CHAPTER IV

(a,8,0)-SANDWICH SETS

4.1 (o, 3,0)-Sandwich Sets of Idempotents on Regular I'-semigroups

In this chapter, we construct a new set on a regular I'-semigroup S, say

(a, B, 8)-sandwich set in a regular I'-semigroup, denote by Sf(,a’ﬂ )(e, f)where8 € T')e

is an a-idempotent and f is a -idempotent.

For a I'-semigroup S,a, 3,0 € T and e € E,(S), f € E(S), we define a set
S5™?e, f) by

Sga,ﬁ)(e, fli={ge€ Vé"(eef) N Ep(S) | goe = fBg = g}.

Then S (e, f) may be an empty set. If SF)(e, f) # 0 then SiF)(e, f) is called

an (a, 0, 0)-sandwich set.
The next proposition insure that Sga’ﬁ )(e, f) # 0if S is a regular I'-semigroup.

Proposition 4.1.1. Let S be a regular T'-semigroup, o, 3,0 € T ande € Eqo(S), f €
Eg(S). Then the set S5 (e, f) defined by

S5 (e, f) == {g € VE(eBf) N Eq(S) | goe = fBg = g}
is non-empty.
Proof. Let z € V§(eff) and g = ffBzae. Then
gae = (fBzae)ae = ffzae =g
and
fBg = fB(fBzae) = fBzae = g.

Since z € V5*(eff), we have z = zaef f(z and eff = eff Braedf. Now,

g0g = (fPzae)f(fBzae) = fPzae =g,
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ga(edf)Bg = g0g = g,
and
(e8f)Bga(elf) = (e6f)Bgbf = ebgbf = el fBxaelf = eff.
Then g € S{™*)(e, f). This is complete the proof. O

Proposition 4.1.2. Let S be a regular I'-semigroup, o, 3,0 € T’ and e € E4(S),
f € Eg(S). Then

. Séa’ﬁ)(e, f) = {g (S Eg(S) | gae = fﬂg =49 and eogof 5 eef}

Proof. Set A := {g € Ey(S) | goe = fBg = g and efgff = eff}. We will prove
that A = S((,a’ﬂ)(e, f). Let g € A. Then ga(eff)Bg = gfg = g and

(eff)Bgaledf) = efgaelf = efglf = elf,

so g € Vg (eff). It implies that g € Sga’ﬂ)(e, f)-
Conversely, let h € Séa’ﬂ)(e, f). Then h = hae = fph. Since h € Vg (edf),
we now observe that h = ha(ef f)Bh and (eff)Bha(edf) = eff. Thus

eOhff = ebhaelf = (eff)Bhaledf) = edf,

which implies that h € A. Therefore A = S((f’ﬁ e, f). O

The next results give a connection with Green’s equivalence that:

Proposition 4.1.3. Let e be an a-idempotent, f be a B-idempotent, g be a ~y-
idempotent and h be a §-idempotent in a reqular semigroup S.

(1) If eLf then S (e, g) = SPM(f,g) for all § €T

(2) If eRf then S (g,€) = S"P(g, f) for all 6 € T.

(3) IfeLf and gRA then S (e, g) = SV (f,h) for all @ € T.

Proof. (1) Suppose that eCf, § € I'. Let 2 € Séa’7)(e,g). Then zoe = T = 179
and efzfg = efg. By Lemma 2.2.4, eff = e and fae = f.
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We now have that z = zae = zaelf = zBf and fO0z0g = faefzlg =
faefg = fOg then Sg"”)(e, g) C S(gﬁ M(f,g). Similarly, we can show that
SPI(f,9) € S5 (e, g). Hence S5™ (e, g) = S (£, 9)-

(2) By symmetry (1), we have 55" (g,€) = 5. (g, /).

(3) Suppose that eLf and gRh. Let z € Sé(,a‘”) (e,g) forall @ € T". Thenz =
zae = gyz and efzfg = efg. By Lemma 2.2.4, we have e = eff, f = fae,g = hig
and h = gyh. Then

zBf = zaeff = zae = z,
hiz = hdgyx =gyx =z
and
fO0x6h = (fae)0z6(gvh) = fa(ebzbg)yh = faelgyh = fOh.

* Thus z € SP9(f, h), it implies that S (e, 9) € S (f, h).
Conversely, let y € Séﬁ’é)(f, h). Then y = yBf = héy and fOybh = fOh.

Consider
yoe =ypfae=yBf =y,
gvy = grhdy = héy =y
and
efyfg = eBfOybhdg = e fOhdg = elg.

Thus y € Sga”)(e, g) which implies that S(Sﬁ A(f h) C Séa’7)(e, g)-
Hence S (e, g) = S(f, h). O

Proposition 4.1.4. Let S be a reqular T'-semigroup. For o, € T',e € Eo(S), f €
Eg(S). Then the following conditions hold.

(1) If eLf then S§P (e, f) = {f}.

