หัวข้อวิทยานิพนธ์ การผลิตสารปรุงแต่งกลิ่นรสจากกากถั่วเขียวโคยใช้เอนไซม์โปรติเอส

หน่วยกิด	12
ผู้เขียน	นางสาวไพลิน เพ็ชรทวีพรเคช
อาจารย์ที่ปรึกษา	รศ.คร.กนก รัตนะกนกชัย
	คร.ณัฏฐา เลาหกุลจิตต์
หลักสูตร	วิทยาสาสตรมหาบัณฑิต
สาขาวิชา	เทคโนโลขีชีวเคมี
สายวิชา	เทคโนโลขีชีวเคมี
คณะ	ทรัพยากรชีวภาพและเทคโนโลยี
พ.ศ.	2548

บทคัดย่อ

จากการศึกษาสภาวะที่เหมาะสมในการผลิต hydrolysed vegetable protein (HVP) จากการข่อขกากถั่ว เขียวด้วยเอนไซม์โปรดิเอสทางการค้าเพื่อผลิตเป็นสารปรุงแต่งกลิ่นรสไก่ชนิดผงและน้ำซุปรสไก่ โดยเอนไซม์โปรดิเอสที่ใช้ในการทดลอง คือ Flavourzyme® และ Neutrase® ความเข้มข้นร้อยละ 1 2 3 6 12 และ 24 (w/v) และเวลาในการข่อย 6 9 และ 12 ชั่วโมง พร้อมทั้งศึกษา surface response ร่วมกับการประเมินทางประสาทสัมผัส ผลการศึกษาพบว่าสภาวะที่เหมาะสมในการผลิต HVP โดย ใช้ Flavourzyme® คือ ใช้เอนไซม์ความเข้มข้นร้อยละ 24 (w/v) ย่อยนาน 12 ชั่วโมง ซึ่งสภาวะ ดังกล่าวมีระดับการย่อยสลาย (degree of hydrolysis: DH) ปริมาณเกลือ และคะแนนการขอมรับค้าน รสหวาน รสขม กลิ่นเนื้อสัตว์ และความชอบโดยรวมสูงสุด เมื่อนำมาทำให้เข้มข้นพบว่ามีปริมาณ โปรตีนร้อยละ 63.62 (w/v) ซึ่งกรดอะมิโนที่มีปริมาณสูงได้แก่ อาร์จินีน ลูซีน ไลซีน ฟีนิลอะลานีน และเซอรีน ส่วนสภาวะที่เหมาะสมในการผลิต HVP โดยใช้ Neutrase® คือ ใช้เอนไซม์ความเข้มข้น ร้อยละ 24 (w/v) ย่อยนาน 12 ชั่วโมง โดยมี DH ปริมาณเกลือ และคะแนนการขอมรับค้าน เจลลุดเช่นกัน และ HVP เข้มข้นมีปริมาณโปรตีนร้อยละ 60.62 (w/v) และมีกรดอะมิโนที่มีปริมาณสูง ได้แก่ ลูซีน ไอโซลูซีน ไลซีน โพรลีน และทรีโอนีน สำหรับการวิเคราะห์ volatile compounds ของ ผลิตภัณฑ์จากเอนไซม์ทั้ง 2 ชนิด โดย gas chromatography–mass spectrophotometer พบว่าไม่ สามารถตรวจสอบสารประกอบที่ระเหยได้เนื่องจากมีปริมาณต่ำมาก

การพัฒนาสารปรุงแต่งกลิ่นรสไก่จาก HVP เข้มข้นที่ผลิตด้วย Flavourzyme® และ Neutrase® ความ เข้มข้นร้อยละ 5 10 และ 15 (w/v) พบว่าสารปรุงแต่งกลิ่นรสไก่จาก HVP เข้มข้นที่ผลิตด้วย Flavouryzme® ร้อยละ 10 (w/v) ได้คะแนนการยอมรับทางประสาทสัมผัสด้านกลิ่นรสไก่สูง และไม่ แตกต่างกับสารปรุงแต่งกลิ่นรสไก่ที่ผลิตจาก HVP เข้มข้นที่ผลิตด้วย Neutrase® ร้อยละ 15 (w/v) เมื่อนำสารปรุงแต่งกลิ่นรสไก่จากเอนไซม์ทั้งสองชนิดมาประยุกต์เป็นผงและน้ำซุปรสไก่เปรียบเทียบ

