
CHAPTER 3 

 

THEORETICAL FRAMEWORK AND METHODOLOGY 

  

 The first part of this chapter provides the theoretical concept of purchasing 

power parity and related concepts, such as the law of one price and the real exchange 

rate. Related econometric concepts are discussed in the second part. The third part 

summarizes the procedure for testing the validity of PPP. The discussion on data 

employed in this study will be provided in the last part. 

 

3.1 Theoretical Background 

 

3.1.1 Real Exchange Rate 

 The real exchange rate is defined by the nominal exchange rate multiplied 

by the ratio of national price levels, foreign price level divided by domestic price level 

(Taylor and Taylor, 2004). Let Q  denote the real exchange rate, E  the nominal 

exchange rate, P  the domestic price level and *P  the foreign price level. The real 

exchange rate can be written as: 
*PQ E

P
= × .  (3.1) 

 The real exchange rate is a useful concept and simple mean to gauge the 

strength of currencies. In other words, the real exchange rate measures the purchasing 

power of a unit of foreign currency in the foreign economy relative to the purchasing 

power of an equivalent unit of domestic currency in the domestic economy.  

 From equation (3.1), taking logarithm on both sides of the equation yields 

the following equation: 
*q e p p= + −      (3.2) 

where q , e , *p  and p denote logarithms of Q , E , *P  and P , respectively. 
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3.1.2 Law of One Price 

 According to Hallwood and MacDonald (2000), the ‘Law of One Price’ 

(LOP) states that in competitive markets free of impediments to international trade, 

such as tariff barriers and transactions costs, no capital flows, the economies are 

operating at a full employment level, identical traded goods sold in different countries 

must sell for the same price when their prices are expressed in terms of the same 

currency. That is, for any good i:  
*

i iP EP=   (3.3) 

where   iP  is the domestic currency price of good i, 

  *
iP  is the foreign currency price of good i, and 

  E  is the nominal exchange rate, defined as the domestic                 

                             currency price of foreign currency.  

 There is a sensible mechanism driving the LOP. Suppose for some reason 

that iP  is greater than *
iEP ; it would be profitable to buy good i in a foreign country, 

ship it to the home country and sell it at higher price. This process will continue until 

it is no longer profitable. Thus, it can be said that international arbitrage causes the 

price of every good to be equalized across countries when measured in a common 

currency. 

 

3.1.3 Absolute and Relative Purchasing Power Parity 

 The absolute version of PPP is extended from the LOP in a way that the 

LOP applies to individual commodities (such as commodity i), while PPP applies to 

the general price level, which is a composite of the prices of all the commodities that 

enter into the reference basket. This can be expressed as: 

  *

1 1

N N

i i i i
i i

P E Pα α
= =

=∑ ∑      (3.4) 

where iα  is weights that satisfies 
1

1
N

i
i
α

=

=∑ . 

 According to Obsfeld and Rogoff (1996), under the absolute version of 

PPP, the real exchange rate should equal 1, or at least have a tendency to return 

quickly to 1 when that long run ratio is disturbed for some reason. It can be said that 

the real exchange rate exhibits mean reversion to 1.  
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 The relative version requires that the percentage change in exchange rates 

between two currencies over any period equals the difference between the percentage 

changes in national price levels. To simplify this, the nominal exchange rate and price 

ratio are moving together along the time, that is 

*

1 1

*1
, 1 , 1

1 1

N N

i it i it
i t i

N N
t

i i t i i t
i i

P P
E

EP P

α α

α α

= =

−
− −

= =

= ⋅
∑ ∑

∑ ∑
.  (3.5) 

It is notable that relative PPP pays attention to ‘changes’ in price and exchange rate, 

while absolute PPP focuses on ‘levels’ of price and exchange rate. 

 Unfortunately, the measures of consumer prices published by national 

statistical agencies are of little use in constructing a measure of absolute PPP. Since 

they are typically reported as indices relative to a base year, they only measure the 

rate of change of the price level from the base year, not its absolute value. In this 

regard, they can only be used in measuring relative PPP, or, equivalently, changes in 

real exchange rates. Another failing of standard published CPIs is that they typically 

involve somewhat different baskets of commodities across countries, though their 

constructions are usually similar enough that comparisons of changes are still useful. 

 

3.1.4 Weak and Strong Purchasing Power Parity 

 Another classification of PPP is dividing it into weak type and strong type. 

According to Pedroni (2004) and Drine and Rault (2007), strong PPP restricts the 

cointegration coefficient between the nominal exchange rate and relative price levels 

to be 1.1  

 Weak PPP, however, requires less restriction in that two variables are 

cointegrated but the cointegrating vector can differ from unity. This version of the 

PPP hypothesis posits that although the nominal exchange rate and relative price 

levels may move together over long periods, there are reasons to think that in practice 

the movements may not be directly proportional, leading to cointegrating slopes 

                                                 
1Drine and Rault (2007) has also added that given that the cointegrating 

vector between the nominal exchange rate and the relative price level is unitary, 
strong PPP can be investigated by testing whether the real exchange rate is stationary 
or not. 
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different from 1. For example, the presence of such factors as international 

transportation costs, measurement errors, differences in price indices, and differential 

productivity shocks have been used to explain why the cointegrating slope may differ 

from unity under the weak version of PPP. 

 

3.2 Related Econometric Concepts 

 

3.2.1 Univariate Unit Root Test    

 There are various types of univariate unit root test. Two famous tests, 

Augmented Dickey-Fuller test and Phillips-Perron test are selected in this study. 

Details of each test are discussed in this section. 