(2) If eRf then S&P) (e, f) = {e}.
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Proof. (1) Let eLf. By Lemma 2.2.4,e=¢(f and f = foe. Thus eSfBf = eBf,
so f € Sl(,a’ﬂ)(e, f). Letz € Sg“’ﬁ)(e,f). Then
z = fBz = fBrae = fBraeBf = faefzff = foeff = fBf = F.

Hence Sf,a’ﬂ)(e, H=A{f}
(2) The proof is similar to the proof of (1). ' 0

Proposition 4.1.5. Let S be a regular I'-semigroup and a,b € S,a,B,0 €T',e €
Lo, f € Ry. Then abb = (abh)8(h6b) and abRLARAOD for any h € S (e, ).

Proof. Let h € Séa’ﬂ)(e, f) and e € Lq, f € Rp. By Lemma 2.2.3 and 2.2.4, we
have 4 cases.

Case 1. e=a and f =b. Then
abb = eff = eOhff = eBhOhOf = (abh)O(hoD)
and
h = hOh = haebh = ha(abh)

which implies that a@hCh. It follows that h = h fBh = (h6b)Sh. Hence hObRh.

Case 2. € = a and f = bdz for some z € 5,6 € I'. Then
afb = effBb = eOhd f3b = afhOhob
and
h = h6h = hOfBh = (hOb)ozSh

which implies that h0bRh. It follows that h = haedh = haabh. Thus abhLh.
Therefore abhLRRhOb.

Case 3. € = cya and f = b for some ¢ € S,y € I'. Then afb = acelf =
acedhdf = abhOhbb and h = hh = haebh = hacyadh which implies that afhLh.
Clearly, h8bRh, Thus a@hLhRh6b.

Case 4. e = c¢ya and f = béz for some ¢,z € S,7,6 € I. The proof is
similar to the proof Case 2 and 3. O
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Proposition 4.1.6. Suppose that S is a regular I'-semigroup. Then for all o, 3,0 €
I,e € E,(S),f € Es(S) and g € S(ga’ﬁ)(e, f) we have edf is (a, B)-inverse of g.

Proof. Let g € S (e, f). Then

eff = elghf = e0fBg0f = el fBgaebd f

and

g = g0g = gaet fBg.
Thus eff € VE(g). O

Lemma 4.1.7. Let S be a T-semigroup and o, B € T, e € Eo(S), f € Ep(S).
(1) IfeBf is regqular then Sf,a’ﬂ)(e, ) #0.
(2) If eaf is reqular then SEeP e, £) # 0.

Proof. (1) Let e3f be regular. Then there exist 7,0 € I',z € V,f (eff). Claim that
fyzde € Ep(S). Consider fyzbe = fy(zdeBfyz)de = (fyzde)B(fyzde) € Ep(S).
Clearly, fyzde € S[(;a’ﬁ)(e, f). Thus Sg”ﬂ)(e, f)#0.

(2) The proof of this is similar to the proof of (1). a

In one direction we have the following result.

Theorem 4.1.8. Let a and b be elements in a regular T'-semigroup S. Leta, 8,7,0 €
I,d € VB(a),b € VE(b) and g € S (d/Ba,byb'). Then

(1) ¥6gaa’ € VF(abb).

(2) b'8g € V2(gbb).

(3) gad’ € V{ (aby).

(4) afgbb = abb.

Proof. Suppose that g € S‘ga"s)(a’ Ba, byb').



(1) Then
(abb)y(t'dgaa')B(abb) = abbyb'§g6b
= afgfb
= (aca'Ba)0gh(byb'5b)
= aca'Babbyb'0b
= adb
and
b'dgaa’ Babbyb'dgaa’ = b'éghgaa’
= bdgaa.

We now observe that b'dgaa’ € VA(afb).
(2) Consider

(b'69)0(g0b)y(b'dg) = b'dg6g0g = b'dg
and
(90b)(b'39)0(gbb) = gbg0g6b = gbb.
Thus b'dg € V(g6b).
(3) Consider
(9aa’)B(abg)b(gaa’) = gfgaa’ = gad’
and
(af9)0(gaa’)B(abg) = afgbgfg = albyg.
Thus gaa’ € V/(afy).
(4) Consider
abgbb = aaa'Babgbbyb'sb
= aaa’ Babbyb'5b
= afb.

Hence afgfb = abb.
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Proposition 4.1.9. Let e be an a-idempotent and f be a B-idempotent and § € T'.
Ifg,he Séa’ﬂ)(e, f) then g = gOhbg.

Proof. Let g,h € S‘ga’ﬁ)(e,f). Then

gae =g = ff3g,e690f = ed f
and

hae =h = fBh,e0h0f = ebf.
Thus

g = (gae)0(fBg) = ga(efhd f)Bg = gbhbg.

A non-empty subset A of a ['-semigroup S is called a sub-I'-semigroup if
ATA C A. The next proposition show that an («, 3, 0)-sandwich set is a sub-I'-

semigroup.

