## COST EFFECTIVENESS STUDY OF AN EXISTING COMBINED CYCLE POWER PLANT IMPROVEMENT

MS. KANYARAT TANKONG ID: 52910416

## A THESIS SUBMITTED AS A PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN ENERGY TECHNOLOGY AND MANAGEMENT

## THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT AT KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

1<sup>ST</sup> SEMESTER 2011

COPYRIGHT OF THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT

Cost Effectiveness Study of An Existing Combined Cycle Power Plant Improvement

> Miss Kanyarat Tankong ID: 52910416

## A Thesis Submitted as a Part of the Requirements for the Degree of Master of Engineering in Energy Technology and Management

The Joint Graduate School of Energy and Environment at King Mongkut's University of Technology Thonburi

1<sup>st</sup> Semester 2011

## Thesis Committee

| ( Dr. Athikom Bangviwat                  | ) |
|------------------------------------------|---|
| (Assoc. Prof. Dr. Chumnong Sorapipatana) | ) |
| ( Assoc. Prof. Warunee Tia               | ) |
| ( Asst. Prof. Dr Pumyos Valikul )        |   |
| ( Prof. Dr Ing. Christoph Menke )        |   |

Chairman Member Member Member

External Examiner

## Thesis Title: Cost Effectiveness Study of an Existing Combined Cycle Power Plant Improvement

## Student's name, organization and telephone/fax numbers/email

Miss Kanyarat Tankong The Joint Graduate School of Energy and Environment (JGSEE) King Mongkut's University of Technology Thonburi (KMUTT) 126 Pracha Uthit Rd., Bangmod, Tungkru, Bangkok 10140 Thailand Telephone: +66(0)86-118-9900 Email: kanyarat.t@egat.co.th, kanyarat.ts@gmail.com

## Supervisor's name, organization and telephone/fax numbers/email

Dr. Athikom Bangviwat The Joint Graduate School of Energy and Environment (JGSEE) King Mongkut's University of Technology Thonburi (KMUTT) 126 Pracha Uthit Rd., Bangmod, Tungkru, Bangkok 10140 Thailand Telephone: +66(0)2-872-9014 ext.4136 Email: <u>athikom@jgsee.kmutt.ac.th</u> Title: Cost Effectiveness Study of An Existing Combined Cycle Power Plant ImprovementName of Student: Kanyarat TankongStudent ID: 52910416Name of Supervisor: Dr. Athikom Bangviwat

#### ABSTRACT

The degradation of an existing combined cycle plant was investigated, and possible modifications for performance improvement were explored. The case study of Bangpakong Combined Cycle Power Plant was analyzed regarding plant performance, cost effectiveness and economic benefit using the Gate cycle model. The degradation of the power plant was analysed and compared with GE's guaranteed performance guide, and found that net output improvement and net heat rate improvement of gas turbines were negative, where net heat rate improvement was approximately -12.7%. It is therefore implied that an improvement in the performance of the gas turbine would be most effective. For applications where significant power demand occurs during the high ambient temperature, a useful option for increasing output is a gas turbine air inlet cooling system. Different types of air inlet cooling systems, such as evaporative system, mechanical chiller system and absorption chiller system were considered. The inlet temperature, parasitic load and flue gas temperature were the key factors that contributed to the improvement of the combined cycle plant's performance. The evaporative system was found to provide the greatest heat rate improvement, while the absorption chiller system was found to generate the greatest power augmentation at 2.5%. The cost effectiveness analysis showed that the evaporative cooling system was the best alternative option for performance improvement for the BPK combined cycle power plant with the net present value of US\$ 730,001 in 8 years of useful life, while the primary energy saving dropped by 0.58%.

<u>Keywords</u>: Combined Cycle Power Plant, Primary Energy Saving(PES), Feasibility, Gas turbine air inlet cooling system

#### ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor, Dr. Athikom Bangviwat, for the continuous support of my study and research, for his understanding, patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in the research and the writing of this thesis. I could not have imagined having a better advisor who made this thesis possible.

Besides my advisor, I gratefully thank the my thesis committee members: Assoc. Prof. Dr. Chumnong Sorapipatana, Assoc. Prof. Warunee Tia, Asst. Prof. Dr Pumyos Valikul and Prof. Dr.- Ing. Christoph Menke, for their encouragement, insightful comments, and hard questions. Many their critical comments and guidance helped me got a lot of benefit ideas to completed this thesis.

My sincere thanks also goes to many of my colleagues in the Electricity Generating Authority of Thailand who willingly helped me gather the necessary data and information needed. My special thanks go to Kittiphan Eakkachai and Nathicha Mano who provided me advice and suggestion for Gate cycle software.

Especially, I would like to thank my family who inspired, encouraged and fully supported me for every trial that came our way.

I recognize that this research would not have been possible without the financial assistance of the Joint Graduate School of Energy and Environmant (JGSEE) and express my gratitude to this educational institution and to the government,

Finally, I would like to thank everybody who was important to the successful realization of thesis, as well as expressing my apologies if I have not mentioned each one personally.

# **CONTENTS**

| CHAPTER | TITLE                                                | PAGE |
|---------|------------------------------------------------------|------|
|         | CONTENTS                                             | i    |
|         | LIST OF TABLES                                       | v    |
|         | LIST OF FIGURES                                      | viii |
| 1       | INTRODUCTION                                         | 1    |
|         | 1.1 Rational/Problem Statement                       | 1    |
|         | 1.2 Literature Review                                | 3    |
|         | 1.3 Research Objectives                              | 14   |
|         | 1.4 Scopes of Research Work                          | 15   |
| 2       | THEORIE                                              | 17   |
|         | 2.1 Theoretical Background                           | 17   |
|         | 2.2 Combined Cycle System Principle                  | 18   |
|         | 2.3 Degradation Analysis                             | 19   |
|         | 2.4 Primary Energy Saving                            | 23   |
|         | 2.5 Simulation Model (Gate Cycle)                    | 25   |
|         | 2.5 Cost Effectiveness and Feasibility               | 26   |
| 3       | METHODOLOGY                                          | 29   |
|         | 3.1 Degradation Analysis                             | 29   |
|         | 3.2 Gas Turbine Inlet Cooling and Cost Effectiveness | 30   |
|         | 3.3 Primary Energy Saving                            | 37   |
| 4       | RESULT AND DISCUSSION                                | 39   |
|         | 4.1 Degradation Analysis                             | 39   |
|         | 4.2 Gas Turbine Inlet Cooling and Cost Effectiveness | 40   |
|         | 4.3 Primary Energy Saving                            | 70   |
| 5       | CONCLUSION AND RECOMMENDATIONS                       | 74   |
|         | REFERENCES                                           | 79   |

## **CONTENTS**

| CHAPTER | TITLE      | PAGE |
|---------|------------|------|
|         |            |      |
|         | APPENDIXES |      |
|         | APPENDIX A | 80   |
|         | APPENDIX B | 83   |
|         | APPENDIX C | 91   |
|         | APPENDIX D | 120  |
|         | APPENDIX E | 126  |
|         | APPENDIX F | 132  |

## LIST OF TABLES

| TABLES | TITLE                                                                    | PAGE |
|--------|--------------------------------------------------------------------------|------|
| 1.1    | Details of machines and equipment use in BPK-CC Block 4                  | 3    |
| 1.2    | Comparison Table of inlet air cooling technique                          |      |
| 2.1    | Efficiency reference value for heat production and Electrical production | 24   |
| 3.1    | Assumption for feasibility analysis                                      | 25   |
| 4.1    | Comparison of performance of BPK-CC Block 4                              | 40   |
| 4.2    | Comparison of simulation result with operating data                      | 42   |
| 4.3    | Input variable parameters in simulation model                            | 42   |
| 4.4    | Maximum and minimum of an existing plant's performance                   | 43   |
| 4.5    | Input variable parameters in simulation model with                       |      |
|        | evaporative cooling system                                               | 47   |
| 4.6    | Input variable parameters in simulation model                            |      |
|        | with mechanical chiller system                                           | 53   |
| 4.7    | Input variable parameters in simulation model                            |      |
|        | with absorption chiller system                                           | 59   |
| 4.8    | Comparison of alternative options                                        | 67   |
| 4.9    | Cost effectiveness comparison                                            | 68   |
| 4.10   | NPV and Sensitivity                                                      | 69   |
| 4.11   | Subdivision of CHP and non-CHP energies for absorption chiller case      | 71   |
| 4.12   | Primary energy saving of BPK for 1 year period                           | 73   |

## LIST OF FIGURES

| FIGURE | TITLE                                                               | PAGE |
|--------|---------------------------------------------------------------------|------|
| 1.1    | Thailand's installed capacity by types of power plant in 2009       | 1    |
| 1.2    | Process diagram of BPK-CC Block 4                                   |      |
| 1.3    | Effect of ambient temperature                                       | 6    |
| 1.4    | Evaporative air cooling system psychometric chart, simplified       | 8    |
| 1.5    | Schematic of evaporative air cooling system                         | 8    |
| 1.6    | Schematic of high pressure fogging system                           | 9    |
| 1.7    | Schematic of inlet air cooling system by using mechanical chiller   |      |
|        | without TES                                                         | 10   |
| 1.8    | Air cooling process in psychometric chart                           | 11   |
| 1.9    | Schematic of inlet air cooling system by using absorption chiller   | 12   |
| 1.10   | Schematic of inlet air cooling system by using mechanical chiller   |      |
|        | with TES                                                            | 13   |
| 1.11   | Scope of research work                                              | 15   |
| 2.1    | Theory diagram of the research                                      | 17   |
| 2.2    | Schematic diagram of a typical combined cycle power plant           |      |
| 2.3    | Subdivision of a CHP Plant in Combined and Non-Combined Processes 2 |      |
| 2.4    | Model input and output                                              | 22   |
| 2.5    | Types of cash flow elements used in project analysis                |      |
| 2.6    | common-used format for presenting a cash flow statement 2           |      |
| 3.1    | Methodology for degradation analysis                                | 29   |
| 3.2    | Methodology for gas turbine cooling system analysis                 | 31   |
| 3.3    | Average temperature and relative humidity of 3 seasons              | 33   |
| 3.4    | Working scheme of simulation study applied to                       |      |
|        | evaporative system in summer as example                             | 34   |
| 3.5    | Determination Principles                                            | 38   |

## LIST OF FIGURES

| FIGURE | TITLE                                                             | PAGE |
|--------|-------------------------------------------------------------------|------|
| 4.1    | Percentage of degradation                                         | 39   |
| 4.2    | Bangpakong Combined Cycle Power Plant Block 4 model               | 41   |
| 4.3    | Net output of the existing plant case                             | 44   |
| 4.4    | Fuel Consumption of the existing plant case                       | 45   |
| 4.5    | Heat Rate of the existing plant case                              | 46   |
| 4.6    | Bangpakong Combined Cycle Power Plant Block 4 model               |      |
|        | with evaporative cooling system                                   | 47   |
| 4.7    | Net output of evaporative cooling system case                     | 49   |
| 4.8    | Increased output power of evaporative cooling system case         | 50   |
| 4.9    | Fuel consumption variation of evaporative cooling system case     | 51   |
| 4.10   | Percentage of heat rate change of evaporative cooling system case | 52   |
| 4.11   | Bangpakong Combined Cycle Power Plant Block 4 Model               |      |
|        | with mechanical chiller system                                    | 53   |
| 4.12   | Net output of mechanical chiller system case                      | 55   |
| 4.13   | Increased output power of mechanical chiller system case          | 56   |
| 4.14   | Fuel consumption variation of mechanical chiller system case      | 57   |
| 4.15   | Percentage of heat rate change of mechanical chiller system case  | 58   |
| 4.16   | Bangpakong Combined Cycle Power Plant Block 4 Model               |      |
|        | with absorption chiller system                                    | 59   |
| 4.17   | Net output of absorption chiller system case                      | 61   |
| 4.18   | Increased output power of absorption chiller system case          | 62   |
| 4.19   | Fuel consumption variation of absorption chiller system case      | 63   |
| 4.20   | Percentage of heat rate change of absorption chiller system case  | 64   |
| 4.21   | Variation power output by inlet mass flow                         | 65   |
| 4.22   | Effect of ambient temperature and humidity for BPK gas turbine    | 66   |
| 4.23   | Increment cost per augmented annual power output                  | 68   |
| 4.24   | NPV variables on WACC variables                                   | 70   |

## **CHAPTER 1**

## **INTRODUCTION**

## **1.1 Rationale/Problem Statement**

New clean technologies of power plants and renewable energy systems are studied by many researchers around the world. Meanwhile, some researchers are still interested in the development of existing power plants. Various developments are available for an existing power plant, including efficiency improvement, operating and maintenance cost reduction, in order to maintain energy security and mitigate climate change impacts.

In terms of environmental effects, overall production cost is the key point to success. If power plants they can utilize the fuel in the most benefit, they could acquire more profit and also reduce energy consumption. At the present, owners and operators are seeking cost effective ways to expand power plant operability, improve efficiency, gain more output and extend the life of their existing equipment. The regulatory process for permitting new generation sources is slow and more demanding than ever before, so making minor improvements to existing equipment is considered an attractive option.



Figure 1.1: Thailand's installed capacity by types of power plant in 2009

The existing Bangpakong Combined Cycle Power Plant Block 4 (BPK-CC Block 4) has been in commercial operation since 1994. Therefore the performance of each components reduce. To solve mechanical degradation and improve performance, most of components of the gas turbine section were modified to be efficiency on improvement by using GE's advance technology up rate options in 2005. A variety of technologies available for enhancing can be made in plant output or efficiency beyond those achievable through higher steam temperatures, multiple steam-pressure levels or reheat cycles. Gas turbine enhancing performance. From brush seals and cloth seals to the optimized clearances of the sacrificial honeycomb seal, sealing technologies balance and minimize airflow leakage from the power production path. The power plant acquires higher effective output power.

Some parts equipment of the steam turbine section have been replaced by new technology, such as pump type, pump capacity and valve type. The operation setting points and controls are changed to solve problems which usually occur during operation. There are many operating system controls, parameters and components which are totally complex. Many parts that have improved can solve each problem but all improvements mostly affect to the other systems in the power plant and effect on efficiency of power plant.

This research study for new options to enhance the performance of the power plant. For existing plants, some performance enhancement options can also be economically retrofitted to boost power output and efficiency. The simulation model of the combined cycle power plant can help engineers modify more easily and certainly decide to select appropriate solutions like choosing the new technology additional options. The heat will generally be used more efficiently, improving the performance but also increasing cost. In practice, a compromise between performance and cost must always be made. This project is provided for performance improvement of the existing power plant include with considering of cost effectiveness.

## **1.2 Literature Review**

The literature review consists of two parts: the first part is the specifications of existing BPK-CC Block 4, and the second part presents potential technologies that can enhance the performance.

## 1.2.1 Existing BPK-CC Block 4 specifications

The major sets of equipment of BPK – CC Block 4 and the process diagram are shown in Figure 1.1. BPK – CC Block 4 is a multi-shaft combined cycle system that has two gas turbine generators and two HRSGs, in which supply steam through a common header to a single steam turbine-generator. Gas turbines are heavy duty industrial gas turbine served by GE and natural gas is supplied for generating electricity. The vertical heat recovery steam generators (HRSG) without supplementary firing are a link between the gas turbines and steam turbine process. Each HRSG is arranged with a high-pressure (HP) super-heater, HP drum, HP evaporator, HP economizer, low-pressure (LP) super-heater, LP drum, LP evaporator, LP economizer, and an exhaust stack. Table 1.1 describes the details of machines and equipment used in BPK-CC Block 4 with specification and design criteria.

|                               | Design Data                                                          |
|-------------------------------|----------------------------------------------------------------------|
| Gas Turbine                   |                                                                      |
| General Data on ISO Condition |                                                                      |
| Manufacturer                  | General Electric                                                     |
| Туре                          | MS-9001E                                                             |
| Design Condition              | ISO. Condition – 15°C amb., 1.013 Bar,60%RH                          |
| Design Point                  |                                                                      |
| Air Flow                      | 1,450 Ton/hr                                                         |
| Turbine inlet Temp.           | 1104 °C (Base), 1160 °C ( Peak)                                      |
| Turbine Exhaust Temp.         | 529 °C (Base), 565 °C (Peak)                                         |
| Output                        | 116.4 MW (Base), 125.7 MW (Peak)                                     |
| Consumption                   | 39,722 Nm <sup>3</sup> /Hr (Base), 42,788 Nm <sup>3</sup> /Hr (Peak) |
| Heat Rate                     | 10,880 kJ/kWh (Base), 10,840 kJ/kWh (Peak)                           |

Table 1.1: Details of machines and equipment used in BPK-CC Block 4

| Name Plate Data         |                                              |
|-------------------------|----------------------------------------------|
| Output                  | 103.75 MW (Base), 113.188 MW (Peak)          |
| Turbine Exhaust Temp    | 540 °C                                       |
| Pressure                | 14.0 H <sub>2</sub> O                        |
| HRSG                    |                                              |
| Manufacturer            | Cockerill Mechanical Industries              |
| Turne                   | Dual Pressure Waste Heat (Combustion Turbine |
| Туре                    | Exhaust), Boiler with Assisted Circulation   |
| Design Steam Capacity   | 166,802 kg/hr HP, 39,765 kg/hr LP            |
| Operating Pressure      | 82.44 Bar HP, 8.5 Bar LP                     |
| Drum Design Pressure    | 96.99 Bar HP, 11.99 Bar LP                   |
| Steem Temperature       | 512°C HP superheat outlet                    |
| Steam Temperature       | 235°C LP superheat outlet                    |
| Steam Turbine           |                                              |
| Manufacturer            | Toshiba                                      |
| Type of Typing          | Tandem Compound 2 cylinders 2 Flow Exhaust   |
| Type of Turbine         | Turbine                                      |
| Rated Output            | 109 MW                                       |
| Steem Condition         | HP. Steam Pressure 78.5 Bar, Temp. 509 °C    |
| Steam Condition         | LP. Steam Pressure 7.0 Bar, Temp. 232 °C     |
| Exhaust Vacuum          | 63 mmHg abs                                  |
| Generator               |                                              |
| Gas Turbine Generator   | 128,600 KVA                                  |
| Steam Turbine Generator | 145,000 KVA                                  |



Figure 1.2: Process diagram of BPK-CC Block 4

### **1.2.2 Potential technologies**

For applications where significant power demand and the highest electricity prices occur during the warm months, a gas turbine air inlet cooling system is a useful option for increasing output. Inlet air cooling increases output by taking advantage of the gas turbine's characteristic of higher mass flow rate and, thus, output as the compressor inlet temperature decreases [13]. Since the gas turbine is an ambient-air breathing engine, anything affecting the mass flow of the air intake to the compressor will changed its performance. The most effective parameter affecting the performance of a gas turbine is the inlet air temperature. Figure 1.3 shows how ambient temperature affects output, heat consumption and exhaust flow. Similarly, humid air, being less dense than dry air, will also have an effect on output and heat rate [1]. Augmentation to the equipment, i.e. air filtration, silencing, evaporative cooler, chillers in the inlet or exhaust heat recovery devices cause pressure drop in the system. This pressure loss effect on exhaust temperature increasing, heat rate increasing and power output reduction.



Figure 1.3: Effect of ambient temperature [1]

#### **Inlet Air Cooling System**

The gas turbine is a standardized machine in which the performance design basis conforms to ISO condition, 15°C dry bulb, 7.2 °C wet bulb, 60% RH and 1 bar, so that the machine can be used for widely difference ambient conditions. Most gas turbine installations are not in ISO standard locations. General gas turbines perform differently at different ambient condition thereby this will have an effect on performance and steam process. One of the most significant shortcomings affecting gas turbine behavior is their power output decreases at higher air ambient temperature.

There are three reasons why the air temperature has a significant influence on the power output and efficiency. Firstly, gas turbines always draw in a constant volume flow to

compressor. Increasing the ambient air temperature reduces the density of air and thereby reduces air mass flow contained in the constant volume flow. Secondly, the specific volume of the air increases in proportion to the intake temperature, increasing the power consumed without a corresponding increase in the output from the turbine. Thirdly, as the air temperature rises and the mass flow decreases, the pressure ratio within the gas turbine is reduced, because as the swallowing capacity of the gas turbine is given, the law of sines reduces the pressure before the turbine. The same principle applies inversely to the compressor, but because the turbine is dominant, total balance is negative [2]. Many technologies are commercially available for inlet air cooling systems. These technologies can be divided into the following major categories:

- Evaporative: wetted media, fogging, and wet compression/overspray
- Chillers: mechanical and absorption chillers without or with thermal energy storage (TES)
- Hybrid Systems: combinations of several technologies

#### **Evaporative Cooling System**

*Evaporative Cooler/Wetted Media:* Figure 1.5 shows a schematic of evaporative air cooling system. [3] The method of an evaporative cooling system is cooling of the air stream by adding a media evaporative cooler which converse water from liquid to vapor, called a phase change. The phase change process, air is pulled through media, it evaporates water off the convoluted surface. Heat of vaporization is absorbed from the air, and cooling occurs. Although air temperature decreases, the evaporative cooling produces higher specific humidity airflow downstream of the equipment. As evaporative coolers are limited by the amount of moisture present in the air. [4] Once saturation (i.e. 100% relative humidity) is reached, evaporative cooling systems are unable to evaporate more water into the air stream.

For this reason, in hot, humid regions, it is not often possible to accomplish more than about 10 to 15°F of cooling. In low-humidity environments they are capable of increasing power output by as much as 15%, while in high humidity areas, the power boost tends to be 10% or less. One factor to be considered is the cost of retrofitting and installing. Although the units themselves are generally fairly inexpensive, installation usually calls for duct enlargement, as evaporative coolers require relatively low air velocities. If the air velocity across the wetted media is too high, it can strip water from the media, cause excessive wetting of the ducts and even fouling of the compressor blades.



Figure 1.4: Evaporative air cooling system psychometric chart, simplified

Figure 1.4 is a simplified psychometric chart. The cooling process follows a line of constant enthalpy as sensible heat is traded for latent heat by evaporation. The exact increase in power available from a particular gas turbine as a result of air cooling depends upon the machine model and the site altitude, as well as on the ambient temperature and humidity. [13]



Figure 1.5: Schematic of evaporative air cooling system

*High Pressure Fogging System:* Fogging systems are similar to media type evaporative cooling systems in that they cool by evaporating water, but instead of using an evaporative medium, the water is atomized into billions of super-small fog droplets [4]. A schematic diagram of the technique is show as Figure 1.5 [3]. The system carefully controls the amount of injected water to ensure no large droplets of water are ingested into the compressor. [5] States that humid air cannot exceed 90% of relative humidity. In order to prevent erosion in the compressor blades, it is also advisable that dry bulb temperature exceeds 1°C over wet bulb temperature at the GT inlet duct to avoid condensation. It should be noticed that both limitations must be simultaneously observed.

## Chiller

*Mechanical Chiller without TES:* Mechanical Chiller systems can reduce the inlet air to much lower temperatures than those possible by drawing air through evaporative cooling and they can maintain any desired inlet air temperature down to the required temperature, independent of ambient wet-bulb temperature, but it is capital cost intensive and also has higher parasitic loads. The mechanical chillers used in these systems could be driven by electrical motors or steam turbines. Figure 1.6 shows a schematic of the system connected to a simple gas turbine.



Figure 1.6: Schematic of high pressure fogging system



Figure 1.7: Schematic of inlet air cooling system by using mechanical chiller without TES

The cooling load was calculated where the compressor inlet humid air is cooled by ejecting its total heat to the chilled water. As the air temperature drops, its relative humidity would continually rise to 100% RH. This load can be calculated in terms of ton refrigeration (RT) or energy per hour, which will be extracted from an inlet compressor air to meet the 15 1C (ISO), 100% RH. This cooling process consists of two steps, which are latent heat (a–d) and sensible heat (d–c) which is shown in Figure 1.7. There are some water vapors condensing on the cooling coils. To avoid damage to the system, this condensate has to be eliminated by adding a separation system at the entrance of the air compressor.

*Heat Absorption Chillers without TES:* Absorption Cooling systems are similar to the mechanical refrigeration systems except that instead of using mechanical chillers, these systems use absorption chillers that require thermal energy (steam or hot water) as the primary source of energy and require much less electrical energy than to the mechanical chillers [6]. The proper thermal source for the absorption chiller is an extraction of the combined cycle low pressure steam. Thermal utilisation is set to 750 kW of heat per 1000 kW of chilling power [5].

*Mechanical Absorption chiller and Heat Absorption Chillers with TES.* The mechanical and absorption cooling systems whose refrigerants can achieve temperatures below 0 °C allow ice to be stored for cold thermal energy uses in demand peak periods or when operation is more profitable. It is important to notice that some factors influence CC in the storage process time, whereas others only do so when the air is being cooled. Chillers with ice storage must be designed with lower cooling power than other alternatives, since the necessary ice to cool the air for only a few hours is produced throughout the whole day [5]. A TES is typically used when there are only a limited number of hours required for inlet air cooling. TES can reduce overall capital costs because it reduces the chiller capacity requirements as compared to the capacity required to match the instantaneous requirement on peak demand for cooling.



Figure 1.8: Air cooling process in psychometric chart

*Hybrid System*: this system is a combination of technologies, for example, mechanical and absorption chillers. Such a system is optimized for a specific plant based on the power demand and electrical prices and availability of thermal energy. Other hybrids may include combinations of evaporative cooling and chiller-based systems or chillers with high pressure fogging.



Figure 1.9: Schematic of inlet air cooling system by using absorption chiller

When analysing the most suitable gas turbine (GT) inlet cooling technology to be used in combined cycle (CC) applications into a deregulated electricity market, other variables also must be considered. Firstly, the effects of the cooling system on the bottoming cycle must also be taken into account. Secondly, inlet air cooling not only increases the power output of the topping cycle, but also changes the properties of the GT exhaust gases, causing variations on the heat recovery steam generator (HRSG) temperature profile and steam turbines (ST) power output. Thirdly, the use of steam extractions to fuel the absorption chillers by the air cooling equipment could introduce significant alterations in the CC ordinary performance [5]. Fourthly, the generator capacity must be checked in order not to overload the generator. Table 1.2 shows a comparison of inlet air cooling techniques.



Figure 1.10: Schematic of inlet air cooling system by using mechanical chiller with TES

|                                    | Evaporative<br>Cooling | High Pressure<br>Fogging                  | Mechanical<br>Chiller       | Absorption<br>Chiller                      |
|------------------------------------|------------------------|-------------------------------------------|-----------------------------|--------------------------------------------|
| Capital cost                       | Lowest                 | Low                                       | High                        | High                                       |
| O&M cost                           | Lowest                 | Low                                       | High                        | High                                       |
| Capacity<br>improvement            | Limited                | Limited                                   | -                           | -                                          |
| Effective area                     | Low RH area            | Low RH area                               | Not very<br>sensitive to RH | Not very<br>sensitive to RH                |
| Delivery and<br>installation timed | Quick                  | Quick                                     | Long                        | Long                                       |
| Can increase<br>performance        | Lowest                 | Low                                       | High                        | High                                       |
| Other additional                   | Raw water              | Demineralised<br>water,<br>injection pump | Electrical parasitic load   | Steam, Low<br>electrical<br>parasitic load |

Table 1.2: Comparison table of inlet air cooling techniques

## **1.3 Research Objectives**

The main objective of this project is to improve the performance of the existing Bangpakong Combined Cycle Power Plant Block 4, of which the procedure is as follows:

- To determine the efficiencies of the equipment/the parts drop by comparing current performances with design values/initial test values.
- To consider the appropriate technologies or solutions to improve the efficiency of the power plant.
- To develop the simulation model of an existing Bangpakong Combined Cycle Power Plant Block 4 and to simulate/calculate the system performances of various solutions.
- To determine cost effectiveness of the technologies or solutions and to compare different performances between an existing plant and the best solution in terms of primary energy saving (PES).

### **1.4 Scopes of Research Work**

For this study, the area to be investigated is Bangpakong Combined Cycle Power Plant Block 4. The solutions are considered as optional in the future. The research covers three main parts as presented in Figure 1.11.



Figure 1.11 Scope of research work

## **Degradation Analysis:**

Both the current performance test data and the initial performance test data were corrected to the same ambient conditions, which is 32.2 °C (average temperature of Bangpakong Power Plant) by using Correction Factor Curve of GE Manufacture. Performance test data base on the base load of Bangpakong Combined Cycle Power Plant (100% load or full load). The performance of power plant was compared to analysis degradation of combined cycle power plant.

## **Gas Turbine Inlet Cooling System Analysis**

The main designs of solutions are focused on the Gas Turbine Inlet Cooling System. The simulation model for research analysis process will be created, applied and solved on Gate Cycle software. For improved gas turbine performance, inlet air cooling systems are selected to increase performance of this plant. The selected additional systems are shown below:

- Evaporative System (High Pressure Fogging System)
- Mechanical Chiller System
- Absorption Chiller System

The sizing of each additional system was created using asimulation model based on the limitations of each technique. Each additional technique was applied to simulation model of an existing plant which was completely calibrated conform to actual operational parameters, and was simulated to the new improved performance.

Cost-effectiveness analysis (CEA) is a tool for the comparison of alternative projects with the same objectives in which it is difficult to value an efficient selection. Cost-effectiveness ratio indicates the best project or the first priority project. It can identify maximize the output power on given cost or minimize the cost on given output value. Expected result of appropriate solutions of the research were generated from simulation data. Then, they were considered in cost effectiveness for selection of the best solution.

#### **PES Analysis:**

PES, in comparison with the separate production of heat and power was calculated using the reference values. The amount of primary energy saving (PES) was calculated based on the methodology proposed in the EU directive. The PES analysis will be used to compare energy utilization

## CHAPTER 2

## THEORIES

## 2.1 Theoretical Background

In order to study the performance of the combined cycle power plant, understanding the theoretical background is significant to analyze, set up and verify the simulated model. Figure 2.1 illustrates a theory diagram to meet the research's solution, including CC process and potential technology, good simulated model, cost effectiveness analysis and PES value.



Figure 2.1: Theory diagram of the research

#### 2.2 Combined Cycle System Principle

In order to calculate, develop and verify the simulated model of Bangpakong Combined Cycle Power Plant, there are many theories that should be considered. The basic consideration is the thermodynamic principle of the combined cycle power plant. These theories describe both the gas turbine system and steam turbine system. The main challenge in designing a combined cycle power plant is how to transfer gas turbine exhaust heat to the water/steam cycle to achieve optimum steam turbine output [2]. The simple combined cycle as shown in Figure 2.2 is helpful to comprehend easily in the concept and easily apply to complicated actual cycle that was developed for the simulate model that conform to actual components, systems, processes and operational parameters in the research.

To find out the potential technologies that are suitable and effective, the performance characteristics of the combined cycle were considered, as well as which factors and parameters affect performance, how to use that solution, and the limitations of each solution.



Figure 2.2: Schematic diagram of a typical combined cycle power plant

## 2.3 Degradation Analysis

### 2.3.1 Corrected Gas Turbine Generator Net Power Output

The gas turbine generator net power output will be corrected from actual conditions to the rated condition listed in Table B.1 (Appendix B)

$$CGNPO = GNPO x \prod_{i=1}^{12} Fip$$

Where

CGNPO is the corrected gas turbine generator net power output, MW

GNPO is the gas turbine generator net power output, MW

F1p is the factor to correct power from the measured compressor inlet temperature to the rated compressor inlet temperature

F1p = F1p (rated)/F1p (measured)

F2p is the factor to correct power from the measured compressor inlet relative humidity to the rated compressor inlet temperature relative humidity

F2p = F1p (rated)/F1p (measured)

F3p is the factor to correct power from the measured barometric pressure to the rated barometric pressure

$$F3p = F3p$$
 (rated)/F3p(measured)

F4p is the factor to correct power from the measured turbine shaft speed to the rated turbine shaft speed

$$F4p = F4p(rated)/F4p(measured)$$

F5p is the factor to correct power from the measured generator power factor to the rated generator power factor

$$F5p = 1 - (F5p (rated) - F5p (measured)/GNPO$$

F6p is the factor to correct power degradation = 1.0 (correction to be applied separately)

F7p is the factor to correct power from the measured inlet pressure drop to the rated inlet pressure drop

F7p = F7p(rated)/F7p(measured)

F8p is the factor to correct power from the measured exhaust pressure drop to the rated exhaust pressure drop

$$F8p = F8p(rated)/F8p(measured)$$

F9p is the steam injection correction factor = 1.0

F10p is the water injection correction factor = 1.0

F11p is the factor to correct power from the test fuel gas composition to the contract fuel gas composition

$$F11p = F11p(rated)/F11p(measured)$$

F12p is the factor to correct power from the measured fuel gas temperature to the rated fuel gas temperature

$$F12p = F12p(rated)/F12p(measured)$$

## 2.3.2 Corrected Gas Turbine Generator Net Heat Rate

The gas turbine generator net power output was corrected from actual conditions to the guaranteed conditions.

$$CGNHR = GNHRx \prod_{i=1}^{12} Fi_{HR}$$

Where

CGNHR is corrected gas turbine generator net heat rate, kJ/kWh

GNHR is the gas turbine generator net heat rate, kJ/kWh

F1HR is the factor to correct heat rate from the measured compressor inlet temperature to the rated compressor inlet temperature

F1HR = F1HR (rated)/F1HR (measured)

F2HR is the factor to correct heat rate from the measured inlet relative humidity to the rated compressor inlet relative humidity

F2HR = F1HR (rated)/F1HR (measured)

F3HR is the factor to correct heat rate from the measured barometric pressure to the rated barometric pressure

F3HR = F3HR (rated)/F3HR (measured)

F4HR is the factor to correct heat rate from the measured turbine shaft speed to the rated turbine shaft speed

### F4HR = F4HR (rated)/F4HR (measured)

F5HR is the factor to correct heat rate from the measured generator power factor to the rated generator power factor

F5HR = 1 - (F5HR (rated)-F5HR (measured)/GNPO

F6HR is the factor to correct heat rate degradation = 1.0 (correction to be applied separately)

F7HR is the factor to correct heat rate from the measured inlet pressure drop to the rated inlet pressure drop

#### F7HR = F7HR (rated)/F7HR (measured)

F8HR is the factor to correct heat rate from the measured exhaust pressure drop to the rated exhaust pressure drop

F8HR = F8HR (rated)/F8HR (measured)

F9HR is the steam injection correction factor = 1.0

F10HR is the water injection correction factor = 1.0

F11HR is the factor to correct heat rate from the test fuel gas composition to the contract fuel gas composition

F11HR = F11HR (rated)/F11HR (measured)

F12HR is the factor to correct heat rate from the measured fuel gas temperature to the rated fuel gas temperature

F12HR = F12HR (rated)/F12HR (measured)

#### 2.3.3 Gas Turbine Generator Net Power Output Degradation

Gas turbine generator net power output degradation was calculated from the corrected gas turbine generator net power output and the baseline corrected gas turbine generator net power. A positive NOI indicates that the current level of performance is better than the guaranteed performance.

$$NOI = \frac{OPT - CGO}{CGO} \times 100$$

Where:

NOI is gas turbine net power output improvement (degradation), %

OPT is output performance test (corrected), MW

CGO is baseline gas turbine net power output from Table B.2 corrected for the expected degradation from the power output degradation

$$CGO = GO \times (1 - Odeg \%/100)$$

Where GO is guaranteed output which is 98.786 MW for GT-42 and assuming GT-41's guarantee output is equal to GT-42

Odeg % is obtained by linear interpolation from the power output degradation shown in Table B.2. Factored fired hours interpolated in Table B.2 in Appendix B are factored fired hours since the baseline test.

#### 2.3.4 Gas Turbine Generator Heat Rate Degradation

Gas turbine generator heat rate degradation was calculated from the corrected gas turbine generator heat rate and the baseline corrected gas turbine generator net heat rate. A positive NHRI indicates that the current level of performance is better than the guaranteed performance.

$$NHRI = \frac{CGHR - HRPT}{CGHR} \times 100$$

Where

NHRI is gas turbine net heat rate improvement (degradation), %

HRPT is heat rate performance test (corrected), MW

CGHR is baseline gas turbine net heat rate from Table B.2 corrected for the expected degradation from the heat rate degradation

$$CGHR = GHR \times (1 + Odeg \%/100)$$

Where GHR is guaranteed output which is 11,590 kJ/kWh for GT-42 and assuming GT-41's guarantee heat rate is equal GT-42

Odeg % was obtained by linear interpolation from the heat rate degradation in Table B.2. Factored fired hours interpolated shown in Table B.2 in Appendix B are factored fired hours since the baseline test.

### 2.4 Primary Energy Saving

PES in comparison with the separate production of heat and power is calculated using the reference values. The amount of primary energy savings (PES) was calculated based on the methodology described in the EU directive which states that the efficiency of the combined cycle gas turbine with heat recovery shall be at least 80%. Equations 2.1 and 2.2 are used for PES calculation:

$$PES = \left(1 - \frac{1}{\frac{H_{\eta}}{REFH_{\eta}} + \frac{E_{\eta}}{REFE_{\eta}}}\right) \quad if \quad \eta < 80\% \quad (2.1)$$

$$PES = \left(1 - \frac{1}{\frac{CHPH_{\eta}}{REFH_{\eta}} + \frac{CHPE_{\eta}}{REFE_{\eta}}}\right) \quad if \quad \eta \ge 80\% \quad (2.2)$$

Where:

 $H\eta$  is the total heat efficiency, the total heat product divided by the total fuel

 $E\eta$  is the total electrical efficiency, the total electricity product divided by the total fuel

 $CHPH\eta$  is the heat efficiency of combined heat and power production defined as annual useful heat output divided by fuel input used to produce the sum of useful heat output and electricity from combined heat and power

$$CHPH_{\eta} = \frac{q_{CHP}}{f_{CHP}}$$

*CHPE* $\eta$  is the electricity efficiency of the combined heat and power defined as annual electricity from the combined heat and power divided by the fuel input used to produce the sum of useful heat output and electricity from the combined heat and power.

$$CHPH_{ij} = \frac{p}{f_{CHP}}$$

 $q_{chp} = CHP$  useful heat energy

 $= q - q_{\text{ non-chp}}$ 

 $f_{chp} = CHP$  fuel energy

$$= f - f_{non-chp}$$

q = Total useful energy

 $q_{non-chp} = Non-combined$  useful heat energy

f = Total fuel energy

 $f_{non-chp} = Non-combined$  fuel energy

p = Total electrical/mechanical energy

*REF H* $\eta$  is the efficiency reference value for heat production as shown in Table 2.1

*REF Eq* is the efficiency reference value for electricity production as shown in Table 2.1

Table 2.1 Efficiency reference value for heat production and electricity production

| Type of fuel | REF Eŋ | REF Hŋ |
|--------------|--------|--------|
| Natural Gas  | 45 %   | 85 %   |
| Coal         | 40%    | 80%    |



Figure 2.3 Subdivision of a CHP Plant in Combined and Non-Combined Processes

### 2.5 Simulation Model (Gate Cycle)

The Gate Cycle is a powerful computer program used for evaluating the performance of existing and conceptual power plant systems at design and off-design points. It is flexible and fully features heat balance modeling software. Gate Cycle combines an intuitive, graphical user interface with detailed analytical models for the thermodynamic, heat-transfer and fluid-mechanical processes within power plants to allow users to run design and simulation studies of any complexity [9]. It is used to predict performance for combined-cycle power plants, conventional steam plants, cogeneration systems, combined heat-and-power plants, advanced gas turbine cycles, and many other energy systems. With the flexibility to incorporate user defined equations and tables, to simulate control loops, and to vary an unrestricted number of model parameters in a regression routine, Gate Cycle is used to optimize a plant's design or to simulate the operation of an existing plant under specific conditions.