 

 Augmented Dickey-Fuller (ADF) Test 

 One of the univariate versions of unit root test is Augmented Dickey-Fuller 

(ADF) test. To test the null hypothesis of unit root of ty  process, the following 

regression has to be estimated: 

1
1

m

t t j t j t
j

y t y y uα δ ρ β− −
=

Δ = + + + Δ +∑  (3.6) 

where Δ  is a difference operator, α , δ , ρ  and β  are parameters to be estimated, t  

is a time trend and u  is an error term following white noise process. The testing 

hypothesizes are: 

 0 :H  0ρ =    (non-stationary) 

 1 :H  0ρ <    (stationary) 

 If 0ρ <  then ty  is stationary process; whereas, 0ρ =  implies a unit root of 

ty , or ty  is non-stationary. In this step, choosing appropriate lag length, m , is an 

important issue. Including too many lags reduces the power of test to reject the null 

hypothesis of unit root due to a loss of degree of freedom. On the other hand, too few 

lag will not appropriately capture the actual error process, so that ρ  and its standard 

error will not be well estimated (Ender, 1995). The suggestion is to start with a 

relatively long lag length and pare down the model using t-test or F-test until the lag is 
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significantly different from zero. Another possible method is to use Schwarz 

Information Criterion (SIC) to select the optimal lag length automatically.  

 

 Phillips-Perron (PP) Test 

 It is worth noting that the distribution theory supporting the Dickey-Fuller 

test requires the disturbances to be statistically independent and have a constant 

variance. Phillips and Perron (1988) developed a generalization of the Dickey-Fuller 

by allowing the errors to be weakly independent and heterogeneously distributed. In 

this test, Newey-West correction for heteroscedasticity and serial correlation are 

employed to choose the optimal value of lag truncation. 

 For the case that the data is generate by a random walk: 

1t t ty y u−= −   (3.7) 

with tu  is identically and independently distributed with zero mean and variance 2σ . 

The regression model includes a constant term: 

1t t ty y uα ρ −= + − ,  (3.8) 

then the Phillips-Perron tZ statistic is constructed as 

1/ 2 2
ˆ 00

2

ˆ ( )
2

T
t T

T

T
Z t

s
ρσ λ γγ

λ λ
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
,  (3.9) 

where Tt  is t-ratio of ˆTρ , 0γ  is a consistent estimate of the error variance 2σ , 2λ is an 

estimator of the residual spectrum at frequency zero, ˆˆ
Tρ

σ  is the OLS standard error 

for ˆTρ  and 2
T

s  is the OLS estimate of the variance of tu . Phillips and Perron (1988) 

proved that under the null hypothesis of unit root ( 1ρ = ), the limiting distribution of 

tZ  statistic is the same as limiting distribution of ADF test based on t-statistic2. 

 

3.2.2 Cointegration Test 

 To test for long run relationship between two or more time series variables, 

the cointegration tests are introduced. In this study, Engle-Granger and Johansen tests 

for cointegration are selected. This section presents the details of each test. 

                                                 
2Critical values for the Phillips-Perron tZ  test can be obtained from 

Hamilton (1994). 
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 Engle-Granger Cointegration Test 

 According to Engle and Granger (1987), the components of vector 

1 2( , , , )t t t ntx x x x ′= K  are said to be cointegrated of order d, b, denoted by tx ~ ( , )CI d b  if 

(i) All components of tx  are integrated of order d.  

(ii) There exists a vector 1 2( , , , )nβ β β β= K  such that linear combination 

1 1 2 2t t t n ntx x x xβ β β β= + + +K  is integrated of order ( )d b− , where 0b > . 

 The vector β  is called the cointegrating vector. 

 From this definition, there are some crucial points to remark. Firstly, 

cointegration refers to a linear combination of non-stationary variables. It is possible 

that nonlinear long run relationships exist. However, only the linear cointegration can 

be tested by this technique. Secondly, all variables must be integrated of the same 

order. If the variables are integrated of different orders, they cannot be cointegrated. 

Thirdly, if tx  has n  components, there may be at most 1n −  cointegrating vectors. 

The number of cointegrating vectors is called the cointegrating rank of tx . It should 

also note that the term ‘cointegration’ normally refers to the case in which variables 

are CI(1,1). 

 Engle and Granger (1987) proposed a straightforward test to investigate 

whether two I(1) variables are cointegrated of order CI(1,1). Before the two-step is 

applied, it is required to pretest the variables for their order of integration. If the 

variables are integrated of different orders, it is possible to conclude that they are not 

cointegrated. In this step, unit root test can take the role to identify if the series is 

stationary [~I(0)] or not [~I(1)]. 

 Once the identical unit roots of two series are confirmed, the two-step test 

can be conducted. The first step is to estimate the long run equilibrium relationship in 

the following regression model. 

t t tx y uα β= + +   (3.10) 

By applying OLS to estimate the model in equation (3.10), the series ˆ{ }tu  is obtained. 

ˆ{ }tu  is the series of the estimated residuals of the long run relationship. If these 

deviations from long run equilibrium are found to be stationary, the { }tx and { }ty  are 

cointegrated. Therefore, in the second step, the cointegration can be examined by 

testing for stationarity of ˆ{ }tu . 
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Engle and Granger (1987) proposed seven statistics to test for cointegration. 

Two statistics are selected in this study. The first statistic is Cointegrating Regression 

Durbin-Watson (CRDW) which is indeed the standard DW statistic of the 

cointegrating regression equation (3.10).  

 The testing hypothesizes are: 

 0 :H  0CRDW →   ≡   ˆ{ }tu ~I(1)  (no cointegration) 

 1 :H  2CRDW →   ≡   ˆ{ }tu ~I(0) (cointegration) 

The null hypothesis of CRDW approaching zero implies that cointegration is rejected. 

Otherwise, if the CRDW approaches to two, the long run relationship between two 

variables exists.  

 Another statistic selected is ADF statistic. The ADF statistic is used to 

verify whether ˆ{ }tu  is stationary or not. There is no need to include an intercept term 

in ADF regression since ˆ{ }tu  is a residual from a regression equation. Thus, the 

regression equation for ADF statistic is 

 1
1

ˆ ˆ ˆ
m

t t i t j t
j

u u uρ γ ε− −
=

Δ = + Δ +∑     (3.11) 

based on these hypothesizes 

0 :H  0ρ =   ≡   ˆ{ }tu ~I(1)   (no cointegration) 

1 :H  0ρ <   ≡   ˆ{ }tu ~I(0)  (cointegration) 

 The critical values of both statistics for the case of two variables are 

provided by Engle and Granger (1987) while those of multiple variables are available 

in Engle and Yoo (1987). 