Proposition 4.1.10. Let e be an a-idempotent and f be a (-idempotent in a

reqular T'-semigroup S. Then Sga’ﬁ ) (e, f) is a sub-T'-semigroup of S for all § € T'.

Proof. Let 6 € I" and g,h € S(ga’ﬁ )(e, f). By Proposition 4.1.9, g6h = g6hfgbh
which implies that gfh is a 6-idempotent. It follows that

(96h)ae = gbh, fB(gbh) = gbh
and
e0(gbh)0f = efg0fBhOf = O fBhOf = eOhOf = eff

which proves that goh € S e, f).
Therefore Séa’ﬁ ) (e, f) is a sub-I'-semigroup of S. a
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The (a, (3, 6)-sandwich set admits the important characterization of the set
of an (a, #)-inverse element.
Proposition 4.1.11. Let S be a regular T'-semigroup and o,(3,6 € T'. Then
Séa’ﬂ)(e,f) = fBVg(eff)ae for all e € Eo(S), f € Ep(S).
Proof. Let z € S(Sa’ﬂ)(e, f). Then zae = z = ffz and efzff = eff. Then
z = fBz = fBzae. Claim that z € V§(eff). Consider

za(eff)fr =z0r =z
and
edfBzaedf = efzlf =ebf.

Thus z € fAVS(eBf)ae. It follows that S (e, ) C fBV§(eff)ae.
Let y € fOVg(eff)ae. Then y = ffBzae for some z € Vs(edf). 1t follows

that
yae =y = ffBy
and
eyl f = e fBzaecldf = ed f
which proves that y € S (e, f). Hence 55 (e, f) = fBV5(e8)ae. O

Let S and S’ be I-semigroups and § € I'. The mapping ¢ : S — S is
called a 6-homomorphism if (afb)p = (ap)f(by) for all a,b € S. Let ¢ be a
6-homomorphism of S into S’ and let ¥ be an §-homomorphism of S’ into S. If
1 o ¢ is the identity mapping of S onto itself, and if ¢ o ¢ is the identity mapping
of S onto itself then ¢ is a #-isomorphism of S onto S’, and 7 is the inverse
-isomorphism. Such #-isomorphisms 1 and ¢ are called mutually inverse 6-
isomorphisms. If there exists a mapping is 6-isomorphism between S and S’ then

S and S’ are called #-isomorphic and we denote by S =4 S'.
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The purpose of this section is to investigate sets of Séa’ﬂ ) (e, )8f and
e055? (e, f) and mapping between S (e, £) and S5 (e, £)Of x 0SS (e, f)

are mutually inverse f-isomorphisms for all § € I'.

For a I'-semigroup S and e € E(S), we shall give a notation for (e] defined
by

(e ;={zeS|z<e}

By Proposition 3.2.4, we have that z € E(S) and by Theorem 3.2.9, we obtain that

z < e. The next two lemmas are very important results for the main theorem.

Lemma 4.1.12. Let S be a regqular T'-semigroup, o, (3,0 € I'. For any e €
EL(S), f € Es(S) and z € VP(edf), we have

S‘ga’ﬁ)(e,f)af _\ Séa’ﬁ)(fﬂﬂeaf) f) — {q e S l efg=elfLqg < f} - Le0f N (f]

Proof. We show first that S (e, £)0f C S5 (aBebf, f). Let y € S (e, £).
Then there exists z € Séf”ﬁ) (e, f) such that y = z0f. Then zae = z = ffBz and
e0z0f = eff. It follows that
yBy = (20f)B(20f) = 2020f = 26f = y.
Thus y € Eg(S). Claim that y € S5 (zBeff, f). Consider
yoazfelf = z0foxfeld f

= zael faxPel f

= zoel f

= 26f

=Y,

fBy=fB20f =20f =y

and

(zBebf)ByBf = zPedfBz0fBf = zfefz0fBf = zBedfBf.
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Then y € S (z8eb/, f). Therefore S5 (e, £)0f € S5 (aBebf, f)-

Set D:={q€ S|efg=ebfLq< f}.
Next, we prove that S[(,a’ﬁ)(wﬂeef, f)CDC LyosN(f]. Let g € Sf,a’ﬁ)(mﬁeﬁf, f)-
Then qa(zBeff) = ¢ = fBq which together with

gBf = qazPed fBf = qazfebdf = q,

it implies that ¢ < f.

We will show that efqg = eff. It follows that

efg = e0fBaBf = (effaxBed f)BaBf = eb fazPed fAf = ebf.