Gate Cycle models are extremely flexible, allowing an indefinite number of calculation cases to cover variations in design parameters as well as plant performance

under "off-design" conditions. When the simulate models are performed, the mass and energy balances are solved by a sequential modular algorithm for both the overall system as well as all individual components, and detailed reports generate for each. If the heat balance cannot be solved, an error file is generated, allowing the user to identify the source of the problem and correct the model accordingly. Figure 2.4 shows the data input and output of Gate Cycle mode, and specifies the required inputs and the generated model output.



Figure 2.4 Model input and output

## 2.6 Cost Effectiveness and Feasibility

Cost-effectiveness analysis (CEA) is an economic form for the comparison of the alternative projects with the same objectives in which it is difficult to value an efficient selection. Cost-effectiveness ratio indicates the best project or the first priority project. It can identify maximize the production on given cost or minimize the cost on given amount of produced value. The cost effectiveness of this project can be defined as follows:

 $Cost \ effectiveness \ ratio = \frac{Investment \ cost \ (\$)}{Augmented \ annual \ output \ (MWh)}$
The cost effectiveness is presented in terms of the ratio of the investment cost and augmented annual output. It describes the system that can obtain the minimum amount of investment cost on a given augmented annual output is the best option.

Figure 2.5 shows an example of summary cast flow and elements commonly used in engineering investment projects. There are many variables are involved in the estimation of cash flows, and many individuals and departments participate in the process.



Figure 2.5: Types of cash flow elements used in project analysis

Subsequently, the net cash flow from the project is

Net cash flow = Cash inflow - Cash outflow

The cash flow element can be grouped into three areas, which are the cash flow elements related to operations, investment activities, and project finance. A common-used format for presenting a cash flow statement is presented in Figure 2.6.



Figure 2.6: A common-used format for presenting a cash flow statement

# **CHAPTER 3**

# METHODOLOGY

## **3.1 Degradation Analysis**

Bangpakong Combined Cycle Power Plant Block 4 has been generating electricity in commercial use over the last several years. Degradation study provides the result to select a location, which should be the first priority improvement.



Figure 3.1: Methodology for degradation analysis

Figure 3.1 shows a procedure for degradation analysis, performance test value listing are considered the main parts of BPK-CC Block 4 is prepared for this part. Current data and initial data are recorded at different conditions, therefore both data are corrected to the same ambient condition (32.2 °C, average temperature of Bangpakong Power Plant) by using Correction Factor Curve of GE Manufacture. There are seven reference corrections curves: compressor inlet temperature, ambient humidity, shaft speed, inlet

pressure drop, exhausts pressure drop, LHV and gas temperature. All performance test data are based on the base load of the Bangpakong Combined Cycle Power Plant (100% load or full load). Current performance test data of October 2010 are used in this study. Performance of power plant was compared to analyzed degradation of combined cycle power plant.

#### 3.2 Gas Turbine Inlet Cooling Analysis and Cost Effectiveness

The main methodologies are presented in Figure 3.2.

3.2.1 Firstly, the study cases, which are existing CC, existing CC with evaporative cooling system (high pressure fogging system), existing CC with mechanical chiller and existing CC with absorption chiller were selected and identified for this research.

3.2.2 Secondly, data collection was implemented carefully for minimizing errors.

(1) Climate data: the combined cycle power plant consists of gas turbine and heat recovery steam generation in which the gas turbine's behavior strongly depends on weather conditions. Therefore, it is significant to prepare weather parameters (temperature and relative humidity) carefully in order to characterize a particular site climate. For this project, the history of climate data of Bangpakong in 2010, which was recorded every 10 minutes at the site was selected, arranged into seasonal averages of hourly weather parameters and used to evaluate the climate as an average year, as represented in Appendix A. It is characterized by a set of double points of ambient temperature and relative humidity.

(2) The main equipment were implemented for the simulated model of the existing plant, which is used as the reference of comparison.

# **Case Study Indentification**

- Case 1 : Existing Combined Cycle Power Plant
- Case 2 : Existing system with evaporative cooling system (Fogging System)
- Case 3 : Existing system with mechanical chiller
- Case 4 : Existing system with absorption chiller

# $\mathbf{+}$

# **Data Collection**

- Climatic data (hourly average weather parameters of each season)
- Main equipment and process description
- Design (specifications) and operating data (temperature, pressure, mass flow rate , etc.) described in Appendix B.



# Simulation Model (Gate Cycle Software)

- Study and develop main components and all parameters of systems into software
- Calibrate systems and operating parameters conform to actual operation of plant
- Simulate model 4 study cases



# Simulaition and Result

(Example of working scheme shown in Figure 3.4)

- Regarding: Power output improvement
  - Fuel consumption variation
  - Percentage of heat rate change



Figure 3.2: Methodology for gas turbine cooling system analysis

(3) Design and operating data: In order to operate for long in commerce, it is important to properly prepare the specifications, design and current operating data, temperature, pressure, mass flow rate, setting point of equipment, etc. Bangpakong combined cycle power plant has been commercially used for over 20 years, therefore some setting points are changed and applied to current operations. The equipment is also operated at lower performance.

3.2.3 Thirdly, Gate cycle software by GE manufacturer is used to transform physical engineering characteristics of the plant into a simulation model. Main sets of equipment of the existing plant was developed, including the design and operating data as shown in Appendix B, then they were connected to the model. All specifications and setting points of steam lines were identified. Each sub-loop needs to be run for checking errors before it is connected to the other sub-loop systems. It was necessary to check errors for loop system because combined cycle plant is totally complex system, changing each setting point affects other loops. It is difficult to adjust the system when errors happen without checking sub-loop errors. The next part was calibration of the simulation model of existing plant to conform to actual operation. After the simulation model was validated, three alternative options were applied in a model for the next part.

3.2.4 For Clearness in the simulation step, an average day was calculated for each season, consisting of 24 temperatures and relative humidity hourly points. Each one is the mean value of all average data for an hour for all the days of the season. Since there are 3 seasons and 3 systems, 288 points were studied (3 seasons x 3 systems x 24 h + 3 seasons x 24 h of NO additional system). Figure 3.4 shows an example of how the simulation study (power output, fuel consumption and heat rate) was made. One of the 3 seasons and 3 systems (evaporative system in summer) was selected as example. Input data were arranged as an average day, in particular, temperature and relative humidity. Output data were subsequently calculated using Bangpakong combined cycle simulation model. Since the use of cooling systems for partial CC loads is not generally recommended, a constant full load was considered in this study.



The diagram of the working scheme is shown in Fig. 3.4. The procedure is as follows:





Figure 3.3: Average temperature and relative humidity of 3 seasons



Figure 3.4: Working scheme of simulation study applied to evaporative system in summer as example

- The climate data of an average day of each season were calculated and plotted, as shown in Figure 3.3. Twenty-four pairs of data (temperature and relative humidity) represent an average day. Seventy-two points completely represent the site weather.
- 2) Simulation of the combined cycle power plant performance without the air inlet cooling system was made, according to historical climate data. Seventy-two variations of input data details in Section 4.2.1 generated seventy-two thermodynamic balances. The results were recorded to be the base of performance comparison: power output improvements, fuel consumption variation and percentage of heat rate change.
- 3) Simulations of the combined cycle power plant performance with three air inlet cooling systems: high pressure fogging system, mechanical chiller, absorption chiller. Similar to the simulation of the combined cycle power plant performance without the air inlet cooling system, two hundred and sixteen variations (72 x 3 systems) of input data are clearly detailed in Section 4.2.1 generating two hundred and sixteen thermodynamic balances. The results were plotted into each base for the next step.
- Comparison of the previous results in order to explain power output improvements, fuel consumption variation and percentage of heat rate change for each hour.

3.2.5 However in the last step, the selection of the best alternative decision cannot be completed without consideration of finance and energy utilization. For clearness decision, cost effectiveness and feasibility were used to analysis the best solution of the BPK plant. Cost effectiveness analysis compares the cost of inlet cooling system effect to plant performance. Cost Effectiveness is determined as investment cost divide by the annual augmented power output (MWh). Investment cost of electricity chiller and absorption chiller details in APPENDIX E. Assumption of investment cost of high pressure fogging system is prepared by:

- Equipment cost = 100 /RT [10]
- Installation and piping = 5% equipment cost
- Engineering & site management = 5% equipment cost

Nevertheless, assumption of investment cost and building modification are not considered in this research.

|    | Description                                                                 | Unit       | Fogging<br>System | Mechanical<br>Chiller | Absorption<br>Chiller |
|----|-----------------------------------------------------------------------------|------------|-------------------|-----------------------|-----------------------|
| 1  | Annual Increased<br>Net Power Output                                        | MWh        | 20,779            | 42,447                | 53,695                |
| 2  | Annual Increased<br>Fuel Consumption                                        | MMBTU      | 262,210           | 1,252,822             | 1,252,822             |
| 3  | Plant Factor                                                                |            |                   | 70.00%                |                       |
| 4  | Exchange Rate                                                               | ₿/\$USD    |                   | 31                    |                       |
| 5  | Electricity Price *                                                         | ₿/kWh      |                   | 2.7497                |                       |
| 6  | Fuel Unit Price *                                                           | ₿/MMBTU    | 175               |                       |                       |
| 7  | O&M Cost for Inlet<br>Cooling System, esc<br>0%****                         | ₿ per year | 7,143             | 3,158,400             | 1,748,400             |
| 8  | Cooling Load                                                                | RT         | 1,420             | 9,400                 | 9,400                 |
| 9  | Water Unit Price                                                            | ₿/Cu.m     | 53.0              | 23.5                  | 23.5                  |
| 10 | Water Used                                                                  | Cu.m       | 22,726            | 938,045               | 938,045               |
| 11 | Investment                                                                  |            | EGAT 100 %        |                       |                       |
| 12 | Weighted Average<br>Cost of Capital<br>raised for additional<br>fund (WACC) |            | 9.10%             |                       |                       |
| 13 | Investment                                                                  | \$         | 149,105           | 16,303,226            | 18,129,032            |
| 14 | Tax Rate                                                                    |            | 30.00%            |                       |                       |
| 15 | Useful life                                                                 | years      | 8                 | 8                     | 8                     |

Table 3.1: Assumption for feasibility analysis

Note

\* Short-Run Marginal Cost Average Analysis, EGAT report, July 9,2010

\*\*\* Make up water to cooling tower is  $0.014 \text{ m}^3$  / hr – RT

\*\*\*\* Fogging: 50 man-hours of maintenance per year [12], average salary 30000 B/month person

Mechanical Chiller: 28 B / RT / month

Absorption Chiller: 15.5 B / RT / month

The feasibility analysis is most important for determining the investment that is expected for a return on the investment to be received in the future. The subject is whether the amount of a forecasted future cash flow is large enough to justify investing the proposed funds in the future. Table 3.1 shows the assumptions for analyzing the feasibility of this project.

#### **3.3 Primary Energy Saving PES**

The determination of energy utilization and finance for alternative system consist of two parts as follows.

Primary energy saving (PES) used generally to be a regulatory standard for energy efficient utilization of Cogeneration plant or Combined Heat and Power Plant. The amount of primary energy saving (PES) is calculated based on methodology purpose in EU directive. A year is a period of time used for determination of data for this research. Figure 3.5 illustrates the principle of CHP determination according to EU directive. There are four steps in determination. The first step is determination of all energy input and output in the considered period. The second step is determination useful heat energy and non-CHP useful heat energy then checks overall efficiency of plant. The power loss efficiency are considered when the overall efficiency is lower than the efficiency standard is 80%. The energy loss coefficient defines as relation between generation of useful heat energy and electrical energy/power loss. The electrical power loss is typical for extraction-condensing or extraction-backpressure steam turbines by extracting the working fluid (steam or exhaust gas) from the turbine for generation of useful heat energy as the same fuel input. The last step is to determine non-CHP electric energy.

After all the required energy for PES calculation has been generated, then PES is considered for which the cogeneration is considered highly efficient to ensure at least 10% savings of primary energy (fuel) as compared to separate generation of thermal and electric energy. The energy conservation indicator of the combined generation is calculated by the formula given in Chapter 2.



Figure 3.5: Determination Principles [11]

#### **CHAPTER 4**

## **RESULTS AND DISCUSSION**

## 4.1 Degradation Analysis

The main challenge in a combined cycle plant is how to transfer gas turbine exhaust heat to the water/steam cycle to achieve the optimum steam turbine output. The focus was on the heat recovery steam generator (HRSG) in which the heat transfer between gas cycle and the water/steam cycle take place [2]. Table 4.1 represent percentage of degradation of each part in Bangpakong combined cycle power plant. Generated power output of gas turbine BG 41 decrease 8% and the efficiency highly reduce 15.31%. BG 42 has percentage of degradation less than BG 41 because this gas turbine has been upgraded on GE's uprate program in 2005. Steam Turbine and HRSG performance is the function of energy transfer of HRSG and Condenser. As Table 4.1, percentage of degradation HRSG 41, HRSG 42 and condenser is 5%, 7.79% and 9.82% respectively. However degradation of all heat exchangers has a small effect on steam turbine output and efficiency which reduce performance of 1.88% and 2.57% respectively. Therefore the performance improvement is focus on gas turbine improvement.



Figure 4.1 Percentage of degradation

|                                  | Design /Initial | Current value | %           |
|----------------------------------|-----------------|---------------|-------------|
|                                  | value           |               | degradation |
| BG-41 Gas Turbine Output (MW)    | 106.50          | 97.88         | -8.00       |
| BG-41 GT Gross Efficiency, (%)   | 33.5            | 28.37         | -15.31      |
| BG-41 Auxiliary consumption      | .31             | 0.33          | -6.06       |
| (MW)                             |                 |               |             |
| BG-42 Gas Turbine Output (MW)    | 106.72          | 97.74         | -8.41       |
| BG-42 GT Gross Efficiency, (%)   | 28.48           | 28.36         | -0.42       |
| BG-42 Auxiliary consumption (kW) | .295            | 0.33          | -11.86      |
| Steam Turbine Output (MW)        | 109.99          | 107.92        | -1.88       |
| ST Gross Efficiency (%)          | 36.19           | 35.26         | -2.57       |
| ST Auxiliary Consumption (MW)    | 4.5             | 4.13          | 8.22        |
| Gross Output (MW)                | 323.21          | 303.54        | -6.08       |
| Gross Efficiency (%)             | 46.70           | 44.01         | -5.76       |
| Total Auxiliary Consumption (MW) | 5.105           | 4.79          | 6.17        |
| HRSG 41 EFF (%)                  | 80.71           | 76.61         | -5          |
| HRSG 42 EFF (%)                  | 82.12           | 75.72         | -7.79       |
| Energy Transfer of Condenser     | 207.68          | 187.28        | -9.82       |
| (MW)                             |                 |               |             |
| Condenser Press. (mm.Hg)         | 64.51           | 57.04         |             |
| BG – 41 Stack Temp. (°C)         | 542.05          | 554.44        |             |
| BG – 42 Stack Temp. (°C)         | 541.17          | 553.47        |             |

Table 4.1 Comparison of performance of BPK-CC Block 4

## 4.2 Gas Turbine Inlet Cooling Analysis

This part represents the study of three types of gas turbine inlet cooling system which affect the performance of the Bangpakong Combined Cycle Power Plant. The simulation model for research analysis process was created, applied and solved on Gate Cycle software. The main study was to find the result of additional cooling systems regarding power output, heat rate and power consumption, then these results were used to analyze the best system by using cost effectiveness.

#### 4.2.1 Simulation Model and Results

#### **Case 1: Existing Combined Cycle Power Plant**

The existing Banpakong Combined Cycle Power Plant simulation model is shown in Figure 4.2. It was developed by adding main components of the plant with specification of equipments, as detailed in Table C in Appendix C, be linked and specified by steam lines to be an existing plant model. After completing all individual components connection and edition, thermodynamic properties of operating condition and specification of each component are input based on performance test data which is full load and steady operation onsite. Details of simulation result are shown in Appendix C. The next part, the model was run to examine the outputs and then compare the outputs against the performance test data for validation and accuracy comparison.



Figure 4.2 Bangpakong Combined Cycle Power Plant Block 4 Model

Table 4.2 presents a comparison of the simulation results and the performance test data. Thermodynamic properties, such as temperature, pressure and enthalpy of the mode are all presented with similar values as the existing operations. More details are in

Appendix B. Energy balance and heat balance are in small errors. Therefore, it can be seen that the simulation model corresponds to the actual operation of an existing plant.

|       | Description                          | Simulation | Operating Data |
|-------|--------------------------------------|------------|----------------|
|       |                                      | Result     |                |
|       | Ambient Temperature (C)              | 32.78      | 32.78          |
|       | Relative Humidity (%)                | 62.473     | 62.473         |
| GT 41 | Power Output (MW)                    | 97.545     | 97.541         |
|       | Heat Rate (kJ/kWh)                   | 12,640     | 12,639         |
|       | Efficiency (%)                       | 28.418     | 28.482         |
|       | Exhaust Temperature (C)              | 554.44     | 554.44         |
| GT 42 | Power Output (MW)                    | 98.128     | 98.128         |
|       | Heat Rate (kJ/kWh)                   | 12,618     | 12,617         |
|       | Efficiency (%)                       | 28.530     | 28.530         |
|       | Exhaust Temperature (C)              | 553.44     | 553.47         |
| ST    | Power Output (MW)                    | 109.2      | 108.9          |
|       | High Pressure Main Steam Temp. ( C ) | 522        | 522            |
|       | Low Pressure Steam Temp. ( C )       | 233.6      | 233.6          |
|       | Cooling Water Temp. ( C )            | 29.38      | 29.38          |

Table 4.2 Comparison of simulation result with operating data

Table 4.3 Input variable parameters in simulation model

| Description                         | Used data                            |
|-------------------------------------|--------------------------------------|
| GT ambient air temperature          | As indicated Table A in Appendix A   |
| GT relative humidity                | As indicated Table B in Appendix A   |
| Condenser cooling water temperature | Assume equal ambient air temperature |

After an existing plant model was developed and calibrated to conform to actual operations, Input variable parameters of Bangpakong combined cycle model, as shown in Table 4.3, were keyed into the model. With the profiles of seasonably average of hourly temperature and relative humidity, a simulation model performed and generated heat balance result for each weather condition (72 running = 24 hr. x 3 season).

The results, which are the power output, fuel consumption and heat rate are presented in Figures 4.3, 4.4 and 4.5 respectively. The hourly performance corresponds to gas turbine behavior by varying hourly temperature and humidity of each. Lower temperature generate higher power output. Table 4.4 shows the maximum and minimum of variation of performance of each season. All results will be the base of study in air inlet cooling system. An existing plant generates the maximum power output of 316.04 MW in winter and minimum value of 302.09 MW in summer. This plant needs maximum fuel consumption of 2.59 x10<sup>9</sup> kJ/h in winter and minimum value of 2.46 x10<sup>9</sup> kJ/h in summer.

|                                         | Summer |        | Rainy  |        | Winter |        |
|-----------------------------------------|--------|--------|--------|--------|--------|--------|
|                                         | Max.   | Min.   | Max.   | Min.   | Max.   | Min.   |
| Power Output (MW)                       | 311.05 | 302.09 | 311.94 | 304.67 | 316.04 | 305.60 |
| Fuel Consumption (10 <sup>9</sup> kJ/h) | 2.54   | 2.46   | 2.55   | 2.48   | 2.59   | 2.49   |
| Heat Rate (kJ/kWh)                      | 8,171  | 8,142  | 8,173  | 8,153  | 8,183  | 8,148  |

Table 4.4 Maximum and minimum of an existing plant's performance



Figure 4.3 Net output of the existing plant case



Figure 4.4 Fuel consumption of the existing plant case



Figure 4.5 Heat rate of the existing plant case

## **Case 2: Evaporative Cooling System (Fogging System)**

Simulation model of evaporative system case study was developed by adding the evaporative cooler in an existing plant as illustrated in Figure 4.6. A high-pressure fogging system was selected for study in an evaporative cooling system case. The assumption of design criteria of the evaporative cooling system is as follows:

- Fogging Pressure = 13.8 MPa
- Relative Humidity exiting from high pressure fogging system = 90%
- Parasitic load of high pressure fogging system = 0.08 kW/TR [10]



Figure 4.6 Bangpakong Combined Cycle Power Plant Block 4 model with evaporative cooling system

| Description                              | Used data                            |
|------------------------------------------|--------------------------------------|
| 1                                        |                                      |
| GT ambient air temperature               | As indicated Table A in Appendix A   |
| -                                        |                                      |
| GT relative humidity                     | As indicated Table B in Appendix A   |
|                                          |                                      |
| Condenser cooling water temperature      | Assume equal ambient air temperature |
|                                          |                                      |
| Evaporative cooling water temperature of | Assume equal ambient air temperature |
| anah CT                                  |                                      |
| each GI                                  |                                      |
|                                          |                                      |

Table 4.5 Input variable parameters in simulation model with evaporative cooling systems

Table 4.5 shows the input variable parameters used to generate the variable performance output, which are gas turbine power performance (power output, efficiency and heat rate), compressor inlet temperature, water consumption, energy transferring from water, steam turbine performance and overall performance. The results of the evaporative cooling case study are represented in profiles that compare power output, power output improvement, fuel consumption variation and percentage of heat rate changing as shown in Figures 4.8, 4.9 and 4.10 respectively. The details are shown in Appendix C.

As shown in Figure 4.7, the evaporative cooling system effectively enhances the power output in winter because of the limitations of the evaporative cooling system in which saturation is reached so evaporative cooling system is unable to evaporate more water into the air stream, similarly low humidity can provide efficient power augmentation. This option has maximum and average generation power output augmentation of 6.77 MW and 3.05 MW, fuel consumption variation of 91.632 GJ/h and 40.735 GJ/h, heat rate changing of 1.45% and 0.62%. Annual power output enhances 0.94 % from 2,201,572 MWh to 2,222,351 MWh.



Figure 4.7 Net output of evaporative cooling system case



Figure 4.8 Increased output power of evaporative cooling system case



Figure 4.9 Fuel consumption variation of evaporative cooling system case



Figure 4.10 Percentage of heat rate change of evaporative cooling system case

## **Case 3: Mechanical Chiller System**

Simulation model of the mechanical chiller system case study was developed by adding the electrical chiller system in existing plant, as shown in Figure 4.11. The mechanical chiller with cooled water was used to study in this case. Assumption of design criteria of mechanical chiller system is as follows:

- Design temperature of compressor inlet =  $15 \,^{\circ}C$
- Relative Humidity exiting = 100 %
- Parasitic load of mechanical chiller system = 1 kW/TR



Figure 4.11 Bangpakong Combined Cycle Power Plant Block 4 Model with mechanical chiller system

| Table 4.6 Input variable parameters in simulation model with mechanical chiller syste | stem |
|---------------------------------------------------------------------------------------|------|
|---------------------------------------------------------------------------------------|------|

| Description                         | Used data                             |
|-------------------------------------|---------------------------------------|
| GT ambient air temperature          | As indicated in Table A in Appendix A |
| GT relative humidity                | As indicated in Table B in Appendix A |
| Condenser cooling water temperature | Assume equal ambient air temperature  |

Table 4.6 shows the input variable parameters that were used to generate the variable outputs, including gas turbine power performance (power output, efficiency and heat rate), energy of chilling, steam turbine performance and overall performance. The results of mechanical chiller case study are represented, which is comparison of output power, power output improvement, fuel consumption variation and percentage of heat rate changing, as shown in Figures 4.13, 4.14 and 4.15 respectively. The detailed results are shown in Appendix C.

As shown in Figure 4.12, the mechanical chiller system generates the stable power output at design compressor inlet temperature. The small variable power outputs originate from variable parasitic loads caused by the mechanical chiller. This option has maximum and average generation power output augmentation of 9.74 MW and 6.09 MW, fuel consumption variation of 334.811GJ/h and 199.184 GJ/h, heat rate changing of 6.85 and 5.33. Annual power output enhances 1.93% from 2,201,572 MWh to 2,244,018 MWh.



Figure 4.12 Net output of mechanical chiller system case



Figure 4.13 Increased output power of mechanical chiller system case



Figure 4.14 Fuel consumption variation of mechanical chiller system case



Figure 4.15 Percentage of heat rate change of mechanical chiller system case

## **Case 4: Absorption Chiller System**

Simulation model of absorption chiller system case study was developed by adding the electrical chiller system in existing plant and extracted steam at low pressure as shown in Figure 4.16. The mechanical chiller with cooled water was used to study this case. The design criteria of the evaporative cooling systems are as follows:

- Design temperature of compressor inlet =  $15 \,^{\circ}C$
- Relative Humidity exiting = 100 %
- Assume parasitic load of mechanical chiller system = 0.1 kW/TR
- Assume steam consumption =  $1.5 \times 10^{-3} \text{ kg/s/TR}$  [10]



Figure 4.16 Bangpakong Combined Cycle Power Plant Block 4 Model with absorption chiller system

|--|

| Description                             | Used data                             |
|-----------------------------------------|---------------------------------------|
| GT Ambient air temperature              | As indicated in Table A in Appendix A |
| GT Relative humidity                    | As indicated in Table B in Appendix A |
| Condenser cooling water temperature     | Assume equal ambient air temperature  |
| Steam consumption to absorption chiller | Assume 12 lbm/h/TR [10]               |

Table 4.7 shows the input variable parameters that were used to generate the variable output, including gas turbine power performance (power output, efficiency and heat rate), compressor inlet temperature, energy transfer from water, steam turbine performance and overall performance. The results of absorption chiller case study are represented by comparison of output power, increased output power and percentage of heat rate change as shown in Figures 4.18, 4.19 and 4.20 respectively. The detailed results are shown in Appendix C.

As shown Figure 4.17, the absorption chiller system generates the stable power output at design compressor inlet temperature similar to the mechanical chiller system. The variable power outputs originated from the variable parasitic loads (electrical power) by the absorption chiller and lower steam turbine power output (from steam energy extraction). This option has maximum and average generation power output augmentation of 11.58 MW and 7.67 MW, fuel consumption variation of 268.248 GJ/h and 186.471 GJ/h, heat rate changing of 6.00 % and 4.8 %. Annual power output enhances 2.44% from 2,201,572 MWh to 2,255,267 MWh.



Figure 4.17 Net output of absorption chiller system case



Figure 4.18 Increased output power of absorption chiller system case


Figure 4.19 Fuel consumption variation of absorption chiller system case



Figure 4.20 Percentage of heat rate change of absorption chiller system case

### 4.2.2 Gas Turbine Inlet Cooling System Comparison and Analysis

The results of all alternatives correspond to gas turbine behavior in which the compressor inlet air temperature affects on power augmentation. Figure 4.21 presents mass flow variation (generate from simulation model by temperature variation) effect on power output of BPK gas turbine. Inlet air temperature affects the density and/or mass flow of the air intake to the compressor, inlet air cooling increases output by taking advantage of the gas turbine's characteristic of higher mass flow rate and, thus, output as the compressor inlet temperature decreases, and then it changed gas turbine performance.



Figure 4.21 Variation power output by inlet mass flow

Figure 4.22 shows how temperature and humidity variation are produced as a result of output, fuel consumption, heat rate and exhaust flow rate without consideration of the parasitic load of the cooling system. It presents cooling system, lower temperature and higher humidity, heat rate gain to gas turbine plant from humidity less than the heat rate gain due to temperature. As gas turbine, the cooling system, temperature reduction enhances power output whereas it increases fuel consumption and heat rate because of balancing of mass flow in combustion and its parasitic load.

Table 4.8 provides the comparison of alternative options, which are the evaporative system, the mechanical chiller system and the absorption chiller system. The greatest power augmentation is generated by absorption chiller system which produces maximum net power augmentation of 11.58 MW, the highest average power improvement is 7.67 MW or 2.49 % of existing power. GT 41 and GT42 have average enhancing power output of 9.45 MW (+9.44%, 100.14 MW to 109.59) and 9.52 MW (+9.45 %, 100.72 MW to 110.24 MW) respectively, total gas turbine power augmentation is 18.97 MW while average steam turbine power output become lower from 107.90 MW to 96.59 MW (11.31

MW or -10.48%). The absorption chiller system has enhanced annual power output of 2.44%. The reduction effect of the steam turbine output is due to lower temperature of foul gas and lower steam energy (extract steam to absorption chiller).



(c) Comparison

80.00

100.00

60.00 F output 90%RH

77.98 /8.14

120.00

80.00

75.00

0.00

20.00

40.00

Figure 4.22 Effect of ambient temperature and humidity for BPK gas turbine

Mass flow rate of the compressor inlet increases and the exhaust flow rate becomes higher when compressor inlet temperature is lower. Although cooling systems have an affect on higher exhaust flow rate in which it increases performance of heat recovery, it causes lower exhaust temperature in which heat recovery gets less performance. Parasitic load of adding mechanical chiller system is higher than adding absorption chiller even steam energy is extracted by absorption chiller. Evaporative cooling system produces fuel consumption value and heat rate value greater than mechanical chiller and absorption chiller because it has lower parasitic load and, thus balancing of fuel consumption and compressed air flow rate for complete combustion in combustion chamber, air passes through evaporative system consume fuel less than air leaves behind chiller system. However, selection of the best alternative cannot be completed taking finance into consideration.

|                                             |      | Existing<br>Plant<br>Case | Evaporative<br>System Case | Mechanical<br>Chiller Case | Absorption<br>Chiller Case |
|---------------------------------------------|------|---------------------------|----------------------------|----------------------------|----------------------------|
|                                             | GT41 | 100.14                    | 102.15                     | 106.17                     | 109.59                     |
| Power Output                                | GT42 | 100.72                    | 102.76                     | 106.82                     | 110.24                     |
| (Avg.), MW                                  | ST40 | 107.90                    | 106.91                     | 101.85                     | 96.59                      |
|                                             | CC   | 308.76                    | 311.82                     | 314.84                     | 316.42                     |
| Power Output                                | Max. | -                         | 6.77                       | 9.74                       | 11.58                      |
| Improvement MW                              | Avg. | -                         | 3.05                       | 6.09                       | 7.67                       |
| improvement, www                            | %    | -                         | 0.99                       | 1.98                       | 2.49                       |
| Power Output, MWh                           | /yr  | 2,201,572                 | 2,222,351<br>(0.94%)       | 2,244,018<br>(1.93%)       | 2,255,267<br>(2.44%)       |
| Fuel Consumption                            | Max. | -                         | 91.632                     | 268.248                    | 268.248                    |
| Variation GI/h                              | Avg. | -                         | 40.735                     | 186.471                    | 186.471                    |
|                                             | %    | -                         | 1.62                       | 7.42                       | 7.42                       |
| Fuel Consumption,<br>10 <sup>13</sup> kJ/yr |      | 1.797                     | 1.825                      | 1.929                      | 1.929                      |
| Heat Rate Change                            | Max. | -                         | 1.45                       | 6.85                       | 6.00                       |
| (%)                                         | Avg. | -                         | 0.62                       | 5.33                       | 4.80                       |

| Table 4.8 | Com | parison | of | alternative | options |
|-----------|-----|---------|----|-------------|---------|
|           |     |         |    |             |         |

However finance is also the key point to an acceptable decision with investment and funds. There are many variables involved in the financial consideration, and many individuals and departments participate in the process. Table 4.9 and Figure 4.23 present the cost effectiveness comparison of inlet cooling system. The absorption chiller system generated greatest annual augmented power output while its investment cost was high. By cost effectiveness ratio, the evaporative cooling system provide the greatest of cost effectiveness of 7.18 \$/MWh. It therefore supported the evaporative system is the best alternative option for performance improvement for BPK combined cycle power plan. The evaporative cooling system also provided the greatest net present value of US\$730,000 which was positive value on given weighted average cost of capital raised for additional fund of 9.1 %. The feasibility is detailed in Appendix E.

|                                                      | Evaporative | Mechanical | Absorption |
|------------------------------------------------------|-------------|------------|------------|
|                                                      | Cooling     | Chiller    | Chiller    |
| Total Cooling Load (TR)                              | 1,420       | 9,400      | 9,400      |
| Investment Cost (\$)                                 | 149,105     | 16,303,226 | 18,129,032 |
| Annual augmented MWh                                 | 20,779      | 42,447     | 53,695     |
| Investment Cost /Augmented annual<br>output (\$/MWh) | 7.18        | 384.09     | 337.63     |

Table 4.9 Cost effectiveness comparison



Figure 4.23 Increment cost per augmented annual power output

Sensitivity analysis shows to what extent the viability of a project is influenced by variations in major quantifiable variables [14]. It focuses on analyzing the effects of changes in variables of theweighted average cost of capital raised for additional funds and plant factor on the project's NPV.

| Item                      |              | Variables | NPV         | SI    | SV  |
|---------------------------|--------------|-----------|-------------|-------|-----|
| Fogging system            | Base case    |           | 730,001     |       |     |
|                           | WACC         | 10.1%     | 697,207     | -0.41 | N/A |
|                           | WACC         | 8.1%      | 764,808     |       |     |
|                           | Plant factor | 90%       | 1,010,174   | 1.34  | 74  |
|                           | Plant factor | 50%       | 449,828     |       |     |
| Mechanical chiller system | Base case    |           | -22,944,726 |       |     |
|                           | WACC         | 10.1%     | -22,827,403 | -0.05 | N/A |
|                           | WACC         | 8.1%      | -23,062,550 |       |     |
|                           | Plant factor | 90%       | -25,498,048 | 0.39  | 257 |
|                           | Plant factor | 50%       | -20,391,476 |       |     |
| Absorption chiller system | Base case    |           | -21,220,060 |       |     |
|                           | WACC         | 10.1%     | -21,245,920 | 0.01  | N/A |
|                           | WACC         | 8.1%      | -21,185,279 |       |     |
|                           | Plant factor | 90%       | -23,003,093 | 0.29  | 340 |
|                           | Plant factor | 50%       | -19,437,028 |       |     |

| Table 4 | .10 1 | ٧PV | and | Sensi | tivity |
|---------|-------|-----|-----|-------|--------|
|---------|-------|-----|-----|-------|--------|

Note: At base case WACC is 9.1% and plant factor is 70%



Figure 4.24 NPV variables on WACC variables

### 4.3 Primary Energy Saving (PES)

This part presents the determination of energy utilization and finance for alternative system. Primary Energy Saving or PES, calculated by using a simulation model result, was used to described the energy utilization.

According to the EU Directive, in the case of the overall efficiency of the CHP plant ( $\eta$ ) in a reporting period has achieves the value in Annex II (a) of the CHP-Directive ( $\eta > \eta_{CHP}$ ), the CHP plant does not generate non-CHP electrical energy ( $p_{non-CHP}$ ). The non-CHP electrical energy ( $p_{non-CHP}$ ) and the referring fuel energy ( $f_{non-CHP,p}$ ) only have to be determined if the overall efficiency of the CHP plant ( $\eta$ ) in a reporting period does not achieve the value(s) in Annex II (a) of the CHP-Directive. In this case the CHP overall efficiency ( $\eta_{CHP}$ ) according to Annex II of the CHP Directive is applied to determine the power-to-heat ratio. For clearness, the PES of absorption chiller case is selected to describe as Table 4.10, meaning, fuel energy of 100 % generate electricity of 40.37 % and heat energy of 4.29 % then cause the overall efficiency of 44.66% which is lower than reference efficiency of 75% (does not achieve the value(s) in Annex II ( $p_{non-CHP}$ ) and the referring fuel energy ( $p_{non-CHP}$ ) and the referring fuel energy ( $n_{on-CHP,p}$ ) have to be determined and calculate from power to heat ratio ( $\sigma_{CHP}$ ) and efficiency of non-combined electrical energy. This case, meaning, fuel energy of 100% is used actually in

this plant but only 9.94% ( $f_{CHP}/f$ ) is used in cogeneration which have efficiency 75%. (generate electricity of 3.18% and heat energy of 4.29%), another part of fuel energy of 90.06% is used to generate electricity of 37.19% at efficiency of 41.30%.

|   | Total   | CHP  | non-CHP,q | non-CHP,p |
|---|---------|------|-----------|-----------|
| η | 44.66 % | 75%  | -         | 41.30%    |
| р | 40.37   | 3.18 | -         | 37.19     |
| q | 4.29    | 4.29 | -         | -         |
| f | 100     | 9.94 | -         | 90.06     |

Table 4.11 Subdivision of CHP and non-CHP energies for absorption chiller case

Table 4.11 shows sequentially the energy for CHP determination and primary energy saving in a one-year period of an alternative system. The sample PES calculation is presented in Appendix D. Currently, the BPK operation demonstrates in quite low efficiency and for this reason the BPK merit order is in low level. We found that primary energy saving of BPK cannot achieve a reference primary energy saving value (10%) base on the Thailand's standard reference efficiency (85% and 45% for separate production of heat and electricity respectively) which have been used presently for VSPP, the PES value of this existing plant reduce from -2.06 % to -2.64 % in evaporative cooling system case, -4.94 % in mechanical chiller case and -5.54 % in absorption chiller case. The result shows that PES cannot be improved by adding the inlet cooling systems, which are high pressure fogging system, mechanical system and absorption chiller system by extraction steam from low pressure steam turbine and these systems reduces the overall efficiency.