 In order to reject the null hypothesis of no cointegration, equivalently, 

confirm the existence of cointegration, the ADF statistic has to have greater 

magnitude (in absolute value) than the critical values. 

 

 Johansen Multivariate Cointegration Test 

 Johansen (1988) and Johansen and Juselius (1990) proposed another 

approach to test for cointegration. While Engle-Granger test relies on testing the 

residuals of equilibrium regression, this method is based mainly on relationship 

between the rank of matrix and its characteristic roots. Moreover, this process can 

determine the number of cointegrating vectors among interested variables. 
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 The Johansen techniques applied maximum likelihood methods for the 

analysis of cointegration in Gaussian vector autoregressive (VAR) models which 

allow for constant term and seasonal dummies. For simplicity, the deterministic part is 

excluded from VAR model. It should also note that this method is designed to handle 

I(1) and I(0) variables. If some of the series are I(2), standard Johansen approach 

cannot be applied. 

 Consider the following VAR model of order k: 

  1 1 2 2 ...t t t k t k tX X X X u− − −= Π +Π + +Π +  ( t = 1,…,T) (3.12) 

where  tX  is ( 1)n×  vector of variables containing in the VAR model  

                               and 1 0,...,kX X− +  are fixed 

  iΠ  is ( )n n×  matrix of coefficients 

  tu  is ( 1)n×  vector of residuals and 1,..., tu u  are independent Gaussian  

             .variables with mean zero and variance matrix Λ . 

The model in equation (3.12) can be rewritten as 

  1 1 1 1...t t k t k t k tX X X X u− − − + −Δ = Γ Δ + +Γ Δ +Π +  (3.13) 

where  1 2 ...i iIΓ = − +Π +Π + +Π , (i = 1,…,k-1) 

  1 2 ... kIΠ = − +Π +Π + +Π . 

 Equation (3.13) is expressed as a traditional first difference VAR model 

except for the term t kX −Π . This is the key point of this method. The matrix Π  is the 

long run impact matrix. The main purpose of this method is to investigate whether the 

matrix Π  contains any information about the long run relationships between the 

variables in the data vector tX . This can be achieved by considering the rank of 

matrix Π . Since Π  is ( )n n×  matrix, the rank of Π  can be at most n. There are three 

possible cases: 

(a) If rank(Π ) = n, i.e. the matrix Π  has full rank, the vector process tX  is 

stationary.  

(b) If rank(Π ) = 0, i.e. the matrix Π  is null, the equation (3.13) is the usual 

VAR model in first difference. The process tX  is non-stationary and 

there is no cointegrating vector.  
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(c) If rank(Π ) = r, 0 r n< < , then there are r cointegrating vectors and 

equation (3.13) can be interpreted as an error correction model. 

Moreover, there are n r×  matrices α  and β  such that αβ′Π =  where 

α  is a matrix of error correction coefficients (speed of adjustment) and 

β  is a matrix of cointegrating vectors (long run coefficients). The 

cointegrating vectors β  have the property that Xβ′  is stationary even 

though tX  itself is non-stationary. 

 Details of procedure can be found in the original papers. The concept of 

finding the rank of Π  is described here. Rank of an ( )n n×  matrix is equal to the 

number of linearly independent eigenvectors of the matrix. Therefore, to obtain the 

rank of Π , we need to find all characteristic roots of Π . If rank of Π  is zero, all 

these characteristic roots are zero and this implies no cointegration. Otherwise, if 

there exist non zero roots, the roots can be ordered such that 1 2 ... nλ λ λ> > > . In 

practice, we can obtain only the estimates of  Π  ( Π̂ ) and the characteristic roots ( îλ ). 

 The following two statistics are proposed to test for the number of 

cointegrating vectors, r. 

(i) Trace Test ( traceλ ) 

trace
1

ˆ( ) ln(1 )
n

i
i r

r Tλ λ
= +

= − −∑  

0 :H  There are at most r cointegrating vectors. 

1 :H  There are more than r cointegrating vectors. 

(ii)  Maximal Eigenvalue Test ( maxλ ) 

max 1
ˆ( , 1) ln(1 )rr r Tλ λ ++ = − −  

0 :H  Number of cointegrating vector is r. 

1 :H  Number of cointegrating vector is r+1. 

 If ˆ 0iλ = , ˆln(1 ) ln(1) 0iλ− = = . Therefore, it is obvious that traceλ  equals 

zero when all ˆ 0iλ = . If ˆ 0iλ ≠ , ˆln(1 )iλ−  is negative and hence traceλ  is positive. Like 

traceλ , the value of maxλ  is small if the estimated characteristic root, 1r̂λ + , is closed to 

zero. The critical values for these statistics are provided in Johansen and Juselius 

(1990). 
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3.2.3 Panel Unit Root Test 

 Various versions of panel unit root test are developed to encounter the low 

power of univariate unit root tests. Levin, Lin and Chu (2002) and Im, Pesaran and 

Shin (2003) tests are used in this study. 

 

 Levin, Lin and Chu (LLC) test 

 Levin and Lin (1993) and Levin et al. (2002) developed a panel unit root 

test that has more power than univariate unit root tests by imposing the same first 

order autoregressive coefficient ( ρ ) on all series, but allowing for individual 

(industries, regions or countries) specific intercepts ( 0iα ) and time trends ( 1iα ). 

Furthermore, not only the error variance is permitted to arbitrarily vary across 

individuals, but also the pattern of high-order serial correlation. 

 To determine whether the process ity  is unit root or stationary for each 

individual in the panel, the following assumptions are required. 

(a)  Assume that ity  is generated by one of the following models: 

Model 1: , 1it i t ity y uρ −Δ = +  

Model 2: 0 , 1it i i t ity y uα ρ −Δ = + +  

Model 3: 0 1 , 1it i i i t ity t y uα α ρ −Δ = + + + , where 2 0ρ− < ≤  for i = 1,...,N . 

(b) itu  is independently distributed across individuals and follow a stationary 

invertible ARMA process for each individual, 

,
1

it ij i t j it
j

u uθ ε
∞

−
=

= +∑  

(c)  4( )itE u < ∞ ; 2( ) 0itE Bεε ≥ > ; and 2
,

1
( ) 2 ( )it it i t j u

j
E u E u u B

∞

−
=

+ < < ∞∑  for all    

i = 1,...,N and t = 1,...,T. 

