

ก้าชสังเคราะห์ (ก้าชไไฮโตรเจนและก้าชคาร์บอนมอนอกไซด์) สามารถนำไปใช้เป็นสารตั้งต้นในการผลิตสารต่างๆ ในอุตสาหกรรมปิโตรเคมี รวมทั้งเป็นเชื้อเพลิงป้อนให้แก่เซลล์เชื้อเพลิงแบบอุณหภูมิสูง เช่น เซลล์เชื้อเพลิงแบบเกลือคาร์บอนเอนต宦อม ได้ กระบวนการปฏิรูปก้าชมีเทนด้วยก้าชคาร์บอนไคออกไซด์เป็นกระบวนการหนึ่งที่ได้รับการศึกษาพัฒนาในปัจจุบัน เพื่อผลิตก้าชสังเคราะห์ และลดปัญหาก้าชเรือนกระจก ซึ่งในกระบวนการปฏิรูปดังกล่าวสามารถใช้ตัวเร่งปฏิกริยาพากโลหะมีตระกูลอย่างเช่น Pt, Rh และ Ru ที่ให้ค่าคอนเวอร์ชันที่สูง แต่สารเหล่านี้มีราคาแพงจึงได้มีการพัฒนาการใช้ตัวเร่งปฏิกริยาที่มีราคาถูกและมีความว่องไวค่อนข้างสูงอย่างเช่น นิกเกล (Ni) แต่ข้อเสียที่เกิดขึ้นคือ มักเกิดปัญหาการเสื่อมสภาพของตัวเร่งปฏิกริยาอันเนื่องมาจากการเกิดโค๊ก วิธีการที่นิยมใช้ในการลดปัญหาดังกล่าวมีด้วยกัน 2 วิธีคือ การปรับปรุงตัวเร่งปฏิกริยานิกเกล และการปรับปรุงในด้านสภาพการดำเนินปฏิกริยาปฏิรูป

สำหรับงานวิจัยนี้ได้ทำการศึกษา ปฏิกริยาปฏิรูปก้าชมีเทนด้วยก้าชคาร์บอนไคออกไซด์บนตัวเร่งปฏิกริยา $\text{Ni}/\text{Al}_2\text{O}_3$ โดยศึกษาอิทธิพลของตัวแปรทั้งในด้านการปรับปรุงตัวเร่งปฏิกริยาและสภาพค่าเนินการที่มีผลต่อความไวและความเสถียรของตัวเร่งปฏิกริยาอันได้แก่ 1) ปริมาณนิกเกลที่ใช้ (5-25%Ni) 2) อุณหภูมิการทำปฏิกริยา (500-700 องศาเซลเซียส) 3) การเติมตัวส่งเสริมเซอร์โคเนียม (ZrO_2) ทั้งในด้านวิธีการเติมตัวเร่งปฏิกริยาแบบชับร่วมและแบบชับตามลำดับขั้นที่ปริมาณการเติมเซอร์โคเนียมต่างๆ และ 4) อัตราส่วนของสารป้อนก้าชมีเทนต่อ ก้าชคาร์บอนไคออกไซด์ (0.50-1.50) จากผลการทดลองพบว่า 15%Ni เป็นปริมาณการเติมนิกเกลที่เพียงพอที่ให้ค่าผลได้ของก้าชไไฮโตรเจนและค่าคอนเวอร์ชันที่สูง ส่วนอุณหภูมิที่ให้ความว่องไวต่อปฏิกริยาในช่วงดังกล่าวมากที่สุดคือที่