The Banpakong Combine Cycle Power Plant unit 4 was constructed more than 20 years ago. The commission decision of 21 December 2006 of European committees specified that efficiency reference values for the separate production of electricity should be related to the year of construction of a cogeneration unit. Moreover, correction factors which relate to the climatic situation should be applied to the reference values because the thermodynamics of generating electricity from fuel depend on the ambient temperature. Also the Annex III of Directive 2004/8/EC indicate that if the cogeneration unit is older

than 10 years of age, the efficiency reference values for cogeneration units shall be fixed on the reference values of units of 10 years of age. Therefore, the efficiency reference value for separate production of electricity of Thailand is not appropriate for BPK power plant. The appropriate efficiency reference value for separate production of electricity shall be 32.8% which follow as Annex I, III of commission decision of 21 December 2006 of European committees and based on assumption of 33.2°C of average ambient temperature.

The result found that the Bangpakong power plant had achieved a reference primary energy saving value of 10%. The PES percentage of this existing plant is 25.61%. Also, the PES percentage of the existing plant with three air inlet cooling systems can achieve a reference primary energy saving of 10%.

|                                                                  | Unit | Existing  | Evaporative<br>Cooling | Mechanical<br>Chiller | Absorption<br>Chiller |
|------------------------------------------------------------------|------|-----------|------------------------|-----------------------|-----------------------|
| Fuel                                                             |      |           |                        |                       |                       |
| Fuel energy for gas turbine<br>GT41                              | MWh  | 2,491,369 | 2,529,577              | 2,674,499             | 2,674,499             |
| Fuel energy for gas turbine<br>GT42                              | MWh  | 2,501,649 | 2,540,288              | 2,685,685             | 2,685,685             |
| Indirect energy from steam to absorption chiller                 | MWh  | -         | -                      | -                     | 240,094               |
| Total fuel energy input                                          | MWh  | 4,993,018 | 5,069,865              | 5,360,184             | 5,600,278             |
| Electricity                                                      |      |           |                        |                       |                       |
| Electrical output from gas turbine GT 41                         | MWh  | 714,098   | 727,927                | 783,866               | 783,866               |
| Electrical output from gas<br>turbine GT42                       | MWh  | 718,288   | 732,285                | 788,499               | 788,499               |
| Electrical output from steam turbine ST                          | MWh  | 769,186   | 762,482                | 726,203               | 688,356               |
| Total electrical output                                          | MWh  | 2,201,572 | 2,222,694              | 2,298,569             | 2,260,722             |
| Steam                                                            |      |           |                        |                       |                       |
| CHP useful heat                                                  | MWh  | -         | -                      | -                     | 240,094               |
| Non-CHP useful heat                                              | MWh  | -         | -                      | -                     | -                     |
| Total useful heat energy (q)                                     | MWh  | _         | -                      | -                     | 240,094               |
| Overall efficiency (η)                                           | %    | 44.09     | 43.84                  | 42.88                 | 44.66                 |
| Efficiency of non-combined electrical energy generation          | %    | 44.09     | 43.84                  | 42.88                 | 41.30                 |
| Power to heat ratio                                              |      | 0.742     | 0.730                  | 0.685                 | 0.617                 |
| CHP electrical energy                                            | MWh  | _         | _                      | _                     | 148.053               |
| Non-CHP electrical energy                                        | MWh  | 2.201.572 | 2,222,694              | 2,298,569             | 2.112.669             |
| Fuel energy for non-<br>combined electrical energy<br>generation | MWh  | 4,993,018 | 5,069,865              | 5,360,184             | 5,115,094             |
| Fuel energy for CHP electrical energy generation                 | MWh  | -         | -                      | -                     | 485,183               |
| Primary Energy Saving                                            | %    |           |                        |                       |                       |
| Total heat efficiency, Hŋ                                        | %    | -         | -                      | -                     | 4.29                  |
| Total electrical efficiency,                                     |      |           |                        |                       |                       |
| Εη                                                               | %    | 44.09     | 43.84                  | 42.88                 | 40.37                 |
| PES (REF Eη=45%, REF<br>Hη=85%)                                  | %    | -2.06     | -2.64                  | -4.94                 | -5.54                 |
| PES (REF Eη=32.8%, REF<br>Hη=90%)                                | %    | 25.61     | 25.18                  | 23.51                 | 21.78                 |
| СНРН                                                             | %    | n/a       | n/a                    | n/a                   | 4.29                  |
| СНРЕ                                                             | %    | n/a       | n/a                    | n/a                   | 2.64                  |

Table 4.12 Primary energy saving of BPK for 1-year period

## **CHAPTER 5**

## **CONCLUSIONS AND RECOMMENDATIONS**

#### **5.1 Conclusions**

This research study looked aimed to improve the performance of existing combined cycle plant, including consideration of cost effectiveness. The reason is that the regulatory process for permitting new generation sources is slow, more demanding of electricity and the combined cycle power plant is the most popular in Thailand. The higher efficiency means less energy consumption or gain power output generation. For the existing plants, some performance enhancement options can also be economically retrofitted to increase power output and efficiency. Heat will generally be used more efficiently, improving the performance but also increasing cost. In practice, a compromise between performance and cost must always be made.

This research work mainly focused on "which alternative is the best solution for improvement of BPK plant performance?" There were four analysis that were used to determine this.

#### 5.1.1 Degradation Analysis

According to GE's degradation analysis, the degradation of gas turbine normally should comply with the degradation curve in the guarantee test record. The criteria was used to determine the extent of the measured performance. NOI and NHRI of the gas turbine should be better than guaranteed guide or present in positive value. The calculations show that the NOI of gas turbine BPK-C41 is -4.74 %, the NHRI of gas turbine BPK-C41 is -12.68 %, the NOI of gas turbine BPK-C42 is -4.71 % and NHRI of gas turbine BPK-C41 is -12.73 %. As a result, the both of NOI and NHRI were negative. The performance of the Bangpakong combined cycle plant unit 4 cannot achieve the GE's expected performance or guaranteed performance. It therefore implied to improve performance of gas turbine.

To select the most effective component, both the current performance test data and the initial performance test data are corrected to the same ambient conditions, then compared to the degradation of the combined cycle power plant. The degradation from condenser is

highest value of 9.82% and the second is gas turbine BPK-C41 of 8% and BPK-C42 of 8.41%, meanwhile the degradation of all heat exchangers had a small effect on steam turbine output and steam turbine efficiency. Therefore, the first priority of performance improvement is to focus on gas turbine improvement.

## 5.1.2 Gas Turbine Inlet Cooling System Analysis

The gas turbine is an ambient air-breathing engine, therefore anything affecting the mass flow of the air intake to the compressor will change its performance. The most effective parameter affecting the performance of gas turbine is inlet air temperature therefore the main designs of solutions have focused on the gas turbine inlet cooling system. The simulation model for research analysis process were created, applied and solved on Gate Cycle software of GE manufacturer. Main equipment were implemented including the equipment designed specification, operating data and steam line for the base simulation model of existing plant which was used to be the reference of comparison. The historical climate data of Bangpakong in 2010 was recorded every 10 minutes at site was selected and it was arranged into the seasonably average of hourly weather parameters and used to evaluate the climate. Energy balance and heat balance which consist of temperature, pressure, enthalpy etc. were in small errors for correspondence to the actual operation of an existing plant. After the simulation model was valid, the selected additional systems are evaporative system (high pressure fogging system), mechanical chiller system and absorption chiller system were applied in the Gate cycle model. Then, each system was compared regarding power output enhancement, percentage of heat rate changing and fuel consumption

As a result, the inlet temperature, parasitic load and flue gas temperature is the key factor for improving the performance of the combined cycle power plant. The evaporative system generated the greatest heat rate of the combined cycle power plant. The absorption chiller system generated the greatest power augmentation in which it produced maximum net power augmentation of 11.58 MW, the highest average power improvement is 7.67 MW or 2.5% of existing power. Considering only the gas turbine performance, the evaporative system, mechanical system and absorption chiller increases the gas turbine power output of approximately 2%, 6% and 9.45 % respectively. Considering combined

cycle system, the evaporative system, mechanical system and absorption chiller increases the combined cycle power output of approximately 1%, 2% and 2.5% respective.

Although the cooling system had an effect on the larger inlet flow rate and the larger exhaust flow rate in which they increase the performance of gas turbine and heat recovery respectively, it caused a lower exhaust temperature in which heat recovery acquired lower performance. Also, the parasitic load of both chiller systems reduces the power generation of combined cycle plant, and steam extraction for absorption chiller system reduces the power generation of combined cycle plant. The parasitic load is significant for receiving greater performance.

Cost-effectiveness ratio is defined as the investment cost divided by augmented annual power output. It minimizes the investment cost of a given output. The evaporative cooling system provided the greatest of cost effectiveness of 7.18 \$/MWh. It therefore supported the evaporative system is the best alternative option for performance improvement for BPK combined cycle power plan. The evaporative cooling system also provided the greatest net present value of US\$730,000 which was positive value on given weighted average cost of capital raised for additional fund of 9.1%.

### 5.1.3 **PES Analysis**

The percentage of PES was used to determine energy utilization. The BPK operates at quite low efficiency. The result shows that the high pressure fogging system has the best primary energy saving value but it cannot achieve a reference primary energy saving value (10%) based on Thailand's standard reference efficiency (85% and 45% for separate production of heat and electricity respectively) which have been used presently for VSPP. Also PES cannot be improved by adding the inlet cooling systems which are high pressure fogging system, mechanical system and absorption chiller system by extraction steam from low pressure steam turbine. The PES reduces 0.58% from -2.06 % to -2.64 % in evaporative cooling system case while mechanical chiller case and absorption chiller case reduce to be -4.94 % and -5.54 % respectively.

Thailand's standard efficiency reference for the separate production of electricity (45%) was not suitable for the power plant because it did not consider the climatic situation and the year of the construction of the cogeneration unit as Annexes I. And Annex III of the commission decision of 21 December 2006 of the European committees and Annex III of Directive 2004/8/EC. The reasonable efficiency reference for separate

production of electricity should be 32.8% for this combined cycle plant (assume average ambient temperature is 33.2%). The new percentage of PES of existing plant, additional of evaporative system, additional of mechanical system and additional of absorption chiller system were 25.61%, 25.18%, 23.51% and 21.78% respectively in which all options can achieve a reference primary energy saving value of 10%.

#### 5.2 Recommendations

Current VSPP regulation schemes in Thailand have been applied in with the EU directives to ensure that support for cogeneration shall be based on the useful heat demand and primary energy savings. It is significant to set up criteria into the right direction under the basic definition for determination and assessment the energy efficiency of the cogeneration production. It is noticed that overall efficiency of Thailand plant is much lower than the overall efficiency target as in EU directive, which is approximately 75-80%, depending on type of plant. The different climatic situation and technology development between Thailand and Europe explain the different efficiency. To ensure the authenticity of primary energy saving assessment, Thailand current standard efficiency reference, which is 45%, for separate production of electricity for various age and different climatic situation shall be revised based on the consideration of a year of construction of each plant and corrected to climatic condition.

As shown in this research, the parasitic load supply for a chiller system or other additional options is the most significant and affects the energy consumption. The possibility of enhancement of performance would be high to achieve high efficiency combined cycle power plant, the additional technology should be carefully selected from the low parasitic load.

#### **Recommendations for future**

This model can help engineers or operators to study other new alternatives for the development of performance, such as an absorption chiller with new GT, instead of the extraction of low pressure steam, consideration of peak demand at daytime and application of the storage tank to the chiller, which can reduce any parasitic load used in the air inlet cooling system.

For very low efficiency or high heat rate problem, the next study could consider other effects such as air extraction used in the turbine side (loss), new technology for improving mechanical degradation of various parts inside, operating control, loss in each part of the gas turbine and fuel properties to increase efficiency.

#### REFERENCES

- [1] Brooks, F. (1994). *GER-3567E\_GE Gas Turbine Performance Characteristics*. Schenectady, NY: GE Power Generation.
- [2] Kehlhofer, R., Bachmann, R., Nielsen, H., & Warner, J. (1999). Combined-Cycle Gas
  & Steam Turbine Power Plants (second ed.). Oklahoma: Penn Well Publishing Company.
- [3] Omidvar, B. (n.d.). http://www.scmi-iraq.com/images/49\_GasTurbineInlet.pdf.
- [4] http://www.meefog.com/downloads/GT\_Comp\_Guide.pdf. (n.d.).
- [5] Gareta, R., M., L., & Gil, A. (2004). Methodology for the economic evaluation of gas turbine air cooling sytem in combined cycle applications. *Energy* 29, 1805-1818.
- [6] *http://www.turbineinletcooling.org/technologies.html*. (2009, June 19).
- [7] Ganapathy, V. (2010). http://www.electricenergyonline.com/?page=show\_article&mag=2&article=14.
- [8] XIANG, W., & CHEN, Y. (2006). Performance Improvement of Combined CyclePower Plant Based on the Optimization of the Bottom Cycle and Heat Recuperation. *Journal of Thermal Science Vol.16*, *No.1*, 84-89.
- [9] Gate Cycle Manual

[10] Mano Natthicha .(2009). Inlet Air Cooling Technologies for Power Plant MW Improve II. *Keep kool Vol.8, No.2, 25-18*.

[11] European Committee for standardization (CEN) and European Committee for Elecrotechnical Standardization (2004), *Manual for Determination of combined heat and power (CHP), CEN/CENELEC* 

[12] Economic Benefits of Replacing Gas Turbine Media Based Evaporative Cooling with Inlet Fogging Systems (1 ed.). (2002). Monrovia, CA: MEE INDUSTRIES INC.GAS TURBINE DIVISION.

[13] Jones, C., & Jacobs III, J. A. Economic and Technical Considerations for Combined-Cycle Performance-Enhancement Options. In *GE Power System*.

[14] Sensitivity and Risk Analysis, Handbook for the Economic Analysis of Water Supply Projects, Chapter7, page 173

## APPENDIX A

## CLIMATIC DATA

## OF

## BANGPAKONG COMBINED CYCLE POWER PLANT

|             |      |      |      |      |      |      | Ambier | t Tempera | ture (°C) |      |      |      |        |       |        |
|-------------|------|------|------|------|------|------|--------|-----------|-----------|------|------|------|--------|-------|--------|
| Time        | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul    | Aug       | Sep       | Oct  | Nov  | Dec  | Summer | Rainy | Winter |
| 1:00:00 AM  | 25.1 | 26.2 | 27.6 | 29.0 | 29.2 | 28.3 | 27.7   | 27.3      | 27.1      | 27.0 | 26.4 | 26.2 | 28.6   | 27.5  | 26.0   |
| 2:00:00 AM  | 24.7 | 26.0 | 27.5 | 28.7 | 28.9 | 28.3 | 27.6   | 27.0      | 27.0      | 26.8 | 26.1 | 25.8 | 28.4   | 27.3  | 25.7   |
| 3:00:00 AM  | 24.2 | 25.8 | 27.4 | 28.5 | 28.7 | 28.1 | 27.5   | 26.9      | 26.9      | 26.6 | 25.8 | 25.3 | 28.2   | 27.2  | 25.3   |
| 4:00:00 AM  | 23.8 | 25.5 | 27.3 | 28.3 | 28.5 | 27.9 | 27.9   | 26.7      | 26.8      | 26.4 | 25.5 | 25.1 | 28.0   | 27.1  | 25.0   |
| 5:00:00 AM  | 23.6 | 25.2 | 27.2 | 28.1 | 28.3 | 28.2 | 29.1   | 26.7      | 26.7      | 26.3 | 25.4 | 24.8 | 27.9   | 27.4  | 24.7   |
| 6:00:00 AM  | 23.2 | 24.9 | 27.0 | 28.0 | 28.2 | 29.6 | 30.0   | 26.7      | 26.7      | 26.2 | 25.2 | 24.4 | 27.7   | 27.8  | 24.4   |
| 7:00:00 AM  | 23.0 | 24.7 | 26.8 | 28.4 | 28.7 | 30.8 | 31.1   | 26.8      | 27.2      | 26.6 | 25.3 | 24.3 | 28.0   | 28.5  | 24.3   |
| 8:00:00 AM  | 23.8 | 25.7 | 27.8 | 30.2 | 30.3 | 31.5 | 31.7   | 27.7      | 28.4      | 27.7 | 26.1 | 25.3 | 29.4   | 29.4  | 25.2   |
| 9:00:00 AM  | 25.1 | 27.5 | 29.2 | 31.8 | 31.8 | 32.1 | 32.4   | 29.1      | 30.0      | 28.3 | 27.1 | 27.1 | 30.9   | 30.4  | 26.7   |
| 10:00:00 AM | 26.4 | 29.4 | 30.7 | 33.1 | 33.0 | 32.8 | 32.6   | 30.0      | 30.8      | 29.3 | 28.0 | 28.3 | 32.3   | 31.1  | 28.0   |
| 11:00:00 AM | 27.7 | 30.5 | 31.3 | 33.8 | 33.3 | 33.3 | 32.0   | 30.8      | 31.8      | 29.9 | 29.0 | 29.2 | 32.8   | 31.6  | 29.1   |
| 12:00:00 PM | 28.8 | 30.8 | 31.7 | 34.0 | 33.8 | 33.5 | 31.0   | 31.4      | 31.9      | 30.8 | 29.8 | 30.0 | 33.2   | 31.7  | 29.8   |
| 1:00:00 PM  | 29.8 | 31.3 | 32.2 | 34.2 | 34.0 | 33.4 | 31.2   | 31.5      | 32.1      | 31.1 | 30.5 | 30.9 | 33.5   | 31.9  | 30.6   |
| 2:00:00 PM  | 30.7 | 31.4 | 32.6 | 34.1 | 33.9 | 33.1 | 31.1   | 31.4      | 31.9      | 30.9 | 31.1 | 31.1 | 33.5   | 31.7  | 31.0   |
| 3:00:00 PM  | 31.1 | 30.9 | 32.8 | 34.0 | 33.7 | 32.8 | 30.7   | 31.2      | 31.6      | 30.5 | 31.3 | 31.5 | 33.5   | 31.3  | 31.2   |
| 4:00:00 PM  | 31.3 | 30.7 | 32.7 | 33.6 | 33.5 | 32.3 | 30.3   | 30.8      | 31.3      | 30.0 | 31.3 | 31.5 | 33.3   | 31.0  | 31.2   |
| 5:00:00 PM  | 30.9 | 30.5 | 32.5 | 33.4 | 33.1 | 31.8 | 29.9   | 30.5      | 30.7      | 29.2 | 30.8 | 30.4 | 33.0   | 30.4  | 30.6   |
| 6:00:00 PM  | 29.6 | 29.4 | 31.9 | 32.5 | 32.6 | 31.2 | 29.7   | 29.8      | 29.9      | 28.4 | 29.6 | 29.3 | 32.3   | 29.8  | 29.5   |
| 7:00:00 PM  | 28.3 | 28.3 | 31.0 | 31.4 | 31.8 | 30.4 | 29.1   | 28.8      | 29.0      | 28.1 | 28.7 | 28.6 | 31.4   | 29.1  | 28.5   |
| 8:00:00 PM  | 27.6 | 28.0 | 30.2 | 31.0 | 31.2 | 29.8 | 28.9   | 28.5      | 28.7      | 27.8 | 28.3 | 28.2 | 30.8   | 28.7  | 28.0   |
| 9:00:00 PM  | 27.3 | 27.8 | 29.6 | 30.4 | 30.6 | 29.6 | 28.6   | 28.4      | 28.4      | 27.8 | 27.9 | 27.8 | 30.2   | 28.6  | 27.7   |
| 10:00:00 PM | 26.8 | 27.4 | 29.2 | 29.9 | 30.1 | 29.3 | 28.6   | 28.0      | 28.1      | 27.7 | 27.5 | 27.4 | 29.7   | 28.3  | 27.3   |
| 11:00:00 PM | 26.2 | 27.0 | 28.9 | 29.5 | 29.8 | 29.0 | 28.0   | 27.9      | 27.7      | 27.4 | 27.2 | 27.0 | 29.4   | 28.0  | 26.8   |
| 12:00:00 AM | 25.3 | 26.5 | 28.5 | 29.3 | 29.7 | 27.5 | 27.5   | 27.7      | 27.4      | 27.5 | 27.0 | 26.5 | 29.2   | 27.5  | 26.3   |

Table A Historical data of ambient temperature at Bangpakong Power Plant

| Table B Historical data | of Relative           | Humidity | at Bangpa | kong Powe | er Plant |      |      |      |      |      |      |      |        |       |        |
|-------------------------|-----------------------|----------|-----------|-----------|----------|------|------|------|------|------|------|------|--------|-------|--------|
|                         | Relative Humidity (%) |          |           |           |          |      |      |      |      |      |      |      |        |       |        |
| Time                    | Jan                   | Feb      | Mar       | Apr       | May      | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Summer | Rainy | Winter |
| 1:00 AM                 | 68.8                  | 79.3     | 78.7      | 80.4      | 82.4     | 81.7 | 84.1 | 85.6 | 87.6 | 85.3 | 74.3 | 76.9 | 80.5   | 84.9  | 74.9   |
| 2:00 AM                 | 69.2                  | 80.8     | 81.4      | 81.7      | 83.2     | 83.0 | 84.8 | 85.8 | 88.3 | 85.9 | 75.6 | 78.3 | 82.1   | 85.6  | 76.0   |
| 3:00 AM                 | 69.6                  | 81.7     | 82.5      | 83.0      | 84.1     | 83.1 | 85.3 | 86.7 | 88.6 | 86.8 | 76.4 | 79.9 | 83.2   | 86.1  | 76.9   |
| 4:00 AM                 | 71.4                  | 83.1     | 83.6      | 84.3      | 85.2     | 83.0 | 86.1 | 87.2 | 88.8 | 87.2 | 77.0 | 80.7 | 84.4   | 86.4  | 78.0   |
| 5:00 AM                 | 71.4                  | 84.4     | 83.9      | 85.6      | 86.5     | 83.8 | 86.4 | 87.4 | 89.1 | 87.2 | 76.4 | 82.1 | 85.3   | 86.8  | 78.6   |
| 6:00 AM                 | 72.8                  | 85.6     | 85.3      | 86.2      | 87.6     | 84.5 | 87.1 | 87.4 | 89.5 | 88.0 | 76.0 | 82.7 | 86.4   | 87.3  | 79.3   |
| 7:00 AM                 | 72.8                  | 86.5     | 85.1      | 84.2      | 85.3     | 83.4 | 87.1 | 87.6 | 88.1 | 87.1 | 75.0 | 82.1 | 84.9   | 86.7  | 79.1   |
| 8:00 AM                 | 67.6                  | 83.0     | 78.0      | 75.7      | 77.5     | 76.6 | 82.4 | 85.0 | 82.0 | 81.0 | 69.3 | 76.3 | 77.0   | 81.4  | 74.0   |
| 9:00 AM                 | 61.5                  | 74.6     | 69.0      | 67.6      | 69.2     | 71.9 | 76.5 | 79.3 | 75.5 | 76.5 | 64.5 | 67.5 | 68.6   | 76.0  | 67.0   |
| 10:00 AM                | 56.8                  | 65.0     | 61.8      | 62.8      | 63.3     | 68.0 | 70.5 | 73.3 | 71.4 | 71.9 | 60.3 | 62.5 | 62.6   | 71.0  | 61.2   |
| 11:00 AM                | 53.0                  | 62.1     | 60.0      | 61.9      | 63.9     | 65.1 | 66.6 | 69.6 | 67.6 | 69.6 | 57.3 | 57.9 | 61.9   | 67.7  | 57.6   |
| 12:00 PM                | 50.5                  | 59.1     | 58.7      | 61.3      | 62.1     | 62.8 | 63.4 | 66.9 | 66.5 | 67.2 | 55.2 | 55.6 | 60.7   | 65.4  | 55.1   |
| 1:00 PM                 | 47.8                  | 58.7     | 57.6      | 59.7      | 61.5     | 61.2 | 63.1 | 66.5 | 65.5 | 65.5 | 52.9 | 53.6 | 59.6   | 64.3  | 53.3   |
| 2:00 PM                 | 45.7                  | 58.9     | 57.4      | 59.5      | 60.7     | 60.5 | 65.9 | 68.0 | 66.4 | 67.8 | 52.3 | 52.9 | 59.2   | 65.7  | 52.5   |
| 3:00 PM                 | 44.6                  | 60.5     | 58.2      | 58.9      | 63.7     | 60.9 | 70.3 | 67.7 | 67.5 | 69.2 | 52.3 | 52.7 | 60.2   | 67.1  | 52.5   |
| 4:00 PM                 | 45.0                  | 59.7     | 60.8      | 59.5      | 63.3     | 61.6 | 69.8 | 69.1 | 69.1 | 71.3 | 53.0 | 55.5 | 61.2   | 68.2  | 53.3   |
| 5:00 PM                 | 47.5                  | 63.0     | 60.6      | 61.7      | 64.6     | 63.9 | 69.5 | 71.0 | 71.6 | 75.0 | 56.1 | 60.7 | 62.3   | 70.2  | 56.8   |
| 6:00 PM                 | 53.2                  | 68.1     | 62.7      | 65.3      | 67.0     | 65.5 | 71.3 | 73.6 | 74.3 | 77.9 | 61.2 | 64.9 | 65.0   | 72.5  | 61.9   |
| 7:00 PM                 | 58.0                  | 71.4     | 64.4      | 69.3      | 69.5     | 67.9 | 72.8 | 78.1 | 77.8 | 79.5 | 65.2 | 67.8 | 67.7   | 75.2  | 65.6   |
| 8:00 PM                 | 59.7                  | 72.3     | 67.2      | 70.3      | 71.4     | 70.8 | 74.2 | 79.6 | 80.7 | 81.0 | 67.7 | 69.4 | 69.6   | 77.3  | 67.3   |
| 9:00 PM                 | 60.6                  | 73.3     | 69.6      | 72.5      | 74.8     | 74.5 | 76.1 | 80.8 | 82.4 | 81.7 | 69.2 | 71.5 | 72.3   | 79.1  | 68.7   |
| 10:00 PM                | 62.8                  | 75.3     | 71.7      | 74.7      | 77.2     | 77.6 | 78.3 | 82.5 | 83.8 | 82.4 | 70.0 | 73.2 | 74.5   | 80.9  | 70.3   |
| 11:00 PM                | 65.0                  | 77.3     | 73.3      | 76.8      | 78.6     | 78.2 | 80.4 | 83.4 | 85.4 | 83.5 | 71.6 | 74.2 | 76.2   | 82.2  | 72.1   |
| 12:00 AM                | 67.6                  | 78.9     | 75.4      | 78.6      | 80.2     | 79.7 | 82.6 | 84.2 | 86.3 | 84.7 | 72.7 | 76.5 | 78.1   | 83.5  | 73.9   |

**APPENDIX B** 

## **DETAILS OF**

# BANGPAKONG COMBINED CYCLE POWER PLANT BLOCK 4

## AND CURRENT PERFORMANCE TEST DATA

## Details Of Machines & Equipments Use In Bang Pakong Combine Cycle Plant Block 3&4

## *Combustion Turbine Component - Equipment Data*

| Technical Data                        |                                                              |            |
|---------------------------------------|--------------------------------------------------------------|------------|
| Axial Flow Compressor                 | 17 Stages With Modulating Inlet Guide Vanes                  |            |
|                                       | And First Stages Are Ni-Co Coated                            |            |
| Turbine                               | 3 Stages (Second & Third Stage Incorporating                 |            |
|                                       | And Integral Tip Shroud                                      |            |
| Speed                                 | 3,000 RPM.                                                   |            |
| Number Of Combustion                  | 14                                                           |            |
| Chamber                               |                                                              |            |
| Fuel Nozzle                           | 14                                                           |            |
| Spark Plug                            | 2 (Chamber 12.13)                                            |            |
| Flame Detector                        | 4 (Chamber 4,5,10,11)                                        |            |
| Cooled Nozzle & Bucket                | Nozzle Stage 1.2                                             |            |
|                                       | Bucket Stage 1.2                                             |            |
| Turbine Blade Coating                 | First Stage Bucket (RT22)                                    |            |
| Turbine Control System                | Speedtronic Mark IV                                          |            |
| Manufacture                           | General Electric                                             |            |
|                                       |                                                              |            |
| Performance In Simple Cycle<br>Mode : | (ISO.Condition - 15°C Amb.Temp., 1.013 Bar ,                 | 60 %RH     |
| Design Point                          | Air Flow 1.450 Ton/Hr.                                       |            |
|                                       | Turbine Inlet Temp 1104°C (Rase) 1160°C                      | (Peak)     |
|                                       | Turbine The relation $520^{\circ}$ C (Base) $-565^{\circ}$ C | $(D_{ab})$ |
|                                       | I Urbine Exnaust Temp. 529°C (Base) 505°C (                  | (Реак)     |
| Output (MVV.)                         | GAS LIGHL OII                                                |            |
|                                       | Base 110.4 114.2                                             |            |
| Communitier                           | Реак 125./ 123.3                                             |            |
| Consumption                           |                                                              |            |
| @ HV.Gas = 32,000 Kj/m <sup>3</sup>   | Base : 39,722 Nm <sup>3</sup> /Hr. (Gas) , 29,206 Kg/Hr. (I  | Light Oil) |
| HV.Oil = 43,050 Kj/Kg                 | Peak : 42.788 Nm <sup>3</sup> /Hr. (Gas) , 31.419 Ka/Hr. (   | Liaht Oil) |
| Heat Rate (Ki/Kwh.) At LH             | N. Base : 10.880 (Gas) , 10.970 (Light Oil)                  | 5 7        |
|                                       | Peak : 10.840 (Gas) , 10.930 (Light Oil)                     |            |
|                                       |                                                              |            |
| Combustion Turbine                    |                                                              |            |
| Generator                             |                                                              |            |
| Technical Data                        |                                                              |            |
| Rated Output                          | 128,600 KVA. (Capability With One Half Cooler                |            |
|                                       | Section Out Of Service 80 %R                                 | atina)     |
| Rated Voltage                         | 11.5 KV.                                                     | 57         |
| Frequency                             | 50 H                                                         |            |
| Dower Easter                          |                                                              |            |
| Power Factor                          | U.05<br>Hudrogen Cooled                                      |            |
| Armatura Current                      |                                                              |            |
|                                       | 0,430 A.<br>1 150 A                                          |            |
|                                       | 1,130 A.                                                     |            |
| Excitation voltage                    | 500 V.                                                       |            |
| Max. Lemp. Armature                   |                                                              |            |

|                | <i>109°C</i>     |
|----------------|------------------|
| Max.Temp.Field | <i>115°C</i>     |
| Max.Cold Gas   | <i>40 ° C</i>    |
| Manufacture    | General Electric |

## Gas Turbine Name Plate Data

General Electric No. : Base : 103,750 kw. Peak : 113,188 kw. Fuel : Natura Gas Turbine Exhaust : 540°C Press. :14.0 H<sub>2</sub>O CPRSR : Stages 17 RPM : 3,000 Power Turbine : Stages 3 RPM : 3,000 Base : 102,760kw. Peak : 112,060 kw. Fuel : Distillate

## Heat Recovery Steam Generators

| 1. Number Furnished<br>2. Manufacture | Two Per Block<br>Cockerill Mechanical Industries<br>Dual Pressure Waste Heat (Combustion Turbine Exhaust) |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 5. Type                               | Boiler With Assisted Circulation                                                                          |
| 4. Steaming Capability                | (a) Design Capacity (CT.Firing Natural Gas)<br>- 166,802 Kg/Hr. High Pressure Main Steam                  |
|                                       | - 39,765 Kg/Hr. Low Pressure Steam                                                                        |
|                                       | (b) Design Capacity (CT.Firing Distillate Oil)                                                            |
|                                       | - 166,420 Kg/Hr. High Pressure Main Steam                                                                 |
|                                       | - 40,488 Kg/Hr. Low Pressure Steam                                                                        |
| 5. Operating Pressure                 | (a) High Pressure Main Steam                                                                              |
|                                       | - 02.44 Ddl (CT.FIIIII Ndluldi GdS)<br>- 82.44 Bar (CT Firing Dictillate Oil)                             |
|                                       | (h) Low Pressure Steam                                                                                    |
|                                       | - 8.5 Bar (CT.Firing Natural Gas)                                                                         |
|                                       | - 8.3 Bar (CT.Firing Distillate Oil)                                                                      |
| 6. Drum Design Pressure               | (a) High Pressure Drum 96.99 Bar                                                                          |
|                                       | (b) Low Pressure Drum 11.99 Bar                                                                           |
| 7. Steam Temperature                  | (a) High Pressure Superheat Outlet                                                                        |
|                                       | - 512°C (CT.Firing Natural Gas)                                                                           |
|                                       | - 511 °C (CT.Firing Distillate Oil)                                                                       |
|                                       | (b) Low Pressure Superheat Outlet                                                                         |
|                                       | - 235.0°C (CT.Firing Natural Gas)                                                                         |
| 9 Total Heating Curface               | - 236.5 °C (CT.FIring Distillate OII)                                                                     |
|                                       | /5,062 m <sup>2</sup>                                                                                     |
| (a) HP.Economizer                     | 27,888 m <sup>2</sup>                                                                                     |
| (D) HP.Evaporator                     | 22,207 m <sup>2</sup>                                                                                     |
| (c) HP.Superheater                    | 7,229 m <sup>2</sup>                                                                                      |
| (d) LP.Economizer                     | <i>3,123 m<sup>2</sup></i>                                                                                |
|                                       |                                                                                                           |

(e) LP.Evaporator(f) LP.Superheater9. Design CT.Exhaust GasFlow Rate

13,882 m<sup>2</sup> 733 m<sup>2</sup>

(a) 1,361,587 Kg/Hr. (CT.Firing Natural Gas) (b) 1,366,560 Kg/Hr. (CT.Firing Distillate Oil)

# Steam Turbine

| Rati | ng And Design Data         |                                                                                 |
|------|----------------------------|---------------------------------------------------------------------------------|
|      | 1. Type Of Turbine         | Tandem Compound 2 Cylinders 2 Flow Exhaust Turbine                              |
|      | 2. Rated Output            | 109,000 kw.                                                                     |
|      | 3. Rated Speed             | 3,000 грт.                                                                      |
|      | 4. Direction Of Revolution | Counter-Clock-Wise (Seeing From Turbine End)                                    |
|      | 5. Steam Conditions        | HP.Steam Pressure 80.0 ata.(78.5 Bar) , Temp. 509 °C                            |
|      | 6. Exhaust Vacuum          | <i>LP.Steam Pressure 9.1 ata.(7.0 Bar) , Temp. 232<sup>°</sup>C 63 mmHg abs</i> |
|      | 7. Number Of Stage         | HP.Turbine : 16 Stages                                                          |
|      |                            | LP.Turbine : 6 Stages , 2 Flow                                                  |
|      |                            | Number Of Wheel : 28                                                            |
|      | 8. Manufacuring            | Toshiba                                                                         |

## Steam Turbine Generator

## Generator Disign Data

| 1. Type             | Takl                                |
|---------------------|-------------------------------------|
| 2. Rated Output     | 145,000 KVA.                        |
| 3. Rated Voltage    | 13.8 KV.                            |
| 4. Armature Current | 6,067 A.                            |
| 5. Frequency        | 50 Hz                               |
| 6. Speed            | 3,000 rpm.                          |
| 7. Power Factor     | 0.85                                |
| 8. Number Of Poles  | 2                                   |
| 9. Excitation       | Brushless                           |
| 10. Cooling         | Hydrogen Cooled (Pressure 206 kpa.) |
| 11. Manufacturing   | Toshiba                             |

## BANGPAKONG COMBINED CYCLE POWER PLANT BLOCK 3-4

#### **PERFORMANCE TEST**

(COMBINED CYCLE)

**UNIT :** BG.401

DATE : 20/08/2010 (10:30)

| NO. | DESCRIPTION               | VALUE      | UNIT   |
|-----|---------------------------|------------|--------|
| 1.  | GROSS POWER OUTPUT TEST   | 97541.15   | KW     |
| 2.  | FUEL GAS FLOW             | 1207485.75 | CF/H   |
| 3.  | FUEL GAS HEATING VALUE    | 1021.02    | KJ/CF  |
| 4.  | FUEL GAS HEAT CONSUMPTION | 1232.87    | GJ     |
| 5.  | GROSS HEAT RATE TEST      | 12639.489  | KJ/KWH |
| 6.  | GROSS EFFICIENCY TEST     | 28.482     | %      |
| 7.  | GROSS POWER OUTPUT CORR.  | 97,881.03  | KW     |
| 8.  | GROSS HEAT RATE CORR.     | 12689.376  | KJ/KWH |
| 9.  | GROSS EFFICIENCY CORR.    | 28.370     | %      |

|     | TEST DATA and CALCULATION 99.28 | 98.598.69 | (corrected to 32.2C) |
|-----|---------------------------------|-----------|----------------------|
| NO. | DESCRIPTION                     | VALUE     | UNIT                 |
| 1.  | BAROMETRIC PRESS.               | 1.01000   | BAR                  |
| 2.  | SPECIFIC HUMIDITY               | 0.53000   | KG/KG                |
| 3.  | DIFF. PRESS. AIR FILTER         | 1.969     | inH2O                |
| 4.  | INLET GUIDE VANE OPEN           | 84.011    | DEG                  |
| 5.  | COMPRESSOR INLET TEMP.          | 33.346    | С                    |
| 6.  | COMP. DISCHARGE TEMP.           | 364.273   | С                    |
| 7.  | COMP. DISCHARGE PRESS.          | 10.218    | BAR                  |
| 8.  | COMP. RATIO                     | 11.176    | -                    |
| 9.  | COMP. EFFICIENCY                | 91.972    | %                    |
| 10  | EXHAUST GAS TEMP.               | 554.444   | С                    |
| 11  | EXHAUST GAS ENERGY              | 859.491   | GJ                   |
| 12  | EQUIVALENT FIRED HOUR           | 27150     | HOURS                |
|     | EXHAUST GAS PRESSURE            | 0.03342   | Bar                  |

#### **CORRECTION FACTOR**

| NO. | DESCRIPTION       | OUT PUT | HEAT RAT |
|-----|-------------------|---------|----------|
| 1.  | BAROMETRIC PRESS. | 0.9973  | 0.9996   |
| 2.  | COMP. INLET TEMP. | 0.9916  | 1.0011   |
| 3.  | SPECIFIC HUMIDITY | 1.0007  | 0.9977   |
| 4.  | FUEL TEMP         | 0.9999  | 0.9999   |
| 5.  | INLET PRESS DROP  | 1.007   | 0.9978   |

NOTE : 25 DEC.C : 760 mmHg : 75 %RH FIRED HOURS -

FH.from 2nd MO (at 7 Oct 2005)@90,800.90 Hrs.

