDEs in this section are the same as Eqgs. 6-37 to 6-39.
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Table 6.15 The statistical results of voltage on load bus

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Load 4 4 4 4 4 4
P 1.0 1.0 1.0 0.4 0.6 0.8
G2 3.0 3.5 2.5 3.6 34 32
balance (Pyg) 0.0 -0.5 0.5 0.0 0.0 0.0
X8 0.587117 1.017949 0.239299 0.777726 0.702494 0.64083
X3S 0.280651 0.552676 0.046355 0.117212 0.171878 0.22612
X4S -2.7E-17 0.250562 -0.2265 -9.8E-17 -1.3E-16 -9.2E-17
128 4.01E-14 -2.2E-14 -1.6E-18 4.86E-09 1.39E-10 1.91E-11
i3s 0.199901 0.200094 0.199831 -0.03097 0.05714 0.132831
Viead AVg 1.028 0.947 1.060 0.977 1.001 1.018
Viead Max 1.032 0.958 1.061 0.977 1.002 1.020
Vieaa Min 1.021 0.927 1.058 0.976 1.000 1.014
Vieaa Stdev 0.0019 0.0058 0.0005 0.0001 0.0004 0.0010
Viead Avg 1.031 0.956 1.061 0.977 1.002 1.019
Vieaa Max 1.032 0.959 1.061 0.977 1.002 1.020
Vieaa Min 1.030 0.952 1.060 0.977 1.002 1.019
Vieaa Stdev 0.0004 0.0012 0.0001 0.0000 0.0001 0.0002
Vioaad Avg 1.031 0.956 1.061 0.977 1.002 1.019
Vieaa Max 1.032 0.959 1.061 0.977 1.002 1.020
Vieaa Min 1.030 0.952 1.060 0.977 1.002 1.019
Vieaa Stdev 0.0004 0.0012 0.0001 0.0000 0.0001 0.0002
_ 1.08 - = NI0.6, BW10 . 0.006 + uNI0.6, BW10
g 1.06 - ENI0.3, BWI0 é" 0.t 4 mNI0.3, BWI0
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Figure 6.30 The average (left) and standard deviation (right) of voltage on load bus

From Table 6.15 and Figure 6.30, for Cases 4 — 6, averaged voltage and its standard

deviation increase with increasing wind power. The average value of voltage seems to

rarely relate to noise intensity and bandwidth of wind power. However, the standard
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deviation of voltage is clearly related to the noise intensity of wind power. The bandwidth
has no effect on both average and standard deviation of voltage.

For Cases 1 — 3, the voltage is dropped when power is transfer to infinite bus while
increase when power transfer from infinite bus. It is found that, the standard deviation act
in the opposite way of the average voltage. The standard deviation of voltage, for this case,
is strongly related to the noise intensity of wind power. The bandwidth of wind power has
no effect on both average and standard deviation of voltage.

6.3.2 The effects of various noise conditions on load voltage

For the 200 trials of simulation, the testing conditions and statistical results of
voltage on load bus are represented in Table 6.16. The wind power and power load are in

Figure 6.31.

Table 6.16 The testing conditions for the effects of various noise conditions on load

voltage
Variable Case T1 | Case T2 | Case T3 | Case T4 | Case TS All 1 All 2
P oad 4 4 4 4 4 4 4
P 1.0 1.0 1.0 1.0 0-1 0-1 1.0
P 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Pexchange 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OLoad 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NLBW P, 0.1,10 - - 0.1,0.1 - 0.1,10 0.1,10
NILBW P oad - 0.025,0.1 - - - 0.025,0.1 0.025,0.1
NLBW O oad - - 0.1,0.1 - - 0.1,0.1 0.1,0.1
Weibull WS - - - - ies ies -
Viead Avg 1.0320 1.0303 1.0319 1.0320 1.0252 1.0228 1.0303
Vieaa Max 1.0322 1.0320 1.0336 1.0322 1.0388 1.0482 1.0332
Vieaa Min 1.0318 1.0151 1.0299 1.0318 1.0156 0.8954 1.0150

Viead Stdev | 71x10° | 2466x10° | 710 x10° | 68 x10°° | 8398x10° | 20415 x10° | 2503 x10°°

The Weibull WS is the case when wind power is not constant, but varied by wind
speed. The wind speed is modeled using the Weibull distribution with scale parameter 8.0
and shape parameter 2.0 . The wind power is computed using this wind speed and the
power curve from manufacturer as represented in section 3.1.1 . The system equations are
the same as previous section for Eqs.6-37 to 6-39.