169132

กับสารปรุงแต่งกลิ่นรสไก่ทางการค้า® ความเข้มข้นร้อยละ 3 6 และ 9 (w/v) พบว่าผลิตภัณฑ์ผงและ น้ำซุปรสไก่ที่ได้จากการเติมสารปรุงแต่งกลิ่นรสไก่จากเอนไซม์ Flavourzyme® ปริมาณร้อยละ 6 (w/v) มีคะแนนการยอมรับทางประสาทสัมผัสด้านกลิ่นรสไก่สูงที่สุด และไม่แตกต่างจากผลิตภัณฑ์ที่ ใช้สารปรุงแต่งกลิ่นรสไก่ทางการค้า (P≤0.05)

คำสำคัญ : กากถั่วเขียว / ผงรสไก่ / ระดับการย่อยสลาย / น้ำซุปรสไก่ / สารปรุงแต่งกลิ่นรสไก่ / Flavourzyme® / Neutrase®

169132

	Thesis Title	Flavoring Agent Produced from Mungbean Meal by Protease
	Thesis Credits	12
	Candidate	Miss Pailin Phettaveeporndet
Thesis Advisors Assoc. Prof. Dr. Khanok Ratanakhanokchai		
		Dr. Natta Laohakuljit
	Program	Master of Science
	Field of Study	Biochemical Technology
	Department	Biochemical Technology
	Faculty	School of Bioresources and Technology
	B.E.	2548

Abstract

The enhancement of flavoring agent produced from mungbean meals was conducted to produce the chicken flavoring agent (as powder and soup) by 2 particular commercial proteases, Flavourzyme® and Neutrase®. Each enzyme was varied at 6 different concentrations, 1, 2, 3, 6, 12 and 24% (w/v) and 3 different times of hydrolysis at 6, 9 and 12 hrs. The result was evaluated by using response surface graphs integrated with sensory evaluation. The best condition to produce hydrolysed vegetable protein (HVP) by Flavourzyme® was at 24% (w/v) for 12 hrs which perceptions of degree of hydrolysis (DH), % salt, sensory scores of sweetness, bitterness, animal flavored, and overall acceptance were high. After the Flavourzyme® HVP was concentrated, it contained 63.62% of protein and the high amino acids content are arginine, leucine, lysine, phenylalanine and serine. The best condition for producing Neutrase® HVP was at 24% (w/v) of concentration for 12 hrs in which HVP showed a high DH, %salt and sensory score as well as Flavourzyme® HVP. Concentrated Neutrase® HVP had protein content at 60.62% (w/v) with high amino acids content including leucine, isoleucine, lysine, proline and threonine. However, the volatile compounds from both proteases HVP could not be detected by Gas chromatography-mass spectrophotometry, due to their low concentrations.

The concentrated HVP produced by Flavourzyme® and Neutrase® was developed to artificial chicken flavor by various concentrations of concentrated HVP at 5, 10 and 15% (w/v). The best concentration of the Flavourzyme® HVP artificial chicken flavor for sensory evaluation was at 10%, which is similar to 15% of HVP produced by Neutrase®. The Flavourzyme® and Neutrase® HVP at concentration of 10 and 15%, respectively were applied to the artificial chicken powder and

169132

soup at 3 different concentrations of 3, 6 and 9% (w/v). The results showed that the chicken powder and chicken soup produced by concentrated Flavourzyme® HVP at 6% (w/v) had the highest score of sensory of chicken flavor taste, which is the same taste as the commercial chicken flavoring agent.

Keywords: Chicken flavour / Chicken soup / Chicken soup powder / Degree of hydrolysis / Flavourzyme® / Mungbean meals / Neutrase®