บทคัดย่อ

โครงการวิจัยนี้ประกอบด้วยการทดลองจำนวน 3 การทดลองเพื่อทดสอบปัจจัยที่มีผลต่อ อัตรารอดและการเจริญเติบโตของลูกปลาแมนดารินวัยอ่อน โดยการทดลองที่ 1 มีวัตถุประสงค์ที่จะ หาความหนาแน่นของลูกปลาที่เหมาะสมสำหรับการอนุบาล การทดลองที่ 2 มีวัตถุประสงค์ที่จะหา ความหนาแน่นที่เหมาะสมของโรติเฟอร์ในการใช้เป็นอาหาร และการทดลองที่ 3 มีวัตถุประสงค์ที่จะ หาระยะเวลาที่เหมาะสมในการเปลี่ยนชนิดอาหาร โดยนำผลที่ได้จากการทดลองก่อนหน้าไปใช้ในการ ทดลองต่อไป ทุกการทดลองจะทำในตู้กระจกความจุน้ำ 5 ลิตร จำนวน 12 ตู้ แบ่งออกเป็น 4 กลุ่ม (ชุดทดลอง) กลุ่มละ 3 ตู้ (ซ้ำ)โดยทำการอนุบาลลูกปลาวัยอ่อนที่ระดับความหนาแน่น 5 10 15 และ 20 ตัวต่อลิตร ระดับความหนาแน่นของโรติเฟอร์ 10 15 20 และ 25 ตัวต่อมิลลิลิตรและระยะเวลาใน การเปลี่ยนชนิดอาหารจากโรติเฟอร์เป็นอาร์ทีเมียแรกฟัก โดยชุดทดลองที่ 1 ให้โรติเฟอร์เป็นอาหาร ตลอดการทดลอง ชุดการทดลองที่ 2-4 จะทำการเปลี่ยนชนิดของอาหารในวันที่ 15 20 และ 25 ตามลำดับ ระยะเวลาทำการทดลอง 30 วัน

การทดลองที่ 1 ผลการทดลองแสดงให้เห็นว่าการอนุบาลลูกปลาที่ความหนาแน่นต่างกัน มีผล ต่ออัตรารอดของลูกปลา (p<0.05) แต่ไม่มีผลต่อการเจริญเติบโตและระยะเวลาที่ลูกปลาเจริญเติบโต จากระยะวัยอ่อนไปสู่ระยะหลังวัยอ่อนของลูกปลา (p>0.05) โดยลูกปลามีอัตรารอดต่ำที่สุด (3.56±0.44%) เมื่ออนุบาลที่ความหนาแน่น 15 ตัวต่อลิตร แตกต่างกับลูกปลาที่อนุบาลที่ความหนาแน่น 5 ตัวต่อลิตร 10 ตัวต่อลิตร และ 20 ตัวต่อลิตร ที่มีอัตรารอดเฉลี่ย (±SE) $10.67\pm1.09\%^36.67\pm1.33\%^{ab}$ และ $7.00\pm2.08\%^{ab}$ ตามลำดับ เมื่อสิ้นสุดการทดลองลูกปลามีความ ยาวมาตรฐาน (Standard length) (\pm SE) ต่ำสุดเท่ากับ 4.05 ± 0.51 มิลลิเมตร สูงสุดเท่ากับ 5.00 ± 0.07 มิลลิเมตร ความยาวเหยียด (total length) (\pm SE) ต่ำสุดเท่ากับ 5.25 ± 0.64 มิลลิเมตร สูงสุดเท่ากับ 6.37 ± 0.06 มิลลิเมตร สำหรับการเปลี่ยนแปลงพฤติกรรมจากการอาศัยอยู่ในมวลน้ำมา อาศัยอยู่บริเวณขอบและพื้นตู้ (Post larvae) นั้นพบว่าลูกปลา (\pm SE) สามารถเปลี่ยนแปลงรูปร่างได้ เร็วที่สุดมีค่า 13.67 ± 2.19 วัน และได้ช้าสุด 24.67 ± 2.67 วัน

