CHAPTER 2

EXPERIMENTAL PROCEDURES

2.1 Chemical reagents

- 1. Cadmium acetate, Cd(CH₃COO)₂.2H₂O, Sigma-Aldrich, USA
- 2. Sulfur powder, S (powder), Sigma-Aldrich, USA
- 3. Bismuth oxide, Bi₂O₃, 99.5%, Riedel-de Haen, Germany
- 4. Thiocarbohydrazide, CH₆N₄S, Acros, USA
- 5. Copper (II) chloride, CuCl₂.2H₂O, M&B, USA
- 6. Ammonium sulfide, (NH₄)₂S, Sigma-Aldrich, USA
- 7. Hydroxyethyl cellulose, HEC, Fluka, Switzerland
- 8. Polyethylene glycol, PEG (MW = 6000, 8000, 10000, 20000), Fluka, Switzerland
- 9. Polyvinyl alcohol, PVA, (MW = 125000), Ajax, Australia
- 10. Polyvinyl pyrrolidone, PVP, (MW = 30000), Acros, USA
- 11. Ethylenediamine, C₂N₂H₈, Panreac, Spain
- 12. Absolute ethanol, C₂H₅OH, Merck, Germany
- 13. Ethanol 95%, C₂H₅OH, Merck, Germany
- 14. Hydrochloric acid, HCl, BDH, USA
- 15. Deionized water
- 16. Formic acid, HCOOH, 98%, BDH, USA
- 17. Zinc powder, Zn, RdH, USA
- 18. Iodine electrolyte, I/I₃, SOLAR TECH, Thailand

- 19. Eosin Y C₂₀H₈Br₄O₅, Sigma-Aldrich, USA
- 20. Titanium dioxide pates, TiO₂ pates, SOLAR TECH, Thailand
- 21. Chloroplatinic acid, H₂C₁₆Pt, SOLAR TECH, Thailand

2.2 Apparatus and instruments

- Hotplate & magnetic stirrer (502P-2), PMC Industries, Inc., San Diego, U.S.A.
- 2. Analytical balance (Bb-210S), Sartorius AG. Goettingen, Germany
- 3. Homemade stainless steel autoclaves
- 4. Oven (UE-400), Memmert, Germany
- 5. X-ray Diffractometer (D-500), Siements, Germany
- 6. Raman Spectrometer (T64000), Horiba Jobin Yvon, France
- 7. Scanning Electron Microscope (JEM-6335), JEOL, Japan
- 8. Transmission Electron Microscope (JEM-2010), JEOL, Japan
- 9. Photoluminescence spectrophotometer, LS50B, Perkin Elmer, UK
- 10. UV-NIR spectrophotometer (Lambda 19), Perkin Elmer, UK

2.3 Experiments

2.3.1 Cadmium sulfide (CdS) [115]

Some hydroxy ethylcellulose (HEC) was dissolved into Cd(CH₃COOH)₂ aqueous solution (5 mmol Cd(CH₃COOH)₂ 2.5H₂O and 50 ml distilled water). The solution was stirred and dehydrated at 80 °C in order to achieve good dispersion of Cd²⁺- HEC matrix and get polymer gel. The gel and 5 mmol sulfur powder was put into a home-made teflon liner autoclave which was filled with 60 ml ethylenediamine. The synthesis temperature varied from 100 to 200 °C and holding periods ranged from

24 to 72 hours. The obtained precipitates were filled and washed with distilled water and 95% ethanol several times to remove impurities and then the products were dried at 70 °C for 24 h. The obtained products were collected to future characterization. Table 2.1 and Figure 2.1 show the different reaction conditions and the flow chart for preparation CdS nanostructures.