From Table 6.16 and Figure 6.32, for the cases T2, T3 and T4, the standard
deviation of three cases are not different. However, the variation of power load of the case

T2 is most influence to the voltage on load bus. When Weibull wind speed is applied in
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case T5, the deviation of voltage become much more significant. When all noises are
applied, the voltage is deviated seriously with the value between 0.895 — 1.048 p.u. From

the case T1 and T4, the bandwidth of wind power noise has no significant effect on the

voltage of the load bus.
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Figure 6.31 The data distributions of wind power, active and reactive power loads, and

wind speed for the cases T1 — TS
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Figure 6.32 The data distribution of voltage for the cases T1 — TS5 (left) and All 1 (right)

The data distributions of voltage on load bus are represented in Figure 6.33 .
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Figure 6.33 The data distribution of voltage for the cases T1 — T5 (left) and
cases All 1 — All 2 (right)

In conclusion, when the power load is constant, the variation of wind power has
significant effect on the voltage of load bus. The voltage increases with increasing wind
power but decrease with increasing of power transfer to infinite bus. However, when power
load is not constant, the variation of power load has more influence to voltage than wind

power even at the same scale of fluctuation.



CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Conclusions

This thesis can quantitatively assess the effects of stochastic wind energy on the
stability of the power system using stochastic analytical method. The performance index,
called the stochastic stability index (SSI), is developed in this thesis based on the theory of
stochastic stability. To determine SS/, several processes have to be done consisting of the
determination of steady state variables, estimation of well-defined energy function and
critical energy, and formulation of stochastic differential equations.

Characteristics of wind speed and wind power

From the measured wind speed data in Thailand, it was found that the wind speed
distribution can be approximated by Weibull’s distribution and noise wind speed
(instantaneous — mean value) can be approximated by Generalized Gaussian Distribution
(GGD). The wind power distribution of one turbine cannot be classified into any type of
distribution. However, for many turbines with diversity of geographical area, the wind
power distribution can be approximated using Normal distribution. The power spectral
densities (PSD) of wind speed and wind power decrease with increasing of frequency. The
majority parts of PSD occur within 0-500 mHz (the low frequency). The wind power with
frequencies higher than 500 mHz have small contribution. Therefore, it is possible to
approximate the wind power of many turbines using Gaussian distribution white noise and
colored noise models.

The characteristics of power system incorporating wind power

The simulation of two machines infinite bus power system (TMIB) incorporating
aggregated wind turbine is done in this section using PSCAD. It was found that when wind
power increased without noise, the power angle of the nearby synchronous generator (SG)
decreased, while the rotor speed increased with oscillation (frequency about 750 mHz)
until reaching new steady state values. When the voltage of transmission line decrease
from 500kV to be 230 kV, the oscillations of power angle and rotor speed are diverge
continuously which is the condition of instability. When noise of wind power is applied,
the standard deviation of noise has more influence to power angle and rotor speed of

nearby SG than its frequency. However, if frequency of wind power noise is close to the



397

hunting frequency (frequency about 750 mHz for this study) of nearby SG, the magnitude
of oscillation of power angle and rotor speed will be largely due to the resonance effect.

A study of effects of wind power to the small signal stability using the eigenvalue
method

For both squirrel cage induction generator (SCIG) and doubly-fed induction
generator (DFIG) wind turbines, when the wind speed increases, the speed deviation,
power output, current and power factor increase, but bus voltage decreases. The real parts
of eigenvalues increase (move from negative to close to zero) with increasing of angle of
internal voltage and decreasing of stator voltage. The imaginary parts of eigenvalues
decrease with increasing of reference voltage, transmission line reactance, and angle of
internal voltage and decreasing of stator voltage. Therefore, for a single wind turbine
connecting to an infinite bus, when wind speed and wind power increase, the angle of
internal voltage also increase causing the real parts of eigenvalues to increase and
imaginary parts of eigenvalues to decrease.

For multi-machine power system, including DFIG wind turbine, the significant
eigenvalues (eigenvalues that closer to zero) decrease with increasing wind power, and
decreasing of main synchronous generator, which means that the wind power can improve
small signal stability of the power system. Moreover, it is found that the significant
eigenvalues are mostly influenced by speed deviation (or slip) of DFIG wind turbine and
follows by the speed deviation of synchronous generator. It can be implied from the results
that when wind power increase to substitute the power from other conventional power
plants without excess power, the small signal stability of the system is improved.

A study of effects of wind power to the small signal stability using stochastic
stability method: the mean first passage time (MFPT)

The mean first passage time (MFPT) is the performance index to quantify the
average time a state-space trajectory takes to change from a given operating point to the
boundary of its domain of attraction under the influence of small perturbations. To
compute MFPT, several processes have to be done consisting of the determination of
steady state variables, estimation of critical energy, and formulation of stochastic
differential equations.