Thus eflg = eff.
Next, we need to show that effLq. Since ¢ = qazfB(eff) and eff = eflg =
effBq, we get that ef fLq. Therefore efg = effLq < f. Hence g € Legs N (f)-
Finally, we prove that D C S(ga’ﬂ )(e, f)0f. Let g € D. Then eflq = effLq <
£ and let w € S (e, f). Consider

(gBw)b(qBw) = qBwaedgfuw = qfwaed fw = qBwlw = gfw,
(gBw)ae = gBw = fB(gBw)
and
ef(qBw)0f = ef fBuwbf = edwdf = ebf.
Then gBw € S (e, f). Since effLq, there exist u € S, € T such that ¢ =
ub(edf). Thus
q =ud(edf)
= ub(ebwl f)
= ud(ed fBwlf)
= gBuwbf € 57 (e, )87.

Hence {q € S | ebq = eBfLq < f} C S5 (e, f)0F.
Therefore S (e, £)0f = S$7 (zBebf, f) = {q € S | ebg = e0fLq < f} C
Leas N (f]- O
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Dually, we get the following statement.

Lemma 4.1.13. Suppose that S is a regular I'-semigroup and o, 3,0 € T'. Let
e € Ey(S), f € E(S) and z € VE(ebf). Then

0S5 (e, f) = SEP) (e, effaz) = {r € S| r0f = effRr < e} C Regs N (e]-

Proof. This Lemma can be proved dually Lemma 4.1.12. O

Theorem 4.1.14. Suppose that S is a reqular I'-semigroup and o, 3,6 € T'. Let
e € E,(S), f € Eg(S). Then the mappings |

@z (z0f,ebz), and ¢ : (y, z) — yowpPz
(where w € VE(eff)) are mutually inverse 6-isomorphisms between sub I'-semigroup

S5 (e, ) and ™" (e, £)0f x €Sy (e, f).

Proof. Suppose that y € S,(,a’ﬂ)(e, £)6f and w,w' € VE(ebf). Let z € eOS(Sa’ﬂ)(e, f).

Then y = uff, z = efv for some u,v € S(S“"’) (e, f) and thus

yawfz = (ubf)owp(ebv)
= uael fawfel f Bv
= uael f v
= uaed faw' Geb f fu
= uf faw' Bebv
= yow'fBz
and 9 is a single valued. With the same notation and set = := yawfz, we get
wlzyaw = wBz0ub fow
= wPz0fBub faw
= wfz0 f Byaw
= wflebvl f fyaw

= wpel f Byaw
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wPz0yaw = wpel fPub faw
= wfebub f ow
= wfel faw

=w

which implies that z = yawfz € Ey(S). We will show that z € Sé"’ﬁ )(e, - It

follows that

zae = yawPzae
= yawfed f fuae
= yawped f fv
= yawfz
=
= uaed fawPz
= fBuaedfawBz
= fByowfiz
= fBz

and

e0z0f = ebyowPBz0f
= efub fawPebvd f
= effawfed f
= eff.

Thus z € S5 (e, f).
Therefore ¥ : Séa’ﬂ)(e, £)0F x e8SLP (e, f) — S e, f).
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For z € S (e, f) and w € VS (edf), we have
zpp = (z0f,efz)y
= (26)awp(ebz)
= (zae)f fowped(fpz)
= zaedffz
=
and for (y,2) € S (e, £)0f x €8Sy (e, f), we have

(y, 2)bp = (yowfz)p = (yowpB20f, efyawfz).

Next, we will show that yowBz0f =y and efyowBz = 2. Since y = uced f

and z = ef fBv for some u,v € Séa’ﬂ )(e, f), we obtain that

yowp0f = uaedfawfedfGvof
= uaef fawBefvlf
= uaelfowPed
= uaedf
=Y

and
efyawfz = efuaed fawBed fBv

— efub fowBed fBv
= effawPed fBv
= ef fPv
=2z

Thus (y, 2)be = (¥, 2).
For all y,9/ € Séa’ﬂ)(e, f)6f and by Lemma 4.1.12, we have Sé(.a’ﬂ)(e, Hof =

ng,ﬁ) (wﬁer, f) — {q es | efq=elfLqg < f}, it follows that

Y0y’ = yowPed fOy = yawPBebdy' 8y = yowPeby’ = yawPedf =y.
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Similarly, we can show that 262’ = 2’ for all 2,2’ € eQSéa’ﬁ )(e, ).

Next, we now prove that ¢ and 3 are 6-homomorphisms. Let z,2’' €

S*F)(e, f). Then

(z0z')p = (z0z'0f, efzbz")

= (vaefz'0f, efz0 ffz')
= (zaelf,ef fBz")
=

Tl f,efz’)
and

(z)0(z'¢) = (z0f,ebz)0(z'0f, ebz")
= ((z61)0(z'0f), (efz)b(ebz"))
= (z0f,efz').

It follows that (z6z')¢ = (z¢)0(z'y).

Let y,9 € Sga’ﬂ)(e, f)f and 2,2’ € eBS(ga’ﬁ)(e, f). Then ¢’ = vff and z = efu for

some u,v € Saa’ﬂ )(e, f). Thus we have

(9, 2)0(', ") = ((¥0Y'), (262)) = (yby')awB(202") = yowpZ,

and

((y, 2)¥)0((y', 2)9) = (yawPz)0(y' awpz’)
= yowPefufvd fawpBz
= yawPefuaedvld fowpz
= yawPefuaed fowBz
= yowPefud fowSz'
= yawpPed fowPz'

= yowfz'.