 For the model specification, Levin et al. (2002) have noted that the 

omission of a deterministic element (eg. an intercept or time trend) when it is indeed 

present results in inconsistency of test. In contrast, the inclusion of irrelevant 

deterministic element reduces the power of the test. Therefore, model 2 and model 3 

will be used in this study. 
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 This method tests the null hypothesis that all individuals in panel have 

integrated time series (unit roots) versus the alternative hypothesis that each 

individual time series is stationary. In other words, the alternative hypothesis states 

that all series in the panel have to be stationary. This hypothesis will be relaxed later.  

 Levin et al. (2002) suggested a three-step procedure to implement the panel 

unit root test. Step 1 is to perform separate ADF regressions for each individual in the 

panel and generate two orthogonalized residuals. Ratio of long run to short run 

standard deviations for each individual is estimated in step 2. In the final step, the 

panel statistics, t-statistic ( tρ ) and adjusted t-statistic ( *tρ ) are computed. Though the 

t-statistic ( tρ )  for model 2 diverges to negative infinity, the adjusted t-statistic ( *tρ ) 

asymptotically follows the standard normal distribution under the null hypothesis. It is 

also notable that the LLC test is particularly useful for panels of moderate size, 

between 10 and 250 individuals with 25-250 time series observations per individual. 

If the time series dimension of the panel is very large, the univariate unit root test will 

have sufficient power3. 

 
 Im, Pesaran and Shin (IPS) test 

 The Im et al. (2003) test relaxes the assumption of identical first order 

autoregressive coefficients of Levin et al. (2002). This approach allows the 

heterogeneous of ρ  or, equivalently, allows the real exchange rate of each country 

reverts to its mean at different rates.  

 IPS test evaluates the following model 

, 1it i i i t ity y uα ρ −Δ = + + .  (3.14) 

based on these hypothesizes 

0 :H  0iρ =  for all i = 1,...,N  

1 :H  0iρ <  for some i,  i = 1,...,N. 

In contrast with the LLC test, the alternative hypothesis of IPS test allows for some 

(but not all) of the individual series to have unit root. 
                                                 

3In the case that the cross-section dimension is very large, Levin et al. 
(2002) suggested the existing panel data procedures of MaCurdy (1982), Hsiao 
(1986), Holtz-Eakin et al. (1988) and  Breitung and Meyer (1991) as the appropriate 
tools. 
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 Im et al. (2003) assume that itu is independently and normally distributed 

with zero mean and finite heterogeneous variance, 2
iσ . Moreover, under the 

alternative hypothesis, the fraction of the individual processes that are stationary is 

also assumed to be non-zero, i.e. 1lim ( / ) ,0 1N N N δ δ→∞ = < ≤  since it is necessary for 

the consistency of the panel unit root tests.  

 This method pools N separate cross-section unit root test statistics to 

evaluate the following equation 

, 1 ,
1

ip

it i i i t ij i t j it
j

y y y uα ρ β− −
=

Δ = + + Δ +∑          (3.15) 

Let ,i Tt%  denote the t-statistics used to evaluate the null hypothesis of the unit root in 

the standard individual ADF. The t-bar statistic is calculated from  

1

1-
N

NT iT
i

t bar t
N =

= ∑% % .         (3.16) 

 Following this setting, Im et al. (2003) showed that for 5T >  and the 

individual statistics, ,i Tt% , 1,...,i N= , are identically and independently distributed with 

finite second order moments, i.e. mean and variance, as N →∞ , the standardized t-

bar statistic ( -t barZ % ), defined as 
( )

-

- ( )

( )
NT T

t bar
T

N t bar E t
Z

Var t

−
=%

% %

%
          (3.17) 

converges to a standard normal variate, N(0,1), under the null hypothesis. 

 For the case of serial correlation in itu , Im et al. (2003) also derived the 

standardized t-bar statistic, demeaned-IPS statistic, denoted by -t barW .  

( )1
1

-
1

1

- [ ( ,0) | 0

[ ( ,0) | 0]

N
NT iT i ii

t bar N
iT i ii

N t bar N E t p
W

N Var t p

ρ

ρ

−
=

−
=

− =
=

=

∑
∑

 (3.18) 

 Under the null of nonstationary, -t barW  converges to a standard normal 

distribution where N  and T →∞  such that /N T k→ , for a finite non-negative 

constant k . 

 Although -t barZ %  and -t barW  are asymptotically equivalent, results from 

simulations indicated that -t barW  statistic performs much better than -t barZ %  statistic. 

This is because -t barW  statistic takes the underlying ADF orders into account in 

computing the mean and the variance adjustment factors. 
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 Lopez and Papell (2007) mentioned about the power of LLC and IPS tests. 

Given that the maintained hypothesis of homogeneity is correct, the LLC test has 

greater power than the IPS test if 0ρ < . Both tests are correctly sized if 0ρ = . On the 

contrary, if the maintained hypothesis of homogeneity is not correct, one possibility is 

that there is a mixed panel; some of the ρ ’s are less than 0 and some of the ρ ’s are 

equal to 0. In that case, the IPS test has greater power than the LLC test.  

 

 Combined Individual Tests (Fisher Test and Choi Test) 

 Instead of constructing panel test statistics by combining the test statistics, 

another approach is to combine the observed significant levels (p-values) from 

individual tests. There are several literature on this issue4, however, the Fisher test 

based on the sum of the log-p-values has been widely recommended (Maddala and 

Wu, 1999).  

 Maddala and Wu (1999) used Fisher's result to propose an alternative 

approach to test for unit root and cointegration in panel data by combining tests from 

individual cross-sections to obtain a test statistic for the full panel. This test is very 

attractive due to its simplicity and its robustness to statistic choices, lag length and 

sample size. 