Considering wind speed data from the Chumporn monitoring station, the cases
when noise intensity is larger than 3.4, 0.88, 0.38, 0.24, and 0.18 with mean wind speed 6,

8, 10, and 12 m/s, respectively, are seriously considerable and can possibly lead the system
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to be unstable within a short time (MFPT less than time constraint of regulation or control
system 10 minutes). These serious conditions that occur during April — May and Nov —
Dec which the monsoon has much influence in that area.

However, this result is based on an assumption that wind power is a Gaussian white
noise and the power system is unregulated which is not practical. The dynamics with
regulation system needs an improvement of the stability index. Furthermore, the energy
function, for MFPT solution, is an approximated value which has ellipsoidal surface shape.
It cannot represent the complex surface problems, for example, the energy of the power
system when incorporate DFIG wind turbine model. Therefore, an improved method is
developed in this thesis to overcome these problems.

The Study of Effects of Wind Power to the Small Signal Stability using New
Stochastic Stability Method

- The derivative of stochastic energy (DSE) with Gaussian distribution white

noise model

To quantitatively evaluate the effects of stochastic wind power to the power system,
the derivative of stochastic energy (DSE) is formulated and used as a stability performance
index. The stable condition of the stochastic system is DSE < 0, therefore, the larger DSE
means the system has higher probability to become unstable.

For TMIB power system incorporating aggregated SCIG wind turbines with
Gaussian distribution white noise, it was found that the DSE gradually increases with
increasing wind power and its noise intensity. For the power flow of the test system with
Load: Wind Power: power from SG is 4: 2: 2 p.u., when DSE is zero or critically stable, the
critical noise intensities at wind power 0.5, 1.0, and 2.0 p.u., are about 0.09, 0.045, and
0.0225, respectively. Therefore, the critical noise intensities of wind power are linearly
inverse to the changing of wind power.

From the simulation, the small but continuous fluctuation of wind power can finally
cause the system to become unstable due to loss of synchronism. For example, if noise
intensity increases 1.5 times, the exit time (the time when the rotor speed increase beyond
the limited value and the system become unstable) decreases 0.52 times and DSE increase
5.2 times. If wind power increases 0.5 times, the exit time decreases 0.73 times and DSE
increase 1.25 times. The DSE is corresponded to the inverse of exit time. Therefore, the
stability of the power system, which is measured by the exit time and DSE, decreases with

increasing of wind power and its noise intensity.
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- The study of the effects of stochastic wind power and stochastic load using DSE

For the SMIB (single machine infinite bus) power system with SCIG wind turbine,
an increasing of noise intensity of both wind power and load causes the DSE to increase
and the system possibly becomes progressively unstable. When only stochastic load is
represented (fix wind power), the larger load voltage and smaller frequency dependent
coefficient causes the larger DSE. When only stochastic wind power is represented (fix
power load), the larger share of wind power leads to larger DSE and an increasing of
frequency dependent coefficient causes the critical noise intensity to decrease which causes
the system less stable.

From these studies, the DSE gives an alternative idea for the stability analysis of the
power system incorporating stochastic wind power without computational effort.
Furthermore, it can be implied that, to avoid system instability, the mechanical wind power
should be limited by its noise intensity using DSE to be as a stability performance
evaluation index.

- The stochastic stability index (SS/) with Gaussian distribution white noise

model

In this section, a new stability performance index is formulated from the critical
energy divided by the non-derivative components of the derivative of stochastic energy
(which is not dependent on state variables) and is called the Stochastic Stability Index
(8S7). This SSI is improved from the previous section (DSE), and has the same concept
with the mean first passage time (MFPT) which is the performance index to quantify the
averaged time a state-space trajectory takes to change from a given operating point to the
boundary of its domain of attraction under the influence of small perturbations.

From the results, SS7 decreases with increasing noise intensity of wind power. For
the TMIB power system incorporating DFIG wind turbine with Gaussian distribution white
noise, when wind power increases, the critical energy increases while the SSI decreases,
which means that the power system becomes less stable. This result is opposite to the
deterministic method (Ex. eigenvalue analysis method) in which the power system is more
stable when wind power increases. For example, assumes the critical regulation time
response (fr) of the power system is 10 minutes (600 seconds), the critical noise intensities
(NIc) of wind power in which SS7 equal to # are 0.88, 0.67, 0.54, and 0.26 for wind power
0.4, 0.6, 0.8, and 1.0 p.u., respectively. If noise intensity is greater than Nic , the SSI will
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less than #g and the power system is possibly unstable before the regulation system can
completely take action.