Table 2.1 Reaction conditions for the preparation the CdS powders

Precursors	Reaction temparatures(°C)	Reaction times (h)
$Cd(Ac)_2 + 0.25 g HEC$	100	24
$Cd(Ac)_2 + 0.25 g HEC$	120	24
$Cd(Ac)_2 + 0.25 g HEC$	140	24
$Cd(Ac)_2 + 0.25 g HEC$	160	24
$Cd(Ac)_2 + 0.25 g HEC$	180	24
$Cd(Ac)_2 + 0.25 g HEC$	200	24
$Cd(Ac)_2 + 0.25 g HEC$	200	48
$Cd(Ac)_2 + 0.00 g HEC$	200	72
$Cd(Ac)_2 + 0.25 g HEC$	200	72
$Cd(Ac)_2 + 0.50 g HEC$	200	72
$Cd(Ac)_2 + 0.75 g HEC$	200	72
$Cd(Ac)_2 + 0.10 g HEC$	200	72

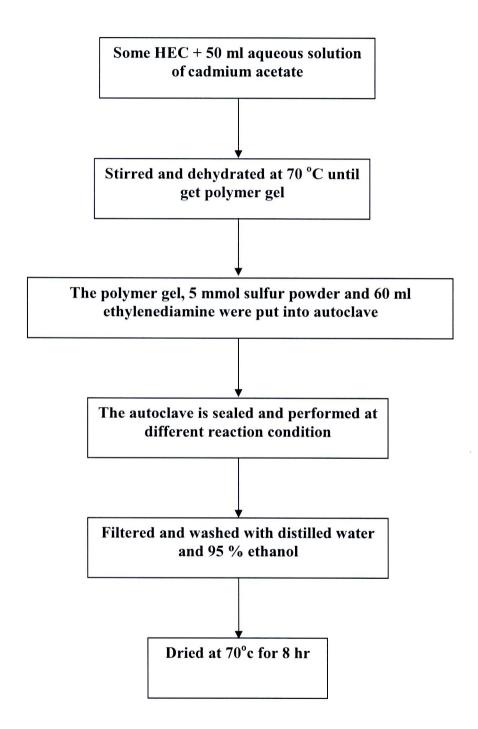


Figure 2.1 Schematic diagrams for the preparation of CdS by solvothermal method

2.3.2 Bismuth sulfide (Bi_2S_3) [123]

To produce nanostructured Bi₂S₃, 0.005 mol Bi₂O₃ and 0.010 mol thiocarbohydrazide (CH₆N₄S) were mixed in 20 ml H₂O containing 1 ml 37 % HCl. Subsequently, 1 g each of 125,000 MW PVA, 20,000 MW PEG and 30,000 MW PVP was also added to the solutions, which were stirred for 0.5 h in order to mix them thoroughly. At this stage, the solutions became yellow tea in color. They were further processed in home-made stainless autoclaves at 100 and 200 °C for 2 and 20 h. Finally, black precipitates were produced, separated by filtration, washed with deionized water and absolute ethanol, and dried at 80 °C for 24 h. The products were then characterized to determine their phase, morphologies, and vibration and emission properties. Table 2.2 and Figure 2.2 show the different reaction conditions and the flow chart for preparation Bi₂S₃ nanostructures, respectively.

Table 2.2 Reaction conditions for the preparation the Bi₂S₃ powders

Conditions	Bi source	S source	polymers	Temp. + Time
1	Bi ₂ O ₃	CH ₆ N ₄ S	-	100 °C 2 h
2	Bi_2O_3	CH ₆ N ₄ S	-	120 °C 2 h
3	$\mathrm{Bi}_2\mathrm{O}_3$	CH ₆ N ₄ S	-	140 °C 2 h
4	$\mathrm{Bi}_2\mathrm{O}_3$	CH ₆ N ₄ S	-	180 °C 2 h
5	$\mathrm{Bi}_2\mathrm{O}_3$	CH ₆ N ₄ S	-	200 °C 2 h
6 7	Bi_2O_3	CH ₆ N ₄ S	-	200 °C 5 h
8	Bi_2O_3	CH ₆ N ₄ S	-	200 °C 10 h
9	$\mathrm{Bi}_2\mathrm{O}_3$	CH ₆ N ₄ S	-	200 °C 15 h
10	Bi_2O_3	CH ₆ N ₄ S	-	200 °C 20 h
11	$\mathrm{Bi}_2\mathrm{O}_3$	CH ₆ N ₄ S	PEG	200 °C 20 h
12	Bi_2O_3	CH ₆ N ₄ S	PVP	200 °C 20 h
13	Bi ₂ O ₃	CH ₆ N ₄ S	PVA	200 °C 20 h