-

0

## BANGPAKONG COMBINED CYCLE POWER PLANT BLOCK 3-4

#### PERFORMANCE TEST

UNIT : BG.402 (COMBINED CYCLE)

DATE :

20/08/2010 (10:30)

| NO. | DESCRIPTION               | VALUE      | UNIT   |
|-----|---------------------------|------------|--------|
| 1.  | GROSS POWER OUTPUT TEST   | 98127.90   | KW     |
| 2.  | FUEL GAS FLOW             | 1212721.31 | CF/H   |
| 3.  | FUEL GAS HEATING VALUE    | 1021.02    | KJ/CF  |
| 4.  | FUEL GAS HEAT CONSUMPTION | 1238.22    | GJ     |
| 5.  | GROSS HEAT RATE TEST      | 12618.388  | KJ/KWH |
| 6.  | GROSS EFFICIENCY TEST     | 28.530     | %      |
| 7.  | GROSS POWER OUTPUT CORR.  | 97,742.41  | KW     |
| 8.  | GROSS HEAT RATE CORR.     | 12695.124  | KJ/KWH |
| 9.  | GROSS EFFICIENCY CORR.    | 28.357     | %      |

(corrected to 32.2C) **TEST DATA and CALCULATION** 99.133.01 98,448.76 NO. DESCRIPTION VALUE UNIT BAROMETRIC PRESS. 1. 1.01000 BAR SPECIFIC HUMIDITY 0.54000 KG/KG 2. 3. DIFF. PRESS. AIR FILTER 1.968 inH2O 4. INLET GUIDE VANE OPEN 83.992 DEG 5. С COMPRESSOR INLET TEMP. 32.351 С COMP. DISCHARGE TEMP. 6. 371.365 COMP. DISCHARGE PRESS. 7. 10.392 BAR COMP. RATIO 8. 11.349 -COMP. EFFICIENCY % 9. 90.275 EXHAUST GAS TEMP. 553.474 С 10 EXHAUST GAS ENERGY GJ 11 862.629 HOURS 12 EQUIVALENT FIRED HOUR 29728 EXHAUST GAS PRESSURE 0.03322 Bar

#### **CORRECTION FACTOR**

| NO. | DESCRIPTION       | OUT PUT | HEAT RAT |
|-----|-------------------|---------|----------|
| 1.  | BAROMETRIC PRESS. | 0.9973  | 0.9996   |
| 2.  | COMP. INLET TEMP. | 0.9990  | 0.9989   |
| 3.  | SPECIFIC HUMIDITY | 1.0007  | 0.9978   |
| 4.  | FUEL TEMP         | 0.9999  | 0.9999   |
| 5.  | INLET PRESS DROP  | 1.007   | 0.9978   |

0

NOTE : 25 DEC.C : 760 mmHg : 75 %RH FIRED HOURS - -

FH.from 2nd MO (at 13 Apr 2005)@90,835 Hrs.

## BANGPAKONG COMBINED CYCLE POWER PLANT BLOCK 3-4

## PERFORMANCE TEST

## **UNIT :** BC.403

**DATE:** 20/08/2010 (10:30)

| NO. | DESCRIPTION              | VALUE     | UNIT   |
|-----|--------------------------|-----------|--------|
| 1.  | GROSS POWER OUTPUT TEST  | 108900.00 | KW     |
| 2.  | HEAT CONSUMPTION         | 1108.3565 | GJ/HR  |
| 3.  | GROSS HEAT RATE TEST     | 10177.75  | KJ/KWH |
| 4.  | GROSS EFFICIENCY TEST    | 35.371    | %      |
| 5.  | GROSS POWER OUTPUT CORR. | 107915.96 | KW     |
| 6.  | GROSS HEAT RATE CORR.    | 10208.63  | KJ/KWH |
| 7.  | GROSS EFFICIENCY CORR.   | 35.264    | 0⁄0    |

#### TEST DATA

| NO. | DESCRIPTION             | VALUE     | UNIT  |
|-----|-------------------------|-----------|-------|
| 1.  | HP. MAIN STEAM PRESS.   | 74.11     | BAR A |
| 2.  | HP. MAIN STEAM TEMP.    | 522.00    | С     |
| 3.  | HP. MAIN STEAM ENTHALPY | 3459.70   | KJ/HG |
| 4.  | LP. STEAM PRESS.        | 9.56      | BAR A |
| 5.  | LP. STEAM TEMP.         | 233.60    | С     |
| 6.  | LP. STEAM ENTHALPY      | 2912.20   | KJ/KG |
| 7.  | HP. FEED WATER PRESS.   | 79.51     | BAR A |
| 8.  | HP. FEED WATER TEMP.    | 103.05    | С     |
| 9.  | HP. FEED WATER ENTHALPY | 437.79    | KJ/KG |
| 10  | HP. FEED WATER FLOW     | 333563.00 | KG/HR |
| 11  | LP. FEED WATER PRESS.   | 21.81     | BAR A |
| 12  | LP. FEED WATER TEMP.    | 100.05    | С     |
| 13. | LP. FEED WATER ENTHALPY | 420.85    | KJ/KG |
| 14. | LP. FEED WATER FLOW     | 67613.00  | KG/HR |
| 15. | LP. STEAM TO DEA. FLOW  | 23381.00  | KG/HR |
| 16. | CONDENSER PRESS.        | 57.04     | mmHg  |

#### **CORRECTION FACTOR**

| NO. | DESCRIPTION              | OUT PUT | HEAT RAT |
|-----|--------------------------|---------|----------|
| 1.  | INDUCTION STEAM FLOW     | 0.99220 | 1.00540  |
| 2.  | INDUCTION STEAM ENTHALPY | 1.00012 | 1.00004  |
| 3.  | INITIAL STEAM TEMP.      | 1.01331 | 0.99520  |
| 4.  | INITIAL STEAM PRESS.     | 0.99631 | 1.00477  |
| 5.  | VALVE LOOP               | 1.00593 | 0.99375  |
| 6.  | CONDENSER PRESS.         | 1.00135 | 0.99787  |

Service Hour = 14925 from 2nd MO(5April2008)

# Bang Pakong Combined Cycle Block 4

Condenser Performance Test

|      | Test date : 20/08/2010 ;t Loa                                    | d : 108 | .90              | MW         |
|------|------------------------------------------------------------------|---------|------------------|------------|
| Item | Description                                                      | Uni     | ts               | Value      |
| 1    | No. of CW. Passes                                                |         |                  | 2.00       |
| 2    | No. of Tube (design)                                             |         |                  | 14,020.00  |
| 3    | No. of Tube (test)                                               |         |                  | 13,990.00  |
| 4    | Tube outside diameter                                            | mr      | n                | 25.40      |
| 5    | Tube wall thickness                                              | mr      | n                | 1.10       |
| 6    | Tube material                                                    |         | 2                | Titanuim   |
| 7    | Tube surface area (design)                                       | m       | -                | 10,912.00  |
| 8    | CW. Flow area in tubes (test)                                    | m       | 2                | 2.96       |
| 9    | Tube surface area (test)                                         | m       | 2                | 10,888.65  |
| 10   | Electrical load                                                  | k۷      | V                | 108,900.00 |
| 11   | Average CW. Inlet temperature (test)                             | °C      | ;                | 29.38      |
| 12   | Average CW. outlet temperature (test)                            | °C      | ;                | 38.28      |
| 13   | CW. Temperature rise                                             | °C      | ;                | 8.91       |
| 14   | Abs. Conderser pressure (test)                                   | mb      | ar               | 79.44      |
| 15   | Heat capacity                                                    | kJ/m    | °С               | 4,120      |
| 16   | Turbine heat rate (test)                                         | kJ/k    | Wh               | 9,852.15   |
| 17   | Condenser heat load (steam side, test)                           | k۷      | V                | 187,276.21 |
| 18   | CW. Flow rate (test)                                             | m³/     | /s               | 5.1026     |
| 19   | CW. Velocity (test)                                              | m/      | s                | 1.73       |
| 20   | Saturated temperature (test)                                     | °C      | ;                | 41.40      |
| 21   | Log Mean Temp. Dif. (test)                                       | °C      | ;                | 6.60       |
| 22   | Test heat transfer coefficient (Ut), heat balance                | kW/n    | n <sup>2</sup> C | 2.607      |
| 23   | CW. Velocity in tube at inlet condition (V)                      | m/      | s                | 2.13       |
| 24   | Dimensional factor depending upon tube outer diameter (C1)       | kW/n    | ٦ <sup>Ć</sup> C | 2.582      |
| 25   | Dimensional correction factor for CW. Inlet temperature (C2)     | -       |                  | 1.101      |
| 26   | Dimentionless correction factor for tube material and gauge (C3) | -       |                  | 0.81       |
| 27   | dimensionless cleanliness factor (C4)                            | -       |                  | 0.90       |
| 28   | Design overall heat transfer coefficient (Ud)                    | kW/n    | n <sup>2</sup> C | 3.02       |
| 29   | Cleanliness factor by Ut, heat balance                           | -       |                  | 86.20      |
|      | Service Hour :from 2rd MO(5April2008) 149                        | 25 hr   | -                |            |
|      | Diff. Water Box (Side A / SideB) 0.2/0                           | 0.3 BA  | R                |            |

Forebay Level

6.7 m

**APPENDIX C** 

**BPK-CC BLOCK 4 SIMULATION MODEL** 

| Sources/Equipments                   | Input Data/Setting               |
|--------------------------------------|----------------------------------|
| Ambient Conditions                   |                                  |
| Temperature (DB)                     | 91.00 F                          |
| Pressure                             | 14.65 psia                       |
| Humidity                             | 0.6247                           |
| Steam Property Method                | 1993 ASME steam property formula |
| Gas Property Method                  | JANAF Table data curves          |
| Gas Turbine (GT1)                    |                                  |
| Calculation Method                   | Curve Driven                     |
| Curve Table File Name                | GE91E3                           |
| Part Load Method                     | Base Load                        |
| Lower Heating Value                  | 15000 BTU/lb                     |
| Inlet Air                            | Nitrogen 0.7569                  |
|                                      | Oxygen 0.2031                    |
|                                      | Carbon Dioxide 0.000319861       |
|                                      | H2O 0.0307231                    |
|                                      | Argon 0.00904335                 |
|                                      | H/C Ratio 4                      |
|                                      | Molecular Weight 28.63           |
| Fuel                                 | Nitrogen 0.1383                  |
|                                      | Carbon Dioxide 0.0474            |
|                                      | Hydro carbons 0.8143             |
|                                      | H/C Ratio 3.7354                 |
|                                      | Molecular Weight 18.81           |
| Inlet Press. Drop                    | 5.0516 in H2O                    |
| HRSG Press. Drop                     | 12.04 in H2O                     |
| Degradation Net Power Multiplier     | 0.9300                           |
| Degradation Net Heat Rate Multiplier | 1.1505                           |
| Gas Turbine (GT2)                    |                                  |
| Calculation Method                   | Curve Driven                     |
| Curve Table File name                | GE91E3                           |

Table C: Main input data for an existing plant simulation model

| Sources/Equipments                   | Input Data/Setting              |
|--------------------------------------|---------------------------------|
| Part Load Method                     | Base Load                       |
| Lower Heating Value                  | 15000 BTU/lb                    |
| Inlet Air                            | Nitrogen 0.7569                 |
|                                      | Oxygen 0.2031                   |
|                                      | Carbon Dioxide 0.000319861      |
|                                      | H2O 0.0307231                   |
|                                      | Argon 0.00904335                |
|                                      | H/C Ratio 4                     |
|                                      | Molecular Weight 28.63          |
| Fuel                                 | Nitrogen 0.1383                 |
|                                      | Carbon Dioxide 0.0474           |
|                                      | Hydro carbons 0.8143            |
|                                      | H/C Ratio 3.7354                |
|                                      | Molecular Weight 18.81          |
| Inlet Press. Drop                    | 5.0516 in H2O                   |
| HRSG Press. Drop                     | 12.04 in H2O                    |
| Degradation Net Power Multiplier     | 0.9245                          |
| Degradation Net Heat Rate Multiplier | 1.1525                          |
| Steam Turbine (ST1)                  |                                 |
| Design Efficiency Method             | Isentropic Expansion Efficiency |
| User-Input Efficiency                | 0.9000                          |
| Design Press. Method                 | Throttle Pressure Set Upstream  |
| Design Extraction Press. Method      | Input Extraction Pressures      |
| Rotational Speed                     | 3000                            |
| Default Stage Press. Ratio           | 0.8000                          |
| Design Blade Flow Angle              | 15.00                           |
| Min. Allowed Exit Quality            | 0.8500                          |
| Max. Allowed Inlet Temp.             | 1050.0 F                        |
| Current Overall Efficiency           | 0.8956                          |
| Cur. Bowl-Last Extraction Eff.       | 0.9000                          |
| Cur. Bowl-ELEP Eff.                  | 0.9000                          |

| Sources/Equipments              | Input Data/Setting              |
|---------------------------------|---------------------------------|
| Current Inlet S.V.              | 0.6744 ft <sup>3</sup> /lb      |
| Current Bowl Pressure           | 1164.9 psia                     |
| Group Stage 1 eff.              | 0.9000                          |
| Group Stage 1 Current PR        | 0.0517409                       |
| Group 1                         | 13 Stages                       |
| Design Stage PR Group 1         | 0.7963                          |
| Group 1 Stage Critical PR       | 0.0281223                       |
| Group Stage 1 Flow Coeff.       | 17509                           |
| Steam Turbine (ST2)             |                                 |
| Design Efficiency Method        | Isentropic Expansion Efficiency |
| User-Input Efficiency           | 0.8290                          |
| Design Press. Method            | Throttle Pressure Set Upstream  |
| Design Extraction Press. Method | Input Extraction Pressures      |
| Rotational Speed                | 3000                            |
| Default Stage Press. Ratio      | 0.8000                          |
| Design Blade Flow Angle         | 15.00                           |
| Min. Allowed Exit Quality       | 0.8500                          |
| Max. Allowed Inlet Temp.        | 1050.0 F                        |
| Current Overall Efficiency      | 0.8249                          |
| Cur. Bowl-Last Extraction Eff.  | 0.8249                          |
| Cur. Bowl-ELEP Eff.             | 0.8249                          |
| Current Inlet S.V.              | 7.60684 ft <sup>3</sup> /lb     |
| Current Bowl Pressure           | 59.07 psia                      |
| Group Stage 1 eff.              | 0.8290                          |
| Group Stage 1 Current PR        | 0.021452                        |
| Group 1                         | 17 Stages                       |
| Design Stage PR, Group 1        | 0.7977                          |
| Group 1 Stage Critical PR       | 0.0118744                       |
| Group Stage 1 Flow Coeff.       | 294096                          |
| Condenser (CND1)                |                                 |
| Condenser Modelling Method      | Surface Area                    |

| Sources/Equipments                 | Input Data/Setting                |
|------------------------------------|-----------------------------------|
| Surface Area                       | 117205 ft <sup>2</sup>            |
| CW Method Flag                     | Input Cooling Water Data          |
| Design HTC Calculation Method      | User Input Values for U           |
| HEI Cleanliness Factor             | 0.85                              |
| Min. Allowed Press.                | 0.25 psia                         |
| Max. Allowed Press.                | 25.00 psia                        |
| Condenser Pump (CNDPMP)            |                                   |
| Control Method Flag                | Fixed Control Valve Outlet Press. |
| Control Valve Outlet Pressure      | 150 psi                           |
| Efficiency Method Flag             | Input Efficiency                  |
| Isentropic Efficiency              | 0.85                              |
| Rated Flow Method Flag             | Rated Mass Flow                   |
| Rated Mass Flow Rate               | 915008 lb/hr                      |
| CNDSP                              |                                   |
| Steam ID at Primary Port           | LPFW                              |
| Primary Port Control Method        | Down Steam Flow Control           |
| Steam ID at Secondary Port         | HPFW                              |
| Secondary Port Control Method      | Down Steam Flow Control           |
| Deaerator (DA1)                    |                                   |
| DA Method Flag                     | Automatic pegging, demand flow    |
| Desired Operating Press.           | 20.72 psia                        |
| Generator (GEN1)                   |                                   |
| Generator Efficiency Method Flag   | Specified Generator Efficiency    |
| Overall Generator Efficiency       | 0.9850                            |
| Generator Rating (kVA)             | 50000                             |
| Rating Coolant Pressure            | 30.00 psia                        |
| Generator RPM                      | 3000.0                            |
| Header (HDR1)                      |                                   |
| First Outlet Control Flag          | Overflow Port                     |
| First Outlet Desired Mass Fraction | 0.5298                            |
| Seventh Outlet Control Flag        | Downstream Flow Control           |

| Sources/Equipments                 | Input Data/Setting                |
|------------------------------------|-----------------------------------|
| Seventh Outlet Desired Mass Frac.  | 0.4702                            |
| Demand Flow Control Flag           | Yes                               |
| Desired Outlet Flow                | 80889 lb/hr                       |
| High Pressure Economizer (HP1EC1)  |                                   |
| Economizer Modeling Method         | Surface Area                      |
| Surface Area                       | $150092 \text{ ft}^2$             |
| Configuration Method               | Cross-Counter, 1 Tube Row / Pass  |
| Design UA Method                   | Specify HT Coeff                  |
| Overall Heat Transfer Coeff.       | 10.16 BTU/hr-ft <sup>2</sup> -F   |
| Number of HTX Passes               | 10                                |
| High Pressure Economizer (HP1EC2)  |                                   |
| Economizer Modeling Method         | Surface Area                      |
| Surface Area                       | $150092 \text{ ft}^2$             |
| Configuration Method               | Cross-Counter, 1 Tube Row / Pass  |
| Design UA Method                   | Specify HT Coeff                  |
| Overall Heat Transfer Coeff.       | 3.61117 BTU/hr-ft <sup>2</sup> -F |
| Number of HTX Passes               | 10                                |
| High Pressure Evaporator (HP1EV)   |                                   |
| Evaporator Method Flag             | Surface Area                      |
| Surface Area                       | 239034 ft <sup>2</sup>            |
| Pressure Method Flag               | Send Operating Pressure Upstream  |
| Calculated Operating Pressure      | 1210.4 psia                       |
| Blowdown Method Flag               | Fraction of boiler feedwater      |
| Blowdown as BFW Fraction           | 0.01                              |
| Overall Heat Transfer Coeff.       | 6.59685 BTU/hr-ft <sup>2</sup> -F |
| High Pressure Superheater (HP1SH1) |                                   |
| Superheater Method Flag            | Surface Area                      |
| Surface Area                       | 38906 ft2                         |
| Configuration Method               | Cross-Counter, 1 Tube Row / Pass  |
| Design UA Method                   | Specify HT Coeff                  |
| Overall Heat Transfer Coeff.       | 9.63645 BTU/hr-ft <sup>2</sup> -F |

| Sources/Equipments                 | Input Data/Setting                 |
|------------------------------------|------------------------------------|
| Cp Calculation Method              | Integrated                         |
| Number of HTX Passes               | 10                                 |
| High Pressure Superheater (HP1SH2) |                                    |
| Superheater Method Flag            | Surface Area                       |
| Surface Area                       | 38906 ft <sup>2</sup>              |
| Configuration Method               | Cross-Counter, 1 Tube Row / Pass   |
| Design UA Method                   | Specify HT Coeff                   |
| Overall Heat Transfer Coeff.       | 8.66749 BTU/hr-ft <sup>2</sup> -F  |
| Cp Calculation Method              | Integrated                         |
| Number of HTX Passes               | 10                                 |
| High Pressure Economizer (HP2EC1)  |                                    |
| Economizer Modeling Method         | Surface Area                       |
| Surface Area                       | $150092 \text{ ft}^2$              |
| Configuration Method               | Cross-Counter, 1 Tube Row / Pass   |
| Design UA Method                   | Specify HT Coeff                   |
| Overall Heat Transfer Coeff.       | 9.89784 BTU/hr-ft <sup>2</sup> -F  |
| Number of HTX Passes               | 10                                 |
| High Pressure Economizer (HP2EC1)  |                                    |
| Economizer Modeling Method         | Surface Area                       |
| Surface Area                       | $150092 \text{ ft}^2$              |
| Configuration Method               | Cross-Counter, 1 Tube Row / Pass   |
| Design UA Method                   | Specify HT Coeff                   |
| Overall Heat Transfer Coeff.       | 2.92279 BTU/hr- ft <sup>2</sup> -F |
| Number of HTX Passes               | 10                                 |
| High Pressure Evaporator (HP2EV)   |                                    |
| Evaporator Method Flag             | Surface Area                       |
| Surface Area                       | 239034 ft <sup>2</sup>             |
| Pressure Method Flag               | Send Operating Pressure Upstream   |
| Calculated Operating Pressure      | 1210.4 psia                        |
| Blowdown Method Flag               | Fraction of boiler feedwater       |
| Blowdown as BFW Fraction           | 0.01                               |

| Sources/Equipments                      | Input Data/Setting                       |
|-----------------------------------------|------------------------------------------|
| Overall Heat Transfer Coeff.            | 6.14055 BTU/hr- ft <sup>2</sup> -F       |
| High Pressure Superheater (HP2SH1)      |                                          |
| Superheater Method Flag                 | Surface Area                             |
| Surface Area                            | 38906 ft <sup>2</sup>                    |
| Configuration Method                    | Cross-Counter, 1 Tube Row / Pass         |
| Design UA Method                        | Specify HT Coeff                         |
| Overall Heat Transfer Coeff.            | 9.37504 BTU/hr- ft <sup>2</sup> -F       |
| Cp Calculation Method                   | Integrated                               |
| Number of HTX Passes                    | 10                                       |
| High Pressure Superheater (HP2SH2)      |                                          |
| Superheater Method Flag                 | Surface Area                             |
| Surface Area                            | 38906 ft <sup>2</sup>                    |
| Configuration Method                    | Cross-Counter, 1 Tube Row / Pass         |
| Design UA Method                        | Specify HT Coeff                         |
| Overall Heat Transfer Coeff.            | 8.68298 BTU/hr- ft <sup>2</sup> -F       |
| Cp Calculation Method                   | Integrated                               |
| Number of HTX Passes                    | 10                                       |
| High Pressure Boiler Feed Pump (HPBFP1) |                                          |
| Control Method Flag                     | Fixed Control Valve Outlet Press         |
| Desired Control Valve Outlet Pressure   | 1255.4 psia                              |
| Pump Exit Pressure Method Flag          | Pressure Difference (Pump Exit - Control |
|                                         | Valve Exit                               |
| Efficiency Method Flag                  | Input Efficiency                         |
| Desired Isentropic Efficiency           | 0.8500                                   |
| Rated Flow Method Flag                  | Rated Mass Flow                          |
| Rated Mass Flow Rate                    | 915008 lb/hr                             |
| High Pressure Boiler Feed Pump (HPBFP2) |                                          |
| Control Method Flag                     | Fixed Control Valve Outlet Press         |
| Desired Control Valve Outlet Pressure   | 1255.4 psia                              |
| Pump Exit Pressure Method Flag          | Pressure Difference (Pump Exit - Control |
|                                         | Valve Exit                               |
| Sources/Equipments              | Input Data/Setting                 |  |  |  |  |  |  |  |
|---------------------------------|------------------------------------|--|--|--|--|--|--|--|
| Efficiency Method Flag          | Input Efficiency                   |  |  |  |  |  |  |  |
| Desired Isentropic Efficiency   | 0.8500                             |  |  |  |  |  |  |  |
| Rated Flow Method Flag          | Rated Mass Flow                    |  |  |  |  |  |  |  |
| Rated Mass Flow Rate            | 915008 lb/hr                       |  |  |  |  |  |  |  |
| HPFWSP                          |                                    |  |  |  |  |  |  |  |
| Stream ID at Primary Port       | S35                                |  |  |  |  |  |  |  |
| Primary Port Control Method     | downstream flow control            |  |  |  |  |  |  |  |
| Stream ID at Tertiary Port      | S34                                |  |  |  |  |  |  |  |
| Tertiary Port Control Method    | downstream flow control            |  |  |  |  |  |  |  |
| HPSP1                           |                                    |  |  |  |  |  |  |  |
| Stream ID at Primary Port       | S17                                |  |  |  |  |  |  |  |
| Primary Port Control Method     | downstream flow control            |  |  |  |  |  |  |  |
| Stream ID at Tertiary Port      | S18                                |  |  |  |  |  |  |  |
| Tertiary Port Control Method    | downstream flow control            |  |  |  |  |  |  |  |
| HPSP2                           |                                    |  |  |  |  |  |  |  |
| Stream ID at Primary Port       | S11                                |  |  |  |  |  |  |  |
| Primary Port Control Method     | downstream flow control            |  |  |  |  |  |  |  |
| Stream ID at Tertiary Port      | S46                                |  |  |  |  |  |  |  |
| Tertiary Port Control Method    | downstream flow control            |  |  |  |  |  |  |  |
| Low Pressure Economizer (LP1EC) |                                    |  |  |  |  |  |  |  |
| Economizer Modeling Method      | Surface Area                       |  |  |  |  |  |  |  |
| Surface Area                    | 33616 ft2                          |  |  |  |  |  |  |  |
| Configuration Method            | Cross-Counter, 1 Tube Row / Pass   |  |  |  |  |  |  |  |
| Design UA Method                | Specify HT Coeff                   |  |  |  |  |  |  |  |
| Overall Heat Transfer Coeff.    | 4.96323 BTU/hr- ft <sup>2</sup> -F |  |  |  |  |  |  |  |
| Number of HTX Passes            | 10                                 |  |  |  |  |  |  |  |
| Low Pressure Evaporator (LP1EV) |                                    |  |  |  |  |  |  |  |
| Evaporator Method Flag          | Surface Area                       |  |  |  |  |  |  |  |
| Surface Area                    | 149425 ft2                         |  |  |  |  |  |  |  |
| Pressure Method Flag            | Send Operating Pressure Upstream   |  |  |  |  |  |  |  |
| Calculated Operating Pressure   | 137.97 psia                        |  |  |  |  |  |  |  |

| Sources/Equipments                | Input Data/Setting                 |  |  |  |  |  |  |
|-----------------------------------|------------------------------------|--|--|--|--|--|--|
| Blowdown Method Flag              | Fraction of boiler feedwater       |  |  |  |  |  |  |
| Blowdown as BFW Fraction          | 0.01                               |  |  |  |  |  |  |
| Overall Heat Transfer Coeff.      | 3.82332 BTU/hr- ft <sup>2</sup> -F |  |  |  |  |  |  |
| Low Pressure Superheater (LP1SH1) |                                    |  |  |  |  |  |  |
| Superheater Method Flag           | Surface Area                       |  |  |  |  |  |  |
| Surface Area                      | 7889.9 ft <sup>2</sup>             |  |  |  |  |  |  |
| Configuration Method              | Cross-Counter, 1 Tube Row / Pass   |  |  |  |  |  |  |
| Design UA Method                  | Specify HT Coeff                   |  |  |  |  |  |  |
| Overall Heat Transfer Coeff.      | 4.87561 BTU/hr- ft <sup>2</sup> -F |  |  |  |  |  |  |
| Cp Calculation Method             | Integrated                         |  |  |  |  |  |  |
| Number of HTX Passes              | 10                                 |  |  |  |  |  |  |
| Low Pressure Economizer (LP2EC)   |                                    |  |  |  |  |  |  |
| Economizer Modeling Method        | Surface Area                       |  |  |  |  |  |  |
| Surface Area                      | 33616 $ft^2$                       |  |  |  |  |  |  |
| Configuration Method              | Cross-Counter, 1 Tube Row / Pass   |  |  |  |  |  |  |
| Design UA Method                  | Specify HT Coeff                   |  |  |  |  |  |  |
| Overall Heat Transfer Coeff.      | 4.97173 BTU/hr- ft <sup>2</sup> -F |  |  |  |  |  |  |
| Number of HTX Passes              | 10                                 |  |  |  |  |  |  |
| Low Pressure Evaporator (LP2EV)   |                                    |  |  |  |  |  |  |
| Evaporator Method Flag            | Surface Area                       |  |  |  |  |  |  |
| Surface Area                      | $149425 \text{ ft}^2$              |  |  |  |  |  |  |
| Pressure Method Flag              | Send Operating Pressure Upstream   |  |  |  |  |  |  |
| Calculated Operating Pressure     | 137.97 psia                        |  |  |  |  |  |  |
| Blowdown Method Flag              | Fraction of boiler feedwater       |  |  |  |  |  |  |
| Blowdown as BFW Fraction          | 0.01                               |  |  |  |  |  |  |
| Overall Heat Transfer Coeff.      | 3.32476 BTU/hr- ft <sup>2</sup> -F |  |  |  |  |  |  |
| Low Pressure Superheater (LP2SH)  |                                    |  |  |  |  |  |  |
| Superheater Method Flag           | Surface Area                       |  |  |  |  |  |  |
| Surface Area                      | 7889.9 ft <sup>2</sup>             |  |  |  |  |  |  |
| Configuration Method              | Cross-Counter, 1 Tube Row / Pass   |  |  |  |  |  |  |
| Design UA Method                  | Specify HT Coeff                   |  |  |  |  |  |  |

| Sources/Equipments                     | Input Data/Setting                       |
|----------------------------------------|------------------------------------------|
| Overall Heat Transfer Coeff.           | 4.36414 BTU/hr -ft <sup>2</sup> -F       |
| Cp Calculation Method                  | Integrated                               |
| Number of HTX Passes                   | 10                                       |
| Low Pressure Boiler Feed Pump (LPBFP1) |                                          |
| Control Method Flag                    | Fixed Control Valve Outlet Press         |
| Desired Control Valve Outlet Pressure  | 162.97 psia                              |
| Pump Exit Pressure Method Flag         | Pressure Difference (Pump Exit - Control |
|                                        | Valve Exit                               |
| Efficiency Method Flag                 | Input Efficiency                         |
| Desired Isentropic Efficiency          | 0.8500                                   |
| Rated Flow Method Flag                 | Rated Mass Flow                          |
| Rated Mass Flow Rate                   | 915008 lb/hr                             |
| Low Pressure Boiler Feed Pump (HPBFP2) |                                          |
| Control Method Flag                    | Fixed Control Valve Outlet Press         |
| Desired Control Valve Outlet Pressure  | 162.97 psia                              |
| Pump Exit Pressure Method Flag         | Pressure Difference (Pump Exit - Control |
|                                        | Valve Exit                               |
| Efficiency Method Flag                 | Input Efficiency                         |
| Desired Isentropic Efficiency          | 0.8500                                   |
| Rated Flow Method Flag                 | Rated Mass Flow                          |
| Rated Mass Flow Rate                   | 915008 lb/hr                             |
| LPFWSP                                 |                                          |
| Stream ID at Primary Port              | S31                                      |
| Primary Port Control Method            | downstream flow control                  |
| Stream ID at Tertiary Port             | S32                                      |
| Tertiary Port Control Method           | downstream flow control                  |
| M1                                     |                                          |
| Stream ID at Primary Port              | HPSTM2                                   |
| Stream ID at Tertiary Port             | HPSTM1                                   |
| M2                                     |                                          |
| Stream ID at Primary Port              | S19                                      |

| Sources/Equipments               | Input Data/Setting        |  |  |  |  |  |  |
|----------------------------------|---------------------------|--|--|--|--|--|--|
| Stream ID at Tertiary Port       | LPSTM                     |  |  |  |  |  |  |
| Makeup (MU1)                     |                           |  |  |  |  |  |  |
| Makeup Block Type                | Automatic                 |  |  |  |  |  |  |
| Air Inlet (S33)                  |                           |  |  |  |  |  |  |
| Calculation (flash) Method       | Pressure - Temperature    |  |  |  |  |  |  |
| Use Default Ambient Air Flag     | Yes                       |  |  |  |  |  |  |
| Air Inlet (S36)                  |                           |  |  |  |  |  |  |
| Calculation (flash) Method       | Pressure - Temperature    |  |  |  |  |  |  |
| Use Default Ambient Air Flag     | Yes                       |  |  |  |  |  |  |
| Fuel (S51)                       |                           |  |  |  |  |  |  |
| Calculation (flash) Method       | Pressure - Temperature    |  |  |  |  |  |  |
| Fuel Type                        | User Defined Gas          |  |  |  |  |  |  |
| Lower Heating Value              | 15000 BTU/lb              |  |  |  |  |  |  |
| Dew Point Temperature            | -459.67 F                 |  |  |  |  |  |  |
| Fuel (S52)                       |                           |  |  |  |  |  |  |
| Calculation (flash) Method       | Pressure - Temperature    |  |  |  |  |  |  |
| Fuel Type                        | User Defined Gas          |  |  |  |  |  |  |
| Lower Heating Value              | 15000 BTU/lb              |  |  |  |  |  |  |
| Dew Point Temperature            | -459.67 F                 |  |  |  |  |  |  |
| Temperature Control Mixer (TMX1) |                           |  |  |  |  |  |  |
| Press. Control Method            | Pressure Drop             |  |  |  |  |  |  |
| Pressure Drop                    | -7.25188 psi              |  |  |  |  |  |  |
| Temperature Control Mixer (TMX1) |                           |  |  |  |  |  |  |
| Press. Control Method            | Pressure Drop             |  |  |  |  |  |  |
| Pressure Drop                    | -7.25188 psi              |  |  |  |  |  |  |
| Valve (V1)                       |                           |  |  |  |  |  |  |
| Press. Control Method            | Specified Outlet Pressure |  |  |  |  |  |  |
| Desired Exit Pressure            | 20.72 psia                |  |  |  |  |  |  |
| Inlet Press. Method              | Accept Incoming Pressure  |  |  |  |  |  |  |
| Temp. Control Method             | No Enthalpy change        |  |  |  |  |  |  |
|                                  |                           |  |  |  |  |  |  |

| Sources/Equipments    | Input Data/Setting        |  |  |  |  |  |  |  |
|-----------------------|---------------------------|--|--|--|--|--|--|--|
| Valve (V1)            |                           |  |  |  |  |  |  |  |
| Press. Control Method | Specified Outlet Pressure |  |  |  |  |  |  |  |
| Desired Exit Pressure | 20.72 psia                |  |  |  |  |  |  |  |
| Inlet Press. Method   | Accept Incoming Pressure  |  |  |  |  |  |  |  |
| Temp. Control Method  | No Enthalpy change        |  |  |  |  |  |  |  |



| Period              | % of Time |
|---------------------|-----------|
| March - May         | 80        |
| June - October      | 90        |
| November - February | 75        |

