CHAPTER V

CONCLUSIONS

The following results are all main theorems of this thesis:

- 1. Let a and b be elements of a regular Γ -semigroup S. Then the following statements are equivalent.
 - (1) $a \leq b$.
 - (2) $a \in b\Gamma S$ and there exist $\alpha, \beta \in \Gamma, a' \in V_{\alpha}^{\beta}(a)$ such that $a = a\alpha a'\beta b$.
 - (3) There exist $\beta, \gamma \in \Gamma, f \in E_{\beta}(S), g \in E_{\gamma}(S)$ such that $a = f\beta b = b\gamma g$.
 - (4) $H_a \leq H_b$ and for all $\alpha, \delta \in \Gamma, b' \in V_{\alpha}^{\delta}(b), a = a\alpha b' \delta a$.
 - (5) $H_a \leqslant H_b$ and there exist $\alpha, \delta \in \Gamma, b' \in V_{\alpha}^{\delta}(b), a = a\alpha b'\delta a$.
- 2. The partial order on E(S) of a regular semigroup S is the restriction of the natural partial order on S to E(S).
- 3. Let S be a regular Γ -semigroup. Then the following statements are equivalent.
 - $(1) \leq \text{is right compatible.}$
 - (2) S satisfies \mathcal{L} -majorization for idempotents.
 - (3) S satisfies \mathcal{L} -majorization.
- 4. Let S be a regular Γ -semigroup. Then the following statements are equivalent.
 - $(1) \leq \text{is compatible.}$
 - (2) S satisfies $\mathcal{L}\text{-}$ and $\mathcal{R}\text{-}$ majorization for idempotents.
 - (3) S satisfies \mathcal{L} and \mathcal{R} -majorization.
- 5. Let S be a regular Γ -semigroup and the natural partial order on S be compatible with multiplication. Then

$$\omega := \{(a, b) \in S \times S \mid c \leq a \text{ and } c \leq b \text{ for some } c \in S\}$$

is a congruence on S.

- 6. Let S be a regular Γ -semigroup such that ω is a congruence and the natural homomorphism for ω is reflecting the natural partial order. Then ω is the least primitive congruence on S.
- 7. Let a and b be elements in a regular Γ -semigroup S. Let $\alpha, \beta, \gamma, \delta \in \Gamma, a' \in V_{\alpha}^{\beta}(a), b' \in V_{\gamma}^{\delta}(b)$ and $g \in S_{\theta}^{(\alpha,\delta)}(a'\beta a, b\gamma b')$. Then
 - (1) $b'\delta g\alpha a' \in V_{\gamma}^{\beta}(a\theta b)$.
 - (2) $b'\delta g \in V_{\gamma}^{\theta}(g\theta b)$.
 - (3) $g\alpha a' \in V_{\theta}^{\beta}(a\theta g)$.
 - (4) $a\theta g\theta b = a\theta b$.
- 8. Suppose that S is a regular Γ -semigroup and $\alpha, \beta, \theta \in \Gamma$. Let $e \in E_{\alpha}(S), f \in E_{\beta}(S)$. Then the mappings

$$\varphi: x \mapsto (x\theta f, e\theta x),$$
 and $\psi: (y, z) \mapsto y\alpha w\beta z$

(where $w \in V_{\alpha}^{\beta}(e\theta f)$) are mutually inverse θ -isomorphisms between sub Γ -semigroup $S_{\theta}^{(\alpha,\beta)}(e,f)$ and $S_{\theta}^{(\alpha,\beta)}(e,f)\theta f \times e\theta S_{\theta}^{(\alpha,\beta)}(e,f)$.