Compared to the exit time from the simulation, when there is exchanged power
(export to or import from infinite bus), the exit time decreases with increasing of noise
intensity of wind power which is corresponded to the value of SSI. Furthermore, the exit
time when export power is less than when import power which is corresponded to the value
of critical energy and the SSI. Moreover, when wind power increases by 50%, 100%, and
150%, the SSI decreases by about 56%, 75%, and 84%, respectively, compared with the
base case where wind power is 0.4 p.u.. However, when there is no exchanged power, even
the simulation time is longer than 1000 seconds and noise intensity is 1.0, the system still
be stable and need more studies to verify.

- The stochastic stability index (SS/) with Gaussian distribution colored noise

model

When applying the Gaussian distribution colored noise model, which is more
practical and can be adjusted depending on bandwidth, the larger bandwidth results in
being closer to the effect of white noise. The results conform to the case when applying the
white noise model, but with the different values of SSI. For this condition (colored noise
with bandwidth 1.0), the critical noise intensities (NIc) in which SS7 equal to % (600
seconds) are >1.0, >1.0, 0.87, and 0.74 for wind power 0.4, 0.6, 0.8, and 1.0 p.u.,
respectively. When wind power increase 50%, 100%, and 150%, the SSI decrease about
64%, 82%, and 89%, respectively, comparing with base case which wind power is 0.4 p.u. .
The percentage of decreasing of SS7 when apply colored noise are larger than the values
when apply white noise.

Moreover, it was found that the mean value of derivative of stochastic energy (Lu)
is corresponded to the non-derivative components of Lu (which is not depended on state
variables and is used to compute SS7). If there is exchanged power, the standard deviation
of Lu is corresponded to noise intensity of wind power but not for the case when there is no
exchanged power. Therefore, it can be implied that the standard deviation of Lu is not
clearly related to the variation of wind power.

Therefore, the SSI can quantitatively reveal the effects of increasing wind power
and its noise intensity to the power system stability. When the stochastic wind power

increase, SS/ will decrease and the system is less stable, especially, when there is
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exchanged power to or from an infinite bus. The results of SS7 are corresponded to the exit
time from the simulation.

The wind turbine induction generator model (using aggregated DFIG and SCIG
wind turbines) is included in the formulation of the energy function and to the SSI.
Increasing noise intensity of both wind power and load causes the stochastic stability index
to increase and the system become unstable progressively.

To maintain the synchronization of the system, the wind power generation should
be limited at an appropriate value for a given noise intensity. This index gives an
alternative idea for power system stability analysis by stochastically incorporating the wind
power. This stochastic stability analysis method can analyze the nonlinear and stochastic
power system stability with less time and computational effort.

The Study of Effects of Wind Power to the Voltage Stability using New Stochastic
Stability Method

In this section, the SSI is applied to study the effects of wind power to voltage
stability of the power system. The dynamic load model with voltage deviation equation
(load voltage is not constant) is included in the power system equations incorporating
DFIG wind turbine using the colored noise model of wind power.

The SSI increases with increasing wind power and its noise intensity, which agree
with the results in the previous section, but with the different values of SSI. For this
section, the critical noise intensities (N/¢) in which SS7 equal to # (600 seconds) are >1.0,
>1.0, 0.94, and 0.86 for wind power 0.4, 0.6, 0.8, and 1.0 p.u., respectively. Moreover, the
SSI of the case when import power from infinite bus is larger than the case when export
power. It can be implied that when apply voltage deviation equation, the power system is
less stable when there is excess power exported to an infinite bus.

From the simulation results, when there is excess power exported to an infinite bus,
the mean exit time decrease with increasing of noise intensity which corresponds to the
results of SSI. However, for the other cases, the exit time is longer than 3600 seconds and
need more experiments to verify. Furthermore, it is found that at the exit time, the load
voltage is sharply decline while the reactive power of load vastly increases and both are
return to zero after that.

If wind power increase 50%, 100%, and 150%, the SSI decrease about 61%, 79%,
and 84%, respectively, comparing with base case. The percentages of decreasing of SS7 in

this section are less than the values in previous section when the load voltage is fixed.
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The Study of Effects of Wind Power to Voltage Variation using Probabilistic
Method

In this section, the effects of wind power to the power quality, especially voltage,
are determined using probabilistic method called Monte Carlo Simulation (MCS).