 Let ip  be the significance level (p-value) from any individual unit root test 

(or cointegration test) for cross-section i. It is assumed that the test statistics are 

continuous and the significance level ip  (i = 1, 2, …, N) are independent uniform 

(0,1) variables. Under the null of unit root for all cross-sections (or no cointegration 

relation in panel) and the crucial assumption of cross-sectional independence, the 

combination of p-values proposed by Maddala and Wu (1999) defined as  

1
2 log( )

N

MW i
i

P p
=

= − ∑    (3.19) 

                                                 
4According to Maddala and Wu (1999), this issue can be found in Tippett 

(1931) and Fisher (1932). Different tests are reviewed in Hedges and Olkin (1985).  
Tippett (1931) suggested using the distribution of the smallest of the p-values, 

iπ . Furthermore, there have been several other suggestions about the p-values 
combinations and 16 of them are listed in Becker (1997). 
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has a Chi-square distribution with 2N  degrees of freedom, when T  tends to infinity 

and N  is fixed.  

 Besides the MWP  statistic, Choi (2001) suggested a similar standardized 

statistic:  

1

1

1 ( )
N

i
i

Z p
N

−

=

= Φ∑   (3.20) 

where 1( )−Φ •  is the standard normal cumulative distribution function. Under the null 

hypothesis of unit root and the similar assumptions imposed on ip , Z  converges to a 

standard normal distribution. 

 

 Pesaran Test 

 Unlike the unit root tests of the first generation which assume that the 

individual time series in panel are cross-sectionally independently distributed, the test 

of Pesaran (2003) allows for cross-sectional dependence in series. Instead of dealing 

with cross-sectional dependence by demeaning the series like demeaned-IPS test, this 

test augments the standard DF or ADF regressions with the cross section averages of 

lagged levels and first-differences of the individual series. Then the standard panel 

unit root tests can be calculated based on the simple averages of the individual cross-

sectionally augmented ADF statistics, denoted CADF. 

 Let ity  be the observation on the ith cross section unit at time t and suppose 

that it is generated according to the following simple dynamic linear heterogeneous 

panel data model 

, 1(1 )it i i i i t ity y uφ μ φ −= − + + , i = 1,…,N; t = 1,…,T (3.21) 

it i t itu fγ ε= +   (3.22) 

where        0iy , the initial value, is given 

tf  is the unobserved common effect 

itε  is the individual-specific. 

 Equation (3.21) and (3.22) can be written as  

, 1it i i i t i t ity y fα ρ γ ε−Δ = + + +   (3.23) 

where (1 )i i iα φ μ= − , (1 )i iρ φ= − −  and , 1it it i ty y y −Δ = − . 
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 The unit root hypothesizes to test are: 

0 :H  0iρ =  for all i = 1,...,N  

1 :H  0iρ <  for i = 1,...,N1 

  0iρ =  for i = N1+1, N1+2,…,N. 

 Similar to the IPS test, the assumption that 1lim ( / )N N N δ→∞ = , 0 1δ< ≤  is 

required for the consistency of the panel unit root test. Under a set of assumptions of 

Pesaran (2003) and if the residuals are serially uncorrelated, 1 , 11
(1/ ) N

t i ti
y N y− −=

= ∑  

and ,1
(1/ ) N

t i ti
y N y

=
Δ = Δ∑  are sufficient for asymptotically filtering out the effects of 

the unobserved common factor, tf . Therefore, the unit root test can base on the t-

statistic of the OLS estimate of iρ  in the following cross-sectionally ADF, denoted 

CADF, regression: 

, , 1 1i t i i i t i t i t ity y c y d y uα ρ − −Δ = + + + Δ +          (3.24) 

 The distribution and critical values of the CADF statistic are derived and 

computed. Pesaran (2003) suggested that this CADF statistic can be applied for 

univariate unit root test when information on the cross section average, ty , is 

available. 

 Aside from CADF statistic, a truncated version of the CADF statistic, 

denoted CADF*, is suggested in order to avoid undue influence of extreme outcomes 

in case of small T samples. The value of CADF is given as: 

1 1
*

1 2

2 2

if

if if if

if

K if CADF K
CADF CADF if K CADF K

K if CADF K

⎧ − ≤ −
⎪= − ≤ ≤⎨
⎪ ≥⎩

 (3.25) 

where 1K  and 2K  are positive constants such that the probability that ifCADF  falls in 

the interval [ ]1 2,K K−  is sufficiently large. The simulated values of 1K  and 2K  for 

each case are reported in Pesaran (2003). 

 The panel unit root test is now constructed based on the CADF or CADF* 

statistic. A cross-sectionally augmented IPS test (CIPS or CIPS*) based on the 

average of individual CADF or CADF* statistics are as followed. 
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1

1 N

if
i

CIPS CADF
N =

= ∑   (3.26) 

* *

1

1 N

if
i

CIPS CADF
N =

= ∑   (3.27) 

 For the case of serially correlated errors, it is shown that the individual 

CADF statistics have similar asymptotic distribution as in the serially uncorrelated 

case, given that the CADF regressions are augmented with the lagged changes of the 

individual series and the lagged changes of the cross section averages. Moreover, 

iCADF  statistics not depend on factor loadings. However, they are asymptotically 

correlated due to their dependence on the common factor. Consequently, the standard 

central limit theorems do not apply to the CIPS statistic. Fortunately, it is shown that 

the limit distribution of the CIPS*, the truncated version of CIPS, exists and is free of 

nuisance parameter. Therefore, CIPS* statistic can be used to test the hypothesis of 

unit root in panel data. The critical values of CIPS and CIPS* statistics are given in 

Pesaran (2003). 

 

3.2.4 Panel Cointegration Test 

 Several cointegration tests for panel data are developed to extend the use of 

time series cointegration test. Among these tests, the tests proposed by Pedroni (1997, 

2004) and Kao (1999) are utilized in this study. 

 

 Pedroni Test 

 Pedroni (1997, 2004) developed several residual-based test statistics for 

heterogeneous panel cointegration, allowing individual specific fixed effects, 

deterministic trends, as well as individual specific slope coefficients. If the underlying 

data generating process (DGP) is assumed to permit individual members of the panel 

to differ in whether or not they are cointegrated, then the testing hypothesizes are as 

follow: 

0 :H   “All of the individuals of the panel are not cointegrated.” 