Hence ¢ and ¢ are §-homomorphisms. O



46

Recall relations on E(S) as follows : For f e E(S),
(fli:={e€ B(S)|e<' f},

(flr:={e€ E(S) e <" f}

and

(fl:=={e€ E(S) lex [}

Proposition 4.1.15. Let S be a regular I'-semigroup and o, B € ', e € Eu\(S), f €
E3(S). Then the following statements hold.
(1) Ife <™ f then S&P(e, f) = (flr N Ea(Le) and
S5 (f,€) = (10 Eg(Re).
2) Ife <* f then S&P(e, f) = (f1N Ba(Le) and
S5 (f,€) = (Fin Eg(Re).

Proof. (1) Suppose that e <" f. Then e = ffBe. Let p € SieP )(e, f). Clearly,
p = fBp then p € (f], and p = pae. Thus
e = eaffe = eapafPe = eapae = eap,

which implies that p € L.. Conversely, let ¢ € (f], N Eo(Le). Then ¢ = ffBq and
gLe. Thus ¢ = gae and e = eaq. Hence g € Sc(f"ﬂ)(e, -
Let z € Séﬁ’a)(f, e). Then £ = z8f = eax and ffe = fBxfe. Thus

fBxr = ffeax =eax ==z

which implies that z € (f]. It follows that e = fBe = fBzfe = zfe, so = € R..
Hence z € (f] N Eg(R.). Conversely, it is obvious.
(2) The proof is similar to the proof of (1). O

Recall E(X) := E(S) N X where X is a subset of a I-semigroup and we
denote the cardinality of a set X by | X |
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Theorem 4.1.16. Let S be a I'-semigroup and E(gI'STg) is a commutative sub
I'-semigroup of S for all g € E(S). Then the following statements hold.

1) | S (e, £) |< 1 for all @, 8,8 € T, e € Eu(S), f € Eg(S).

(2) If a,b,z,y € Reg(S) with a < z, b < y where Reg(S) is a sub I'-

semigroup then afb < z0y for some 8 € T.

Proof. (1) Let p,q € S(Sa’ﬂ )(e, f). It is easy to show that efp,efg € Eq(S) and
pif,q0f € Ep(S). Consider

efp = efpae € el'STe,

efq = efqgae € el'STe,
pOf = fPpdf € fTSTf

and

q0f = fBqbf € fTST.

Thus efp,efq € E,(el'STe) and pbf,q8f € Eg(fI'STf). Since the idempotent
in E(el'STe) and E(fT'STf) commute, we have (efp)a(efq) = (efg)a(efp) and

(p8£)B(gbf) = (g0f)B(pff). This implies that efpfg = efqfp and pdgbf = qOpbf.

Consider
efpfq = ebfpf fBq = ed f Bg = efq
and
efqblp = efql fBp = €6 f Bp = efp,
we obtain that eflqg = efp. Similarly, we can show that pdf = ¢gff. Thus
p = pfp = pOfBp = ¢6fBp = qfp = qaelp = quefg = qfq = g.

(2) Let 2’ € VB(z) and y € Kf(y) for some «,8,7,8 € I'. Then 2'fz €
E.(L;) and yyy € Es;(R,). By Remark 1, there exists € € Ea(L,) such that
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e < 'z and a = zae. By Remark 1, there exists f € Es(R) such that f < yvy'

and b = féy. Since eLa, we have efbLadb. By assumption and Lemma 3.1.6(1),

edb is regular. Since fRb, we have ed fRedb. By Lemma 3.1.6(2), ed f is regular.

By Lemma 4.1.7(1), S®¥(e, f) # 0. Let p € 5% (e, f). Then
adb = (zae)d(foy) = za(edpd )by = xa(edp)d(pd f)dy
and

pax' Bz = paear'fzr = pae = p.

(4.1)

(4.2)

Thus paz’fzép = pép = p, so =’ BxépLp. Since pae = p, we have paedp = p which

implies that edpLp. Thus edpLx'fzdp. Consider
(2'Bzép)a(a'Bzdp) = «'Brdpdp = z'Bxdp,

Z'Bxdp = ' Bxdpax' Bz,

and
z'Bzdp = o' Bxax’ fxdp
which implies that z’Gzdp < z'fz and
(edp)a(edp) = edpdp = edp,

edp = edpae, ebp = eaedp,

so edp < e. Thus 2'Bzdép, edp < z'Bz. Now,
edp = ' fzaedp = ' fraedpar' Br € (' fz) ST (2'fx)
and
z' Bxdp = 2’ Brdpaz’ Bz € (' Bz)TST(a'fx).
Since the idempotent in E((z'8z)['ST'(z'Az)) commute, we obtain that