When there is no exchanged power, the mean load voltage and its standard
deviation increase with increasing wind power, but the mean load voltage seems to rarely
relate to noise intensity and bandwidth of wind power. However, the standard deviation of
load voltage is clearly related to the noise intensity of wind power. The bandwidth has no
effect to both average and standard deviation of voltage.

When there is exchanged power, the mean load voltage is dropped when power is
transferred to infinite bus, while increasing when power is transferred from infinite bus. It
was found that the standard deviation of the load voltage changes in the opposite way of
the mean value. The standard deviation of voltage, for this case, is strongly related to the
noise intensity of wind power. The bandwidth of wind power has no effect on both mean
and standard deviation of load voltage. However, when applying Weibull wind speed
instead of Gaussian distribution, the deviation of voltage become much more significant.
Moreover, when the power load is not constant, the variation of power load has more

influence on the voltage than does the wind power even at the same scale of fluctuation.
7.2 Future Studies

The wind turbine model may be improved in future studies for more accurate
results. The following topics should also be analyzed: the voltage stability index, the power
quality evaluation, the different type of wind power and noise models, the different
location, and the real data of wind power and the power system.

Several results need more analysis. For example, the different between exit time
and SSI when there is no exchanged power and the case when apply voltage deviation
equation, the power system is less stable when there is excess power exported to an infinite
bus. Many other variables such as bus voltage, phase angle, machine parameters, etc.
should be investigated and explained physically in the future work compared with the

deterministic methods.
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APPENDIX

Appendix A: The identification of coefficients C; , C», and C;

To identify C;, C,, and C;, we have to determine the coordinate system transformation,

derivations of C;, C,, and C;, and finally general solution and asymptotic solution of

MFPT.

A1l. Coordinate system transformation

For simplicity, the integral equations of the Cartesian coordinate system of C;, C,,
C, in Eq.2-61 will be transformed in to polar coordinate system with multiple dimensions

or system variables.

For example, the transformation from Cartesian into a spherical coordinate system with 3
dimensions (variables) and 4 dimensions (variables).

rcosé

rsinésing
........ >y
1sinfcosg .
¥’
X rsiné
“ rsiné,siné.siné;
\ 'v’xai
A >rsind;siné,
RN
N “‘ \‘AX3
N . .
X, [ 4 rsing,sinécosé;

rsiné,cosé, rsing,

In the case of the system with 2n+m-1
transformation will become:

X, =rcosf,
x, =rsin6, cosb,

X, =rsin6,siné, cos b,

Xypimo =Fsing sind,---sin6, . .cosb,

Xy emy =7sinGsing,---sin@, . .siné, . ,sinb,

z=1rcosb@
x =rsinf cos @

y =rsinfsin®

r=+x%+y%+2z2?

X, =7rcosf,
X, =rsinf; cos b,
X3 = rsin @, sin 8, cos 05

X, = rsin @, sin 8, sin 6,

= |42 2 2 2
r—\/x1+x2+x3+x4

dimensions or variables, the coordinate

n+m-2

n+m-1

Eq. A-1
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The energy function from Eq.2-34 is a complicated surface function which cannot
easily be used for the solution of problem in Eq.2-60. This problem can be achievable
derived when the integrals terms are represented in the form of polar coordinate system.
First of all, an approximate energy function basing on ellipsoidal surface is represented as
in Eq.2-62 [C.O. Nwankpa, 1990].

An ellipsoidal surface energy function is then transformed into a standard form as
follows:

W=(ZT yT)H[;] Eq. A-2

Where H is a partitioned diagonal (2n+m-1)x(2n+m-1) matrix, y is n vector functions of y
and z is n+m-1 vector functions of z. Thus, H can be written in the form:

H 0
H= Eq. A-3
0 H,

Where H; is a (n+m-1)x(n+m-1) matrix and H; is a nxn matrix as follows

n+m 1

(Hl )n‘ = ZECOS(X; _x; )V

g

1 S S
(Hl )zji = _EVij COS(Xl- - xj ): (H1 )ji Eq A-4

Lhj=l.,n+m, i#]j

If n=3 and m =5, therefore H, and H; of the energy function is

M, 0 0
H,=| 0 M, 0 Eq. A-5
0 0 M

3
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o

Where R is (2n+m-1)x(2n+m-1) matrix the same with H and v is (2n+m-1) vector of new
state variables. Placing Eq. A-7 into Eq. A-2, we can write

From Eq. A-2, if we define Eq. A-7

W =v'R"HRv Eq. A-8

To simplify Eq. A-8, we assume R is a partitioned diagonal matrix which is the same as H
and R is also orthogonal of H. Thus R' = R and from the rule of eigenvalues as a diagonal
matrix, we know that
A 0
. B 0 A - 0
R'HR=R "HR = . .