|           |                         | No Mechanical Chiller |       |        |             |                        |         |             |                        |         |        |             |                                  |                        |         | Total S    | ummary                         |  |
|-----------|-------------------------|-----------------------|-------|--------|-------------|------------------------|---------|-------------|------------------------|---------|--------|-------------|----------------------------------|------------------------|---------|------------|--------------------------------|--|
|           |                         |                       |       |        |             | GT41                   |         |             | GT42 ST                |         |        | Net         |                                  |                        |         | No Chiller |                                |  |
| Month     | Approx.<br>Service Hour | DB ( <sup>°</sup> C)  | F     | RH (%) | Output (MW) | Heat Rate<br>(BTU/kWh) | EFF (%) | Output (MW) | Heat Rate<br>(BTU/kWh) | EFF (%) | MW     | Output (MW) | Fuel<br>Consumption<br>(MMBTU/h) | Heat rate<br>(BTU/kWh) | Eff (%) | Total MWh  | Fuel<br>Consumption<br>(MMBTU) |  |
| Mar-May   |                         |                       |       |        |             |                        |         |             |                        |         |        |             |                                  |                        |         |            |                                |  |
| 1:00 AM   | 72                      | 28.6                  | 83.49 | 80.5   | 100.53      | 11,899                 | 28.68   | 101.13      | 11,879                 | 28.73   | 108.08 | 309.74      | 2397.53                          | 7,740                  | 44.09   | 22,301     | 172,622                        |  |
| 2:00 AM   | 72                      | 28.4                  | 83.09 | 82.1   | 100.68      | 11,896                 | 28.69   | 101.28      | 11,875                 | 28.74   | 108.09 | 310.05      | 2400.39                          | 7,742                  | 44.09   | 22,324     | 172,828                        |  |
| 3:00 AM   | 72                      | 28.2                  | 82.75 | 83.2   | 100.82      | 11,892                 | 28.70   | 101.42      | 11,872                 | 28.75   | 108.03 | 310.27      | 2403.01                          | 7,745                  | 44.07   | 22,339     | 173,017                        |  |
| 4:00 AM   | 72                      | 28.0                  | 82.43 | 84.4   | 100.94      | 11,890                 | 28.70   | 101.55      | 11,869                 | 28.76   | 108.12 | 310.61      | 2405.47                          | 7,744                  | 44.07   | 22,364     | 173,194                        |  |
| 5:00 AM   | 72                      | 27.9                  | 82.15 | 85.3   | 101.05      | 11,887                 | 28.71   | 101.66      | 11,866                 | 28.76   | 108.15 | 310.86      | 2407.48                          | 7,745                  | 44.07   | 22,382     | 173,338                        |  |
| 6:00 AM   | 72                      | 27.7                  | 81.93 | 86.4   | 101.14      | 11,885                 | 28.72   | 101.74      | 11,864                 | 28.77   | 108.17 | 311.05      | 2409.09                          | 7,745                  | 44.07   | 22,396     | 173,455                        |  |
| 7:00 AM   | 72                      | 28.0                  | 82.37 | 84.9   | 100.97      | 11,889                 | 28.71   | 101.57      | 11,869                 | 28.76   | 108.17 | 310.71      | 2405.97                          | 7,743                  | 44.08   | 22,371     | 173,230                        |  |
| 8:00 AM   | 72                      | 29.4                  | 85.01 | 77.0   | 99.92       | 11,917                 | 28.64   | 100.52      | 11,896                 | 28.69   | 107.98 | 308.42      | 2386.54                          | 7,738                  | 44.11   | 22,206     | 171,831                        |  |
| 9:00 AM   | 72                      | 30.9                  | 87.66 | 68.6   | 99.88       | 11,946                 | 28.57   | 99.47       | 11,925                 | 28.62   | 107.76 | 307.10      | 2379.25                          | 7,748                  | 44.05   | 22,111     | 171,306                        |  |
| 10:00 AM  | 72                      | 32.3                  | 90.12 | 62.6   | 97.90       | 11,968                 | 28.52   | 98.49       | 11,947                 | 28.57   | 107.62 | 304.01      | 2348.28                          | 7,724                  | 44.18   | 21,889     | 169,076                        |  |
| 11:00 AM  | 72                      | 32.8                  | 91.04 | 61.9   | 97.53       | 11,976                 | 28.50   | 98.12       | 11,959                 | 28.54   | 107.58 | 303.22      | 2341.39                          | 7,722                  | 44.20   | 21,832     | 168,580                        |  |
| 12:00 PM  | 72                      | 33.2                  | 91.77 | 60.7   | 97.21       | 11,967                 | 28.52   | 97.82       | 11,966                 | 28.52   | 107.55 | 302.58      | 2333.90                          | 7,713                  | 44.25   | 21,786     | 168,041                        |  |
| 1:00 PM   | 72                      | 33.5                  | 92.24 | 59.6   | 97.06       | 11,992                 | 28.46   | 97.64       | 11,971                 | 28.51   | 107.52 | 302.21      | 2332.68                          | 7,719                  | 44.22   | 21,759     | 167,953                        |  |
| 2:00 PM   | 72                      | 33.5                  | 92.37 | 59.2   | 97.00       | 11,993                 | 28.46   | 97.58       | 11,972                 | 28.51   | 107.50 | 302.09      | 2331.64                          | 7,718                  | 44.22   | 21,751     | 167,878                        |  |
| 3:00 PM   | 72                      | 33.5                  | 92.30 | 60.2   | 97.03       | 11,993                 | 28.46   | 97.61       | 11,973                 | 28.51   | 107.53 | 302.17      | 2332.33                          | 7,719                  | 44.22   | 21,756     | 167,928                        |  |
| 4:00 PM   | 72                      | 33.3                  | 91.93 | 61.2   | 97.17       | 11,990                 | 28.47   | 97.76       | 11,970                 | 28.51   | 107.55 | 302.47      | 2335.24                          | 7,720                  | 44.21   | 21,778     | 168,138                        |  |
| 5:00 PM   | 72                      | 33.0                  | 91.42 | 62.3   | 97.38       | 11,986                 | 28.47   | 97.96       | 11,965                 | 28.52   | 107.44 | 302.78      | 2339.23                          | 7,726                  | 44.18   | 21,800     | 168,424                        |  |
| 6:00 PM   | 72                      | 32.3                  | 90.19 | 65.0   | 97.86       | 11,974                 | 28.50   | 98.45       | 11,953                 | 28.55   | 107.63 | 303.94      | 2348.58                          | 7,727                  | 44.17   | 21,884     | 169,098                        |  |
| 7:00 PM   | 72                      | 31.4                  | 88.55 | 67.7   | 98.52       | 11,956                 | 28.55   | 99.11       | 11,936                 | 28.59   | 107.72 | 305.34      | 2360.82                          | 7,732                  | 44.14   | 21,985     | 169,979                        |  |
| 8:00 PM   | 72                      | 30.8                  | 87.41 | 69.6   | 98.97       | 11,944                 | 28.58   | 99.57       | 11,924                 | 28.62   | 107.76 | 306.30      | 2369.35                          | 7,735                  | 44.12   | 22,053     | 170,593                        |  |
| 9:00 PM   | 72                      | 30.2                  | 86.41 | 72.3   | 99.37       | 11,933                 | 28.60   | 99.96       | 11,912                 | 28.65   | 107.84 | 307.17      | 2376.54                          | 7,737                  | 44.11   | 22,116     | 171,111                        |  |
| 10:00 PM  | 72                      | 29.7                  | 85.54 | 74.5   | 99.71       | 11,923                 | 28.63   | 100.31      | 11,902                 | 28.68   | 107.91 | 307.93      | 2382.78                          | 7,738                  | 44.11   | 22,171     | 171,560                        |  |
| 11:00 PM  | 72                      | 29.4                  | 84.95 | 76.2   | 99.95       | 11,916                 | 28.64   | 100.55      | 11,895                 | 28.69   | 107.97 | 308.47      | 2387.02                          | 7,738                  | 44.11   | 22,210     | 171,866                        |  |
| 12:00 AM  | 72                      | 29.2                  | 84.54 | 78.1   | 100.11      | 11,911                 | 28.65   | 100.71      | 11,891                 | 28.70   | 108.01 | 308.83      | 2389.95                          | 7,739                  | 44.10   | 22,235     | 172,077                        |  |
| Sub-Total | 1728                    |                       |       |        |             |                        |         |             |                        |         |        |             |                                  |                        |         | 529,799    | 4,097,123                      |  |

| Period              | % of Time |
|---------------------|-----------|
| March - May         | 80        |
| June - October      | 90        |
| November - February | 75        |

|           |                         |                      | No Mechanical Chiller |        |             |                        |         |             |                        |         |        |             |                                  |                        |         | Total S    | ummary                         |  |
|-----------|-------------------------|----------------------|-----------------------|--------|-------------|------------------------|---------|-------------|------------------------|---------|--------|-------------|----------------------------------|------------------------|---------|------------|--------------------------------|--|
|           |                         |                      |                       |        |             | GT41                   |         |             | GT42 ST                |         |        | Net         |                                  |                        |         | No Chiller |                                |  |
| Month     | Approx.<br>Service Hour | DB ( <sup>°</sup> C) | F                     | RH (%) | Output (MW) | Heat Rate<br>(BTU/kWh) | EFF (%) | Output (MW) | Heat Rate<br>(BTU/kWh) | EFF (%) | MW     | Output (MW) | Fuel<br>Consumption<br>(MMBTU/h) | Heat rate<br>(BTU/kWh) | Eff (%) | Total MWh  | Fuel<br>Consumption<br>(MMBTU) |  |
| Jun - Oct |                         |                      |                       |        |             |                        |         |             |                        |         |        |             | 0.00                             |                        |         |            |                                |  |
| 1:00 AM   | 135                     | 27.5                 | 81.49                 | 84.9   | 101.32      | 11,878                 | 28.73   | 101.93      | 11,857                 | 28.78   | 108.12 | 311.37      | 2412.06                          | 7,747                  | 44.06   | 42,034     | 325,629                        |  |
| 2:00 AM   | 135                     | 27.3                 | 81.21                 | 85.6   | 101.43      | 11,875                 | 28.74   | 102.04      | 11,854                 | 28.79   | 108.17 | 311.64      | 2414.06                          | 7,746                  | 44.06   | 42,072     | 325,899                        |  |
| 3:00 AM   | 135                     | 27.2                 | 80.92                 | 86.1   | 101.55      | 11,872                 | 28.75   | 102.15      | 11,851                 | 28.80   | 108.18 | 311.88      | 2416.18                          | 7,747                  | 44.06   | 42,104     | 326,184                        |  |
| 4:00 AM   | 135                     | 27.1                 | 80.87                 | 86.4   | 101.57      | 11,871                 | 28.75   | 102.17      | 11,851                 | 28.80   | 108.20 | 311.94      | 2416.55                          | 7,747                  | 44.06   | 42,112     | 326,235                        |  |
| 5:00 AM   | 135                     | 27.4                 | 81.33                 | 86.8   | 101.38      | 11,878                 | 28.73   | 101.99      | 11,857                 | 28.78   | 108.18 | 311.55      | 2413.49                          | 7,747                  | 44.06   | 42,059     | 325,821                        |  |
| 6:00 AM   | 135                     | 27.8                 | 82.11                 | 87.3   | 101.06      | 11,888                 | 28.71   | 101.67      | 11,868                 | 28.76   | 108.19 | 310.92      | 2408.02                          | 7,745                  | 44.07   | 41,974     | 325,083                        |  |
| 7:00 AM   | 135                     | 28.5                 | 83.26                 | 86.7   | 100.60      | 11,903                 | 28.67   | 101.20      | 11,882                 | 28.72   | 108.15 | 309.95      | 2399.90                          | 7,743                  | 44.08   | 41,844     | 323,987                        |  |
| 8:00 AM   | 135                     | 29.4                 | 84.89                 | 81.4   | 99.96       | 11,919                 | 28.63   | 100.50      | 11,898                 | 28.69   | 108.06 | 308.52      | 2387.12                          | 7,737                  | 44.11   | 41,650     | 322,262                        |  |
| 9:00 AM   | 135                     | 30.4                 | 86.72                 | 76.0   | 99.23       | 11,939                 | 28.59   | 99.83       | 11,919                 | 28.63   | 107.91 | 306.96      | 2374.55                          | 7,736                  | 44.12   | 41,440     | 320,564                        |  |
| 10:00 AM  | 135                     | 31.1                 | 87.98                 | 71.0   | 98.74       | 11,954                 | 28.55   | 99.33       | 11,933                 | 28.60   | 107.78 | 305.85      | 2365.60                          | 7,735                  | 44.13   | 41,289     | 319,355                        |  |
| 11:00 AM  | 135                     | 31.6                 | 88.82                 | 67.7   | 98.41       | 11,960                 | 28.54   | 99.00       | 11,939                 | 28.59   | 107.71 | 305.12      | 2358.90                          | 7,731                  | 44.15   | 41,191     | 318,451                        |  |
| 12:00 PM  | 135                     | 31.7                 | 89.11                 | 65.4   | 98.30       | 11,960                 | 28.54   | 98.89       | 11,939                 | 28.59   | 107.67 | 304.86      | 2356.27                          | 7,729                  | 44.16   | 41,156     | 318,096                        |  |
| 1:00 PM   | 135                     | 31.9                 | 89.34                 | 64.3   | 98.21       | 11,961                 | 28.53   | 98.80       | 11,940                 | 28.58   | 107.66 | 304.67      | 2354.34                          | 7,728                  | 44.17   | 41,130     | 317,836                        |  |
| 2:00 PM   | 135                     | 31.7                 | 89.02                 | 65.7   | 98.34       | 11,959                 | 28.54   | 98.92       | 11,938                 | 28.59   | 107.69 | 304.94      | 2356.93                          | 7,729                  | 44.16   | 41,167     | 318,186                        |  |
| 3:00 PM   | 135                     | 31.3                 | 88.42                 | 67.1   | 98.57       | 11,954                 | 28.55   | 99.16       | 11,933                 | 28.60   | 107.72 | 305.45      | 2361.64                          | 7,732                  | 44.14   | 41,236     | 318,822                        |  |
| 4:00 PM   | 135                     | 31.0                 | 87.72                 | 68.2   | 98.85       | 11,946                 | 28.57   | 99.44       | 11,925                 | 28.62   | 107.75 | 306.04      | 2366.77                          | 7,733                  | 44.13   | 41,316     | 319,514                        |  |
| 5:00 PM   | 135                     | 30.4                 | 86.78                 | 70.2   | 99.23       | 11,937                 | 28.59   | 99.82       | 11,916                 | 28.64   | 107.79 | 306.83      | 2373.92                          | 7,737                  | 44.11   | 41,423     | 320,479                        |  |
| 6:00 PM   | 135                     | 29.8                 | 85.63                 | 72.5   | 99.68       | 11,923                 | 28.63   | 100.28      | 11,902                 | 28.68   | 107.87 | 307.83      | 2382.06                          | 7,738                  | 44.11   | 41,557     | 321,579                        |  |
| 7:00 PM   | 135                     | 29.1                 | 84.37                 | 75.2   | 100.19      | 11,908                 | 28.66   | 100.78      | 11,887                 | 28.71   | 107.95 | 308.92      | 2391.03                          | 7,740                  | 44.10   | 41,704     | 322,790                        |  |
| 8:00 PM   | 135                     | 28.7                 | 83.70                 | 77.3   | 100.45      | 11,900                 | 28.68   | 101.05      | 11,879                 | 28.73   | 107.85 | 309.35      | 2395.73                          | 7,744                  | 44.07   | 41,762     | 323,423                        |  |
| 9:00 PM   | 135                     | 28.6                 | 83.41                 | 79.1   | 100.56      | 11,897                 | 28.69   | 101.16      | 11,876                 | 28.74   | 108.05 | 309.77      | 2397.74                          | 7,740                  | 44.09   | 41,819     | 323,695                        |  |
| 10:00 PM  | 135                     | 28.3                 | 82.97                 | 80.9   | 100.73      | 11,893                 | 28.70   | 101.34      | 11,872                 | 28.75   | 108.09 | 310.16      | 2401.09                          | 7,741                  | 44.09   | 41,871     | 324,147                        |  |
| 11:00 PM  | 135                     | 28.0                 | 82.37                 | 82.2   | 100.97      | 11,886                 | 28.71   | 101.58      | 11,866                 | 28.76   | 108.11 | 310.66      | 2405.48                          | 7,743                  | 44.08   | 41,940     | 324,739                        |  |
| 12:00 AM  | 135                     | 27.5                 | 81.58                 | 83.5   | 101.29      | 11,878                 | 28.73   | 101.89      | 11,857                 | 28.78   | 108.15 | 311.33      | 2411.23                          | 7,745                  | 44.07   | 42,029     | 325,516                        |  |
| Sub-Total | 3240                    |                      |                       |        |             |                        |         |             |                        |         |        |             |                                  |                        |         | 999,878    | 7,738,289                      |  |

| Period              | % of Time |
|---------------------|-----------|
| March - May         | 80        |
| June - October      | 90        |
| November - February | 75        |

|           |                         | No Mechanical Chiller |       |        |             |                        |         |             |                        |         |        |             |                                  | Total Summary          |         |            |                                |  |
|-----------|-------------------------|-----------------------|-------|--------|-------------|------------------------|---------|-------------|------------------------|---------|--------|-------------|----------------------------------|------------------------|---------|------------|--------------------------------|--|
|           |                         |                       |       |        |             | GT41                   |         |             | GT42                   |         |        |             | Ν                                | let                    |         | No Chiller |                                |  |
| Month     | Approx.<br>Service Hour | DB ( <sup>°</sup> C)  | F     | RH (%) | Output (MW) | Heat Rate<br>(BTU/kWh) | EFF (%) | Output (MW) | Heat Rate<br>(BTU/kWh) | EFF (%) | MW     | Output (MW) | Fuel<br>Consumption<br>(MMBTU/h) | Heat rate<br>(BTU/kWh) | Eff (%) | Total MWh  | Fuel<br>Consumption<br>(MMBTU) |  |
| Nov - Feb |                         |                       |       |        |             |                        |         |             |                        |         |        |             | 0.00                             |                        |         |            |                                |  |
| 1:00 AM   | 90                      | 26.0                  | 78.77 | 74.9   | 102.44      | 11,837                 | 28.83   | 103.05      | 11,816                 | 28.88   | 108.07 | 313.56      | 2430.22                          | 7,750                  | 44.04   | 28,220     | 218,720                        |  |
| 2:00 AM   | 90                      | 25.7                  | 78.18 | 76.0   | 102.68      | 11,830                 | 28.85   | 103.29      | 11,810                 | 28.90   | 108.11 | 314.08      | 2434.56                          | 7,751                  | 44.03   | 28,267     | 219,110                        |  |
| 3:00 AM   | 90                      | 25.3                  | 77.52 | 76.9   | 102.94      | 11,823                 | 28.87   | 103.55      | 11,802                 | 28.92   | 108.13 | 314.62      | 2439.16                          | 7,753                  | 44.02   | 28,316     | 219,524                        |  |
| 4:00 AM   | 90                      | 25.0                  | 76.94 | 78.0   | 103.17      | 11,816                 | 28.88   | 103.78      | 11,796                 | 28.93   | 108.15 | 315.10      | 2443.25                          | 7,754                  | 44.02   | 28,359     | 219,892                        |  |
| 5:00 AM   | 90                      | 24.7                  | 76.48 | 78.6   | 103.35      | 11,811                 | 28.90   | 103.97      | 11,790                 | 28.95   | 108.18 | 315.50      | 2446.47                          | 7,754                  | 44.01   | 28,395     | 220,183                        |  |
| 6:00 AM   | 90                      | 24.4                  | 75.96 | 79.3   | 103.56      | 11,805                 | 28.91   | 104.18      | 11,785                 | 28.96   | 108.18 | 315.92      | 2450.29                          | 7,756                  | 44.00   | 28,433     | 220,526                        |  |
| 7:00 AM   | 90                      | 24.3                  | 75.80 | 79.1   | 103.62      | 11,803                 | 28.92   | 104.24      | 11,783                 | 28.97   | 108.18 | 316.04      | 2451.29                          | 7,756                  | 44.00   | 28,443     | 220,616                        |  |
| 8:00 AM   | 90                      | 25.2                  | 77.38 | 74.0   | 103.00      | 11,820                 | 28.87   | 103.62      | 11,799                 | 28.93   | 108.10 | 314.72      | 2440.07                          | 7,753                  | 44.02   | 28,325     | 219,607                        |  |
| 9:00 AM   | 90                      | 26.7                  | 80.08 | 67.0   | 101.94      | 11,846                 | 28.81   | 102.55      | 11,826                 | 28.86   | 107.97 | 312.46      | 2420.34                          | 7,746                  | 44.06   | 28,121     | 217,830                        |  |
| 10:00 AM  | 90                      | 28.0                  | 82.48 | 61.2   | 100.99      | 11,867                 | 28.76   | 101.59      | 11,846                 | 28.81   | 107.87 | 310.45      | 2401.88                          | 7,737                  | 44.11   | 27,941     | 216,170                        |  |
| 11:00 AM  | 90                      | 29.1                  | 84.38 | 57.6   | 100.24      | 11,896                 | 28.69   | 100.83      | 11,865                 | 28.77   | 107.79 | 308.86      | 2388.80                          | 7,734                  | 44.13   | 27,797     | 214,992                        |  |
| 12:00 PM  | 90                      | 29.8                  | 85.73 | 55.1   | 99.70       | 11,900                 | 28.68   | 100.30      | 11,879                 | 28.73   | 107.70 | 307.70      | 2377.88                          | 7,728                  | 44.16   | 27,693     | 214,009                        |  |
| 1:00 PM   | 90                      | 30.6                  | 87.16 | 53.3   | 99.13       | 11,916                 | 28.64   | 99.72       | 11,895                 | 28.69   | 107.61 | 306.46      | 2367.39                          | 7,725                  | 44.18   | 27,582     | 213,065                        |  |
| 2:00 PM   | 90                      | 31.0                  | 87.88 | 52.5   | 98.84       | 11,924                 | 28.62   | 99.43       | 11,903                 | 28.67   | 107.58 | 305.85      | 2362.12                          | 7,723                  | 44.19   | 27,527     | 212,591                        |  |
| 3:00 PM   | 90                      | 31.2                  | 88.14 | 52.5   | 98.74       | 11,927                 | 28.62   | 99.33       | 11,907                 | 28.66   | 107.57 | 305.64      | 2360.30                          | 7,723                  | 44.20   | 27,507     | 212,427                        |  |
| 4:00 PM   | 90                      | 31.2                  | 88.17 | 53.3   | 98.72       | 11,929                 | 28.61   | 99.31       | 11,908                 | 28.66   | 107.57 | 305.61      | 2360.26                          | 7,723                  | 44.19   | 27,505     | 212,424                        |  |
| 5:00 PM   | 90                      | 30.6                  | 87.14 | 56.8   | 99.13       | 11,920                 | 28.63   | 99.72       | 11,899                 | 28.68   | 107.66 | 306.50      | 2368.11                          | 7,726                  | 44.17   | 27,585     | 213,130                        |  |
| 6:00 PM   | 90                      | 29.5                  | 85.09 | 61.9   | 99.94       | 11,900                 | 28.68   | 100.53      | 11,880                 | 28.73   | 107.78 | 308.25      | 2383.53                          | 7,733                  | 44.14   | 27,742     | 214,518                        |  |
| 7:00 PM   | 90                      | 28.5                  | 83.24 | 65.6   | 100.67      | 11,883                 | 28.72   | 101.27      | 11,862                 | 28.77   | 107.86 | 309.80      | 2397.53                          | 7,739                  | 44.10   | 27,882     | 215,777                        |  |
| 8:00 PM   | 90                      | 28.0                  | 82.46 | 67.3   | 100.98      | 11,876                 | 28.74   | 101.58      | 11,855                 | 28.79   | 107.91 | 310.47      | 2403.47                          | 7,741                  | 44.09   | 27,942     | 216,312                        |  |
| 9:00 PM   | 90                      | 27.7                  | 81.85 | 68.7   | 101.22      | 11,870                 | 28.75   | 101.83      | 11,850                 | 28.80   | 107.93 | 310.98      | 2408.17                          | 7,744                  | 44.07   | 27,988     | 216,735                        |  |
| 10:00 PM  | 90                      | 27.3                  | 81.08 | 70.3   | 101.53      | 11,863                 | 28.77   | 102.13      | 11,842                 | 28.82   | 107.96 | 311.62      | 2413.87                          | 7,746                  | 44.06   | 28,046     | 217,249                        |  |
| 11:00 PM  | 90                      | 26.8                  | 80.29 | 72.1   | 101.84      | 11,854                 | 28.79   | 102.45      | 11,834                 | 28.84   | 108.01 | 312.30      | 2419.60                          | 7,748                  | 44.05   | 28,107     | 217,764                        |  |
| 12:00 AM  | 90                      | 26.3                  | 79.42 | 73.9   | 102.18      | 11,844                 | 28.82   | 102.79      | 11,824                 | 28.87   | 108.06 | 313.03      | 2425.61                          | 7,749                  | 44.05   | 28,173     | 218,305                        |  |
| Sub-Total | 2160                    |                       |       |        |             |                        |         |             |                        |         |        |             |                                  |                        |         | 671,895    | 5,201,476                      |  |
| Total     | 7128                    |                       |       |        |             |                        |         |             |                        |         |        |             |                                  |                        |         | 2,201,572  | 17,036,888                     |  |



### Evaporative System Performance Summary

DB (°C) DB (°C) %RH Design - 90

| Period              | % of Time |
|---------------------|-----------|
| March - May         | 80        |
| June - October      | 90        |
| November - February | 75        |

Approximately Parasitic Load 0.08 kW/TR

|          |                         |            |                |                      |                        |                    |                        |            |                | F                    | ogging                 |                    |                        |            |        |                |                        |         |                             |                            |                           |                             |              |                                | Total        | Summary                        |              |                                |
|----------|-------------------------|------------|----------------|----------------------|------------------------|--------------------|------------------------|------------|----------------|----------------------|------------------------|--------------------|------------------------|------------|--------|----------------|------------------------|---------|-----------------------------|----------------------------|---------------------------|-----------------------------|--------------|--------------------------------|--------------|--------------------------------|--------------|--------------------------------|
|          |                         |            |                |                      | G                      | ſ41                |                        |            |                |                      | 0                      | GT 42              |                        |            | ST     |                | Ne                     | t       |                             |                            |                           |                             | No           | Fogging                        | Fe           | ogging                         | Incr         | remental                       |
| Month    | Approx.<br>Service Hour | DB<br>(°C) | Output<br>(MW) | Cooling<br>load (TR) | Parasitic<br>Load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | Output<br>(MW) | Cooling<br>load (TR) | Parasitic<br>Load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | MW     | Output<br>(MW) | Heat rate<br>(BTU/kWh) | Eff (%) | Water<br>Required<br>(m3/h) | Output<br>Increase<br>(MW) | Output<br>Increase<br>(%) | Heat Rate<br>Changed<br>(%) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) |
| Mar-Ma   |                         |            |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                             |                            |                           |                             |              |                                |              |                                |              |                                |
| 1:00 AM  | 72                      | 28.6       | 101.53         | 155                  | -12                    | 101.52             | 11877.45               | 28.74      | 102.14         | 155                  | -12                    | 102.13             | 11856.44               | 28.79      | 107.56 | 311.21         | 7765.3                 | 43.95   | 1.64                        | 1.47                       | 0.47                      | 0.32                        | 22,301       | 172,622                        | 22,407       | 173,998                        | 106          | 1,376                          |
| 2:00 AM  | 72                      | 28.4       | 101.51         | 128                  | -10                    | 101.50             | 11878.19               | 28.74      | 102.12         | 128                  | -10                    | 102.11             | 11857.18               | 28.78      | 107.69 | 311.30         | 7762.2                 | 43.97   | 1.35                        | 1.24                       | 0.40                      | 0.26                        | 22,324       | 172,828                        | 22,413       | 173,979                        | 90           | 1,151                          |
| 3:00 AM  | 72                      | 28.2       | 101.52         | 109                  | -9                     | 101.51             | 11877.02               | 28.74      | 102.13         | 109                  | -9                     | 102.12             | 11856.01               | 28.79      | 107.78 | 311.41         | 7759.5                 | 43.98   | 1.15                        | 1.14                       | 0.37                      | 0.19                        | 22,339       | 173,017                        | 22,422       | 173,981                        | 82           | 964                            |
| 4:00 AM  | 72                      | 28.0       | 101.52         | 89                   | -7                     | 101.51             | 11876.83               | 28.74      | 102.13         | 89                   | -7                     | 102.12             | 11856.83               | 28.79      | 107.86 | 311.50         | 7757.7                 | 43.99   | 0.94                        | 0.89                       | 0.29                      | 0.17                        | 22,364       | 173,194                        | 22,428       | 173,988                        | 64           | 794                            |
| 5:00 AM  | 72                      | 27.9       | 101.54         | 74                   | -6                     | 101.53             | 11876.70               | 28.74      | 102.14         | 74                   | -6                     | 102.13             | 11855.69               | 28.79      | 107.91 | 311.58         | 7756.5                 | 44.00   | 0.79                        | 0.72                       | 0.23                      | 0.16                        | 22,382       | 173,338                        | 22,434       | 174,007                        | 51           | 668                            |
| 6:00 AM  | 72                      | 27.7       | 101.51         | 57                   | -5                     | 101.51             | 11877.53               | 28.74      | 102.11         | 57                   | -5                     | 102.11             | 11856.53               | 28.79      | 107.99 | 311.60         | 7754.4                 | 44.01   | 0.60                        | 0.55                       | 0.18                      | 0.12                        | 22,396       | 173,455                        | 22,435       | 173,970                        | 40           | 515                            |
| 7:00 AM  | 72                      | 28.0       | 101.49         | 81                   | -6                     | 101.48             | 11877.76               | 28.74      | 102.10         | 81                   | -6                     | 102.09             | 11856.75               | 28.79      | 107.87 | 311.45         | 7756.9                 | 44.00   | 0.85                        | 0.74                       | 0.24                      | 0.17                        | 22,371       | 173,230                        | 22,424       | 173,944                        | 53           | 715                            |
| 8:00 AM  | 72                      | 29.4       | 101.33         | 217                  | -17                    | 101.31             | 11884.03               | 28.72      | 101.94         | 217                  | -17                    | 101.92             | 11864.02               | 28.77      | 107.29 | 310.52         | 7771.5                 | 43.92   | 2.30                        | 2.10                       | 0.68                      | 0.43                        | 22,206       | 171,831                        | 22,358       | 173,752                        | 151          | 1,920                          |
| 9:00 AM  | 72                      | 30.9       | 101.33         | 377                  | -30                    | 101.30             | 11885.53               | 28.72      | 101.94         | 377                  | -30                    | 101.91             | 11865.51               | 28.76      | 106.60 | 309.81         | 7789.3                 | 43.82   | 4.01                        | 2.71                       | 0.88                      | 0.54                        | 22,111       | 171,306                        | 22,306       | 173,752                        | 195          | 2,445                          |
| 10:00 AN | 72                      | 32.3       | 101.20         | 505                  | -40                    | 101.16             | 11891.75               | 28.71      | 101.80         | 505                  | -40                    | 101.76             | 11870.71               | 28.75      | 106.05 | 308.97         | 7803.2                 | 43.74   | 5.38                        | 4.96                       | 1.63                      | 1.02                        | 21,889       | 169,076                        | 22,245       | 173,586                        | 357          | 4,510                          |
| 11:00 AN | 72                      | 32.8       | 100.96         | 523                  | -42                    | 100.92             | 11898.93               | 28.70      | 101.56         | 523                  | -42                    | 101.52             | 11878.90               | 28.73      | 105.96 | 308.39         | 7804.1                 | 43.73   | 5.58                        | 5.17                       | 1.71                      | 1.07                        | 21,832       | 168,580                        | 22,204       | 173,285                        | 372          | 4,705                          |
| 12:00 PM | 72                      | 33.2       | 100.85         | 552                  | -44                    | 100.81             | 11903.21               | 28.69      | 101.46         | 552                  | -44                    | 101.42             | 11882.17               | 28.72      | 105.83 | 308.05         | 7807.0                 | 43.72   | 5.89                        | 5.47                       | 1.81                      | 1.22                        | 21,786       | 168,041                        | 22,180       | 173,157                        | 394          | 5,116                          |
| 1:00 PM  | 72                      | 33.5       | 100.84         | 578                  | -46                    | 100.79             | 11903.45               | 28.69      | 101.44         | 578                  | -46                    | 101.39             | 11883.41               | 28.72      | 105.71 | 307.89         | 7810.2                 | 43.70   | 6.16                        | 5.69                       | 1.88                      | 1.18                        | 21,759       | 167,953                        | 22,168       | 173,138                        | 409          | 5,185                          |
| 2:00 PM  | 72                      | 33.5       | 100.85         | 587                  | -47                    | 100.80             | 11903.54               | 28.69      | 101.45         | 587                  | -47                    | 101.40             | 11882.50               | 28.72      | 105.67 | 307.88         | 7810.9                 | 43.70   | 6.26                        | 5.79                       | 1.92                      | 1.20                        | 21,751       | 167,878                        | 22,167       | 173,148                        | 417          | 5,270                          |
| 3:00 PM  | 72                      | 33.5       | 100.73         | 565                  | -45                    | 100.68             | 11907.34               | 28.68      | 101.30         | 565                  | -45                    | 101.25             | 11886.30               | 28.71      | 105.76 | 307.70         | 7807.6                 | 43.71   | 6.03                        | 5.53                       | 1.83                      | 1.15                        | 21,756       | 167,928                        | 22,155       | 172,975                        | 398          | 5,048                          |
| 4:00 PM  | 72                      | 33.3       | 100.73         | 543                  | -43                    | 100.69             | 11907.13               | 28.68      | 101.33         | 543                  | -43                    | 101.29             | 11886.09               | 28.71      | 105.86 | 307.83         | 7805.5                 | 43.73   | 5.78                        | 5.36                       | 1.77                      | 1.10                        | 21,778       | 168,138                        | 22,164       | 173,001                        | 386          | 4,863                          |
| 5:00 PM  | 72                      | 33.0       | 100.76         | 517                  | -41                    | 100.72             | 11905.88               | 28.68      | 101.36         | 517                  | -41                    | 101.32             | 11884.85               | 28.72      | 105.97 | 308.01         | 7802.8                 | 43.74   | 5.51                        | 5.23                       | 1.73                      | 0.99                        | 21,800       | 168,424                        | 22,176       | 173,038                        | 377          | 4,613                          |
| 6:00 PM  | 72                      | 32.3       | 100.85         | 457                  | -37                    | 100.81             | 11902.31               | 28.69      | 101.45         | 457                  | -37                    | 101.41             | 11881.28               | 28.73      | 106.24 | 308.46         | 7796.1                 | 43.78   | 4.86                        | 4.53                       | 1.49                      | 0.89                        | 21,884       | 169,098                        | 22,209       | 173,148                        | 326          | 4,050                          |
| 7:00 PM  | 72                      | 31.4       | 101.11         | 398                  | -32                    | 101.08             | 11892.74               | 28.71      | 101.72         | 398                  | -32                    | 101.69             | 11872.71               | 28.75      | 106.51 | 309.28         | 7790.5                 | 43.81   | 4,22                        | 3.93                       | 1.29                      | 0.76                        | 21,985       | 169,979                        | 22,268       | 173,478                        | 283          | 3,498                          |
| 8:00 PM  | 72                      | 30.8       | 101.30         | 358                  | -29                    | 101.27             | 11886.36               | 28.72      | 101.91         | 358                  | -29                    | 101.88             | 11866.33               | 28.76      | 106.71 | 309.86         | 7/86.3                 | 43.83   | 3.79                        | 3.57                       | 1.16                      | 0.66                        | 22,053       | 170,593                        | 22,310       | 173,715                        | 257          | 3,122                          |
| 9:00 PM  | 72                      | 20.7       | 101.35         | 263                  | -24                    | 101.53             | 11884.85               | 28.72      | 101.96         | 263                  | -24                    | 101.94             | 11861.44               | 28.77      | 106.92 | 310.18         | 7776.6                 | 43.80   | 3.23                        | 2.59                       | 0.98                      | 0.57                        | 22,110       | 1/1,111                        | 22,333       | 1/3,//8                        | 217          | 2,007                          |
| 11:00 PM | 72                      | 29.7       | 101.42         | 205                  | -21                    | 101.40             | 11880.16               | 20.73      | 102.03         | 205                  | -21                    | 102.01             | 11860.15               | 28.77      | 107.11 | 310.51         | 7773.3                 | 43.09   | 2.70                        | 2.36                       | 0.73                      | 0.50                        | 22,171       | 171,500                        | 22,557       | 173,808                        | 162          | 2,301                          |
| 12:00 AN | 72                      | 29.2       | 101.45         | 198                  | -16                    | 101.43             | 11881.85               | 28.73      | 102.00         | 198                  | -16                    | 101.98             | 11861.84               | 28.77      | 107.38 | 310.74         | 7769.3                 | 43.93   | 2.09                        | 1.92                       | 0.62                      | 0.39                        | 22,210       | 172.077                        | 22,373       | 173,825                        | 138          | 1.748                          |
| Sub-Tota | 1728                    |            |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        | /          |        |                |                        |         |                             |                            |                           |                             | 529,799      | 4,097,123                      | 535,309      | 4,166,402                      | 5,510        | 69,279                         |

### Evaporative System Performance Summary

DB (°C) DB (°C) %RH Design - 90

| Period              | % of Time |
|---------------------|-----------|
| March - May         | 80        |
| June - October      | 90        |
| November - February | 75        |