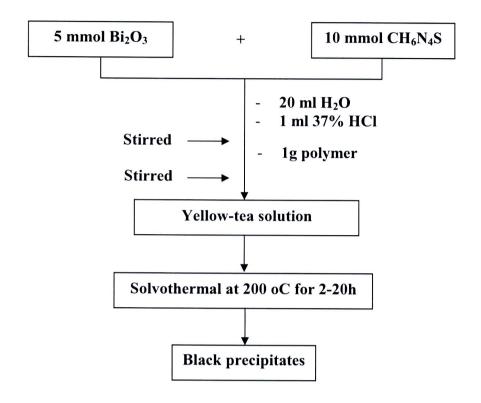


Figure 2.2 Schematic diagrams for the preparation of Bi₂S₃ by solvothermal method

2.3.3 Copper sulfide (CuS) [131,134]

The procedure was to dissolve 0.005 mol CuCl₂.2H₂O and PEG with different amount and MWs in mixed solvents containing 9:1 volume ratio of C₂H₅OH:H₂O and 1.5 ml HCOOH (a pH stabilizer) each. The solutions (green) were continuous stirred, and each 0.005 mol (NH₄)₂S was added. Solvothermal reactions proceeded at 200 °C for 1-5 h. Finally, black precipitates were separated by filtration, washed with distilled water and 95% ethanol, dried at 70 °C for 24 h, and intensively characterized. Table 2.3 and Figure 2.3 show the different reaction conditions and the flow chart for preparation CuS nanostructures, respectively.

Table 2.3 Reaction conditions for the preparation the CuS powders

No	Formic acid (ml)	Temp. and Time	Polymers
1	0.0	200 °C, 5 h	5 g, PEG 6000
2	1.5	200 °C, 5 h	5 g, PEG 6000
3	3.0	200 °C, 5 h	5 g, PEG 6000
4	5.0	200 °C, 5 h	5 g, PEG 6000
5	1.5	200 °C, 3 h	5 g, PEG 6000
6	1.5	200 °C, 1 h	5 g, PEG 6000
7	1.5	200 °C, 5 h	1 g, PEG 6000
8	1.5	200 °C, 5 h	10 g, PEG 6000
9	1.5	200 °C, 5 h	5 g, PEG 8000
10	1.5	200 °C, 5 h	5 g, PEG 10000
11	1.5	200 °C, 5 h	5 g, PEG 12000
12	1.5	200 °C, 5 h	5 g, PEG 20000

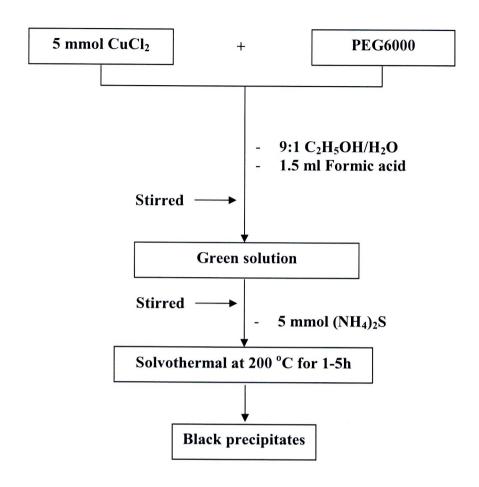


Figure 2.3 Schematic diagrams for the preparation of CuS by solvothermal method

2.4 Characterizations

2.4.1 X-ray diffraction (XRD)

Phase purity and crystallinity of the products were characterized by X-ray diffractometer.

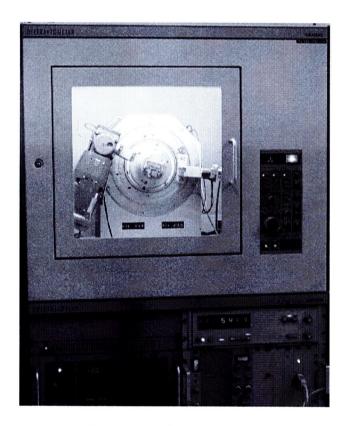


Figure 2.4 X-ray diffractometer

Sample preparation

The sample powders were finely grinded and then put on in sample holder. Crystallographic and phase analysis were performed on an X-ray diffractometer operating at a scanning rate of 0.04 $^{\rm o}$ S⁻¹ with Cu K α radiation (λ = 1.54178 Å). Identification of crystalline structure was carried out by comparison of the experimental patterns with JCPDS standards.