 1 :H  “A significant portion of the individuals are cointegrated.” 
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 The regression model is 

it i i i it ity t X eα δ β= + + +   (3.28) 

for i = 1,…,N, t = 1,…,T, where itX is an m-dimensional column vector for each 

member i and iβ  is an m-dimensional row vector for each member i. The variables ity  

and itX  are assumed to be integrated of order one, denoted I(1), for each member i of 

the panel, and under the null of no cointegration the residual ite  will also be I(1). 

 Let the partitioned vector ( , )it it itz y X′ ′≡  such that the true process itz  is 

generated as 1it it itZ Z ξ−= + , for ( , )y X
it it itξ ξ ξ ′′ ≡ . The ( 1) ( 1)m m+ × +  asymptotic 

covariance matrix is given by 1
1 1

lim ( )( )T T
i T it itt t

E T ξ ξ−
→∞ = =

⎡ ⎤′Ω ≡ ⎣ ⎦∑ ∑ . The following 

conditions are assumed to hold with regard to the time series dimension. 

(a)  The process ( , )y X
it it itξ ξ ξ ′′ ≡  satisfies [ ]

1
1/ ( )Tr

it i it
T Bξ

=
⇒ Ω∑ , for each member 

i as T →∞ , where ( )i iB Ω  is vector Brownian motion with asymptotic 

covariance iΩ  such that the m m×  lower diagonal block 22 0iΩ > . In other 

word, this condition states that the standard functional central limit 

theorem is assumed to hold individually for each member series as T 

grows large. 

(b) The individual processes are assumed to be independent and identically 

distributed (i.i.d.) cross-sectionally, so that [ , ] 0it jsE ξ ξ ′ =  for all , ,s t i j≠ . 

 

 Following Pedroni (2004), the statistics are constructed by first estimating 

the hypothesized cointegrating relationship separately for each member of the panel 

and then pooling the resulting residuals when constructing the panel tests for the null 

of no cointegration. 

 Let 1ˆ ˆ( , )it it ite e e − ′= Δ% , 
1

T
i it itt

A e e
=

′=∑ % %  where îte  is estimated from a model based 

on the regression in equation (3.28). The test statistics are calculated as follows: 

 Panel-variance ratio (Panel-v), ˆNTvZ  

1
2

ˆ 11 22
1

ˆ
NT

N

v i
i

Z L A
−

=

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
∑   (3.29) 
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 Panel-rho, 
1ˆ

NT
Zρ −

 

( )1

1

ˆ 22 21
1 1

ˆ
NT

N N

i i i
i i

Z A A Tρ λ
−

−

= =

⎛ ⎞
≡ −⎜ ⎟
⎝ ⎠
∑ ∑   (3.30) 

 Panel-t (parametric), or Panel-ADF, 
N̂TtZ  

( )
1/ 2

2
ˆ 22 21

1 1

ˆ
NT

N N

NT i i it
i i

Z A A Tσ λ
−

= =

⎛ ⎞
≡ −⎜ ⎟
⎝ ⎠

∑ ∑%  (3.31) 

where 1ˆˆ ˆ ˆit it i ite eμ ρ −= − , 1
,1 1

ˆ ˆ ˆK T
i sK it i t ss t s

T wλ μ μ−
−= = +

= ∑ ∑  for some choice of lag window 

1 /(1 )sKw s K= − − , 2 1 2
2

ˆ ˆT
i itt

s T μ−
=

= ∑ , 2 2 ˆˆ ˆ 2i i isσ λ= + , 2 1 2
1

ˆN
NT ii

Nσ σ−
=

≡ ∑% , and 

2 1 2
11 111

ˆ ˆN
ii

L N L−
=

= ∑ where 2 1
11 11 21 22 21

ˆ ˆ ˆ ˆ ˆ
i i i i iL −′= Ω −Ω Ω Ω  such that ˆ

iΩ  is a consistent estimator 

of iΩ . 

 The asymptotic distributions of the statistics and their critical values are 

available in Pedroni (2004) and Pedroni (1999), respectively. 

 

 Kao test 

 The test of Kao (1999) follows the same basic approach as the Pedroni 

tests, but it assumes homogeneous coefficients on the first-stage regressors. Kao 

(1999) studied a spurious regression using Least-Square Dummy Variable (LSDV) in 

panel data and proposed a residual-based test for cointegration regression in panel 

data. He studied Dickey-Fuller (DF) test and an augmented Dickey-Fuller (ADF) test 

to test the null of no cointegration. Since his simulation results suggested that ADF 

test clearly dominates the DF tests when σ  is large, only ADF test will be discussed 

here. 

 Let 
1

t

it is
s

y u
=

=∑  and 
1

t

it is
s

x ε
=

=∑  where itu  and itε  are assumed to be 

independent across i; the spurious LSDV regression model is 

it i it ity X eα β= + +   (3.32) 

for i = 1,…,N, t = 1,…,T. 
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 The ADF test can be applied to the residuals using the following regression: 

1
1

ˆ ˆ ˆ
p

it it j it j itp
j

e e eρ ϕ υ− −
=

= + Δ +∑ ,  (3.33) 

where p is chosen so that the residual itpυ  are serially uncorrelated and îte  is the 

estimate of ite  from equation (3.32). 

 With the null hypothesis of no cointegration, the ADF test statistic can be 

constructed as  

0
2 2 2 2
0 0

ˆ ˆ6 / 2
ˆ ˆ ˆ ˆ/ 2 3 /10
ADF ut NADF υ

υ υ υ υ

σ σ

σ σ σ σ

+
=

+
,  (3.34) 

where ADFt  is t-statistic of ρ  in (3.33). Kao (1999) has shown that the asymptotic 

distribution of ADF statistic will converge to a standard normal distribution by the 

sequential limit theory. 

 

 Fisher Test 

 Similar to unit root test, the idea of combining p-values of individual test 

can also be applied to the cointegration test of panel data. Fisher type test suggested 

by Maddala and Wu (1999) is applied to the test of Johansen under the cross-sectional 

independence assumption. The statistic and its distribution are the same as MWP  

described in previous section. 

 

3.2.5 Test of Parameter Constancy  

 Swamy (1970) proposed a procedure for estimating random coefficient 

regression which the parameters are allowed to vary over the cross-sectional units. 