อุณหภูมิ 700 องศาเซลเซียส และพบว่าตัวเร่งปฏิกิริยาที่มีตัวส่งเสริมเซอร์โคเนียมไม่ว่าจะเตรียน ด้วยวิธีใดจะช่วยลดค่าผลได้ของโค็ก ซึ่งทำให้มีความเสถียรมากกว่าตัวเร่งปฏิกิริยาที่ไม่มีตัวส่งเสริมเซอร์โคเนียมแต่จะมีความไวน้อยกว่าตัวเร่งปฏิกิริยาที่ไม่ได้เติมเซอร์โคเนียม เมื่อทำการเปรียบเทียบ วิธีการเตรียนตัวเร่งปฏิกิริยาพบว่าการเตรียนแบบชั้บตามลำดับขั้นจะให้ตัวเร่งปฏิกิริยาที่มีความเสถียร ในปฏิกิริยาปฏิรูปมากกว่าการเตรียนแบบชั้บรวม ทั้งนี้อาจเนื่องมาจากการเตรียนแบบชั้บตามลำดับ ขั้นทำให้การกระจายตัวของผลึกนิกเกิลบน ZrO_3/Al_2O_3 สนับสนุนมากกว่าการเตรียนแบบชั้บรวม ซึ่ง ผลึกนิกเกิลอาจมีการกระจายตัวแบบสุ่ม ทำให้การรับออกซิเจนอิสระที่ได้จากการแตกตัวของก๊าซ คาร์บอนไดออกไซด์บนผิวเซอร์โคเนียม ในตัวเร่งปฏิกิริยาที่เตรียนแบบชั้บตามลำดับขั้นนั้นเกิดขึ้นได้ ง่ายกว่า และพบว่าตัวเร่งปฏิกิริยาที่มีความเสถียรที่สุดคือ 15%Ni/7% ZrO_3/Al_2O_3 ที่เตรียนแบบการชั้บ ตามลำดับขั้น และเมื่อนำตัวเร่งปฏิกิริยานี้ไปทำการศึกษาอิทธิพลของอัตราส่วนสารป้อนก๊าซมีเทนต่อ ก๊าซการรับอนไดออกไซด์ พบว่าความไวของตัวเร่งปฏิกิริยาที่พิจารณาจากค่าผลได้ของก๊าซไฮโดรเจน จะลดลงเมื่ออัตราส่วนสารป้อนก๊าซมีเทนต่อ ก๊าซการรับอนไดออกไซด์เพิ่มขึ้นจาก 0.50 เป็น 1.00 และ มีค่าค่อนข้างคงที่เมื่ออัตราส่วนสารป้อนก๊าซมีเทนต่อ ก๊าซการรับอนไดออกไซด์มีค่าอยู่ในช่วง 1.00 ถึง 1.50 ในขณะที่ความเสถียรของตัวเร่งปฏิกิริยาที่พิจารณาจากปริมาณ โคึกจะมีค่าลดลงเมื่ออัตราส่วน สารป้อนก๊าซมีเทนต่อ ก๊าซการรับอนไดออกไซด์เพิ่มขึ้น เนื่องจากปริมาณก๊าซมีเทนที่สูงเกินค่ามวล สารสัมพันธ์ของการทำปฏิกิริยาจะเกิดการแตกตัวไปเป็นโคึกมากขึ้น

Abstract

TE 164854

The synthesis gas (hydrogen and carbonmonoxide) can be used as a raw material for petrochemical industries and as a fuel for high temperature fuel cells such as molten carbonate fuel cell. The CH_4/CO_2 reforming, one of thermochemical processes, has been currently developed to produce synthesis gas and reduce green house gases. In such process, noble metal catalysts such as Pt, Rh and Ru have been found to give high conversion, but they are expensive. Hence, cheaper active metals with medium activity like nickel (Ni) has been considered to replace those metals. However, its deactivation due to coke formation has been a major problem encountered. Two ways to reduce this problem are catalyst improvement and reforming condition adjustment.

In this research, the CH_4/CO_2 reforming over $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst was conducted to investigate the effect of the parameters, both catalyst improvement and operating condition aspects, on the activity and stability of $\text{Ni}/\text{Al}_2\text{O}_3$ catalyst in the reaction. These parameters were 1) the Ni loading (5-25%Ni), 2) the reaction temperature (500-700°C), 3) the addition of ZrO_2 promoter including its loading and preparation technique, and 4) $\text{CH}_4:\text{CO}_2$ feed ratio (0.5-1.5). From the experimental results, it was found that 15% Ni was sufficient to provide high yield of H_2 and reactant conversion. The effective temperature was found at 700°C. The Ni catalyst promoted with ZrO_2 and prepared by either the sequence or the co-impregnation methods showed better performance in terms of coke reduction or catalyst stability but slightly lower activity than the non-promoted one. In addition, the sequence-impregnation technique can make the more stabilized catalyst than the co-impregnation

technique because the Ni active metal was better dispersed on $\text{ZrO}_2/\text{Al}_2\text{O}_3$ support. This could enhance the free oxygen receptive capability of Ni over ZrO_2 . The 15%Ni/7% $\text{ZrO}_2/\text{Al}_2\text{O}_3$ prepared by the sequence-impregnation method showed the optimum performance by giving good conversion with the least catalyst deactivation. Finally, in the study of $\text{CH}_4:\text{CO}_2$ effect, the activity of 15%Ni/7% $\text{ZrO}_2/\text{Al}_2\text{O}_3$ catalyst in terms of H_2 yield was decreased as $\text{CH}_4:\text{CO}_2$ increased from 0.5 to 1.0 and approached a constant value when $\text{CH}_4:\text{CO}_2$ was in the range of 1.0-1.5. Similarly, the catalyst stability was decreased as $\text{CH}_4:\text{CO}_2$ increased. This is because the excess amount of CH_4 from the CH_4/CO_2 reforming stoichiometric value was thermally cracked to carbon.