A

2n+m—1

=)

Where N is a diagonal matrix for which elements are eigenvalue, 4; . For this case, R is a
matrix consisting of a set of eigenvectors of H corresponding to each A.

If we state that N = N*N* when

\/Z 0 .. 0
0

N* = \/Z ? Eq. A-10
[0 0 A
Therefore, placing into Eq. A-8, we can write
W=v'N'N'v=A"A Eq. A-11
Where N'v = A and thus
0 e 0 T
Al 0 VR 0 S Eq. A-12
Where a, = vi\/z . The Eq. A-11 can be represented in the form as follows
W=A"A=da'+a+..+a;, ,  =AV+AVi+..+A,. Vi | Eq. A-13

From Eq. A-1, if we replace x; with a; from Eq. A-13, then
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r= \/af +‘a; +..+a;,,, = N4 Eq. A-14

Thus, the polar coordinate system can be constructed as follows:

a, = JW cos 0,
a,= JW sin 0, cos b,
a, = JW sin 6, sin 0, cos b, Eq. A-15

sy =NW sing sinf,---sin6, . . cosb,
a2n+m—l =N W sin 01 sSin 92 ...sin 9

2n+m-3

n+m-2

sin @

2n+m-1

sin @

2n+m—=2

The Jacobian matrix of multi-variables polar coordinate system can be computed as [Wendell
Fleming, 1977]:

J = (\/W )ZWH (sin”’*’”’3 0, )(sinz”*’”’4 0, )...(sin Orpims) Eq. A-16

Then, the surface elements of this multi-variables polar coordinate system is given by:

ds =Jd6dé,..dé,,.,, , Eq. A-17
Furthermore, z and y in Eq. A-7 can be transformed into A by this following step:
From Eq. A-11, multiply by (N*)" to become
-1
v=(N") A Eq. A-18
If we multiply Eq. A-12 by R and use the result of Eq. A-18, we will get:
-l z
Rv=R(N’) A=[ j Eq. A-19
y

Since H is a partitioned diagonal (2n+m-1)x(2n+m-1) matrix, thus R and N are also
partitioned diagonal matrix in the form:

R, 0 N, O
R= and N= Eq. A-20
0 R, 0 N,

Where R; and N; are (n+m-1)x(n+m-1) matrix while R, and N, are nxn matrix.

From Eq. A-19, the standard form of z and y in Eq. A-7 can be represented in the following
form

Eq. A-21
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A2. Derivations of C;, C,, and C;
To determine

gCl*Wr(;’(W)+[5C2 - C;W} o (W)=-1
7,(W:)=0, 7,(0)<o0

We . . . i .
7, (O) ~ 1 (WC )_C2/Cl |: j t(cz/cl )—1 .e—(c_zt/é‘/C] )dt:|e(C_;W(;/£,C] )

0

2(0) ~ —— cz/cl (a/c) —C3t/£,C1>dt e(Cé‘Wc/SzCF)
0|1
where
1 o'W ow 1 o'W
G, (W)= T(W)Sﬁwgz o ds, =¢, aTzzmng e —Sza—xzz
C,(w)= ezwzmcos(xj —xf)VZV,,BZ,,
r#2
. 3 1 n+m-1
Cl _CIW_2(n+m) 1221: (FI)UW
. 1 <
G :C3W=Z;(F3)nW
F=(N) RIDR,(N))"
F,=(N;) RIDR,(N;)
(D), = gijVin’incos( —x’ )cos(x —xh)VVB,aB/h
r=1 h=1
+I/,(Vj’§:mingrhcos( )cos( X, =X )VVB,GB]h

r=1 h=l

—I/kl/j’ggkhgcos(x; —x:)c s( —xh)VVBkrth

n+m n+m

~VV, Y &, cos(x; —x) )cos(x} —x; V.V, B, B,

r=1 h=1

Eq. A-22

Eq. A-23

Eq. A-24

Eq. A-25

Eq. A-26

Eq. A-27

Eq. A-28

Eq. A-29

Eq. A-30

Eq. A-31
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n+mn+m

(Dl )kj =&V, Z Z cos (x; - X, ) cos (x; - X, ) V.V,B,,.By,

r=1 h=l
+V. Ve, cos (x,i - X, )cos (xj - X, ) V.V,B.,B,,
nem Eq. A-32
=VVe, z cos (xj -X )cos (xj —-X; ) V.V,B,.B,,
r=1

n+m

-V.V,e, Z cos (x,f — X5 )cos (xj - X, )VthBszZh
h=1

DM, , i=j,i=1..n
(D,), = oo Eq. A-33
v 0, i#j,1,j=1..,n

A3. General solution and asymptotic solution of MFPT

clear all
close all

clc;

t = 10;
nim = 0.2;
a = 0;