This model allows both random intercept and slope parameters that vary around 

common means. The random parameters can be considered outcomes of a common 

mean plus an error term, representing a mean deviation for each individual.  

 The model to estimate is as follow: 

( )( 1) TT
i iy X

×Λ×

=  
( 1)( 1) T

i iuβ
×Λ×

+ .  (3.35) 
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Allowing slope coefficients to vary across i, equation (3.35) can be written as 

1 1 1 1 1

2 2 2 2 2

0 0
0 0

.
0 0N N N NN

y X X u
y X X u

X X uy

δ
δ

β

δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

K

K

M M M M M MM

L

, (3.36) 

or more compactly as  

y X D uβ δ= + +          (3.37) 

 Efficient estimators of equation (3.37) and several tests are proposed in the 

original paper. One useful test, which will be applied in this study, is the test of 

equality between fixed coefficient vectors in N  relations with heteroskedastic 

disturbances. Swamy (1970) has suggested to test whether the coefficient vectors iβ  

(i = 1,...,N) are fixed and are all equal before estimating any model under his setting. 

 Based on these hypothesizes: 

0 :H  1 2 ... Nβ β β β= = = =   

1 :H  Otherwise, 

the homogeneity statistic can be constructed as follow: 

1

ˆ ˆ( ) ( )N
i i i i

i ii

b X X b
H

sβ

β β

=

′ ′− −
=∑   (3.38) 

where 
1

1 1

ˆ
N N

i i i i
i

i iii ii

X X X X b
s s

β
−

= =

⎡ ⎤′ ′
= ⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑ ; 1( )i i i i ib X X X y−′ ′=

%
; 

-
i i i

ii

y M y
s

T

′
=

Λ
 is an unbiased 

estimator of iiσ  and 1( )i i i i iM I X X X X−′ ′= − . Under the null hypothesis, the asymptotic 

distribution of Hβ  is 2χ  with ( 1)NΛ −  d.f. as T →∞  and N is fixed. 

 
 

3.3 Model and Test Procedure 

 

 For each group of countries, the tests will be conducted based on time 

series approach and panel approach. For each approach, there are two main tasks. The 

first task is to verify the relative version of PPP by testing the unit root of the real 

exchange rate. If the real exchange rate is found to be stationary, relative PPP is 

confirmed. The second  task  is  to  investigate  the  long  run relationship of  nominal 
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exchange rate and price levels via the cointegration test. If the nominal exchange rate 

and price ratio are cointegrated, the weak version of PPP is confirmed. Subsequently, 

it is crucial to further investigate whether the cointegrating coefficients are 1s. If that 

is the case, not only weak PPP, but strong PPP is also asserted. Before the 

cointegration testing can be performed, however, it is required that the nominal 

exchange rate and price levels are integrated of the same order. Therefore, the 

preliminary analysis on the series of nominal exchange rate and price levels are 

conducted by testing for the unit root of all series in both level form and first 

difference form. Once the same order of cointegrated are confirmed, the cointegration 

test can be applied to test for PPP. 

 

Table 3.1 

Summary on Process of Testing for PPP for a Group of Countries 

 

Time Series Approach Panel Data Approach 
1. Stationary tests of RER: ADF, PP 
 
 
     Unit root  reject relative PPP 
     Stationary  relative PPP holds 

1. Stationary tests of RER: LLC, IPS, MW 
    (Fisher), Choi, Demeaned-IPS, CIPS* 
 
     Unit root  reject relative PPP 
     Stationary  relative PPP holds 

2. Cointegration test of NER, PR and CPI 
 
• Pre-test for order of integrated, I(d), 

of NER and PR (or CPI) 
 
 
• Test for cointegration: Engle-  
      Granger, Johansen 
           No cointegration  reject PPP 
 
 
• (if cointegrated) Check symmetry   
       and proportionality conditions 
 
           Both satisfied  Strong PPP holds 
           Otherwise  Weak PPP holds 

2. Cointegration test of NER and PR 
 
• Pre-test for order of integrated, I(d), 

of NER and PR 
 
 
• Test for cointegration: Pedroni, Kao, 

Fisher 
          No cointegration  reject PPP 
 
 
• (if cointegrated) Check for unity   

Coefficients 
 
    Yes  Strong PPP holds 

          No  Only weak PPP holds 
Note:  RER stands for real exchange rate. 
           NER stands for nominal exchange rate. 
           PR stands for price ratio. 
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3.3.1 Testing for Evidence Supporting PPP via Time Series Analysis 

 

 Stationary Test of the Real Exchange Rate 

 Firstly, traditional time series approach is used to determine the existence 

of PPP between Thailand and trade partners. To verify the existence of relative PPP, it 

is necessary that the real exchange rate displays reversion toward its own mean, 

whether it is unity or not. Thus, one popular testing procedure is to examine the 

behavior of the real exchange rate whether it is stationary or not. Long run PPP is said 

to hold if the sequence of real exchange rate is stationary or, equivalently, real 

exchange rate does not contain unit root. Hence, the unit root test is applied to real 

exchange rate in this manner. 

 By employing the well-known univariate unit root tests, such as ADF test 

or PP test, of the real exchange rate, the existence of relative PPP can be examined. 

For instance, the stationarity of real exchange rate can be examined by ADF test using 

this equation: 

1
1

m

t t j t j t
j

q t q q uα δ ρ β− −
=

Δ = + + + Δ +∑    (3.39) 

where optimal lag length, m, is chosen by Schwarz Information Criterion (SIC). The 

PP statistic is also applied to test for stationarity of real exchange rates. 

 

 Cointegraion Test of Nominal Exchange Rate and Price Ratio 

 Aside from verifying the real exchange rates, PPP can also be verified by 

testing for cointegration between nominal exchange rate and price ratios. The 

cointegration relationship can be specified as follows: 
 Restricted Model: *ln ln( / )t t t tE P P uα β= + +       (3.40) 

 Unrestricted Model: *
1 2ln ln( ) ln( )t t t tE P P uα β β= + + +          (3.41) 

 In this study the Engle-Granger two-step method and Johansen multivariate 

cointegration are applied to each individual series. The cointegration implies a long 

run relationship between economic variables. In other words, cointegration between 

exchange rate and price levels confirms the existence of weak PPP. However, to 

obtain strong PPP, more conditions are required. Firstly, the estimated coefficients of 
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price ratio (β ) and domestic price index ( 1β ) should be positive, while the estimated 

coefficient of foreign price index ( 2β ) should be negative to satisfy the condition of 

symmetry. Secondly, β  should approach positive unity or 1β  and 2β  should have 

equal magnitude to satisfy the condition of proportionality.   