(edp)a(z'Bzdp) = (z'Bzép)c(edp).
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Thus edp = z'Bxdp. Similarly, we can show that pdyvyy = pdf. By (4.2), we have
zdp = zépax'Bx. Thus

zépaz’ = zd(pdp)az’ = (zépaz’)B(zdpaz’). (4.3)
Similarly, we have pdy = yyy'dpdy. Thus
y 5pdy = y'8(pdp)dy = (y'6pdy)y(y Ipdy)- (4.4)

By 4.3 and 4.4, we obtain that zépaz’ € E(S) and y'dpdy € E,(S). By 4.1, we

get that
add = za(edp)d(pdf)dy

= zaz'frdpdpdyyy'dy

= zépdy

= (z0y)y(y'dpdy),
and

adb = zdpdy = zdpax’fzdy = (zdpox’)B(zdy).

Hence adb < zdy. 0O

4.2 The Sandwich Set of an Element on Regular I'-semigroups

In this section, we introduce an (a, 3, 6)-sandwich set of idempotent ele-
ments and study some properties of an (a, 3,0)-sandwich set of elements in regular
T-semigroups. The next result shows that (a, 3,6)-sandwich set does not depend

on the choice of (o, §)-inverse.

Proposition 4.2.1. Let S be a regular I'-semigroup and for allae S,0 €. Then
there ezist o, B € T,a' € VP(a) such that gieh )(d'Ba, aca’) = aaV(afa)Ba.

Furthermore, If o’ € V2(a) then S&*P(a"Ba, aca") = aaVf(aba)fa.
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Proof. Let z € Séa’ﬁ )(d'Ba, aca’). Then z = za(d'fa) = (aca’)Bz and
(a/Ba)fz0(aca’) = d/Babacd’. Thus z = aad'Braad’fa.

Claim that a’Bzaa’ € VF(afa). Consider
(o Bzaa’)B(aba)a(d Brad’) = o Bzbzad’ = d frad
and

(aba)a(a'Bzaa’)B(aba) = abzba
= aaa'Babzlaca fa
= aad Babaca Ba

= afa,

which together with o/Bzaa’ € VF(aba), so z = acd'fzadfa € aaVF(aba)fa.
Hence S{™? (d/Ba, aca’) C aaV/(aba)Ba.

We will show that aaV?(afa)Ba C Séa’ﬂ )(a’ Ba,aaa’) and let y € VP(aba).
Then y = yB(aba)ay and afa = (afa)ayB(aba). For aayfa = aayBabfaayfa and
then aayBa € Ey(S). Thus

(aayBa)a(d’fa) = aaypa,
(aaa’)B(aayBa) = aayPa
and
('Ba)0(acyBa)f(acd’) = (d'Ba)b(acd’).

Therefore aayBa € S5 (d'fa, aad’).
Hence aaVP(abfa)Ba C 5,5“"’ )(d'Ba, aad).
The proof that S (a”Ba, aca”) = aaVf(afa)Ba is similar for a” € VS (a).

O

Remark 3. In Proposition 4.2.1, we see that Séa’ﬂ Nd'Ba,aad’) = aaVP(afa)fa

for all choice a’ € V2(a).
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Note that we write S (a) := S (d'Ba, aa’) where o’ € VE(a).

For 0 € T, a -semigroup S is called a right (left) 6-zero semigroup if
afb = b (abb = a) for all a,b € S.
We shall give some necessary and sufficient conditions for a right 6-zero

semigroup S (a).

Theorem 4.2.2. Let S be a regular I'-semigroup and o, 3,0 € I'. Then the follow-
ing conditions are equivalent.
(1) For anya € S, Séa’ﬁ) (a) is a right §-zero semigroup.
(2) If e € Eo(S), f € Eg(S) such that eDf then S(ga’ﬂ)(e, f) is a right 6-zero
semigroup.
(3) Ifa € S and z,y € VP(aba) then (aazfa)d(acypBa) = aayfa.
(4) If a,x,y € S with afa = abaazfaba = abacyBaba then
(acxBa)f(acyfa) = (aayPa)d(acyfa).
(5) If 2,y € S, e € Ea(S), f € Ep(S) such that eDf,
edr = ey = ebfLxLy, and z,y < f thenz =y.

Proof. (1) = (2) Let e € Eo(S), f € Ep(S) such that eDf. By Lemma 3.1.5, there

exist a € S and o’ € V#(a) such that e = a’fa and f = aaa’. Thus
S (e, £) = S5 (d'Ba, aca’) = S$A)(a)

is a right #-zero semigroup.

(2) = (3) Let a € S,0 € " and o’ € V2(a). Then o/faLa and aRaaa’ which
implies that a’BaDaaa’. By assumption, we have that Séa’ﬁ )(a) is a right f-zero
semigroup. Let z,y € V(afa). By Proposition 4.2.1, we obtain aazfa, aayfa €
S*#)(q). Thus (aazBa)b(aayBa) = aayfa.