%%% Casel WS = 6 m/s Vary NI

v = [0.998 1.000 1.002 1.011 0.992 0.9%98 1.000 1.
Internal voltage is the same with terminal voltage %%%%%
P = [09.410 0.05 1.606 0 10.786];

xs = [0.330 -0.454 0.0 -0.073 -0.455 0.330 -0.454 0.0]; %%%% Assume

internal angle is not affected by internal impedance of machine %%%%%
We = 2.036 ; $%%%% Critical energy from simulation and calculation
for 1 = 1:1:t

NI (i) = (nim* (a+(t-a)*i/t))/t ; %$%%%%%%%%%%%% Noise intensity
9990000000000 000900090900000000000000000000000000000090

[SRICRICRICRIc R RNe] OOO0O0OOOOOODOOODOOODOODODOODOOODOOODOODODOODOOOOOODOODO

$%% Case2 WS = 8 m/s Vary NI

vV = [0.998 0.996 1.002 1.012 0.995 0.998 0.996 1.
Internal voltage is the same with terminal voltage %%%%%
P = [9.410 0.219 1.436 0 10.841];

xs = [0.340 -0.375 0.0 -0.066 -0.440 0.340 -0.375 0.0]; %%%% Assume

internal angle is not affected by internal impedance of machine %%%%%
We = 2.173 ; %$%%%% Critical energy from simulation and calculation
for i = 1:1:t

NI(i) = (nim* (a+(t-a)*i/t))/t ; %$%%%%%%%%%%%% Noise intensity
©999000000000000000000000000000000000000000000000
OO0OO0OO0OO0OOOOOODOOOODOOODOOODODOOODOOODODOOODOOODODOOODOOOODOOODO™ O

%% Case3 WS = 10 m/s Vary NI

= [0.998 0.969 1.002 1.012 0.994 0.998 0.969 1.
nternal voltage is the same with terminal voltage %$%%%%
= [9.410 0.526 1.101 0 10.826]1;

g oH < oo
|
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xs = [0.356 -0.248 0.0 -0.051 -0.413 0.356 -0.248 0.0]; %%%% Assume

internal angle is not affected by internal impedance of machine %%%%%
We = 2.35 ; $%%%% Critical energy from simulation and calculation

for i = 1:1:t

NI (i) = (nim* (a+(t-a)*i/t))/t ; %$%%%%%%%%%%%% Noise intensity
©90000000000000000009000000000000000000000000000009

[SRICRICRICNe ReNe] OO0OO0OOOOOOOOOODOOODOODODOODOOODOOODOODODOOOOODOOODOODO

000000000000000000000000

$%% Cased4d WS = 12 m/s Vary NI

Vv = [1.001 0.939 1.005 1.015 0.988 1.001 0.939 1.005]; %%%% Assume
Internal voltage is the same with terminal voltage %$%%%%

P = [9.410 0.674 0.866 0 10.7471;

xs = [0.366 -0.194 0.0 -0.063 -0.418 0.366 -0.194 0.0]; %%%% Assume

internal angle is not affected by internal impedance of machine %%%%%
We = 2.576 ; %%%%% Critical energy from simulation and calculation
for i = 1:1:t

NI (i) = (nim* (a+(t-a)*i/t))/t ;%%%%%%%%%%%%% Noise intensity

00 0000 000000000000000000000000000000000000000

[CRC AR ReRe] OO0OO0OOO0OOOOOOOOOOOOOOOODODOOODOOOODOOODOOOOD©O©OO

function [MFPT] = MFPT2(xs,V,P,Wc,NI)

o\°

NI = Noise intensity

= Assume Internal voltage is the same with terminal voltage

= is active power of the system

= is reactive power of the system

s =Assume internal angle is not affected by internal impedance of machine
s = [0 0 0]; in steady state rotor speed

c = Critical energy from simulation and calculation

oo

o

oo

o\

o\
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o
°

1. Case 1 Wind Power Incorporating SMIB
1.1 System data and configuration
[
[

o3
o

I oe oe

3.117 5 1000]; %%%%%%%%%%% Inertia of Machine %$%%%%%%%%

= [0.03*M(1) 0 0.03*M(3)]; %$%%%%%%%%%% Damping part of Machine $%$%%%%%%%
f =0.05 ; frequency coefficient