 

3.3.2 Testing for Evidence Supporting PPP via Panel Analysis 

 

 Panel Unit Root of Real Exchange Rate 

 As suggested by numerous amont of literature that univariate unit root test 

has low power, the panel version of unit root test will also be investigated. Since an 

individual unit root test might not reject the null hypothesis of unit root in real 

exchange rate, it is expected that the panel of real exchange rate may somehow 

exhibit more evidence in favor of PPP if it is indeed valid. 

 According to Levin et al. (2002), a panel version of the ADF test for the 

real exchange rate of country i at time t, itq , is defined by the following equation:  

, 1 ,
1

m

it i i t ij i t j it
j

q q q uα ρ β− −
=

Δ = + + Δ +∑  (3.42) 

where i = 1,...,N indexes the countries, t = 1,...,T the time periods and j = 1,...,m the 

number of lags. This approach jointly tests if all series in the panel follow a unit root 

process under the null hypothesis. 

0 :H   0ρ =   (All real exchange rates contain unit roots.) 

 1 :H  0ρ <   (All real exchange rates are stationary.) 

 Estimating equation (3.42), the null hypothesis of a unit root will be 

rejected in favor of the alternative of level stationarity if ρ  is significantly less than 

zero 

 Similarly, the IPS test of the real exchange rate estimates the following 

equation: 
, 1it i i i t itq q uα ρ −Δ = + + ,  (3.43) 

under these hypothesizes: 

 0 :H 0iρ =  ∀ i = 1,...,N         (All real exchange rates have unit roots.) 

 1 :H 0iρ <  ∃ i,  i = 1,...,N.     (At least one real exchange rate are stationary.) 
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 Apart from LLC test and IPS test, Fisher-ADF test, Fisher-PP test, Choi-

ADF test, Choi-PP test, demeaned-IPS test and Pesaran’s CIPS* test will also be 

conducted to confirm the results. 

 

 Panel Cointegration Test 

 Similar to the time series approach, the weak and strong version of PPP can 

be investigated through the cointgration between the nominal exchange rate and price 

ratio. When two series are non-stationary and integrated of the same order and the 

spurious regression of these series yields the stationary process, these series are 

cointegrated. Regarding this fact, in order to test the cointegration between nominal 

exchange rate and price ratio, both series, ite  and *
it itp p− , must follow the same order 

of integrated, I(1).  

 Pedroni (2001), as extended from his previous work, examined PPP by 

panel cointegration tests using the following specification: 
*( )it i i it it ite p pα γ ε= + − +   (3.44) 

Equation (3.44) indicates the relationship between nominal exchange rate ( ite ) and 

price ratio ( *
it itp p− ) or, equivalently, nominal exchange rate ( ite ) and price ratio 

( *
it itp p− ), in logarithm forms, are cointegrated with slope iγ . The slope coefficients, 

iγ , are allowed to vary by individual because factors leading to a nonunit value of 

cointegrating slope coefficient can be expected to have different magnitudes across 

countries. 

 Equation (3.44) is used to test for cointegration between nominal exchange 

rate and price ratio by applying Pedroni test, Kao test and Fisher test. If the 

cointegration is found, the validity of weak PPP is confirmed. For strong PPP to hold, 

however, it also requires that 1iγ =  for all i = 1,...,N. Therefore, to ensure the 

existence of strong PPP, testing whether all iγ  are identical must be conducted. One 

of the possible approaches is to test the constancy of coefficients proposed by Swamy 

(1970). Rejection of parameter constancy implies the statement “Cointegrating 

coefficients possess value of 1, 1iγ = , for all i = 1,...,N” is false. Subsequently, strong 

PPP is not valid. 
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3.4 Data Sources and Definition 

 

 There are various choices of a real exchange rate deflator. Chinn (2000) has 

discussed about choosing a deflator for calculating the real exchange rate. Since 

consumer bundles might be more similar across countries than producer or wholesale 

bundles, CPI may provide a more consistent measurement of price levels and thus of 

real exchange rates. The disadvantage of CPI and WPI, however, is that they include 

non-traded items. For this purpose, CPI or WPI which cover highly tradable goods are 

presented. In addition, if the concerned countries are fundamentally exporting to the 

third country markets, then choosing export price index may be more suitable. 

Nonetheless, export unit value indices are infamously subject to measurement error 

and the composition of the bundles of exports are more likely to vary broadly across 

countries than the corresponding WPI or CPI bundles. In this study, the real exchange 

rate is constructed from CPI due to the simplicity and availability of data. 

 The series of bilateral exchange rates (nominal exchange rate) in terms of 

country’s currency per US dollar and consumer price indices are extracted from the 

International Financial Statistics (IFS) database of the International Money Fund to 

construct the real exchange rates and price ratios. All series are taken quarterly from 

1987Q1 to 2006Q4. CPI series are seasonally adjusted using U.S. Census Bureau's 

X12 seasonal adjustment. 

 For the case of China, the CPI series is not reported in terms of CPI index, 

but in terms of percentage change relative to the same period of the previous years. 

Therefore, China’s CPI can be calculated using this series with CPI index in 2003 

from UNESCAP as a reference year. Though this is a possible choice, it might also 

lead to some distortions in data series. 

  Since this study analyzes the PPP based mainly on Thailand, Thai baht will 

be used as the numeraire currency, equivalently, using Thailand as a foreign country. 

Thus, the nominal exchange rate is defined as price of each domestic currency per 

baht. The exchange rates reported in IFS, however, are price of each currency per US 

dollar. Therefore, the nominal exchange rate of currency A per Thai baht will be 

calculated as follows: 
currency A / US dollarNominal Exchange Rate =
Baht / US dollar       

. 