2.4.2 Raman Spectroscopy

Vibration modes of the crystalline products synthesized under the different conditions were studied using a Raman spectrometer.

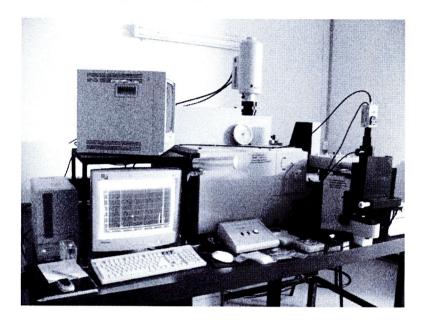


Figure 2.5 Raman spectrometer

Sample preparation

Appropriate amount of the sample powders was pressed on glass slide and ,then, the slide attached with samples was further analyzed using a Raman spectrometer operated at 50 mW Ar laser with $\lambda = 514.5$ nm

2.4.3 Scanning Electron Microscopy (SEM)

The surface morphologies of the products were investigated by using scanning electron microscope.

Figure 2.6 Scanning electron microscope

Sample preparation

Appropriate amount of the sample powders was dispersed in absolute ethanol using an ultrasonic bath. The dispersed sample was dropped on conductive copper tape which attached to the SEM stub. The stub was then coated with gold particle in order to increase conductivity under argon atmosphere by plasma sputtering.

2.4.4 Transmission Electron Microscopy (TEM)

The morphologies and electron diffraction of the samples were studied by using transmission electron microscope. The preferential growth direction was also studied by HR-TEM technique.

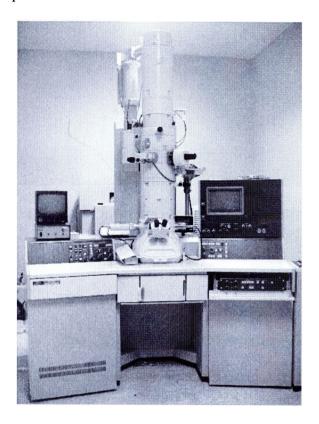


Figure 2.7 Transmission electron microscope

Sample preparation

Appropriate amount of the sample powders was dispersed in absolute ethanol using an ultrasonic bath. The samples were then dropped on thin amorphous carbon films supported by copper grid for further analysis.

2.4.5 Photoluminescence spectroscopy

Optical property of the products were analyzed by Perkin Elmer Luminescence spectrometer LS50B at room temperature

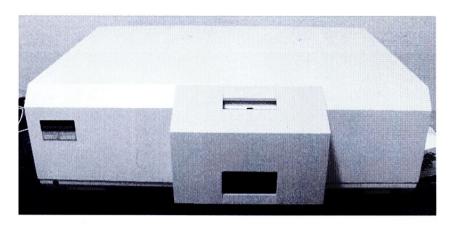


Figure 2.8 Photoluminescence spectrometer

Sample preparation

The appropriate amount of sample powders was dispersed in absolute ethanol using ultrasonic bath. This solution was transferred into quartz cuvette. Photoluminescence (PL) spectrometer was operated using a corresponding excitation wavelength. The solid samples were also directly analyzed by using a solid holder instead of the quartz cuvette.

2.4.6 UV-NIR Spectroscopy

Absorption edge or band gap energy of the solid samples was investigated using UV-NIR spectrophotometer.

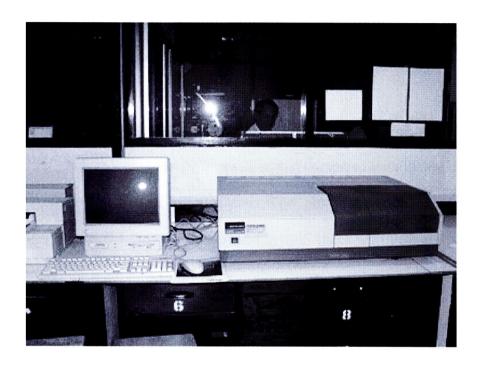


Figure 2.9 UV-NIR spectrophotometer

Sample preparation

The appropriate amount of sample powders was dispersed in absolute ethanol using ultrasonic bath. The solution was transferred into quartz cuvette. The absorption edge of the products was measured in the wavelength region of 200 - 1500 nm.