0.08 kW/TR

|           |                         |            |                |                      |                        |                    |                        |            |                | F                    | ogging                 |                    |                        |            |        |                |                        |         |                             |                            |                           |                             |              |                                | Total        | Summary                        |              |                                |
|-----------|-------------------------|------------|----------------|----------------------|------------------------|--------------------|------------------------|------------|----------------|----------------------|------------------------|--------------------|------------------------|------------|--------|----------------|------------------------|---------|-----------------------------|----------------------------|---------------------------|-----------------------------|--------------|--------------------------------|--------------|--------------------------------|--------------|--------------------------------|
|           |                         |            |                |                      | G                      | Г41                |                        |            |                |                      | 0                      | GT 42              |                        |            | ST     |                | Ne                     | t       |                             |                            |                           |                             | No l         | Fogging                        | Fe           | ogging                         | Incr         | emental                        |
| Month     | Approx.<br>Service Hour | DB<br>(°C) | Output<br>(MW) | Cooling<br>load (TR) | Parasitic<br>Load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | Output<br>(MW) | Cooling<br>load (TR) | Parasitic<br>Load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | MW     | Output<br>(MW) | Heat rate<br>(BTU/kWh) | Eff (%) | Water<br>Required<br>(m3/h) | Output<br>Increase<br>(MW) | Output<br>Increase<br>(%) | Heat Rate<br>Changed<br>(%) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) |
| Jun - Oct |                         |            |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                             |                            |                           |                             |              |                                |              |                                | 0            | 0                              |
| 1:00 AM   | 135                     | 27.5       | 101.84         | 80                   | -6                     | 101.83             | 11866.75               | 28.76      | 102.45         | 80                   | -6                     | 102.44             | 11845.74               | 28.81      | 107.89 | 312.17         | 7758.5                 | 43.99   | 0.85                        | 0.80                       | 0.26                      | 0.15                        | 42,034       | 325,629                        | 42,143       | 326,964                        | 108          | 1,335                          |
| 2:00 AM   | 135                     | 27.3       | 101.88         | 69                   | -6                     | 101.87             | 11865.64               | 28.77      | 102.49         | 69                   | -6                     | 102.48             | 11844.64               | 28.81      | 107.94 | 312.30         | 7757.5                 | 44.00   | 0.73                        | 0.66                       | 0.21                      | 0.14                        | 42,072       | 325,899                        | 42,161       | 327,064                        | 89           | 1,166                          |
| 3:00 AM   | 135                     | 27.2       | 101.94         | 61                   | -5                     | 101.94             | 11863.57               | 28.77      | 102.55         | 61                   | -5                     | 102.55             | 11842.56               | 28.82      | 107.98 | 312.46         | 7756.8                 | 44.00   | 0.64                        | 0.58                       | 0.19                      | 0.13                        | 42,104       | 326,184                        | 42,183       | 327,201                        | 78           | 1,017                          |
| 4:00 AM   | 135                     | 27.1       | 101.93         | 56                   | -4                     | 101.93             | 11863.52               | 28.77      | 102.54         | 56                   | -4                     | 102.54             | 11843.52               | 28.82      | 108.05 | 312.51         | 7755.3                 | 44.01   | 0.59                        | 0.57                       | 0.18                      | 0.11                        | 42,112       | 326,235                        | 42,188       | 327,183                        | 77           | 948                            |
| 5:00 AM   | 135                     | 27.4       | 101.71         | 50                   | -4                     | 101.71             | 11870.47               | 28.75      | 102.31         | 50                   | -4                     | 102.31             | 11850.46               | 28.80      | 108.02 | 312.03         | 7754.6                 | 44.01   | 0.53                        | 0.48                       | 0.15                      | 0.10                        | 42,059       | 325,821                        | 42,124       | 326,656                        | 65           | 835                            |
| 6:00 AM   | 135                     | 27.8       | 101.34         | 42                   | -3                     | 101.34             | 11882.40               | 28.72      | 101.95         | 42                   | -3                     | 101.95             | 11861.39               | 28.77      | 108.04 | 311.33         | 7751.8                 | 44.03   | 0.45                        | 0.41                       | 0.13                      | 0.09                        | 41,974       | 325,083                        | 42,029       | 325,802                        | 56           | 720                            |
| 7:00 AM   | 135                     | 28.5       | 100.94         | 52                   | -4                     | 100.94             | 11895.49               | 28.69      | 101.55         | 52                   | -4                     | 101.55             | 11874.49               | 28.74      | 107.98 | 310.46         | 7751.3                 | 44.03   | 0.56                        | 0.51                       | 0.16                      | 0.11                        | 41,844       | 323,987                        | 41,912       | 324,876                        | 69           | 889                            |
| 8:00 AM   | 135                     | 29.4       | 100.87         | 140                  | -11                    | 100.86             | 11898.32               | 28.69      | 101.47         | 140                  | -11                    | 101.46             | 11878.31               | 28.73      | 107.60 | 309.92         | 7760.8                 | 43.98   | 1.48                        | 1.40                       | 0.45                      | 0.30                        | 41,650       | 322,262                        | 41,839       | 324,703                        | 189          | 2,441                          |
| 9:00 AM   | 135                     | 30.4       | 100.79         | 238                  | -19                    | 100.77             | 11902.25               | 28.68      | 101.39         | 155                  | -12                    | 101.38             | 11880.45               | 28.73      | 107.17 | 309.32         | 7771.2                 | 43.92   | 2.53                        | 2.36                       | 0.77                      | 0.46                        | 41,440       | 320,564                        | 41,758       | 324,515                        | 319          | 3,951                          |
| 10:00 AM  | 135                     | 31.1       | 100.91         | 333                  | -27                    | 100.88             | 11899.14               | 28.69      | 101.52         | 333                  | -27                    | 101.49             | 11878.11               | 28.73      | 106.78 | 309.15         | 7782.5                 | 43.85   | 3.54                        | 3.30                       | 1.08                      | 0.62                        | 41,289       | 319,355                        | 41,735       | 324,807                        | 446          | 5,451                          |
| 11:00 AM  | 135                     | 31.6       | 101.01         | 398                  | -32                    | 100.98             | 11896.75               | 28.70      | 101.62         | 398                  | -32                    | 101.59             | 11875.72               | 28.74      | 106.50 | 309.07         | 7790.4                 | 43.81   | 4.24                        | 3.95                       | 1.29                      | 0.77                        | 41,191       | 318,451                        | 41,724       | 325,046                        | 533          | 6,594                          |
| 12:00 PM  | 135                     | 31.7       | 101.20         | 444                  | -36                    | 101.16             | 11890.17               | 28.71      | 101.81         | 444                  | -36                    | 101.77             | 11870.14               | 28.75      | 106.32 | 309.26         | 7795.8                 | 43.78   | 4.73                        | 4.40                       | 1.44                      | 0.86                        | 41,156       | 318,096                        | 41,750       | 325,477                        | 594          | 7,381                          |
| 1:00 PM   | 135                     | 31.9       | 101.26         | 467                  | -37                    | 101.22             | 11889.38               | 28.72      | 101.86         | 468                  | -37                    | 101.82             | 11868.36               | 28.76      | 106.22 | 309.26         | 7799.0                 | 43.76   | 4.97                        | 4.60                       | 1.51                      | 0.92                        | 41,130       | 317,836                        | 41,750       | 325,612                        | 620          | 7,777                          |
| 2:00 PM   | 135                     | 31.7       | 101.19         | 438                  | -35                    | 101.15             | 11891.12               | 28.71      | 101.80         | 438                  | -35                    | 101.76             | 11870.09               | 28.75      | 106.34 | 309.26         | 7795.4                 | 43.78   | 4.66                        | 4.32                       | 1.42                      | 0.86                        | 41,167       | 318,186                        | 41,750       | 325,459                        | 583          | 7,273                          |
| 3:00 PM   | 135                     | 31.3       | 101.20         | 408                  | -33                    | 101.17             | 11888.84               | 28.72      | 101.84         | 408                  | -33                    | 101.81             | 11868.81               | 28.76      | 106.47 | 309.44         | 7791.7                 | 43.80   | 4.34                        | 3.99                       | 1.31                      | 0.78                        | 41,236       | 318,822                        | 41,775       | 325,498                        | 539          | 6,676                          |
| 4:00 PM   | 135                     | 31.0       | 101.36         | 385                  | -31                    | 101.33             | 11884.61               | 28.73      | 101.97         | 385                  | -31                    | 101.94             | 11864.58               | 28.77      | 106.58 | 309.85         | 7790.1                 | 43.81   | 4.09                        | 3.80                       | 1.24                      | 0.73                        | 41,316       | 319,514                        | 41,829       | 325,853                        | 513          | 6,339                          |
| 5:00 PM   | 135                     | 30.4       | 101.47         | 344                  | -28                    | 101.44             | 11881.22               | 28.73      | 102.07         | 344                  | -28                    | 102.04             | 11860.20               | 28.78      | 106.76 | 310.24         | 7785.8                 | 43.84   | 3.65                        | 3.41                       | 1.11                      | 0.63                        | 41,423       | 320,479                        | 41,883       | 326,093                        | 460          | 5,614                          |
| 6:00 PM   | 135                     | 29.8       | 101.62         | 298                  | -24                    | 101.60             | 11875.79               | 28.75      | 102.23         | 298                  | -24                    | 102.21             | 11854.77               | 28.79      | 106.96 | 310.76         | 7781.3                 | 43.86   | 3.16                        | 2.93                       | 0.95                      | 0.56                        | 41,557       | 321,579                        | 41,953       | 326,452                        | 396          | 4,873                          |
| 7:00 PM   | 135                     | 29.1       | 101.79         | 248                  | -20                    | 101.77             | 11870.31               | 28.76      | 102.40         | 248                  | -20                    | 102.38             | 11849.29               | 28.80      | 107.12 | 311.27         | 7778.4                 | 43.88   | 2.62                        | 2.35                       | 0.76                      | 0.50                        | 41,704       | 322,790                        | 42,021       | 326,859                        | 317          | 4,069                          |
| 8:00 PM   | 135                     | 28.7       | 101.81         | 209                  | -17                    | 101.79             | 11868.95               | 28.76      | 102.42         | 209                  | -17                    | 102.40             | 11847.94               | 28.81      | 107.31 | 311.51         | 7773.3                 | 43.91   | 2.22                        | 2.16                       | 0.70                      | 0.37                        | 41,762       | 323,423                        | 42,054       | 326,895                        | 291          | 3,472                          |
| 9:00 PM   | 135                     | 28.6       | 101.72         | 178                  | -14                    | 101.71             | 11871.67               | 28.75      | 102.33         | 178                  | -14                    | 102.32             | 11850.65               | 28.80      | 107.73 | 311.75         | 7762.3                 | 43.97   | 1.88                        | 1.99                       | 0.64                      | 0.28                        | 41,819       | 323,695                        | 42,087       | 326,690                        | 268          | 2,995                          |
| 10:00 PM  | 135                     | 28.3       | 101.69         | 148                  | -12                    | 101.68             | 11872.38               | 28.75      | 102.30         | 148                  | -12                    | 102.29             | 11851.37               | 28.80      | 107.61 | 311.58         | 7765.0                 | 43.95   | 1.56                        | 1.42                       | 0.46                      | 0.30                        | 41,871       | 324,147                        | 42,063       | 326,621                        | 192          | 2,474                          |
| 11:00 PM  | 135                     | 28.0       | 101.78         | 125                  | -10                    | 101.77             | 11869.17               | 28.76      | 102.39         | 125                  | -10                    | 102.38             | 11848.16               | 28.81      | 107.70 | 311.85         | 7763.1                 | 43.96   | 1.32                        | 1.19                       | 0.38                      | 0.26                        | 41,940       | 324,739                        | 42,100       | 326,827                        | 161          | 2,087                          |
| 12:00 AM  | 135                     | 27.5       | 101.95         | 103                  | -8                     | 101.94             | 11862.95               | 28.77      | 102.56         | 103                  | -8                     | 102.55             | 11842.95               | 28.82      | 107.81 | 312.30         | 7761.3                 | 43.97   | 1.09                        | 0.98                       | 0.31                      | 0.21                        | 42,029       | 325,516                        | 42,161       | 327,219                        | 132          | 1,703                          |
| Sub-Total | 3240                    |            |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                             |                            |                           |                             | 999,878      | 7,738,289                      | 1,006,973    | 7,826,370                      | 7,095        | 88,081                         |

Approximately Parasitic Load

### Evaporative System Performance Summary

DB (°C) DB (°C) %RH Design - 90

| Period              | % of Time |
|---------------------|-----------|
| March - May         | 80        |
| June - October      | 90        |
| November - February | 75        |

Approximately Parasitic Load 0.08 kW/TR

|           |                         |            |                |                      |                        |                    |                        |            |                | F                    | ogging                 |                    |                        |            |        |                |                        |         |                             |                            |                           |                             |              |                                | Total        | Summary                        |              |                                |
|-----------|-------------------------|------------|----------------|----------------------|------------------------|--------------------|------------------------|------------|----------------|----------------------|------------------------|--------------------|------------------------|------------|--------|----------------|------------------------|---------|-----------------------------|----------------------------|---------------------------|-----------------------------|--------------|--------------------------------|--------------|--------------------------------|--------------|--------------------------------|
|           |                         |            |                |                      | G                      | Γ41                |                        |            |                |                      | 0                      | T42                |                        |            | ST     |                | Ne                     | t       |                             |                            |                           |                             | No           | Fogging                        | F            | ogging                         | Inci         | emental                        |
| Month     | Approx.<br>Service Hour | DB<br>(°C) | Output<br>(MW) | Cooling<br>load (TR) | Parasitic<br>Load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | Output<br>(MW) | Cooling<br>load (TR) | Parasitic<br>Load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | MW     | Output<br>(MW) | Heat rate<br>(BTU/kWh) | Eff (%) | Water<br>Required<br>(m3/h) | Output<br>Increase<br>(MW) | Output<br>Increase<br>(%) | Heat Rate<br>Changed<br>(%) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) |
| Nov - Feb |                         |            |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                             |                            |                           |                             |              |                                |              |                                | 0            | 0                              |
| 1:00 AM   | 90                      | 26.0       | 103.96         | 239                  | -19                    | 103.94             | 11803.17               | 28.92      | 104.59         | 239                  | -19                    | 104.57             | 11782.16               | 28.97      | 107.29 | 315.80         | 7786.2                 | 43.83   | 2.52                        | 2.24                       | 0.72                      | 0.46                        | 28,220       | 218,720                        | 28,422       | 221,301                        | 202          | 2,581                          |
| 2:00 AM   | 90                      | 25.7       | 104.07         | 220                  | -18                    | 104.05             | 11799.00               | 28.93      | 104.69         | 220                  | -18                    | 104.67             | 11778.98               | 28.98      | 107.38 | 316.11         | 7784.2                 | 43.85   | 2.31                        | 2.03                       | 0.65                      | 0.42                        | 28,267       | 219,110                        | 28,450       | 221,458                        | 183          | 2,348                          |
| 3:00 AM   | 90                      | 25.3       | 104.23         | 203                  | -16                    | 104.21             | 11794.84               | 28.94      | 104.85         | 203                  | -16                    | 104.83             | 11773.83               | 28.99      | 107.46 | 316.50         | 7783.4                 | 43.85   | 2.14                        | 1.89                       | 0.60                      | 0.40                        | 28,316       | 219,524                        | 28,485       | 221,713                        | 170          | 2,189                          |
| 4:00 AM   | 90                      | 25.0       | 104.34         | 185                  | -15                    | 104.33             | 11791.67               | 28.95      | 104.96         | 185                  | -15                    | 104.95             | 11770.66               | 29.00      | 107.54 | 316.81         | 7782.1                 | 43.86   | 1.94                        | 1.71                       | 0.54                      | 0.36                        | 28,359       | 219,892                        | 28,513       | 221,890                        | 154          | 1,998                          |
| 5:00 AM   | 90                      | 24.7       | 104.45         | 174                  | -14                    | 104.44             | 11787.57               | 28.96      | 105.08         | 174                  | -14                    | 105.07             | 11767.56               | 29.00      | 107.59 | 317.09         | 7781.4                 | 43.86   | 1.83                        | 1.59                       | 0.50                      | 0.35                        | 28,395       | 220,183                        | 28,538       | 222,068                        | 143          | 1,885                          |
| 6:00 AM   | 90                      | 24.4       | 104.58         | 163                  | -13                    | 104.57             | 11784.46               | 28.97      | 105.21         | 163                  | -13                    | 105.20             | 11763.45               | 29.01      | 107.64 | 317.41         | 7781.0                 | 43.86   | 1.71                        | 1.49                       | 0.47                      | 0.32                        | 28,433       | 220,526                        | 28,567       | 222,277                        | 134          | 1,751                          |
| 7:00 AM   | 90                      | 24.3       | 104.66         | 165                  | -13                    | 104.65             | 11781.49               | 28.97      | 105.29         | 165                  | -13                    | 105.28             | 11761.47               | 29.02      | 107.64 | 317.56         | 7781.5                 | 43.86   | 1.74                        | 1.52                       | 0.48                      | 0.32                        | 28,443       | 220,616                        | 28,580       | 222,399                        | 137          | 1,784                          |
| 8:00 AM   | 90                      | 25.2       | 104.59         | 251                  | -20                    | 104.57             | 11785.26               | 28.97      | 105.21         | 251                  | -20                    | 105.19             | 11764.24               | 29.01      | 107.28 | 317.04         | 7790.3                 | 43.81   | 1.45                        | 2.32                       | 0.74                      | 0.48                        | 28,325       | 219,607                        | 28,534       | 222,288                        | 209          | 2,681                          |
| 9:00 AM   | 90                      | 26.7       | 104.34         | 379                  | -30                    | 104.31             | 11793.43               | 28.95      | 104.97         | 379                  | -30                    | 104.94             | 11772.40               | 28.99      | 106.74 | 315.99         | 7802.7                 | 43.74   | 4.00                        | 3.53                       | 1.13                      | 0.73                        | 28,121       | 217,830                        | 28,439       | 221,900                        | 318          | 4,070                          |
| 10:00 AM  | 90                      | 28.0       | 104.15         | 497                  | -40                    | 104.11             | 11799.50               | 28.94      | 104.78         | 497                  | -40                    | 104.74             | 11779.47               | 28.97      | 106.22 | 315.07         | 7814.8                 | 43.67   | 5.25                        | 4.62                       | 1.49                      | 1.01                        | 27,941       | 216,170                        | 28,357       | 221,601                        | 416          | 5,432                          |
| 11:00 AM  | 90                      | 29.1       | 103.92         | 578                  | -46                    | 103.87             | 11807.25               | 28.92      | 104.55         | 578                  | -46                    | 104.50             | 11786.21               | 28.96      | 105.89 | 314.27         | 7821.8                 | 43.63   | 6.11                        | 5.41                       | 1.75                      | 1.13                        | 27,797       | 214,992                        | 28,284       | 221,235                        | 487          | 6,243                          |
| 12:00 PM  | 90                      | 29.8       | 103.77         | 637                  | -51                    | 103.72             | 11811.80               | 28.91      | 104.39         | 637                  | -51                    | 104.34             | 11791.75               | 28.94      | 105.64 | 313.70         | 7827.5                 | 43.60   | 6.75                        | 5.99                       | 1.95                      | 1.29                        | 27,693       | 214,009                        | 28,233       | 220,990                        | 539          | 6,981                          |
| 1:00 PM   | 90                      | 30.6       | 103.52         | 683                  | -55                    | 103.47             | 11820.24               | 28.89      | 104.14         | 683                  | -55                    | 104.09             | 11799.19               | 28.93      | 105.43 | 312.98         | 7831.6                 | 43.58   | 7.26                        | 6.52                       | 2.13                      | 1.38                        | 27,582       | 213,065                        | 28,168       | 220,600                        | 587          | 7,535                          |
| 2:00 PM   | 90                      | 31.0       | 103.38         | 706                  | -56                    | 103.32             | 11824.46               | 28.88      | 104.00         | 706                  | -56                    | 103.94             | 11804.41               | 28.91      | 105.33 | 312.60         | 7833.5                 | 43.57   | 7.50                        | 6.74                       | 2.20                      | 1.43                        | 27,527       | 212,591                        | 28,134       | 220,386                        | 607          | 7,796                          |
| 3:00 PM   | 90                      | 31.2       | 103.29         | 708                  | -57                    | 103.23             | 11827.48               | 28.87      | 103.91         | 708                  | -57                    | 103.85             | 11806.43               | 28.91      | 105.32 | 312.40         | 7833.3                 | 43.57   | 7.52                        | 6.77                       | 2.21                      | 1.43                        | 27,507       | 212,427                        | 28,116       | 220,242                        | 609          | 7,815                          |
| 4:00 PM   | 90                      | 31.2       | 103.17         | 690                  | -55                    | 103.11             | 11831.33               | 28.86      | 103.78         | 690                  | -55                    | 103.72             | 11810.28               | 28.90      | 105.38 | 312.22         | 7831.0                 | 43.58   | 7.34                        | 6.62                       | 2.17                      | 1.40                        | 27,505       | 212,424                        | 28,100       | 220,050                        | 595          | 7,627                          |
| 5:00 PM   | 90                      | 30.6       | 103.05         | 610                  | -49                    | 103.00             | 11833.60               | 28.86      | 103.67         | 609                  | -49                    | 103.62             | 11813.55               | 28.89      | 105.72 | 312.34         | 7821.7                 | 43.64   | 6.93                        | 5.84                       | 1.90                      | 1.24                        | 27,585       | 213,130                        | 28,110       | 219,871                        | 525          | 6,741                          |
| 6:00 PM   | 90                      | 29.5       | 103.12         | 496                  | -40                    | 103.08             | 11830.55               | 28.86      | 103.74         | 496                  | -40                    | 103.70             | 11809.52               | 28.90      | 106.20 | 312.98         | 7809.4                 | 43.70   | 5.26                        | 4.73                       | 1.53                      | 0.99                        | 27,742       | 214,518                        | 28,168       | 219,973                        | 426          | 5,455                          |
| 7:00 PM   | 90                      | 28.5       | 103.40         | 418                  | -33                    | 103.37             | 11822.82               | 28.88      | 103.96         | 418                  | -33                    | 103.93             | 11802.79               | 28.92      | 106.54 | 313.83         | 7802.6                 | 43.74   | 4.41                        | 4.04                       | 1.30                      | 0.82                        | 27,882       | 215,777                        | 28,245       | 220,384                        | 363          | 4,606                          |
| 8:00 PM   | 90                      | 28.0       | 103.43         | 383                  | -31                    | 103.40             | 11820.50               | 28.88      | 104.05         | 383                  | -31                    | 104.02             | 11799.47               | 28.93      | 106.69 | 314.10         | 7798.7                 | 43.76   | 4.05                        | 3.64                       | 1.17                      | 0.74                        | 27,942       | 216,312                        | 28,269       | 220,465                        | 327          | 4,152                          |
| 9:00 PM   | 90                      | 27.7       | 103.49         | 355                  | -28                    | 103.46             | 11818.24               | 28.89      | 104.11         | 355                  | -28                    | 104.08             | 11797.22               | 28.93      | 106.80 | 314.34         | 7796.0                 | 43.78   | 3.75                        | 3.37                       | 1.08                      | 0.67                        | 27,988       | 216,735                        | 28,291       | 220,555                        | 303          | 3,820                          |
| 10:00 PM  | 90                      | 27.3       | 103.60         | 324                  | -26                    | 103.57             | 11814.96               | 28.89      | 104.22         | 324                  | -26                    | 104.19             | 11793.93               | 28.94      | 106.93 | 314.70         | 7793.4                 | 43.79   | 3.42                        | 3.08                       | 0.99                      | 0.61                        | 28,046       | 217,249                        | 28,323       | 220,732                        | 277          | 3,484                          |
| 11:00 PM  | 90                      | 26.8       | 103.69         | 291                  | -23                    | 103.67             | 11811.65               | 28.90      | 104.31         | 291                  | -23                    | 104.29             | 11790.63               | 28.95      | 107.08 | 315.03         | 7790.0                 | 43.81   | 3.07                        | 2.73                       | 0.87                      | 0.55                        | 28,107       | 217,764                        | 28,353       | 220,867                        | 246          | 3,103                          |
| 12:00 AM  | 90                      | 26.3       | 103.82         | 258                  | -21                    | 103.80             | 11807.34               | 28.91      | 104.45         | 258                  | -21                    | 104.43             | 11786.32               | 28.96      | 107.22 | 315.45         | 7787.2                 | 43.83   | 2.72                        | 2.42                       | 0.77                      | 0.49                        | 28,173       | 218,305                        | 28,390       | 221,079                        | 218          | 2,774                          |
| Sub-Total | 2160                    |            |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                             |                            |                           |                             | 671,895      | 5,201,476                      | 680,069      | 5,306,326                      | 8,174        | 104,850                        |
| Total     | 7128                    |            |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                             |                            |                           |                             | 2,201,572    | 17,036,888                     | 2,222,351    | 17,299,098                     | 20,779       | 262,210                        |



Mechanical Chiller System Performance Summary

DB (°C) DB (°C) %RH

100

Design criteria 15.0

| Period              | % of |
|---------------------|------|
| March - May         | 80   |
| June - October      | 90   |
| November - February | 75   |

Approximately Parasitic Load from Mechanical Chiller (Inc. pump and cooling tower) 1 kW/TR

|           |                         | No      |         |                |                      |                        |                    |                        |            |                | Mechanica            | al Chiller             |                    |                        |            |        |                |                        |         |                            |                           |                             |              |                                | Total S      | ummary                         |              |                                |
|-----------|-------------------------|---------|---------|----------------|----------------------|------------------------|--------------------|------------------------|------------|----------------|----------------------|------------------------|--------------------|------------------------|------------|--------|----------------|------------------------|---------|----------------------------|---------------------------|-----------------------------|--------------|--------------------------------|--------------|--------------------------------|--------------|--------------------------------|
|           |                         |         |         |                |                      | (                      | GT41               |                        |            |                |                      | G                      | T42                |                        |            | ST     |                | Net                    |         |                            |                           |                             | No           | Chiller                        | Mechan       | ical Chiller                   | Incr         | emental                        |
| Month     | Approx.<br>Service Hour | DB (°C) | DB (°C) | Output<br>(MW) | Cooling<br>Load (TR) | Parasitic<br>load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | Output<br>(MW) | Cooling<br>Load (TR) | Parasitic<br>load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | MW     | Output<br>(MW) | Heat rate<br>(BTU/kWh) | Eff (%) | Output<br>Increase<br>(MW) | Output<br>Increase<br>(%) | Heat Rate<br>Changed<br>(%) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) |
| Mar-May   |                         |         |         |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                            |                           |                             |              |                                |              |                                |              |                                |
| 1:00 AM   | 72                      | 28.6    | 15      | 109.97         | 4,184.5              | -4,184.5               | 105.79             | 12,103                 | 28.20      | 110.62         | 4,184.0              | -4,184.0               | 106.44             | 12,079                 | 28.26      | 102.11 | 314.33         | 8,163                  | 41.81   | 4.59                       | 1.48                      | 5.46                        | 22,301       | 172,622                        | 22,632       | 184,745                        | 331          | 12,122                         |
| 2:00 AM   | 72                      | 28.4    | 15      | 109.97         | 4,197.8              | -4,197.8               | 105.77             | 12,104                 | 28.20      | 110.62         | 4,197.3              | -4,197.3               | 106.42             | 12,080                 | 28.25      | 102.21 | 314.41         | 8,161                  | 41.82   | 4.35                       | 1.40                      | 5.42                        | 22,324       | 172,828                        | 22,637       | 184,745                        | 313          | 11,917                         |
| 3:00 AM   | 72                      | 28.2    | 15      | 109.97         | 4,189.1              | -4,189.1               | 105.78             | 12,103                 | 28.20      | 110.62         | 4,188.6              | -4,188.6               | 106.43             | 12,079                 | 28.25      | 102.30 | 314.51         | 8,158                  | 41.83   | 4.24                       | 1.37                      | 5.34                        | 22,339       | 173,017                        | 22,645       | 184,745                        | 305          | 11,728                         |
| 4:00 AM   | 72                      | 28.0    | 15      | 109.97         | 4,191.6              | -4,191.6               | 105.78             | 12,103                 | 28.20      | 110.62         | 4,191.2              | -4,191.2               | 106.43             | 12,080                 | 28.25      | 102.38 | 314.58         | 8,156                  | 41.84   | 3.98                       | 1.28                      | 5.32                        | 22,364       | 173,194                        | 22,650       | 184,745                        | 286          | 11,550                         |
| 5:00 AM   | 72                      | 27.9    | 15      | 109.97         | 4,182.3              | -4,182.3               | 105.79             | 12,102                 | 28.20      | 110.62         | 4,181.8              | -4,181.8               | 106.44             | 12,079                 | 28.26      | 102.45 | 314.67         | 8,154                  | 41.86   | 3.81                       | 1.23                      | 5.29                        | 22,382       | 173,338                        | 22,656       | 184,745                        | 274          | 11,406                         |
| 6:00 AM   | 72                      | 27.7    | 15      | 109.97         | 4,201.6              | -4,201.6               | 105.77             | 12,104                 | 28.20      | 110.62         | 4,201.1              | -4,201.1               | 106.42             | 12,081                 | 28.25      | 102.50 | 314.69         | 8,154                  | 41.86   | 3.64                       | 1.17                      | 5.28                        | 22,396       | 173,455                        | 22,658       | 184,745                        | 262          | 11,290                         |
| 7:00 AM   | 72                      | 28.0    | 15      | 109.97         | 4,211.4              | -4,211.4               | 105.76             | 12,106                 | 28.19      | 110.62         | 4,210.9              | -4,210.9               | 106.41             | 12,082                 | 28.25      | 102.39 | 314.56         | 8,157                  | 41.84   | 3.85                       | 1.24                      | 5.34                        | 22,371       | 173,230                        | 22,648       | 184,745                        | 277          | 11,515                         |
| 8:00 AM   | 72                      | 29.4    | 15      | 109.97         | 4,309.0              | -4,309.0               | 105.66             | 12,117                 | 28.17      | 110.62         | 4,308.5              | -4,308.5               | 106.31             | 12,093                 | 28.22      | 101.73 | 313.71         | 8,179                  | 41.73   | 5.29                       | 1.71                      | 5.70                        | 22,206       | 171,831                        | 22,587       | 184,745                        | 381          | 12,913                         |
| 9:00 AM   | 72                      | 30.9    | 15      | 109.97         | 4,303.2              | -4,303.2               | 105.67             | 12,116                 | 28.17      | 110.62         | 4,302.7              | -4,302.7               | 106.32             | 12,092                 | 28.22      | 101.07 | 313.06         | 8,196                  | 41.64   | 5.96                       | 1.94                      | 5.79                        | 22,111       | 171,306                        | 22,540       | 184,745                        | 429          | 13,438                         |
| 10:00 AM  | 72                      | 32.3    | 15      | 109.97         | 4,384.9              | -4,384.9               | 105.59             | 12,125                 | 28.15      | 110.62         | 4,384.4              | -4,384.4               | 106.24             | 12,102                 | 28.20      | 100.46 | 312.28         | 8,217                  | 41.54   | 8.27                       | 2.72                      | 6.37                        | 21,889       | 169,076                        | 22,484       | 184,745                        | 596          | 15,668                         |
| 11:00 AM  | 72                      | 32.8    | 15      | 109.97         | 4,543.3              | -4,543.3               | 105.43             | 12,144                 | 28.11      | 110.62         | 4,542.8              | -4,542.8               | 106.08             | 12,120                 | 28.16      | 100.23 | 311.73         | 8,231                  | 41.46   | 8.51                       | 2.81                      | 6.60                        | 21,832       | 168,580                        | 22,445       | 184,745                        | 613          | 16,165                         |
| 12:00 PM  | 72                      | 33.2    | 15      | 109.97         | 4,608.7              | -4,608.7               | 105.36             | 12,151                 | 28.09      | 110.62         | 4,608.1              | -4,608.1               | 106.01             | 12,127                 | 28.14      | 100.05 | 311.42         | 8,239                  | 41.42   | 8.84                       | 2.92                      | 6.82                        | 21,786       | 168,041                        | 22,422       | 184,745                        | 636          | 16,704                         |
| 1:00 PM   | 72                      | 33.5    | 15      | 109.97         | 4,618.8              | -4,618.8               | 105.35             | 12,152                 | 28.08      | 110.62         | 4,618.3              | -4,618.3               | 106.00             | 12,128                 | 28.14      | 99.93  | 311.28         | 8,243                  | 41.40   | 9.07                       | 3.00                      | 6.79                        | 21,759       | 167,953                        | 22,412       | 184,745                        | 653          | 16,791                         |
| 2:00 PM   | 72                      | 33.5    | 15      | 109.97         | 4,612.2              | -4,612.2               | 105.36             | 12,152                 | 28.09      | 110.62         | 4,611.7              | -4,611.7               | 106.01             | 12,128                 | 28.14      | 99.90  | 311.26         | 8,243                  | 41.40   | 9.17                       | 3.04                      | 6.80                        | 21,751       | 167,878                        | 22,411       | 184,745                        | 660          | 16,866                         |
| 3:00 PM   | 72                      | 33.5    | 15      | 109.97         | 4,690.4              | -4,690.4               | 105.28             | 12,161                 | 28.07      | 110.62         | 4,689.9              | -4,689.9               | 105.93             | 12,137                 | 28.12      | 99.91  | 311.12         | 8,247                  | 41.38   | 8.95                       | 2.96                      | 6.85                        | 21,756       | 167,928                        | 22,401       | 184,745                        | 645          | 16,817                         |
| 4:00 PM   | 72                      | 33.3    | 15      | 109.97         | 4,694.5              | -4,694.5               | 105.28             | 12,161                 | 28.06      | 110.62         | 4,694.0              | -4,694.0               | 105.93             | 12,137                 | 28.12      | 100.01 | 311.21         | 8,245                  | 41.40   | 8.73                       | 2.89                      | 6.79                        | 21,778       | 168,138                        | 22,407       | 184,745                        | 629          | 16,607                         |
| 5:00 PM   | 72                      | 33.0    | 15      | 109.97         | 4,672.9              | -4,672.9               | 105.30             | 12,159                 | 28.07      | 110.62         | 4,672.3              | -4,672.3               | 105.95             | 12,135                 | 28.13      | 100.13 | 311.38         | 8,240                  | 41.42   | 8.60                       | 2.84                      | 6.66                        | 21,800       | 168,424                        | 22,419       | 184,745                        | 619          | 16,320                         |
| 6:00 PM   | 72                      | 32.3    | 15      | 109.97         | 4,615.4              | -4,615.4               | 105.35             | 12,152                 | 28.09      | 110.62         | 4,614.8              | -4,614.8               | 106.01             | 12,128                 | 28.14      | 100.44 | 311.80         | 8,229                  | 41.47   | 7.86                       | 2.59                      | 6.50                        | 21,884       | 169,098                        | 22,450       | 184,745                        | 566          | 15,646                         |
| 7:00 PM   | 72                      | 31.4    | 15      | 109.97         | 4,446.1              | -4,446.1               | 105.52             | 12,133                 | 28.13      | 110.62         | 4,445.6              | -4,445.6               | 106.17             | 12,109                 | 28.19      | 100.85 | 312.55         | 8,210                  | 41.57   | 7.21                       | 2.36                      | 6.18                        | 21,985       | 169,979                        | 22,504       | 184,745                        | 519          | 14,765                         |
| 8:00 PM   | 72                      | 30.8    | 15      | 109.97         | 4,324.0              | -4,324.0               | 105.65             | 12,118                 | 28.16      | 110.62         | 4,323.5              | -4,323.5               | 106.30             | 12,095                 | 28.22      | 101.14 | 313.08         | 8,196                  | 41.64   | 6.78                       | 2.21                      | 5.95                        | 22,053       | 170,593                        | 22,542       | 184,745                        | 488          | 14,152                         |
| 9:00 PM   | 72                      | 30.2    | 15      | 109.97         | 4,294.7              | -4,294.7               | 105.68             | 12,115                 | 28.17      | 110.62         | 4,294.2              | -4,294.2               | 106.33             | 12,091                 | 28.23      | 101.39 | 313.39         | 8,188                  | 41.68   | 6.21                       | 2.02                      | 5.83                        | 22,116       | 171,111                        | 22,564       | 184,745                        | 447          | 13,634                         |
| 10:00 PM  | 72                      | 29.7    | 15      | 109.97         | 4,250.6              | -4,250.6               | 105.72             | 12,110                 | 28.18      | 110.62         | 4,250.1              | -4,250.1               | 106.37             | 12,086                 | 28.24      | 101.60 | 313.69         | 8,180                  | 41.73   | 5.76                       | 1.87                      | 5.71                        | 22,171       | 171,560                        | 22,586       | 184,745                        | 415          | 13,184                         |
| 11:00 PM  | 72                      | 29.4    | 15      | 109.97         | 4,233.5              | -4,233.5               | 105.74             | 12,108                 | 28.19      | 110.62         | 4,233.0              | -4,233.0               | 106.39             | 12,084                 | 28.24      | 101.75 | 313.87         | 8,175                  | 41.75   | 5.41                       | 1.75                      | 5.64                        | 22,210       | 171,866                        | 22,599       | 184,745                        | 389          | 12,879                         |
| 12:00 AM  | 72                      | 29.2    | 15      | 109.97         | 4,273.2              | -4,273.2               | 105.70             | 12,113                 | 28.18      | 110.62         | 4,272.7              | -4,272.7               | 106.35             | 12,089                 | 28.23      | 101.85 | 313.90         | 8,174                  | 41.75   | 5.07                       | 1.64                      | 5.63                        | 22,235       | 172,077                        | 22,600       | 184,745                        | 365          | 12,668                         |
| Sub-Total | 1728                    |         |         |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                            |                           |                             | 529,799      | 4,097,123                      | 540,898      | 4,433,869                      | 11,100       | 336,746                        |

Mechanical Chiller System Performance Summary

DB (°C) DB (°C) %RH

100

Design criteria 15.0

| Period              | % of |
|---------------------|------|
| March - May         | 80   |
| June - October      | 90   |
| November - February | 75   |