- 9.Let S be a Γ -semigroup and $E(g\Gamma S\Gamma g)$ is a commutative sub Γ -semigroup of S for all $g \in E(S)$. Then the following statements hold.
 - (1) $|S_{\theta}^{(\alpha,\beta)}(e,f)| \leq 1$ for all $\alpha,\beta,\theta \in \Gamma, e \in E_{\alpha}(S), f \in E_{\beta}(S)$.
- (2) If $a, b, x, y \in Reg(S)$ with $a \leq x, b \leq y$ where Reg(S) is a sub Γ -semigroup then $a\theta b \leq x\theta y$ for some $\theta \in \Gamma$.
- 10. Let S be a regular Γ -semigroup and $\alpha, \beta, \theta \in \Gamma$. Then the following conditions are equivalent.
 - (1) For any $a \in S$, $S_{\theta}^{(\alpha,\beta)}(a)$ is a right θ -zero semigroup.
- (2) If $e \in E_{\alpha}(S)$, $f \in E_{\beta}(S)$ such that $e\mathcal{D}f$ then $S_{\theta}^{(\alpha,\beta)}(e,f)$ is a right θ -zero semigroup.
 - (3) If $a \in S$ and $x, y \in V_{\alpha}^{\beta}(a\theta a)$ then $(a\alpha x\beta a)\theta(a\alpha y\beta a) = a\alpha y\beta a$.
 - (4) If $a, x, y \in S$ with $a\theta a = a\theta a\alpha x\beta a\theta a = a\theta a\alpha y\beta a\theta a$ then $(a\alpha x\beta a)\theta(a\alpha y\beta a) = (a\alpha y\beta a)\theta(a\alpha y\beta a).$

(5) If
$$x, y \in S$$
, $e \in E_{\alpha}(S)$, $f \in E_{\beta}(S)$ such that $e\mathcal{D}f$

$$e\theta x = e\theta y = e\theta f \mathcal{L}x\mathcal{L}y, \text{ and } x, y \leqslant f \text{ then } x = y.$$

- 11. Let S be a regular Γ -semigroup and $\alpha, \beta, \theta \in \Gamma$. Then the following conditions are equivalent.
 - (1) For any $a \in S$, $|S_{\theta}^{(\alpha,\beta)}(a)| = 1$.
 - (2) If $a \in S$ and $x, y \in V_{\alpha}^{\beta}(a\theta a)$ then $a\alpha x\beta a = a\alpha y\beta a$.
 - (3) If $a, x, y \in S$ with $a\theta a = a\theta a\alpha x\beta a\theta a = a\theta a\alpha y\beta a\theta a$ then $(a\alpha x\beta a)\theta(a\alpha x\beta a) = (a\alpha y\beta a)\theta(a\alpha y\beta a).$
 - (4) If $a, x, y \in S$ with $a\theta a = a\theta a\alpha x\beta a\theta a = a\theta a\alpha y\beta a\theta a$ then $(a\alpha x\beta a)\theta(a\alpha y\beta a) = (a\alpha y\beta a)\theta(a\alpha x\beta a).$
 - (5) If $e \in E_{\alpha}(S)$, $f \in E_{\beta}(S)$ such that $e\mathcal{D}f$ then $|S_{\theta}^{(\alpha,\beta)}(e,f)| = 1$.
- 12. Let S be a regular Γ -semigroup. Then the following statements are equivalent.
 - (1) S is a locally inverse Γ -semigroup.
 - (2) \leq is compatible.
 - (3) $|S_{\theta}^{(\alpha,\beta)}(e,f)| = 1$ for all $\alpha, \beta, \theta \in \Gamma, e \in E_{\alpha}(S), f \in E_{\beta}(S)$.
- 13. Let $\phi: S \to S'$ be a homomorphism of regular Γ -semigroups. Then ϕ reflects natural partial orders of S and S'.
- 14. Let S be a Γ -semigroup without zero. Then the following conditions are equivalent.
 - (1) S is completely simple.
 - (2) S is regular and every idempotent is primitive.
- 15. A regular Γ -semigroup S without zero is completely simple if and only if the natural partial order on S is the identity relation.
- 16. Let ρ be a congruence on a regular Γ -semigroup S. Then ρ is strictly compatible if and only if $e\rho$ is a completely simple sub Γ -semigroup of S for all $e \in E(S)$.

- 17. Let S be a regular Γ -semigroup. Then the following statements are equivalent.
 - (1) For all $e \in E_{\alpha}(S), \alpha \in \Gamma$, (e] is directed.
 - (2) ρ is an equivalence relation.
 - (3) ρ is congruence.
- 18. Let S be a regular Γ -semigroup and

$$\rho = \{(x,y) \in S \times S \mid z \leqslant x \text{ and } z \leqslant y \text{ for some } z \in S\}.$$

Then the congruence ρ is the finest primitive congruence on S.