การทดลองที่ 2 ผลการทดลองแสดงให้เห็นว่าความหนาแน่นของโรติเฟอร์ที่ต่างกัน มีผลต่อ อัตรารอดและการเจริญเติบโตของลูกปลา (p<0.05) แต่ไม่มีผลต่อระยะเวลาที่ลูกปลาเจริญเติบโต จากระยะวัยอ่อนไปสู่ระยะหลังวัยอ่อน โดยลูกปลามีอัตรารอดเฉลี่ย(\pm SE) สูงเมื่ออนุบาลด้วยความ หนาแน่นของโรติเฟอร์ 15 และ 25 ตัวต่อมิลลิลิตร เท่ากับ $3.00\pm1.00\%$ และ $3.33\pm0.88\%$ แตกต่างกับ (p<0.05) ลูกปลาที่อนุบาลด้วยความหนาแน่นของโรติเฟอร์ 10 และ 20 ตัวต่อ มิลลิลิตร มีอัตรารอดของลูกปลาเฉลี่ย $1.00\pm0.0\%$ และ $1.33\pm0.33\%$ ตามลำดับ เมื่อสิ้นสุดการ ทดลองลูกปลาที่อนุบาลด้วยความหนาแน่นของโรติเฟอร์ 15 ตัวต่อมิลลิลิตร มีความยาวมาตรฐาน (Standard length) และความยาวเหยียด (Total length) (\pm SE) สูงสุดเท่ากับ 5.16 ± 0.18 มิลลิเมตร และ 6.51 ± 0.19 มิลลิเมตร แตกต่างกับ (p<0.05) ลูกปลาที่อนุบาลด้วยความหนาแน่น

ของโรติเฟอร์ 10 20 และ 25 ตัวต่อมิลลิลิตร มีค่าเฉลี่ย(±SE) เท่ากับ $3.86\pm0.21^{\rm b}$, $3.94\pm0.39^{\rm b}$, $3.46\pm0.30^{\rm b}$ มิลลิเมตร และ $5.01\pm0.27^{\rm b}$, $4.94\pm0.52^{\rm b}$, $4.42\pm0.43^{\rm b}$ มิลลิเมตร ตามลำดับ สำหรับ การเปลี่ยนแปลงพฤติกรรมจากการอาศัยอยู่ในมวลน้ำมาอาศัยอยู่บริเวณขอบและพื้นตู้ (Post larvae) นั้น พบว่าลูกปลาวัยอ่อนใช้เวลาในการเจริญเติบโตเข้าสู่ระยะวัยหลังอ่อน ได้เร็วที่สุดมีค่า เท่ากับ(±SE) 14.67 ± 1.67 วัน และซ้าสุดเท่ากับ 20.67 ± 0.33 วัน

การทดลองที่ 3 ผลการทดลองแสดงให้เห็นว่าการอนุบาลลูกปลาแมนดารินวัยอ่อน โดย ระยะเวลาในการเปลี่ยนชนิดอาหารจากโรติเฟอร์เป็นอาร์ทีเมียแรกฟักในช่วงอายุต่างกันไม่มีผลต่อ อัตรารอดและการเจริญเติบโตของลูกปลา (p>0.05) แต่มีผลต่อระยะเวลาที่ลูกปลาเจริญเติบโตจาก ระยะวัยอ่อนไปสู่ระยะหลังวัยอ่อน (p<0.05) โดยลูกปลามีอัตรารอดเฉลี่ย (\pm SE) 8.33 \pm 3.95%, 6.00 \pm 3.00%, 7.33 \pm 2.19% และ 4.00 \pm 0.58% ตามลำดับ เมื่อสิ้นสุดการทดลองลูกปลามีความยาว มาตรฐาน (Standard length) (\pm SE) ต่ำสุดเท่ากับ 3.58 \pm 0.22 มิลลิเมตร สูงสุดเท่ากับ 3.99 \pm 0.15 มิลลิเมตร ความยาวเหยียด (total length) (\pm SE) ต่ำสุดเท่ากับ 4.38 \pm 0.38 มิลลิเมตร สูงสุดเท่ากับ 4.98 \pm 0.10 มิลลิเมตร สำหรับการเปลี่ยนแปลงพฤติกรรมจากการอาศัยอยู่ในมวลน้ำมาอาศัยอยู่ บริเวณขอบและพื้นตู้ (Post larvae) นั้นพบว่าลูกปลามีพัฒนาการซ้าที่สุดเท่ากับ 16.00 \pm 0.00 วัน เมื่อไม่มีการเปลี่ยนอาหารและพบลูกปลาระยะหลังวัยอ่อนเร็วขึ้นที่ 15.33 \pm 0.33 14.00 \pm 0.00 และ 14.00 \pm 1.00 วัน เมื่อไปลี่ยนอาหารที่อายุ 15 20 และ 25 วัน ตามลำดับ

สรุปได้ว่าในการอนุบาลลูกปลาแมนดารินวัยอ่อน ผู้เลี้ยงสามารถอนุบาลลูกปลาที่ความ หนาแน่น 20 ตัวต่อลิตร โดยให้อาหารเป็นโรติเฟอร์ที่ความหนาแน่น 15 ตัวต่อมิลลิลิตร และลูกปลา สามารถเปลี่ยนอาหารจากโรติเฟอร์เป็นอาร์ทีเมียแรกฟักเมื่อลูกปลามีอายุ 15 วัน เหมาะสมที่สุด โดย ไม่มีผลต่ออัตรารอดและการเจริญเติบโต