Approximately Parasitic Load from Mechanical Chiller (Inc. pump and cooling tower) 1 kW/TR

|           |                         | No      |         |                |                      |                        |                    |                        |            |                | Mechanica            | al Chiller             |                    |                        |            |        |                |                        |         |                            |                           |                             |              |                                | Total S      | ummary                         |              |                                |
|-----------|-------------------------|---------|---------|----------------|----------------------|------------------------|--------------------|------------------------|------------|----------------|----------------------|------------------------|--------------------|------------------------|------------|--------|----------------|------------------------|---------|----------------------------|---------------------------|-----------------------------|--------------|--------------------------------|--------------|--------------------------------|--------------|--------------------------------|
|           |                         |         |         |                |                      | (                      | GT41               |                        |            |                |                      | G                      | T42                |                        |            | ST     |                | Net                    |         |                            |                           |                             | No           | Chiller                        | Mechan       | ical Chiller                   | Incr         | emental                        |
| Month     | Approx.<br>Service Hour | DB (°C) | DB (°C) | Output<br>(MW) | Cooling<br>Load (TR) | Parasitic<br>load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | Output<br>(MW) | Cooling<br>Load (TR) | Parasitic<br>load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | MW     | Output<br>(MW) | Heat rate<br>(BTU/kWh) | Eff (%) | Output<br>Increase<br>(MW) | Output<br>Increase<br>(%) | Heat Rate<br>Changed<br>(%) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) |
| Jun - Oct |                         |         |         |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                            |                           |                             |              |                                |              |                                | 0            | 0                              |
| 1:00 AM   | 135                     | 27.5    | 15      | 109.97         | 3,987.9              | -3,987.9               | 105.98             | 12,080                 | 28.25      | 110.62         | 3,987.4              | -3,987.4               | 106.63             | 12,057                 | 28.31      | 102.61 | 315.22         | 8,140                  | 41.93   | 3.86                       | 1.24                      | 5.08                        | 42,034       | 325,629                        | 42,555       | 346,396                        | 521          | 20,768                         |
| 2:00 AM   | 135                     | 27.3    | 15      | 109.97         | 3,964.6              | -3,964.6               | 106.01             | 12,077                 | 28.26      | 110.62         | 3,964.2              | -3,964.2               | 106.66             | 12,054                 | 28.31      | 102.68 | 315.34         | 8,137                  | 41.94   | 3.70                       | 1.19                      | 5.04                        | 42,072       | 325,899                        | 42,571       | 346,396                        | 500          | 20,497                         |
| 3:00 AM   | 135                     | 27.2    | 15      | 109.97         | 3,925.4              | -3,925.4               | 106.04             | 12,073                 | 28.27      | 110.62         | 3,924.9              | -3,924.9               | 106.70             | 12,050                 | 28.32      | 102.75 | 315.49         | 8,133                  | 41.96   | 3.61                       | 1.16                      | 4.98                        | 42,104       | 326,184                        | 42,591       | 346,396                        | 487          | 20,212                         |
| 4:00 AM   | 135                     | 27.1    | 15      | 109.97         | 3,932.5              | -3,932.5               | 106.04             | 12,074                 | 28.27      | 110.62         | 3,932.1              | -3,932.1               | 106.69             | 12,050                 | 28.32      | 102.77 | 315.49         | 8,133                  | 41.96   | 3.55                       | 1.14                      | 4.98                        | 42,112       | 326,235                        | 42,591       | 346,396                        | 479          | 20,161                         |
| 5:00 AM   | 135                     | 27.4    | 15      | 109.97         | 4,075.2              | -4,075.2               | 105.89             | 12,090                 | 28.23      | 110.62         | 4,074.7              | -4,074.7               | 106.55             | 12,066                 | 28.28      | 102.65 | 315.09         | 8,143                  | 41.91   | 3.54                       | 1.14                      | 5.12                        | 42,059       | 325,821                        | 42,537       | 346,396                        | 478          | 20,575                         |
| 6:00 AM   | 135                     | 27.8    | 15      | 109.97         | 4,310.0              | -4,310.0               | 105.66             | 12,117                 | 28.17      | 110.62         | 4,309.6              | -4,309.6               | 106.31             | 12,093                 | 28.22      | 102.46 | 314.43         | 8,161                  | 41.82   | 3.51                       | 1.13                      | 5.37                        | 41,974       | 325,083                        | 42,448       | 346,396                        | 474          | 21,313                         |
| 7:00 AM   | 135                     | 28.5    | 15      | 109.97         | 4,570.5              | -4,570.5               | 105.40             | 12,147                 | 28.10      | 110.62         | 4,570.0              | -4,570.0               | 106.05             | 12,123                 | 28.15      | 102.17 | 313.62         | 8,182                  | 41.72   | 3.67                       | 1.18                      | 5.67                        | 41,844       | 323,987                        | 42,339       | 346,396                        | 495          | 22,409                         |
| 8:00 AM   | 135                     | 29.4    | 15      | 109.97         | 4,610.9              | -4,610.9               | 105.36             | 12,151                 | 28.09      | 110.62         | 4,610.4              | -4,610.4               | 106.01             | 12,127                 | 28.14      | 101.76 | 313.13         | 8,194                  | 41.65   | 4.62                       | 1.50                      | 5.90                        | 41,650       | 322,262                        | 42,273       | 346,396                        | 623          | 24,134                         |
| 9:00 AM   | 135                     | 30.4    | 15      | 109.97         | 4,667.8              | -4,667.8               | 105.30             | 12,158                 | 28.07      | 110.62         | 4,667.2              | -4,667.2               | 105.95             | 12,134                 | 28.13      | 101.31 | 312.56         | 8,209                  | 41.58   | 5.60                       | 1.82                      | 6.12                        | 41,440       | 320,564                        | 42,196       | 346,396                        | 756          | 25,832                         |
| 10:00 AM  | 135                     | 31.1    | 15      | 109.97         | 4,581.3              | -4,581.3               | 105.39             | 12,148                 | 28.09      | 110.62         | 4,580.8              | -4,580.8               | 106.04             | 12,124                 | 28.15      | 100.99 | 312.42         | 8,213                  | 41.56   | 6.57                       | 2.15                      | 6.18                        | 41,289       | 319,355                        | 42,177       | 346,396                        | 887          | 27,041                         |
| 11:00 AM  | 135                     | 31.6    | 15      | 109.97         | 4,512.8              | -4,512.8               | 105.46             | 12,140                 | 28.11      | 110.62         | 4,512.2              | -4,512.2               | 106.11             | 12,116                 | 28.17      | 100.78 | 312.35         | 8,215                  | 41.55   | 7.23                       | 2.37                      | 6.26                        | 41,191       | 318,451                        | 42,167       | 346,396                        | 976          | 27,945                         |
| 12:00 PM  | 135                     | 31.7    | 15      | 109.97         | 4,386.4              | -4,386.4               | 105.58             | 12,126                 | 28.15      | 110.62         | 4,385.9              | -4,385.9               | 106.23             | 12,102                 | 28.20      | 100.72 | 312.53         | 8,210                  | 41.57   | 7.67                       | 2.52                      | 6.22                        | 41,156       | 318,096                        | 42,192       | 346,396                        | 1,036        | 28,300                         |
| 1:00 PM   | 135                     | 31.9    | 15      | 109.97         | 4,346.9              | -4,346.9               | 105.62             | 12,121                 | 28.16      | 110.62         | 4,346.4              | -4,346.4               | 106.27             | 12,097                 | 28.21      | 100.65 | 312.55         | 8,210                  | 41.57   | 7.88                       | 2.59                      | 6.24                        | 41,130       | 317,836                        | 42,194       | 346,396                        | 1,064        | 28,560                         |
| 2:00 PM   | 135                     | 31.7    | 15      | 109.97         | 4,390.9              | -4,390.9               | 105.58             | 12,126                 | 28.15      | 110.62         | 4,390.4              | -4,390.4               | 106.23             | 12,102                 | 28.20      | 100.73 | 312.54         | 8,210                  | 41.57   | 7.60                       | 2.49                      | 6.22                        | 41,167       | 318,186                        | 42,193       | 346,396                        | 1,026        | 28,210                         |
| 3:00 PM   | 135                     | 31.3    | 15      | 109.97         | 4,363.4              | -4,363.4               | 105.61             | 12,123                 | 28.15      | 110.62         | 4,362.9              | -4,362.9               | 106.26             | 12,099                 | 28.21      | 100.88 | 312.75         | 8,204                  | 41.60   | 7.30                       | 2.39                      | 6.11                        | 41,236       | 318,822                        | 42,221       | 346,396                        | 985          | 27,574                         |
| 4:00 PM   | 135                     | 31.0    | 15      | 109.97         | 4,285.2              | -4,285.2               | 105.68             | 12,114                 | 28.17      | 110.62         | 4,284.7              | -4,284.7               | 106.34             | 12,090                 | 28.23      | 101.06 | 313.08         | 8,196                  | 41.64   | 7.04                       | 2.30                      | 5.98                        | 41,316       | 319,514                        | 42,266       | 346,396                        | 950          | 26,882                         |
| 5:00 PM   | 135                     | 30.4    | 15      | 109.97         | 4,218.9              | -4,218.9               | 105.75             | 12,106                 | 28.19      | 110.62         | 4,218.4              | -4,218.4               | 106.40             | 12,083                 | 28.25      | 101.29 | 313.45         | 8,186                  | 41.69   | 6.61                       | 2.15                      | 5.81                        | 41,423       | 320,479                        | 42,315       | 346,396                        | 893          | 25,917                         |
| 6:00 PM   | 135                     | 29.8    | 15      | 109.97         | 4,119.0              | -4,119.0               | 105.85             | 12,095                 | 28.22      | 110.62         | 4,118.6              | -4,118.6               | 106.50             | 12,071                 | 28.27      | 101.58 | 313.93         | 8,173                  | 41.76   | 6.10                       | 1.98                      | 5.62                        | 41,557       | 321,579                        | 42,381       | 346,396                        | 824          | 24,817                         |
| 7:00 PM   | 135                     | 29.1    | 15      | 109.97         | 4,016.2              | -4,016.2               | 105.95             | 12,083                 | 28.25      | 110.62         | 4,015.8              | -4,015.8               | 106.60             | 12,060                 | 28.30      | 101.89 | 314.45         | 8,160                  | 41.83   | 5.53                       | 1.79                      | 5.43                        | 41,704       | 322,790                        | 42,451       | 346,396                        | 747          | 23,606                         |
| 8:00 PM   | 135                     | 28.7    | 15      | 109.97         | 4,005.6              | -4,005.6               | 105.96             | 12,082                 | 28.25      | 110.62         | 4,005.1              | -4,005.1               | 106.61             | 12,059                 | 28.30      | 102.06 | 314.64         | 8,155                  | 41.85   | 5.29                       | 1.71                      | 5.30                        | 41,762       | 323,423                        | 42,476       | 346,396                        | 714          | 22,973                         |
| 9:00 PM   | 135                     | 28.6    | 15      | 109.97         | 4,063.9              | -4,063.9               | 105.91             | 12,089                 | 28.23      | 110.62         | 4,063.4              | -4,063.4               | 106.56             | 12,065                 | 28.29      | 102.13 | 314.59         | 8,156                  | 41.85   | 4.83                       | 1.56                      | 5.37                        | 41,819       | 323,695                        | 42,470       | 346,396                        | 651          | 22,701                         |
| 10:00 PM  | 135                     | 28.3    | 15      | 109.97         | 4,082.5              | -4,082.5               | 105.89             | 12,091                 | 28.23      | 110.62         | 4,082.1              | -4,082.1               | 106.54             | 12,067                 | 28.28      | 102.24 | 314.67         | 8,154                  | 41.86   | 4.51                       | 1.45                      | 5.33                        | 41,871       | 324,147                        | 42,480       | 346,396                        | 609          | 22,249                         |
| 11:00 PM  | 135                     | 28.0    | 15      | 109.97         | 4,024.0              | -4,024.0               | 105.95             | 12,084                 | 28.24      | 110.62         | 4,023.5              | -4,023.5               | 106.60             | 12,061                 | 28.30      | 102.39 | 314.93         | 8,147                  | 41.89   | 4.27                       | 1.37                      | 5.22                        | 41,940       | 324,739                        | 42,516       | 346,396                        | 577          | 21,657                         |
| 12:00 AM  | 135                     | 27.5    | 15      | 109.97         | 3,916.0              | -3,916.0               | 106.05             | 12,072                 | 28.27      | 110.62         | 3,915.5              | -3,915.5               | 106.70             | 12,048                 | 28.33      | 102.59 | 315.35         | 8,137                  | 41.95   | 4.02                       | 1.29                      | 5.06                        | 42,029       | 325,516                        | 42,572       | 346,396                        | 543          | 20,880                         |
| Sub-Total | 3240                    |         |         |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                            |                           |                             | 999,878      | 7,738,289                      | 1,017,173    | 8,313,504                      | 17,295       | 575,215                        |

Mechanical Chiller System Performance Summary

DB (°C) DB (°C) %RH

100

Design criteria 15.0

| Period              | % of |
|---------------------|------|
| March - May         | 80   |
| June - October      | 90   |
| November - February | 75   |

\_

Approximately Parasitic Load from Mechanical Chiller (Inc. pump and cooling tower) 1 kW/TR

|           |                         | No      |         |                |                      |                        |                    |                        |            |                | Mechanic             | al Chiller             |                    |                        |            |        |                |                        |         |                            |                           |                             |              |                                | Total S      | Summary                        |              |                                |
|-----------|-------------------------|---------|---------|----------------|----------------------|------------------------|--------------------|------------------------|------------|----------------|----------------------|------------------------|--------------------|------------------------|------------|--------|----------------|------------------------|---------|----------------------------|---------------------------|-----------------------------|--------------|--------------------------------|--------------|--------------------------------|--------------|--------------------------------|
|           |                         |         |         |                |                      | (                      | GT41               |                        |            |                |                      | G                      | T42                |                        |            | ST     |                | Net                    |         |                            |                           |                             | No           | Chiller                        | Mechar       | ical Chiller                   | Incre        | emental                        |
| Month     | Approx.<br>Service Hour | DB (°C) | DB (°C) | Output<br>(MW) | Cooling<br>Load (TR) | Parasitic<br>load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | Output<br>(MW) | Cooling<br>Load (TR) | Parasitic<br>Ioad (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | MW     | Output<br>(MW) | Heat rate<br>(BTU/kWh) | Eff (%) | Output<br>Increase<br>(MW) | Output<br>Increase<br>(%) | Heat Rate<br>Changed<br>(%) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) |
| Nov - Feb |                         |         |         |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                            |                           |                             |              |                                |              |                                | 0            | 0                              |
| 1:00 AM   | 90                      | 26.0    | 15      | 109.97         | 2,715.7              | -2,715.7               | 107.25             | 11,937                 | 28.59      | 110.62         | 2,715.4              | -2,715.4               | 107.90             | 11,914                 | 28.65      | 103.29 | 318.45         | 8,058                  | 42.36   | 4.89                       | 1.56                      | 3.96                        | 28,220       | 218,720                        | 28,660       | 230,931                        | 440          | 12,211                         |
| 2:00 AM   | 90                      | 25.7    | 15      | 109.97         | 2,655.8              | -2,655.8               | 107.31             | 11,930                 | 28.61      | 110.62         | 2,655.4              | -2,655.4               | 107.96             | 11,908                 | 28.66      | 103.43 | 318.71         | 8,051                  | 42.39   | 4.63                       | 1.47                      | 3.86                        | 28,267       | 219,110                        | 28,684       | 230,931                        | 417          | 11,820                         |
| 3:00 AM   | 90                      | 25.3    | 15      | 109.97         | 2,567.8              | -2,567.8               | 107.40             | 11,920                 | 28.63      | 110.62         | 2,567.5              | -2,567.5               | 108.05             | 11,898                 | 28.69      | 103.60 | 319.05         | 8,042                  | 42.44   | 4.43                       | 1.41                      | 3.73                        | 28,316       | 219,524                        | 28,715       | 230,931                        | 399          | 11,407                         |
| 4:00 AM   | 90                      | 25.0    | 15      | 109.97         | 2,508.2              | -2,508.2               | 107.46             | 11,914                 | 28.65      | 110.62         | 2,507.9              | -2,507.9               | 108.11             | 11,892                 | 28.70      | 103.74 | 319.32         | 8,036                  | 42.47   | 4.22                       | 1.34                      | 3.63                        | 28,359       | 219,892                        | 28,738       | 230,931                        | 379          | 11,039                         |
| 5:00 AM   | 90                      | 24.7    | 15      | 109.97         | 2,444.5              | -2,444.5               | 107.53             | 11,907                 | 28.66      | 110.62         | 2,444.3              | -2,444.3               | 108.18             | 11,885                 | 28.72      | 103.86 | 319.56         | 8,030                  | 42.51   | 4.06                       | 1.29                      | 3.55                        | 28,395       | 220,183                        | 28,760       | 230,931                        | 365          | 10,748                         |
| 6:00 AM   | 90                      | 24.4    | 15      | 109.97         | 2,331.9              | -2,331.9               | 107.64             | 11,894                 | 28.69      | 110.62         | 2,331.6              | -2,331.6               | 108.29             | 11,872                 | 28.75      | 103.99 | 319.91         | 8,021                  | 42.55   | 3.99                       | 1.26                      | 3.41                        | 28,433       | 220,526                        | 28,792       | 230,931                        | 360          | 10,405                         |
| 7:00 AM   | 90                      | 24.3    | 15      | 109.97         | 2,329.3              | -2,329.3               | 107.64             | 11,894                 | 28.70      | 110.62         | 2,329.1              | -2,329.1               | 108.29             | 11,872                 | 28.75      | 104.03 | 319.96         | 8,020                  | 42.56   | 3.92                       | 1.24                      | 3.39                        | 28,443       | 220,616                        | 28,796       | 230,931                        | 353          | 10,315                         |
| 8:00 AM   | 90                      | 25.2    | 15      | 109.97         | 2,370.0              | -2,370.0               | 107.60             | 11,898                 | 28.68      | 110.62         | 2,369.7              | -2,369.7               | 108.25             | 11,876                 | 28.74      | 103.63 | 319.48         | 8,031                  | 42.50   | 4.76                       | 1.51                      | 3.59                        | 28,325       | 219,607                        | 28,753       | 230,931                        | 429          | 11,324                         |
| 9:00 AM   | 90                      | 26.7    | 15      | 109.97         | 2,498.8              | -2,498.8               | 107.47             | 11,913                 | 28.65      | 110.62         | 2,499.1              | -2,499.1               | 108.12             | 11,891                 | 28.70      | 102.96 | 318.55         | 8,055                  | 42.37   | 6.09                       | 1.95                      | 3.99                        | 28,121       | 217,830                        | 28,670       | 230,931                        | 548          | 13,100                         |
| 10:00 AM  | 90                      | 28.0    | 15      | 109.97         | 2,601.4              | -2,601.4               | 107.37             | 11,924                 | 28.62      | 110.62         | 2,601.1              | -2,601.1               | 108.02             | 11,902                 | 28.68      | 102.36 | 317.75         | 8,075                  | 42.27   | 7.30                       | 2.35                      | 4.37                        | 27,941       | 216,170                        | 28,598       | 230,931                        | 657          | 14,761                         |
| 11:00 AM  | 90                      | 29.1    | 15      | 109.97         | 2,726.6              | -2,726.6               | 107.24             | 11,938                 | 28.59      | 110.62         | 2,726.3              | -2,726.3               | 107.89             | 11,916                 | 28.64      | 101.89 | 317.03         | 8,094                  | 42.17   | 8.17                       | 2.65                      | 4.64                        | 27,797       | 214,992                        | 28,533       | 230,931                        | 735          | 15,938                         |
| 12:00 PM  | 90                      | 29.8    | 15      | 109.97         | 2,809.0              | -2,809.0               | 107.16             | 11,947                 | 28.57      | 110.62         | 2,808.7              | -2,808.7               | 107.81             | 11,925                 | 28.62      | 101.55 | 316.53         | 8,106                  | 42.10   | 8.82                       | 2.87                      | 4.90                        | 27,693       | 214,009                        | 28,487       | 230,931                        | 794          | 16,921                         |
| 1:00 PM   | 90                      | 30.6    | 15      | 109.97         | 2,953.3              | -2,953.3               | 107.02             | 11,963                 | 28.53      | 110.62         | 2,952.9              | -2,952.9               | 107.67             | 11,941                 | 28.58      | 101.20 | 315.88         | 8,123                  | 42.02   | 9.42                       | 3.07                      | 5.15                        | 27,582       | 213,065                        | 28,429       | 230,931                        | 848          | 17,866                         |
| 2:00 PM   | 90                      | 31.0    | 15      | 109.97         | 3,032.6              | -3,032.6               | 106.94             | 11,972                 | 28.51      | 110.62         | 3,032.3              | -3,032.3               | 107.59             | 11,950                 | 28.56      | 101.02 | 315.54         | 8,132                  | 41.97   | 9.69                       | 3.17                      | 5.29                        | 27,527       | 212,591                        | 28,399       | 230,931                        | 872          | 18,340                         |
| 3:00 PM   | 90                      | 31.2    | 15      | 109.97         | 3,084.8              | -3,084.8               | 106.89             | 11,978                 | 28.49      | 110.62         | 3,084.5              | -3,084.5               | 107.54             | 11,955                 | 28.55      | 100.95 | 315.37         | 8,136                  | 41.95   | 9.74                       | 3.19                      | 5.35                        | 27,507       | 212,427                        | 28,384       | 230,931                        | 876          | 18,504                         |
| 4:00 PM   | 90                      | 31.2    | 15      | 109.97         | 3,156.8              | -3,156.8               | 106.81             | 11,986                 | 28.47      | 110.62         | 3,156.5              | -3,156.5               | 107.46             | 11,963                 | 28.53      | 100.95 | 315.22         | 8,140                  | 41.93   | 9.62                       | 3.15                      | 5.40                        | 27,505       | 212,424                        | 28,370       | 230,931                        | 866          | 18,507                         |
| 5:00 PM   | 90                      | 30.6    | 15      | 109.97         | 3,228.7              | -3,228.7               | 106.74             | 11,994                 | 28.46      | 110.62         | 3,228.3              | -3,228.3               | 107.39             | 11,971                 | 28.51      | 101.20 | 315.34         | 8,137                  | 41.94   | 8.83                       | 2.88                      | 5.32                        | 27,585       | 213,130                        | 28,380       | 230,931                        | 795          | 17,800                         |
| 6:00 PM   | 90                      | 29.5    | 15      | 109.97         | 3,190.8              | -3,190.8               | 106.78             | 11,990                 | 28.47      | 110.62         | 3,190.4              | -3,190.4               | 107.43             | 11,967                 | 28.52      | 101.71 | 315.92         | 8,122                  | 42.02   | 7.68                       | 2.49                      | 5.03                        | 27,742       | 214,518                        | 28,433       | 230,931                        | 691          | 16,413                         |
| 7:00 PM   | 90                      | 28.5    | 15      | 109.97         | 3,064.6              | -3,064.6               | 106.91             | 11,976                 | 28.50      | 110.62         | 3,064.3              | -3,064.3               | 107.56             | 11,953                 | 28.55      | 102.18 | 316.64         | 8,104                  | 42.12   | 6.84                       | 2.21                      | 4.71                        | 27,882       | 215,777                        | 28,497       | 230,931                        | 615          | 15,153                         |
| 8:00 PM   | 90                      | 28.0    | 15      | 109.97         | 3,015.9              | -3,015.9               | 106.95             | 11,970                 | 28.51      | 110.62         | 3,015.5              | -3,015.5               | 107.60             | 11,948                 | 28.57      | 102.37 | 316.93         | 8,096                  | 42.16   | 6.46                       | 2.08                      | 4.58                        | 27,942       | 216,312                        | 28,523       | 230,931                        | 581          | 14,618                         |
| 9:00 PM   | 90                      | 27.7    | 15      | 109.97         | 2,980.2              | -2,980.2               | 106.99             | 11,966                 | 28.52      | 110.62         | 2,979.8              | -2,979.8               | 107.64             | 11,944                 | 28.58      | 102.52 | 317.15         | 8,090                  | 42.19   | 6.17                       | 1.99                      | 4.48                        | 27,988       | 216,735                        | 28,544       | 230,931                        | 556          | 14,196                         |
| 10:00 PM  | 90                      | 27.3    | 15      | 109.97         | 2,921.1              | -2,921.1               | 107.05             | 11,960                 | 28.54      | 110.62         | 2,920.8              | -2,920.8               | 107.70             | 11,937                 | 28.59      | 102.71 | 317.46         | 8,083                  | 42.23   | 5.84                       | 1.87                      | 4.34                        | 28,046       | 217,249                        | 28,571       | 230,931                        | 526          | 13,682                         |
| 11:00 PM  | 90                      | 26.8    | 15      | 109.97         | 2,867.8              | -2,867.8               | 107.10             | 11,954                 | 28.55      | 110.62         | 2,867.5              | -2,867.5               | 107.75             | 11,931                 | 28.61      | 102.91 | 317.76         | 8,075                  | 42.27   | 5.46                       | 1.75                      | 4.22                        | 28,107       | 217,764                        | 28,599       | 230,931                        | 492          | 13,166                         |
| 12:00 AM  | 90                      | 26.3    | 15      | 109.97         | 2,793.9              | -2,793.9               | 107.18             | 11,945                 | 28.57      | 110.62         | 2,793.6              | -2,793.6               | 107.83             | 11,923                 | 28.63      | 103.13 | 318.13         | 8,066                  | 42.32   | 5.10                       | 1.63                      | 4.09                        | 28,173       | 218,305                        | 28,631       | 230,931                        | 459          | 12,626                         |
| Sub-Total | 2160                    |         |         |                |                      |                        |                    |                        |            |                |                      |                        |                    |                        |            |        |                |                        |         |                            |                           |                             | 671,895      | 5,201,476                      | 685,947      | 5,542,336                      | 14,052       | 340,860                        |
| Total     | 7128                    |         |         |                | 4,694.5              |                        |                    |                        |            |                | 4,694.0              |                        |                    |                        |            |        |                |                        |         |                            |                           |                             | 2201571.7    | 17036887.7                     | 2244018.4    | 18289709.4                     | 42,447       | 1,252,822                      |



Absorption Chiller System Performance Summary

DB (°C) DB (°C) %RH 100

Design criteria 15.0



Approximately Parasitic Load from Mechanical Chiller (Inc. pump and cooling tower) 0.1 kW/TR

Approximately Steam Consumption

12 lbm/h/TR

|           |                         | No      |                      |                |                     |                           |                    |                        |            |                | A                    | bsorption Ch            | iller              |                        |            |       |                                 |                |                        |         |                            |                           |                             |              |                                | Total S   | Summary                        |              |                                |
|-----------|-------------------------|---------|----------------------|----------------|---------------------|---------------------------|--------------------|------------------------|------------|----------------|----------------------|-------------------------|--------------------|------------------------|------------|-------|---------------------------------|----------------|------------------------|---------|----------------------------|---------------------------|-----------------------------|--------------|--------------------------------|-----------|--------------------------------|--------------|--------------------------------|
|           |                         |         |                      |                |                     | (                         | GT41               |                        |            |                |                      | G                       | T42                |                        |            |       | ST                              |                | Net                    |         |                            |                           |                             | No           | Chiller                        | Absorp    | tion Chiller                   | Inci         | emental                        |
| Month     | Approx.<br>Service Hour | DB (°C) | DB ( <sup>°</sup> C) | Output<br>(MW) | Cooling<br>Load (TR | Parasistic<br>) load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | Output<br>(MW) | Cooling<br>Load (TR) | Parasistic<br>load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | MW    | Steam<br>Consumption<br>(lb/hr) | Output<br>(MW) | Heat rate<br>(BTU/kWh) | Eff (%) | Output<br>Increase<br>(MW) | Output<br>Increase<br>(%) | Heat Rate<br>Changed<br>(%) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) |
| Mar-May   |                         |         |                      |                |                     |                           |                    |                        |            |                |                      |                         |                    |                        |            |       |                                 |                |                        |         |                            |                           |                             |              |                                |           |                                |              |                                |
| 1:00 AM   | 72                      | 28.6    | 15                   | 109.97         | 4,184.5             | -418.5                    | 109.55             | 11,686                 | 29.20      | 110.62         | 4,184.0              | -418.4                  | 110.20             | 11,666                 | 29.26      | 96.18 | 100422                          | 315.94         | 8,122                  | 42.02   | 6.20                       | 2.00                      | 4.92                        | 22,301       | 172,622                        | 22,747    | 184,745                        | 446          | 12,122                         |
| 2:00 AM   | 72                      | 28.4    | 15                   | 109.97         | 4,197.8             | -419.8                    | 109.55             | 11,687                 | 29.20      | 110.62         | 4,197.3              | -419.7                  | 110.20             | 11,666                 | 29.26      | 96.28 | 100741                          | 316.03         | 8,119                  | 42.04   | 5.98                       | 1.93                      | 4.87                        | 22,324       | 172,828                        | 22,754    | 184,745                        | 431          | 11,917                         |
| 3:00 AM   | 72                      | 28.2    | 15                   | 109.97         | 4,189.1             | -418.9                    | 109.55             | 11,687                 | 29.20      | 110.62         | 4,188.6              | -418.9                  | 110.20             | 11,666                 | 29.26      | 96.37 | 100532                          | 316.12         | 8,117                  | 42.05   | 5.85                       | 1.89                      | 4.80                        | 22,339       | 173,017                        | 22,761    | 184,745                        | 421          | 11,728                         |
| 4:00 AM   | 72                      | 28.0    | 15                   | 109.97         | 4,191.6             | -419.2                    | 109.55             | 11,687                 | 29.20      | 110.62         | 4,191.2              | -419.1                  | 110.20             | 11,666                 | 29.26      | 96.45 | 100594                          | 316.20         | 8,115                  | 42.06   | 5.59                       | 1.80                      | 4.78                        | 22,364       | 173,194                        | 22,766    | 184,745                        | 403          | 11,550                         |
| 5:00 AM   | 72                      | 27.9    | 15                   | 109.97         | 4,182.3             | -418.2                    | 109.55             | 11,686                 | 29.20      | 110.62         | 4,181.8              | -418.2                  | 110.20             | 11,666                 | 29.26      | 96.52 | 100369                          | 316.27         | 8,113                  | 42.07   | 5.41                       | 1.74                      | 4.76                        | 22,382       | 173,338                        | 22,771    | 184,745                        | 389          | 11,406                         |
| 6:00 AM   | 72                      | 27.7    | 15                   | 109.97         | 4,201.6             | -420.2                    | 109.55             | 11,687                 | 29.20      | 110.62         | 4,201.1              | -420.1                  | 110.20             | 11,666                 | 29.26      | 96.57 | 100832                          | 316.32         | 8,112                  | 42.07   | 5.27                       | 1.69                      | 4.73                        | 22,396       | 173,455                        | 22,775    | 184,745                        | 379          | 11,290                         |
| 7:00 AM   | 72                      | 28.0    | 15                   | 109.97         | 4,211.4             | -421.1                    | 109.55             | 11,687                 | 29.20      | 110.62         | 4,210.9              | -421.1                  | 110.20             | 11,666                 | 29.25      | 96.46 | 101068                          | 316.21         | 8,115                  | 42.06   | 5.50                       | 1.77                      | 4.79                        | 22,371       | 173,230                        | 22,767    | 184,745                        | 396          | 11,515                         |
| 8:00 AM   | 72                      | 29.4    | 15                   | 109.97         | 4,309.0             | -430.9                    | 109.54             | 11,688                 | 29.20      | 110.62         | 4,308.5              | -430.9                  | 110.19             | 11,667                 | 29.25      | 95.81 | 103410                          | 315.54         | 8,132                  | 41.97   | 7.12                       | 2.31                      | 5.09                        | 22,206       | 171,831                        | 22,719    | 184,745                        | 513          | 12,913                         |
| 9:00 AM   | 72                      | 30.9    | 15                   | 109.97         | 4,303.2             | -430.3                    | 109.54             | 11,688                 | 29.20      | 110.62         | 4,302.7              | -430.3                  | 110.19             | 11,667                 | 29.25      | 95.16 | 103271                          | 314.89         | 8,149                  | 41.88   | 7.79                       | 2.54                      | 5.18                        | 22,111       | 171,306                        | 22,672    | 184,745                        | 561          | 13,438                         |
| 10:00 AM  | 72                      | 32.3    | 15                   | 109.97         | 4,384.9             | -438.5                    | 109.53             | 11,689                 | 29.20      | 110.62         | 4,384.4              | -438.4                  | 110.18             | 11,668                 | 29.25      | 94.55 | 105232                          | 314.27         | 8,165                  | 41.80   | 10.26                      | 3.37                      | 5.70                        | 21,889       | 169,076                        | 22,627    | 184,745                        | 739          | 15,668                         |
| 11:00 AM  | 72                      | 32.8    | 15                   | 109.97         | 4,543.3             | -454.3                    | 109.52             | 11,690                 | 29.20      | 110.62         | 4,542.8              | -454.3                  | 110.17             | 11,670                 | 29.25      | 94.33 | 109033                          | 314.01         | 8,171                  | 41.77   | 10.79                      | 3.56                      | 5.82                        | 21,832       | 168,580                        | 22,609    | 184,745                        | 777          | 16,165                         |
| 12:00 PM  | 72                      | 33.2    | 15                   | 109.97         | 4,608.7             | -460.9                    | 109.51             | 11,691                 | 29.19      | 110.62         | 4,608.1              | -460.8                  | 110.16             | 11,671                 | 29.24      | 94.15 | 110602                          | 313.82         | 8,176                  | 41.74   | 11.23                      | 3.71                      | 6.00                        | 21,786       | 168,041                        | 22,595    | 184,745                        | 809          | 16,704                         |
| 1:00 PM   | 72                      | 33.5    | 15                   | 109.97         | 4,618.8             | -461.9                    | 109.51             | 11,691                 | 29.19      | 110.62         | 4,618.3              | -461.8                  | 110.16             | 11,671                 | 29.24      | 94.03 | 110845                          | 313.70         | 8,180                  | 41.73   | 11.49                      | 3.80                      | 5.97                        | 21,759       | 167,955                        | 22,586    | 184,/45                        | 827          | 16,791                         |
| 2:00 PM   | 72                      | 22.5    | 15                   | 109.97         | 4,012.2             | -461.2                    | 109.51             | 11,691                 | 29.19      | 110.62         | 4,011.7              | -461.2                  | 110.16             | 11,071                 | 29.24      | 94.00 | 112564                          | 212.67         | 8,180                  | 41.72   | 11.50                      | 2.81                      | 5.09                        | 21,751       | 167.028                        | 22,584    | 184,745                        | 034          | 16,800                         |
| 4.00 PM   | 72                      | 33.3    | 15                   | 109.97         | 4,090.4             | -469.5                    | 109.50             | 11,092                 | 29.19      | 110.62         | 4,009.9              | -409.0                  | 110.15             | 11,071                 | 29.24      | 94.02 | 112569                          | 313.76         | 8 178                  | 41.72   | 11.50                      | 3.73                      | 5.03                        | 21,750       | 168 138                        | 22,504    | 184 745                        | 813          | 16,607                         |
| 5:00 PM   | 72                      | 33.0    | 15                   | 109.97         | 4 672 0             | -467.3                    | 109.50             | 11,692                 | 20.10      | 110.62         | 4 672 3              | -467.2                  | 110.15             | 11,072                 | 29.24      | 94.11 | 112142                          | 313.80         | 8 175                  | 41.75   | 11.11                      | 3.67                      | 5.81                        | 21,770       | 168 424                        | 22,591    | 184 745                        | 800          | 16 320                         |
| 6:00 PM   | 72                      | 32.3    | 15                   | 109.97         | 4.615.4             | -461.5                    | 109.51             | 11.691                 | 29.19      | 110.62         | 4.614.8              | -461.5                  | 110.16             | 11,671                 | 29.24      | 94.53 | 110762                          | 314.20         | 8,166                  | 41.79   | 10.26                      | 3.38                      | 5.68                        | 21,884       | 169.098                        | 22,600    | 184,745                        | 739          | 15,646                         |
| 7:00 PM   | 72                      | 31.4    | 15                   | 109.97         | 4.446.1             | -444.6                    | 109.53             | 11.689                 | 29.20      | 110.62         | 4.445.6              | -444.6                  | 110.18             | 11.669                 | 29.25      | 94.94 | 106700                          | 314.64         | 8.155                  | 41.85   | 9.29                       | 3.04                      | 5.48                        | 21.985       | 169,979                        | 22,654    | 184.745                        | 669          | 14,765                         |
| 8:00 PM   | 72                      | 30.8    | 15                   | 109.97         | 4,324.0             | -432.4                    | 109.54             | 11,688                 | 29.20      | 110.62         | 4,323.5              | -432.4                  | 110.19             | 11,668                 | 29.25      | 95.22 | 103770                          | 314.94         | 8,147                  | 41.89   | 8.64                       | 2.82                      | 5.32                        | 22,053       | 170,593                        | 22,676    | 184,745                        | 622          | 14,152                         |
| 9:00 PM   | 72                      | 30.2    | 15                   | 109.97         | 4,294.7             | -429.5                    | 109.54             | 11,688                 | 29.20      | 110.62         | 4,294.2              | -429.4                  | 110.19             | 11,667                 | 29.25      | 95.46 | 103067                          | 315.19         | 8,141                  | 41.93   | 8.02                       | 2.61                      | 5.22                        | 22,116       | 171,111                        | 22,694    | 184,745                        | 578          | 13,634                         |
| 10:00 PM  | 72                      | 29.7    | 15                   | 109.97         | 4,250.6             | -425.1                    | 109.54             | 11,687                 | 29.20      | 110.62         | 4,250.1              | -425.0                  | 110.19             | 11,667                 | 29.25      | 95.68 | 102008                          | 315.42         | 8,135                  | 41.95   | 7.49                       | 2.43                      | 5.13                        | 22,171       | 171,560                        | 22,710    | 184,745                        | 539          | 13,184                         |
| 11:00 PM  | 72                      | 29.4    | 15                   | 109.97         | 4,233.5             | -423.4                    | 109.55             | 11,687                 | 29.20      | 110.62         | 4,233.0              | -423.3                  | 110.20             | 11,667                 | 29.25      | 95.82 | 101598                          | 315.57         | 8,131                  | 41.97   | 7.10                       | 2.30                      | 5.08                        | 22,210       | 171,866                        | 22,721    | 184,745                        | 511          | 12,879                         |
| 12:00 AM  | 72                      | 29.2    | 15                   | 109.97         | 4,273.2             | -427.3                    | 109.54             | 11,687                 | 29.20      | 110.62         | 4,272.7              | -427.3                  | 110.19             | 11,667                 | 29.25      | 95.93 | 102551                          | 315.66         | 8,129                  | 41.99   | 6.83                       | 2.21                      | 5.04                        | 22,235       | 172,077                        | 22,728    | 184,745                        | 492          | 12,668                         |
| Sub-Total | 1728                    |         |                      |                |                     |                           |                    |                        |            |                |                      |                         |                    |                        |            |       |                                 |                |                        |         |                            |                           |                             | 529,799      | 4,097,123                      | 544,313   | 4,433,869                      | 14,514       | 336,746                        |

Absorption Chiller System Performance Summary

DB (°C) DB (°C) %RH 100

Design criteria 15.0



Approximately Parasitic Load from Mechanical Chiller (Inc. pump and cooling tower) 0.1 kW/TR