(3) = (4) Let a,z,y € S be such that afa = abfaazfBabla = afaaypBaba.

Then zfBabaaz, yfabacy € VP (aba). By hypothesis, we have

[aa(zBabacz)Ba)flac(yBabacy)fa] = aa(yBabacy)Pa.
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Thus

(aayBa)b(aayBa) = aczBabaczBabacyBabacyfa
= aazfBabacyfabacyfa

= aazfabacyfa.

(4) = (5) Let e € E,(S) and f € Eg(S) be such that eDf. By Lemma 3.1.5,
there exist a € S and a’ € VP(a) such that e = ¢/fa and f = aaa’. By Proposi-

tion 4.2.1, we have
aaVA(aba)Ba = S®P(a) = S5 (e, f).

Let z,y € S be such that efz = efy = effLzLy and z,y < f. By
Lemma 4.1.12, we have z,y € Sga’ﬁ)(e, f)6f. By Proposition 4.2.1, we get that
z,y € aaVP(aba)Babf. Then there exist s,¢t € VF(aba) such that z = aasfabf
and y = aatfalf. Since s,t € VP(afa), we have afa = abfaasfaba = afaatfaba.

By hypothesis, we have
(aasBa)b(aatfa) = (aatfa)b(actBa) = aatfa.
It follows that

z = aasfalf
= aasfBaaa’Baldf
= aoasPaaa Babaca’
= aasfaad BabactPabaca
= aatfabaca’
= aatfalf
= .

(5) = (1) Let a € S and a’ € V¥(a). Set e := a/fa and f := aaa’. We will
show that S,Sa’ﬁ)(e,f)Gf is trivial. Let z,y € S,Sa’ﬂ)(e, f)0f. By Lemma 4.1.12, we
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have efz = effLzx < f and efy = effLy < f which implies that
efz = ey = effLzLy and 2,y < f.

Since e = a/Ba and a = aad'fa = aae, we get that eLa. And since f = aaa' and
a = aad'Ba = fBa, we obtain aRf. Thus eDf. By hypothesis, we have z = y.

Hence Sga’ﬂ ) (e, f)0f is trivial. Therefore S(Sa’ﬂ ) (a) is a right 6-zero semigroup. U

The main result shows that an («, 3, 6)-sandwich set Sf(,a’ﬂ )(a) has only one

element.

Theorem 4.2.3. Let S be a reqular I'-semigroup and o, 3,0 € T'. Then the follow-
ing conditions are equivalent.
(1) Foranya € S, | SB)(g) |=1.
(2) If a € S and z,y € VF(aba) then aazfa = aayfa.
(3) If a, 7,y € S with afa = abacxfaba = abaayPaba then
(aazBa)f(aczfa) = (aayBa)f(acyBa).
(4) Ifa,z,y € S with afa = abaczfaba = abacyPBaba then
(aazBa)b(aayBa) = (aayBa)f(aczfa).
(5) If e € Eo(S), f € Ep(S) such that eDf then | Sga’ﬂ)(e,f) |=1.

Proof. (1) = (2) Let a € S and z,y € VP(aba). By Proposition 4.2.1, we have
Sé(,a’ﬁ ) (a) = aaV¥(afa)Ba. By hypothesis, we have aazfa = aaypfa.

(2) = (3) Let a,z,y € S be such that afa = abfaazfabla = afaayfaba.
Then z3(afa)az, yB(aba)ay € VE(aba). By hypothesis, we have

ac(zBabacz)Ba = ao(yBabacy)Ba.

(3) = (4) Let a,z,y € S be such that afa = afaazfafa = abacySafa. By
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the hypothesis, we have

(aazBa)f(aayBa) = (aczfa)b(aczfa)f(aayfa)
= (aayBa)d(aaypa)b(acyfa)
(acyBa)f(aczfa)f(aczfa)

= aayfabaazfa.

(4) = (5) Let e € E4(S), f € Eg(S) be such that eDf. By Lemma 3.1.5,
there exist a € S and a’ € V¥#(a) such that e = ¢/fa and f = aaad’. Let z,y €

S§°‘"’ ) (¢/Ba, aaa’). Then aca'fzaa’fa =z and aca'Byad’fa = y. Thus
abzla = aad' fabzhana’ fa = aaad' fabaca’ fa = aba.
Similarly, we can show that afyfa = afa. Consider
(aba)a(a'Bzaa’)B(afa) = aba = (aba)a(a’ Byaa’) B(aba).
By hypothesis, we have that
[ac(a’ Braa’)Ba)flac(d Byaa)Ba] = [ac(a Byaa’)Balblac(a’ Braa’)Ba]
which implies that zfy = yfz. By Proposition 4.1.9, we get that
z = 20yfz = 20z0y = z0y = z0yby = ybzbly = y.