Pbs = 100 ; Base power 100MVA

Vbs = 500 ; % Base Voltage 500 kV

Q O K o0 oo

o\

o\

n =3 ; % Number of Generation Machine = 3

m =5 ; % Number of all bus = 5

B = zeros([n+m n+m]); % Susceptance matrix

Hl = zeros([n+m-1 n+m-1]); % Susceptance matrix
H2 = zeros([n n]); % Susceptance matrix

HO1l = zeros([n+m-1 n]);

HO2 = zeros([n n+m-1]);

D1 = zeros([n+m-1 n+m-1]);

D3 ([n nl);

Rl = zeros([n+m-1 n+m-1]);

R2 = zeros([n n]);
(
(

Zeros

Z
=
Il

zeros ([n+m-1 n+m-17);
zeros([n nJl);

=
N
Il

B(l,4) = 6.667;
B(2,5) = 6.667;
B(3,4) = 3.075;
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1 =0;
2 = 0;
3 =20;
ntgl = 0;
s = P(2)*NI/sqrt(2*M(2)) ; % noise scale

%% 1.2 Find stable equilibrium points %$%%%

%% 1.3 Construct matrix H
For H1
or i = 1:1:m+n-1
for j = i:l:m+n-1
if i==j3
for k = 1:1:m+n
if 1 ~= k

///// Internal Susceptance of Machine 1
Internal Susceptance of Machine 2
= 0.6; $%%%%%%%%% Internal Susceptance of Machine 3

o

H1(i,j) = H1(i,Jj)+0.5*cos(xs(1)-xs(k))*V(i)*V(k)*B(i,k);

end

H1(i,j) = -0.5%cos(xs(i)-xs(]))*V(1)*V(J)*B(i,]);

H1(j,1i) = H1(i,3)7

nd
= [H1 HO1L
HO2 H21;

%% 1.4 Find eigenvalues & eigenvectors of matrix H
R N] = eig(H);



for 1 = 1:1:m+n-1
for j = 1i:1:m+tn-1
R1(i,3) = R(i,3);
N1(i,3j) = sqgrt(N(i,J));
end
end
for 1 = 1:1:n
for j = i:1l:n
R2(i,j) = R(i+n+m-1,j+n+m-1);
N2 (i,3) = sqgrt(N(i+n+m-1,j+n+m-1));
end
end
%$%% 1.5 Construct matrix D
% For D1
for 1 = 1:1:n+m-1
for j = i:1:n+m-1
for r = 1:1:n+m
for h = 1:1:n+m
D11 = D11 + cos(xs(2)-xs(r
xs (h))*V(r)*vV(h)*B(2,r)*B(2,h) ;
end
end
D11 = D11*ns*V(2)*V(2) ;
D12 = ns*V (1) *V(j)*cos(xs (i)
XS (2))*V(2)*V(2)*B(1,2)*B(j,2) ;
for r = 1:1:n+m
13 = D13 + cos(xs(2)—xs(r))
XS (2))*V(r)* (2 B (2 B(j,2) ;
end
D13 = D13*ns*V(2)*V(j) ;
for h = 1:1:n+m
D14 = D14 + cos(xs (1)
xs(h))*vV(2)*V(h)*B(i,2)*B(2,h) ;
end
D14 = D14*ns*V (1) *V(2) ;
D1(i,3j) = D11 + D12 - D13 - D14
end
end
% For D3
for i = 1:1:n
for j = i:1l:n
if i==j3
D3(i,3) = D(i)*M(2);
else
D3( /j) = 0;
D3(jll) = D3(llj);
end
end
end

o\°

oo
©°0°

1.6 Construct

matrix F

420

-xs(2)) *cos (xs(7) -

*cos (xs (]J) -

-Xs(2)) *cos (xs (2) -

’

)) *cos (xs(2) -



421

Fl

inv (N1) *transpose (R1) *D1*R1*inv (N1) ;

F3 = inv(N2) *transpose (R2) *D3*R2*inv (N2) ;

o\°

%

o\°

1.7 Compute C
for i = 1:1:n+m-1

Cl =¢Cl + F1(i,1);
end
Cl = 0.5/ (n+m) *C1l ;

for i = 1:1:n

C3 = C3 + F3(i,1);
end
C3 = 0.5/n*C3 ;

for r = 1:1:n+m
if r~= 2

C2 = C2 + cos(xs(2)-xs(xr))*V(2)*V(r)*B(2,r)

end
end
C2 = C2*ns ;

%%% 1.8 Compute MFPT
a = C2/Cl-1;

b = C3/Cl/ns;

delt = 1/1000;

for i = 1:1:Wc*1000

intgl = intgl + ((1/1000)"a)/exp(b*(1i/1000)) *delt;

end
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