Approximately Steam Consumption

12 lbm/h/TR

|           |                         | No      | Absorption Chiller   |                |                      |                           |                      |                        |            |                |                      |                         |                    |                        |            |       |                                 |                |                        | Total S | Summary                    |                           |                             |              |                                |           |                                |              |                                |
|-----------|-------------------------|---------|----------------------|----------------|----------------------|---------------------------|----------------------|------------------------|------------|----------------|----------------------|-------------------------|--------------------|------------------------|------------|-------|---------------------------------|----------------|------------------------|---------|----------------------------|---------------------------|-----------------------------|--------------|--------------------------------|-----------|--------------------------------|--------------|--------------------------------|
|           |                         |         |                      |                |                      |                           | GT41                 |                        |            |                |                      | G                       | T42                |                        |            |       | ST                              |                | Net                    |         |                            |                           |                             | No           | Chiller                        | Absorp    | tion Chiller                   | Inci         | emental                        |
| Month     | Approx.<br>Service Hour | DB (°C) | DB ( <sup>°</sup> C) | Output<br>(MW) | Cooling<br>Load (TR) | Parasistic<br>) load (kW) | Net Output<br>) (MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | Output<br>(MW) | Cooling<br>Load (TR) | Parasistic<br>load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | MW    | Steam<br>Consumption<br>(lb/hr) | Output<br>(MW) | Heat rate<br>(BTU/kWh) | Eff (%) | Output<br>Increase<br>(MW) | Output<br>Increase<br>(%) | Heat Rate<br>Changed<br>(%) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) |
| Jun - Oct |                         |         |                      |                |                      |                           |                      |                        |            |                |                      |                         |                    |                        |            |       |                                 |                |                        |         |                            |                           |                             |              |                                |           |                                | 0            | 0                              |
| 1:00 AM   | 135                     | 27.5    | 15                   | 109.97         | 3,987.9              | -398.8                    | 109.57               | 11,684                 | 29.21      | 110.62         | 3,987.4              | -398.7                  | 110.22             | 11,664                 | 29.26      | 96.82 | 95704                           | 316.61         | 8,104                  | 42.11   | 5.25                       | 1.69                      | 4.61                        | 42,034       | 325,629                        | 42,743    | 346,396                        | 709          | 20,768                         |
| 2:00 AM   | 135                     | 27.3    | 15                   | 109.97         | 3,964.6              | -396.5                    | 109.57               | 11,684                 | 29.21      | 110.62         | 3,964.2              | -396.4                  | 110.22             | 11,664                 | 29.26      | 96.92 | 95146                           | 316.71         | 8,102                  | 42.13   | 5.07                       | 1.63                      | 4.59                        | 42,072       | 325,899                        | 42,756    | 346,396                        | 685          | 20,497                         |
| 3:00 AM   | 135                     | 27.2    | 15                   | 109.97         | 3,925.4              | -392.5                    | 109.58               | 11,684                 | 29.21      | 110.62         | 3,924.9              | -392.5                  | 110.23             | 11,663                 | 29.26      | 97.04 | 94204                           | 316.84         | 8,098                  | 42.14   | 4.96                       | 1.59                      | 4.53                        | 42,104       | 326,184                        | 42,774    | 346,396                        | 669          | 20,212                         |
| 4:00 AM   | 135                     | 27.1    | 15                   | 109.97         | 3,932.5              | -393.3                    | 109.58               | 11,684                 | 29.21      | 110.62         | 3,932.1              | -393.2                  | 110.23             | 11,663                 | 29.26      | 97.04 | 94375                           | 316.84         | 8,098                  | 42.14   | 4.90                       | 1.57                      | 4.54                        | 42,112       | 326,235                        | 42,773    | 346,396                        | 662          | 20,161                         |
| 5:00 AM   | 135                     | 27.4    | 15                   | 109.97         | 4,075.2              | -407.5                    | 109.56               | 11,685                 | 29.21      | 110.62         | 4,074.7              | -407.5                  | 110.21             | 11,665                 | 29.26      | 96.73 | 97799                           | 316.50         | 8,107                  | 42.10   | 4.95                       | 1.59                      | 4.65                        | 42,059       | 325,821                        | 42,728    | 346,396                        | 669          | 20,575                         |
| 6:00 AM   | 135                     | 27.8    | 15                   | 109.97         | 4,310.0              | -431.0                    | 109.54               | 11,688                 | 29.20      | 110.62         | 4,309.6              | -431.0                  | 110.19             | 11,667                 | 29.25      | 96.53 | 103435                          | 316.25         | 8,113                  | 42.07   | 5.34                       | 1.72                      | 4.76                        | 41,974       | 325,083                        | 42,694    | 346,396                        | 721          | 21,313                         |
| 7:00 AM   | 135                     | 28.5    | 15                   | 109.97         | 4,570.5              | -457.1                    | 109.51               | 11,691                 | 29.19      | 110.62         | 4,570.0              | -457.0                  | 110.16             | 11,670                 | 29.25      | 96.24 | 109686                          | 315.92         | 8,122                  | 42.02   | 5.96                       | 1.92                      | 4.90                        | 41,844       | 323,987                        | 42,649    | 346,396                        | 805          | 22,409                         |
| 8:00 AM   | 135                     | 29.4    | 15                   | 109.97         | 4,610.9              | -461.1                    | 109.51               | 11,691                 | 29.19      | 110.62         | 4,610.4              | -461.0                  | 110.16             | 11,671                 | 29.24      | 95.84 | 110656                          | 315.51         | 8,133                  | 41.97   | 6.99                       | 2.27                      | 5.11                        | 41,650       | 322,262                        | 42,593    | 346,396                        | 944          | 24,134                         |
| 9:00 AM   | 135                     | 30.4    | 15                   | 109.97         | 4,667.8              | -466.8                    | 109.50               | 11,692                 | 29.19      | 110.62         | 4,667.2              | -466.7                  | 110.15             | 11,671                 | 29.24      | 95.39 | 112020                          | 315.04         | 8,145                  | 41.91   | 8.08                       | 2.63                      | 5.29                        | 41,440       | 320,564                        | 42,531    | 346,396                        | 1,091        | 25,832                         |
| 10:00 AM  | 135                     | 31.1    | 15                   | 109.97         | 4,581.3              | -458.1                    | 109.51               | 11,691                 | 29.19      | 110.62         | 4,580.8              | -458.1                  | 110.16             | 11,670                 | 29.25      | 95.08 | 109945                          | 314.75         | 8,152                  | 41.87   | 8.90                       | 2.91                      | 5.40                        | 41,289       | 319,355                        | 42,491    | 346,396                        | 1,202        | 27,041                         |
| 11:00 AM  | 135                     | 31.6    | 15                   | 109.97         | 4,512.8              | -451.3                    | 109.52               | 11,690                 | 29.20      | 110.62         | 4,512.2              | -451.2                  | 110.17             | 11,670                 | 29.25      | 94.87 | 108300                          | 314.56         | 8,157                  | 41.84   | 9.44                       | 3.09                      | 5.51                        | 41,191       | 318,451                        | 42,465    | 346,396                        | 1,274        | 27,945                         |
| 12:00 PM  | 135                     | 31.7    | 15                   | 109.97         | 4,386.4              | -438.6                    | 109.53               | 11,689                 | 29.20      | 110.62         | 4,385.9              | -438.6                  | 110.18             | 11,668                 | 29.25      | 94.80 | 105268                          | 314.51         | 8,158                  | 41.83   | 9.65                       | 3.17                      | 5.55                        | 41,156       | 318,096                        | 42,459    | 346,396                        | 1,303        | 28,300                         |
| 1:00 PM   | 135                     | 31.9    | 15                   | 109.97         | 4,346.9              | -434./                    | 109.54               | 11,688                 | 29.20      | 110.62         | 4,346.4              | -434.0                  | 110.19             | 11,668                 | 29.25      | 94.74 | 104320                          | 314.46         | 8,160                  | 41.85   | 9.80                       | 3.22                      | 5.59                        | 41,130       | 219,196                        | 42,453    | 246,396                        | 1,323        | 28,560                         |
| 2:00 PM   | 135                     | 21.2    | 15                   | 109.97         | 4,390.9              | -439.1                    | 109.55               | 11,089                 | 29.20      | 110.62         | 4,390.4              | -439.0                  | 110.18             | 11,008                 | 29.25      | 94.82 | 103576                          | 214.55         | 8,154                  | 41.84   | 9.59                       | 2.02                      | 5.55                        | 41,107       | 218 922                        | 42,402    | 346,396                        | 1,295        | 26,210                         |
| 4.00 PM   | 135                     | 31.0    | 15                   | 109.97         | 4 285 2              | -430.5                    | 109.55               | 11,000                 | 29.20      | 110.62         | 4,302.9              | -430.5                  | 110.10             | 11,008                 | 29.25      | 94.97 | 102830                          | 314.09         | 8 149                  | 41.80   | 8.83                       | 2.80                      | 5.40                        | 41,250       | 310,622                        | 42,465    | 346 396                        | 1,247        | 26,882                         |
| 5:00 PM   | 135                     | 30.4    | 15                   | 109.97         | 4 218 9              | -421.9                    | 109.54               | 11,000                 | 29.20      | 110.62         | 4 218 4              | -421.8                  | 110.19             | 11,666                 | 29.25      | 95 37 | 101248                          | 315.12         | 8 143                  | 41.92   | 8.28                       | 2.09                      | 5.25                        | 41 423       | 320 479                        | 42,500    | 346 396                        | 1,172        | 25,002                         |
| 6:00 PM   | 135                     | 29.8    | 15                   | 109.97         | 4.119.0              | -411.9                    | 109.56               | 11,686                 | 29.21      | 110.62         | 4.118.6              | -411.9                  | 110.20             | 11,665                 | 29.26      | 95.75 | 98851                           | 315.51         | 8,133                  | 41.97   | 7.68                       | 2.50                      | 5.09                        | 41.557       | 321,579                        | 42.594    | 346,396                        | 1.037        | 24,817                         |
| 7:00 PM   | 135                     | 29.1    | 15                   | 109.97         | 4,016.2              | -401.6                    | 109.57               | 11,685                 | 29.21      | 110.62         | 4,015.8              | -401.6                  | 110.22             | 11,664                 | 29.26      | 96.16 | 96384                           | 315.95         | 8,121                  | 42.03   | 7.03                       | 2.28                      | 4.93                        | 41,704       | 322,790                        | 42,653    | 346,396                        | 949          | 23,606                         |
| 8:00 PM   | 135                     | 28.7    | 15                   | 109.97         | 4,005.6              | -400.6                    | 109.57               | 11,685                 | 29.21      | 110.62         | 4,005.1              | -400.5                  | 110.22             | 11,664                 | 29.26      | 96.32 | 96128                           | 316.11         | 8,117                  | 42.05   | 6.76                       | 2.19                      | 4.81                        | 41,762       | 323,423                        | 42,675    | 346,396                        | 913          | 22,973                         |
| 9:00 PM   | 135                     | 28.6    | 15                   | 109.97         | 4,063.9              | -406.4                    | 109.56               | 11,685                 | 29.21      | 110.62         | 4,063.4              | -406.3                  | 110.21             | 11,665                 | 29.26      | 96.30 | 97528                           | 316.08         | 8,118                  | 42.04   | 6.31                       | 2.04                      | 4.88                        | 41,819       | 323,695                        | 42,670    | 346,396                        | 851          | 22,701                         |
| 10:00 PM  | 135                     | 28.3    | 15                   | 109.97         | 4,082.5              | -408.3                    | 109.56               | 11,685                 | 29.21      | 110.62         | 4,082.1              | -408.2                  | 110.21             | 11,665                 | 29.26      | 96.37 | 97975                           | 316.14         | 8,116                  | 42.05   | 5.98                       | 1.93                      | 4.84                        | 41,871       | 324,147                        | 42,679    | 346,396                        | 807          | 22,249                         |
| 11:00 PM  | 135                     | 28.0    | 15                   | 109.97         | 4,024.0              | -402.4                    | 109.57               | 11,685                 | 29.21      | 110.62         | 4,023.5              | -402.4                  | 110.22             | 11,664                 | 29.26      | 96.58 | 96570                           | 316.37         | 8,111                  | 42.08   | 5.70                       | 1.84                      | 4.75                        | 41,940       | 324,739                        | 42,709    | 346,396                        | 770          | 21,657                         |
| 12:00 AM  | 135                     | 27.5    | 15                   | 109.97         | 3,916.0              | -391.6                    | 109.58               | 11,684                 | 29.21      | 110.62         | 3,915.5              | -391.6                  | 110.23             | 11,663                 | 29.26      | 96.91 | 93978                           | 316.71         | 8,102                  | 42.13   | 5.39                       | 1.73                      | 4.60                        | 42,029       | 325,516                        | 42,757    | 346,396                        | 728          | 20,880                         |
| Sub-Total | 3240                    |         |                      |                |                      |                           |                      |                        |            |                |                      |                         |                    |                        |            |       |                                 |                |                        |         |                            |                           |                             | 999,878      | 7,738,289                      | 1,022,840 | 8,313,504                      | 22,963       | 575,215                        |

Absorption Chiller System Performance Summary

DB (°C) DB (°C) %RH 100

Design criteria 15.0



Approximately Parasitic Load from Mechanical Chiller (Inc. pump and cooling tower) 0.1 kW/TR

Approximately Steam Consumption

12 lbm/h/TR

|           |                         | No                   | Absorption Chiller   |                |                     |                           |                    |                        |            |                |                      |                         |                    |                        |            |        | Total Summary                   |                |                        |         |                            |                           |                             |              |                                |           |                                |              |                                |
|-----------|-------------------------|----------------------|----------------------|----------------|---------------------|---------------------------|--------------------|------------------------|------------|----------------|----------------------|-------------------------|--------------------|------------------------|------------|--------|---------------------------------|----------------|------------------------|---------|----------------------------|---------------------------|-----------------------------|--------------|--------------------------------|-----------|--------------------------------|--------------|--------------------------------|
|           |                         |                      |                      |                |                     |                           | GT41               |                        |            |                |                      | G                       | T42                |                        |            |        | ST                              |                | Net                    |         |                            |                           |                             | No           | Chiller                        | Absorp    | tion Chiller                   | Incr         | emental                        |
| Month     | Approx.<br>Service Hour | DB ( <sup>°</sup> C) | DB ( <sup>°</sup> C) | Output<br>(MW) | Cooling<br>Load (TR | Parasistic<br>) load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | Output<br>(MW) | Cooling<br>Load (TR) | Parasistic<br>load (kW) | Net Output<br>(MW) | Heat Rate<br>(BTU/kWh) | EFF<br>(%) | MW     | Steam<br>Consumption<br>(lb/hr) | Output<br>(MW) | Heat rate<br>(BTU/kWh) | Eff (%) | Output<br>Increase<br>(MW) | Output<br>Increase<br>(%) | Heat Rate<br>Changed<br>(%) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) | Total MWh | Fuel<br>Consumption<br>(MMBTU) | Total<br>MWh | Fuel<br>Consumption<br>(MMBTU) |
| Nov - Feb |                         |                      |                      |                |                     |                           |                    |                        |            |                |                      |                         |                    |                        |            |        |                                 |                |                        |         |                            |                           |                             |              |                                |           |                                | 0            | 0                              |
| 1:00 AM   | 90                      | 26.0                 | 15                   | 109.97         | 2,715.7             | -271.6                    | 109.70             | 11,671                 | 29.24      | 110.62         | 2,715.4              | -271.5                  | 110.35             | 11,651                 | 29.29      | 99.30  | 65173                           | 319.35         | 8,035                  | 42.48   | 5.79                       | 1.85                      | 3.67                        | 28,220       | 218,720                        | 28,741    | 230,931                        | 521          | 12,211                         |
| 2:00 AM   | 90                      | 25.7                 | 15                   | 109.97         | 2,655.8             | -265.6                    | 109.70             | 11,670                 | 29.25      | 110.62         | 2,655.4              | -265.5                  | 110.35             | 11,650                 | 29.30      | 99.52  | 63734                           | 319.58         | 8,029                  | 42.51   | 5.50                       | 1.75                      | 3.58                        | 28,267       | 219,110                        | 28,762    | 230,931                        | 495          | 11,820                         |
| 3:00 AM   | 90                      | 25.3                 | 15                   | 109.97         | 2,567.8             | -256.8                    | 109.71             | 11,669                 | 29.25      | 110.62         | 2,567.5              | -256.8                  | 110.36             | 11,649                 | 29.30      | 99.80  | 61624                           | 319.88         | 8,021                  | 42.55   | 5.26                       | 1.67                      | 3.47                        | 28,316       | 219,524                        | 28,789    | 230,931                        | 473          | 11,407                         |
| 4:00 AM   | 90                      | 25.0                 | 15                   | 109.97         | 2,508.2             | -250.8                    | 109.72             | 11,669                 | 29.25      | 110.62         | 2,507.9              | -250.8                  | 110.37             | 11,648                 | 29.30      | 100.02 | 60193                           | 320.11         | 8,016                  | 42.58   | 5.01                       | 1.59                      | 3.38                        | 28,359       | 219,892                        | 28,810    | 230,931                        | 451          | 11,039                         |
| 5:00 AM   | 90                      | 24.7                 | 15                   | 109.97         | 2,444.5             | -244.5                    | 109.73             | 11,668                 | 29.25      | 110.62         | 2,444.3              | -244.4                  | 110.38             | 11,648                 | 29.30      | 100.22 | 58666                           | 320.32         | 8,010                  | 42.61   | 4.82                       | 1.53                      | 3.30                        | 28,395       | 220,183                        | 28,829    | 230,931                        | 434          | 10,748                         |
| 6:00 AM   | 90                      | 24.4                 | 15                   | 109.97         | 2,331.9             | -233.2                    | 109.74             | 11,667                 | 29.25      | 110.62         | 2,331.6              | -233.2                  | 110.39             | 11,647                 | 29.30      | 100.51 | 55962                           | 320.63         | 8,003                  | 42.65   | 4.72                       | 1.49                      | 3.18                        | 28,433       | 220,526                        | 28,857    | 230,931                        | 424          | 10,405                         |
| 7:00 AM   | 90                      | 24.3                 | 15                   | 109.97         | 2,329.3             | -232.9                    | 109.74             | 11,667                 | 29.25      | 110.62         | 2,329.1              | -232.9                  | 110.39             | 11,647                 | 29.30      | 100.55 | 55901                           | 320.67         | 8,002                  | 42.65   | 4.64                       | 1.47                      | 3.16                        | 28,443       | 220,616                        | 28,861    | 230,931                        | 417          | 10,315                         |
| 8:00 AM   | 90                      | 25.2                 | 15                   | 109.97         | 2,370.0             | -237.0                    | 109.73             | 11,667                 | 29.25      | 110.62         | 2,369.7              | -237.0                  | 110.38             | 11,647                 | 29.30      | 100.13 | 56876                           | 320.25         | 8,012                  | 42.60   | 5.53                       | 1.76                      | 3.34                        | 28,325       | 219,607                        | 28,822    | 230,931                        | 497          | 11,324                         |
| 9:00 AM   | 90                      | 26.7                 | 15                   | 109.97         | 2,498.8             | -249.9                    | 109.72             | 11,669                 | 29.25      | 110.62         | 2,499.1              | -249.9                  | 110.37             | 11,648                 | 29.30      | 99.32  | 59975                           | 319.41         | 8,033                  | 42.49   | 6.96                       | 2.23                      | 3.71                        | 28,121       | 217,830                        | 28,747    | 230,931                        | 626          | 13,100                         |
| 10:00 AM  | 90                      | 28.0                 | 15                   | 109.97         | 2,601.4             | -260.1                    | 109.71             | 11,670                 | 29.25      | 110.62         | 2,601.1              | -260.1                  | 110.36             | 11,649                 | 29.30      | 98.63  | 62430                           | 318.70         | 8,051                  | 42.39   | 8.25                       | 2.66                      | 4.06                        | 27,941       | 216,170                        | 28,683    | 230,931                        | 742          | 14,761                         |
| 11:00 AM  | 90                      | 29.1                 | 15                   | 109.97         | 2,726.6             | -272.7                    | 109.70             | 11,671                 | 29.24      | 110.62         | 2,726.3              | -272.6                  | 110.35             | 11,651                 | 29.29      | 98.02  | 65435                           | 318.07         | 8,067                  | 42.31   | 9.21                       | 2.98                      | 4.30                        | 27,797       | 214,992                        | 28,626    | 230,931                        | 829          | 15,938                         |
| 12:00 PM  | 90                      | 29.8                 | 15                   | 109.97         | 2,809.0             | -280.9                    | 109.69             | 11,672                 | 29.24      | 110.62         | 2,808.7              | -280.9                  | 110.34             | 11,652                 | 29.29      | 97.60  | 67412                           | 317.63         | 8,078                  | 42.25   | 9.92                       | 3.23                      | 4.54                        | 27,693       | 214,009                        | 28,586    | 230,931                        | 893          | 16,921                         |
| 1:00 PM   | 90                      | 30.6                 | 15                   | 109.97         | 2,953.3             | -295.3                    | 109.67             | 11,673                 | 29.24      | 110.62         | 2,952.9              | -295.3                  | 110.32             | 11,653                 | 29.29      | 97.07  | 70874                           | 317.07         | 8,092                  | 42.18   | 10.61                      | 3.46                      | 4.76                        | 27,582       | 213,065                        | 28,537    | 230,931                        | 955          | 17,866                         |
| 2:00 PM   | 90                      | 31.0                 | 15                   | 109.97         | 3,032.6             | -303.3                    | 109.67             | 11,674                 | 29.24      | 110.62         | 3,032.3              | -303.2                  | 110.32             | 11,654                 | 29.29      | 96.80  | 72779                           | 316.78         | 8,100                  | 42.14   | 10.93                      | 3.57                      | 4.88                        | 27,527       | 212,591                        | 28,511    | 230,931                        | 984          | 18,340                         |
| 3:00 PM   | 90                      | 31.2                 | 15                   | 109.97         | 3,084.8             | -308.5                    | 109.66             | 11,675                 | 29.23      | 110.62         | 3,084.5              | -308.5                  | 110.31             | 11,654                 | 29.28      | 96.67  | 74032                           | 316.64         | 8,103                  | 42.12   | 11.01                      | 3.60                      | 4.93                        | 27,507       | 212,427                        | 28,498    | 230,931                        | 991          | 18,504                         |
| 4:00 PM   | 90                      | 31.2                 | 15                   | 109.97         | 3,156.8             | -315.7                    | 109.65             | 11,676                 | 29.23      | 110.62         | 3,156.5              | -315.7                  | 110.30             | 11,655                 | 29.28      | 96.56  | 75760                           | 316.52         | 8,107                  | 42.10   | 10.91                      | 3.57                      | 4.96                        | 27,505       | 212,424                        | 28,487    | 230,931                        | 982          | 18,507                         |
| 5:00 PM   | 90                      | 30.6                 | 15                   | 109.97         | 3,228.7             | -322.9                    | 109.65             | 11,676                 | 29.23      | 110.62         | 3,228.3              | -322.8                  | 110.30             | 11,656                 | 29.28      | 96.69  | 77484                           | 316.63         | 8,104                  | 42.12   | 10.13                      | 3.30                      | 4.89                        | 27,585       | 213,130                        | 28,497    | 230,931                        | 912          | 17,800                         |
| 6:00 PM   | 90                      | 29.5                 | 15                   | 109.97         | 3,190.8             | -319.1                    | 109.65             | 11,676                 | 29.23      | 110.62         | 3,190.4              | -319.0                  | 110.30             | 11,656                 | 29.28      | 97.20  | 76574                           | 317.15         | 8,091                  | 42.19   | 8.90                       | 2.89                      | 4.63                        | 27,742       | 214,518                        | 28,543    | 230,931                        | 801          | 16,413                         |
| 7:00 PM   | 90                      | 28.5                 | 15                   | 109.97         | 3,064.6             | -306.5                    | 109.66             | 11,675                 | 29.23      | 110.62         | 3,064.3              | -306.4                  | 110.31             | 11,654                 | 29.29      | 97.79  | 73547                           | 317.77         | 8,075                  | 42.27   | 7.97                       | 2.57                      | 4.34                        | 27,882       | 215,777                        | 28,599    | 230,931                        | 717          | 15,153                         |
| 8:00 PM   | 90                      | 28.0                 | 15                   | 109.97         | 3,015.9             | -301.6                    | 109.67             | 11,674                 | 29.24      | 110.62         | 3,015.5              | -301.6                  | 110.32             | 11,654                 | 29.29      | 98.03  | 72377                           | 318.02         | 8,068                  | 42.30   | 7.55                       | 2.43                      | 4.22                        | 27,942       | 216,312                        | 28,622    | 230,931                        | 680          | 14,618                         |
| 9:00 PM   | 90                      | 27.7                 | 15                   | 109.97         | 2,980.2             | -298.0                    | 109.67             | 11,674                 | 29.24      | 110.62         | 2,979.8              | -298.0                  | 110.32             | 11,653                 | 29.29      | 98.22  | 71520                           | 318.22         | 8,063                  | 42.33   | 7.24                       | 2.33                      | 4.13                        | 27,988       | 216,735                        | 28,639    | 230,931                        | 651          | 14,196                         |
| 10:00 PM  | 90                      | 27.3                 | 15                   | 109.97         | 2,921.1             | -292.1                    | 109.68             | 11,673                 | 29.24      | 110.62         | 2,920.8              | -292.1                  | 110.33             | 11,653                 | 29.29      | 98.48  | 70103                           | 318.48         | 8,057                  | 42.36   | 6.86                       | 2.20                      | 4.01                        | 28,046       | 217,249                        | 28,664    | 230,931                        | 618          | 13,682                         |
| 11:00 PM  | 90                      | 26.8                 | 15                   | 109.97         | 2,867.8             | -286.8                    | 109.68             | 11,672                 | 29.24      | 110.62         | 2,867.5              | -286.8                  | 110.33             | 11,652                 | 29.29      | 98.73  | 68824                           | 318.75         | 8,050                  | 42.40   | 6.45                       | 2.07                      | 3.90                        | 28,107       | 217,764                        | 28,688    | 230,931                        | 581          | 13,166                         |
| 12:00 AM  | 90                      | 26.3                 | 15                   | 109.97         | 2,793.9             | -279.4                    | 109.69             | 11,672                 | 29.24      | 110.62         | 2,793.6              | -279.4                  | 110.34             | 11,651                 | 29.29      | 99.04  | 67050                           | 319.07         | 8,042                  | 42.44   | 6.04                       | 1.93                      | 3.78                        | 28,173       | 218,305                        | 28,716    | 230,931                        | 544          | 12,626                         |
| Sub-Total | 2160                    |                      |                      |                |                     |                           |                    |                        |            |                |                      |                         |                    |                        | 1          |        |                                 |                |                        |         |                            |                           |                             | 671,895      | 5,201,476                      | 688,114   | 5,542,336                      | 16,219       | 340,860                        |
| Total     | 7128                    |                      |                      |                | 273,441.0           |                           |                    |                        |            |                | 273,410.2            |                         |                    |                        |            |        |                                 |                |                        |         |                            |                           |                             | 2,201,572    | 17,036,888                     | 2,255,267 | 18,289,709                     | 53,695       | 1,252,822                      |

APPENDIX D

EXAMPLE FOR CALCULATION OF PRIMARY ENERGY SAVINGS (PES) Calculation of primary energy savings is proposed by the EU Directive and consists of four steps. The annual operation of the absorption chiller was selected for an example case study which is presented as follow.



Step 1: Determine all energy inputs and outputs

Figure D1 Schematic diagram for PES analysis

To determine the energy inputs and outputs first of the right boundaries have to be set. In this case there is no non-CHP useful heat energy generation. The energy inputs and outputs are those shown in Figure D1.

### a) Total fuel energy (f)

Fuel energy for gas turbine GT41 ( $f_1$ ) = 2,674,499 MWh Fuel energy for gas turbine GT42 ( $f_2$ ) = 2,685,685 MWh **Total fuel energy input (f)** =  $f_1 + f_2 = 2,674,499 + 2,685,685 = 5,360,184$  MWh

## b) Total electrical/mechanical energy (p)

Electrical output from gas turbine GT 41  $(p_1) = 783,866$  MWh

Electrical output from gas turbine GT42 ( $p_2$ ) = 788,499 MWh Electrical output from steam turbine ST ( $p_3$ ) = 688,356 MWh **Total electric output (p)** =  $p_1 + p_2 + p_3 = 783,866 + 788,499 + 688,356 = 2,260,721$  MWh

### c) Total useful heat energy (q)

This plant is a combined cycle power plant, which has only generation of power. There is no generation of heat. The heat energy from steam extraction to absorption chiller can be determined to be indirect useful heat energy as per the EU directive.

From Where Q = m.h Q is the thermal energy, MWh m is mass flow rate of steam extraction to absorption chiller, lb/h h is enthalpy of low pressure stream extraction, BTU/lb

steam condition extract:

T = 453.81 F, P = 133.61 psia, h = 1251.5 BTU/lb

Total useful heat (q) =  $q_f$  = 240,094 MWh

### Step 2: Determine and exclude non-CHP useful heat energy

There are no possibilities to generate non-CHP useful heat. It is a plant without non-CHP useful heat energy generation. Therefore:

$$q_{non-CHP} = 0$$
  
 $f_{non-CHP,q} = 0$ 

## **Step 3: Determine overall efficiency**

CHP useful heat energy

 $q = q_f - q_{non-CHP} = 240,094 - 0 = 240,094$  MWh p = 2,260,721MWh  $f = f - f_{non-CHP} + q_f = 5,360,184 + 240094 = 5,600,278$ MWh

The overall efficiency is:

$$\eta = \frac{p + q_{CHP}}{f_{CHP} + f_{non-CHP}} = \frac{p + q - q_{non-CHP}}{f - f_{non-CHP}} = \frac{p + q}{f}$$
$$\eta = \frac{2,260,721 + 240,094 - 0}{5,600,278 - 0}$$
$$= 44.66 \%$$

The determined overall efficiency  $(\eta)$  has to be compared with the value(s) in Annex II (a) of the EU Directive.

According to Annex I of the EU Directive a gas turbine with heat recovery belongs to type (d) therefore the threshold is 75%. As the plant runs short of this threshold, non-CHP electrical energy generation takes place and has to be determined.

# **Step 4: Determination of NON-CHP Electrical/Mechanical Energy and the Referring Fuel Energy**

- 1) This system has steam extraction, which cause loss in steam power, where energy export leads to a change in electricity energy generation (related to constant fuel energy input). The power loss coefficient ( $\beta$ ) is determined. According to this plant specification, steam turbine size is 109 MW with low pressure of 9.17 bar. The assumed power loss coefficient is prepared by interpolated calculation of given values for each size range of steam turbine and steam pressure as EU directive manual. The power loss coefficient ( $\beta$ ) is given as 0.218
- 2) Efficiency of non-combined electrical energy generation:

$$\eta_{non-CHP,p} = \frac{p + \beta_{CHP,q}}{f - f_{non-CHP,q}} = \frac{2,260,721 + (0.218)(240,094)}{5,600,278 - 0} = 41.3\%$$

3) Power to heat ratio:

$$\sigma_{CHP} = \frac{\eta_{non-CHP,p} - \beta_{CHP} \cdot \eta_{CHP}}{\eta_{CHP} - \eta_{non-CHP,p}} = \frac{41.3\% - (0.218)(75\%)}{75\% - 41.3\%} = 0.74$$

4) CHP electrical energy:

 $p_{CHP} = q_{CHP} . \sigma_{CHP} = (240,094)(0.74) = 177,669 MWh$ 

5) Non-CHP electrical energy:

 $p_{non-CHP} = p - p_{CHP} = 2,260,721 - 177,669 = 2,083,052 \text{ MW}h$ 

6) Fuel energy for non-CHP electrical energy generation:

$$f_{non-CHP,p} = \frac{p_{non-CHP}}{\eta_{non-CHP,p}} = \frac{2,083,052}{41.3\%} = 5,043,709$$
 MWh

7) Fuel energy for CHP electrical energy generation:

$$f_{CHP} = f - f_{non-CHP,p} - f_{non-CHP,q} = 5,600,278 - 5,043,709 - 0$$

= 556,569 MWh

|   | Total         | CHP         | non-CHP,q | non-CHP,p     |
|---|---------------|-------------|-----------|---------------|
| р | 2,260,721 MWh | 177,669 MWh | 0         | 2,083,052 MWh |
| q | 240,094 MWh   | 240,094 MWh | 0         | 0             |
| f | 5,600,278 MWh | 556,569 MWh | 0         | 5,043,709 MWh |

Table D1 Summary of CHP and non-CHP energies for absorption chiller case

### **Primary Energy Savings (PES)**

According to the EU directive, the overall efficiency of gas turbine with heat recovery should be at least 75%. In this case, the overall efficiency is  $\eta = 44.66\%$  therefore Equation 2.1 is applied for this case.

 By using reference values in Thailand, in which 85% and 45% are used for *REFH<sub>n</sub>* and *REFE<sub>n</sub>* respectively.

$$PES = \left(1 - \frac{1}{\frac{H_{\eta}}{REFH_{\eta}} + \frac{E_{\eta}}{REFE_{\eta}}}\right) 100\%$$
$$H_{\eta} = \frac{240,094}{5,600,278} \times 100 = 4.29\%$$
$$E_{\eta} = \frac{2,260,721}{5,600,278} \times 100 = 40.37\%$$

$$PES = \left(1 - \frac{1}{\frac{4.29\%}{85\%} + \frac{40.37\%}{45\%}}\right) 100\% = -5.53\%$$

2. By using reference efficiency, following the Commission Decision of 21 December 2006, establishing harmonised efficiency reference values for the separate production of electricity and heat in the application of Directive 2004/8/EC of the European Parliament and of the Council

According to Annex I, the reference efficiency for the separate production of electricity and heat is 32.8% and 90% respectively in which the reference efficiency for separate production of electricity was corrected to relate to the average climatic situation of Bangpakong Power Plant (Assume =  $32.2^{\circ}$ C), the years of construction and the type of fuel

$$PES = \left(1 - \frac{1}{\frac{H_{\eta}}{REFH_{\eta}} + \frac{E_{\eta}}{REFE_{\eta}}}\right) 100\%$$

$$PES = \left(1 - \frac{1}{\frac{4.29\%}{90\%} + \frac{40.37\%}{32.8\%}}\right) 100\% = 21.78\%$$

APPENDIX E

INFORMATION FOR COST EFFCTIVENESS AND FEASIBILITY

### Date: 9/7/2010

### **GIAC with Absorption Chiller**

| No., | Equipment/System                         | Descriptions           | Investment<br>Mbaht / GTG 1 Set |
|------|------------------------------------------|------------------------|---------------------------------|
| 1    | Absorption chiller                       | 5,000 RT Steam Chiller | 88                              |
| 2    | Cooling tower/ Pump                      |                        | 28.33                           |
| 3    | Cooling coil/Filter system               |                        | 21                              |
| 4    | Piping and Installation work             |                        | 133.6                           |
| 5    | Commissioning / Training                 |                        | 3                               |
| 6    | Construction Management/ Engineering Fee |                        | 25                              |
|      |                                          |                        |                                 |
|      | Total                                    |                        | 298.93                          |
|      |                                          |                        |                                 |
|      | VAT                                      | 7%                     | 20.93                           |
|      |                                          |                        |                                 |
|      | Total (Excluded VAT)                     |                        | 298.93                          |
|      | Total (Included VAT)                     |                        | 319.86                          |
|      |                                          |                        |                                 |
|      |                                          |                        |                                 |

### **GIAC** with Electric Chiller

|      |                                          |              | Investment        |
|------|------------------------------------------|--------------|-------------------|
| No., | Equipment/System                         | Descriptions | Mbaht / GTG 1 Set |
|      |                                          |              |                   |
| 1    | Electric chiller                         | 5,000 RT     | 70                |
| 2    | Cooling tower/ Pump                      |              | 28.33             |
| 3    | Cooling coil/Filter system               |              | 21                |
| 4    | Piping and Installation work             |              | 121.5             |
| 5    | Commissioning / Training                 |              | 3                 |
| 6    | Construction Management/ Engineering Fee |              | 25                |
|      |                                          |              |                   |
|      | Total                                    |              | 268.83            |
|      |                                          |              |                   |
|      | VAT                                      | 7%           | 18.82             |
|      |                                          |              |                   |
|      | Total (Excluded VAT)                     |              | 268.83            |
|      | Total (Included VAT)                     |              | 287.65            |
|      |                                          |              |                   |
|      |                                          |              |                   |

APPENDIX F

CALCULATION

OF DEGRADATION ANALYSIS

### **DEGRADATION ANALYSIS**

The result of degradation analysis indicates the current performance level as compared with the guaranteed performance.

## 1. BPK-C41

1.1 Gas Turbine Generator Net Power Output Degradation

The information is

- Factored fire hours (FFH) ~ 23,000 hrs.
- Interpolate Odeg% from Table B.2, from which get Odeg% is -4.01%
- OPT is output performance test (corrected) which is 97.88 MW
- GO is guaranteed output, which is 98.786 MW for GT-42, and assume GT-41's guaranteed output is equal to GT-42

According to the equation,

$$NOI = \frac{OPT - CGO}{CGO} \times 100$$

Where

$$CGO = GO \times (1 - Odeg \%/100)$$
  
= 98.786 x (1 - (-4.01)/100)  
= 102.747 MW

Therefore

 $\textit{NOI} = \frac{97.88 - 102.75}{102.75} \times 100 = -4.74\% \qquad , \textit{NOI} < 0$ 

1.2 Gas Turbine Generator Net Heat Rate Degradation

The information is

- Factored fire hours (FFH) ~ 23,000 hrs.
- Interpolate Odeg% from Table B.2, from which Odeg% is -2.84 %
- HRPT is heat rate performance test (corrected) which is 12,689.386 kJ/kWh
- GHR is guaranteed heat rate, which is 11,590 MW for GT-42, and assume that GT-41's guaranteed heat rate is equal to GT-42

According to the equation,

 $NHRI = \frac{CGHR - HRPT}{CGHR} \times 100$ 

Where

CGHR = GHR x (1 + Odeg %/100)  
= 
$$11,590 \text{ x} (1 + (-2.84)/100)$$
  
=  $11,261 \text{ kJ/kWh}$ 

Therefore

 $NHRI = \frac{11,261 - 12,689.386}{11,261} \times 100 = -12.68\% \qquad , NHRI < 0$ 

## 2. BPK-C42

2.1 Gas Turbine Generator Net Power Output Degradation

The information is

- Factored fire hours (FFH) ~ 27,000 hrs.
- Interpolate Odeg% from Table B.2, from which Odeg% is -3.83%
- OPT is output performance test (corrected) which is 97.74 MW
- GO is guaranteed output, which is 98.786 MW for GT-42, and assume that GT-41's guarantee output is equal to GT-42

According to the equation,

 $NOI = \frac{OPT - CGO}{CGO} \times 100$ 

Where

$$CGO = GO \times (1 - Odeg \%/100)$$
  
= 98.786 x (1 - (-3.83)/100)  
= 102.570 MW

Therefore

$$NOI = \frac{97.74 - 102.57}{102.57} \times 100 = -4.71\% \qquad , NOI < 0$$

2.2 Gas Turbine Generator Net Heat Rate Degradation

The information is

- Factored fire hours (FFH) ~ 27,000 hrs.
- Interpolate Odeg% from Table B.2 then we get Odeg% is -2.84 %
- HRPT is heat rate performance test (corrected) which is 12,695 kJ/kWh
- GHR is guaranteed heat rate which is 11,590 MW for GT-42 and assume GT-41's guarantee heat rate is equal GT-42

From equation,

$$NHRI = \frac{CGHR - HRPT}{CGHR} \times 100$$

Where

CGHR = GHR x (1 + Odeg %/100)  
= 
$$11,590$$
 x (1 + (-2.84)/100)  
=  $11,261$  kJ/kWh

Therefore

 $NHRI = \frac{11,261 - 12,695}{11,261} \times 100 = -12.73 \% , NHRI < 0$