คำสำคัญ: ปลาแมนดาริน Synchiropus splendidusความหนาแน่น ลูกปลา โรติเฟอร์ การ เปลี่ยนชนิดอาหารการอนุบาล

ABSTRACT

Three experiments were performed using twelve 5-litre glass tanks which were divided into 4 triplicate treatments. Experiment 1: The experiments were conducted to evaluate the optimal stocking (5, 10, 15, and 20 larvae L⁻¹). Experiment 2: The experiments were conducted to evaluate the optimal rotifer density (10, 15, 20 and 25 rotifer ml⁻¹) and Experiment 3: Investigate the optimal age of the mandarinfish larvae for weaning from rotifer to *Artemia* nauplii for rearing of the newly hatched Green mandarinfish larvae for 30 days.

Experriment 1: The results showed that stocking densities affect survival of the larvae (p<0.05) but there were no significant differences in growth and development from larva to post larva of the larvae among treatments (p>0.05). The larvae at a stocking density of 15 larvae L^{-1} had the lowest survival rate (3.56±0.44% b) while there were no significant differences in survival rates (±SE) at stocking densities of 5 (10.67±1.09% b), 10 (6.67±1.33% b), and 20 larvae L^{-1} (7.00±2.08% b), respectively. Average final standard length (±SE) and total length (±SE) in mm. of the larvae from 4 treatments were 4.56±0.16, 4.05±0.51, 5.00±0.07, 4.43±0.64 and 5.73±0.17, 5.25±0.64 6.37±0.06, 5.60±0.83, respectively. The earliest post larvae were found within 13.67±2.19 days (±SE) while the latest development occurred within 24.67±2.67 days.

Experiment 2: The results showed that rotifer densities affect survival and growth of the larvae (p<0.05) but there were no significant differences in development from larva to post larva of the larvae among treatments (p>0.05). The best survivals rate of $3.00\pm1.00\%^a$ and $3.33\pm0.88\%^a$ was found when the larvae fed with rotifer at 15 and 25 rotifer ml⁻¹ while the lowest survivals rate of $1.00\pm0.0\%^b$ and $1.33\pm0.33\%^b$ was found when the larvae fed with rotifer at 10 and 20 rotifer ml⁻¹, respectively. The best of average final standard length and total length (5.16 ± 0.18^a and 6.51 ± 0.19^a mm) was found when the larvae fed with rotifer at 15 rotifer ml⁻¹(p<0.05) while the average lengths were 3.86 ± 0.21^b and 3.94 ± 0.39^b , 3.46 ± 0.30^b and 5.01 ± 0.27^b , 4.94 ± 0.52^b and 4.42 ± 0.43^b when the larvae fed with rotifer at 10 20 and 25 ml⁻¹, respectively. The earliest post larvae were found within 14.67 ± 1.67 days while the latest development occurred within 20.67 ± 0.33 days.

Experiment 3: The results showed that ages at weaning had no effect on survival and growth of the larvae (p>0.05) but there were significant differences in development from larva to post larva of the larvae among treatments (p<0.05). The survival rates of mandarinfish larvae weaning from rotifer to *Artemia* nauplii at various ages were (\pm SE) 8.33 \pm 3.95%, 6.00 \pm 3.00%, 7.33 \pm 2.19% and 4.00 \pm 0.58%, respectively. Average final standard length (\pm SE) and total length (\pm SE) in mm. of the larvae from 4 treatments were 3.58 \pm 0.22, 3.99 \pm 0.15, 3.87 \pm 0.29 and 3.99 \pm 0.56 mm., 4.38 \pm 0.38, 4.98 \pm 0.10, 4.73 \pm 0.32 and 4.89 \pm 0.65 mm, respectively. The earliest post larvae were found when the larvae were weaned at ages of 15 20 and 25 days (15.33 \pm 0.33^{ab}, 14.00 \pm 0.00^a, and 14.00 \pm 1.00^a days) while the laval development were delayed to 17.00 \pm 0.67 days when the lavae were totally fed with rotifer.

The overall results suggest that Green mandarinfish larvae should be stocked at 20 larvae L^{-1} , fed with rotifer at 15 rotifer ml^{-1} and 15-day-old larvae can be weaned from rotifer to *Artemia* nauplii with out any effect on survial and growth.

Keyword: Mandarinfish, *Synchiropus splendidus*, Larval density, Rotifer density, Weaning age, Larviculture