(5) = (1) Let a € S. Since S is a regular ['-semigroup, there exist o, pgerl
such that o’ € V#(a). Set e := a/Ba and f := aca’. Then it is easy to show that
¢Df. By hypothesis, we obtain that | S{*” (a) |= 1. 0

Corollary 4.2.4. Let S be .a regular I'-semigroup and o, 3,6 € T'. Then the
following conditions are equivalent.
(1) If e € Ea(S), f € Es(S) such that eDf then | S5 (e, f) |=1.
(2) For any z,y € S,
(2.1) ifefz = eby = e0f LaLy and z,y < f thenz =y,
(2.2) if 20f = y0f = effRaRy and z,y < e thenz =y.



%)

Proof. (1) = (2) Let e € E,(S), f € E(S) be such that eDf and z,y € S, efix =
efy = effLxLy and z,y < f. By Lemma 4.1.12, we have z,y € S’,Sa’ﬁ)(e, fef.
Then there exist p,q € Sea’ﬂ )(e, f) such that z = pff and y = g6 f. By assumption,
p = g which implies that £ = pff = ¢ff = y. Similarly, we can show that if
z0f = y0f = effRzRy and z,y < e. Then z =y.

(2) = (1) Let a € S. Set e := a/fa and f := aca’. Then it is easy to
show that eDf. Claim that | SS*?(e, )8f |= 1 and | 0S5 (e, f) |= 1. Let
z,y €S, (aﬂ)(e f)0f. Then efiz = effLx < f and efy = effLy < f. Thus efz =
ey = edf LxLy and z,y < f. By assumption, we have z = y. Hence S( e )( e, f)0f
is trivial. Similarly, we can show that 695’("”3 )(e, f) is trivial. By Theorem 4.1.14,
S0 (e, £) 22 SP (e, £)OF x €655 (e, f). Thus | S5 (e, ) |=1. O

Corollary 4.2.5. Let S be a regular I'-semigroup, «,3,0 € T', e € E.(S) and
f € Eg(S). Then the following conditions are equivalent.

(1) S(ga’ﬁ)(e, f) is a right §-zero semigroup.

@) | 85P(e, 1)0f 1=1.

(3) | Sg”ﬂ)(xﬂeef, f)|=1 for any z € VB(ebf).

Proof. (1) = (2) Let z,y € S(ga’ﬁ)(e,f)Gf. Then z = sff and y = t0f for some

s,t € S(Sa’ﬂ )(e, f). By assumption, we have that
T = sOf = saelf = saeftdf = sO0t0f =t0f = y.

Thus | S (e, /)0f |= 1.

(2) = (1) Suppose that S (e, £)0f is trivial. Let z,y € S5~ (e, f). Then
zf = yff which implies that 28y = z0fBy = y0fBy = y. Therefore S(ga’ﬂ )(e, D
is a right 6-zero semigroup.

(2) & (3) It follows from Lemma 4.1.12. a
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4.3 The Finest Primitive Congruence on Regular I'-semigroups

A regular I'-semigroup S is called a locally inverse I'-semigroup if e['STe

is an inverse ['-semigroup for every e € E(S).

Theorem 4.3.1. Let S be a regular I'-semigroup. Then the following statements
are equivalent.

(1) S is a locally inverse I'-semigroup.

(2) < is compatible.

3) | S5P(e, f) |= 1 for all a, 8,0 € T, e € Eo(S), f € Es(S).

Proof. (1) = (2) Let @ < b,c € S,0 € . Then R, < R, and thereexist €T, f €
Es(S) N R, such that a = fBb. By Lemma 3.1.2(1), there exist o € I',a’ € VB(a)
such that aaa’ = f. Choose ¢’ € V,;s(c) for some v,d € I'. By Proposition 4.1.1, we
get that g € Séa’é)(a’ﬂa, cyc'). By Theorem 4.1.8, ¢'dgoa’ € V,y'g (afc) which implies
that afc = afcycd'Sgaa’ Babc. Set h := abeycddgaa’. Clearly, h € Ryg. and

hBh = (afcyc dgaa’)B(abfcycd Sgaa’) = abeyc'dgaa’ = h € Ep(S).
Then h € Eg(S) N Ryg.. Consider

hB(bbc) = abeyc dgaa’ Bbbe
= afgad Bboc
= afgaa faca Bbbc
= afgaad'BfBblc
= afgad falbe
= afglc
= aod'Babgbcycdc
= aoa'Balbcycde

= afc.
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Next, we will show that Reg. < Rpoc. Iff a =0 then Rag. < Rpge-
Suppose a € bI'S then there exist u € S,7; € I' such that a = bnu. Let b € V22 (b)
for some ay, B2 € I'. Then
(t'B2a)z (V' Baa) = b PafBbob! Babmru

= VBafBbyiu
VB2 f Ba
V' B2 fBf B
= V' fBb
= V' fBa € E4(95).

Thus ¥'Ba € E4,(S) N Ryp,q- It follows that
b’ﬂgba2b'52a = b/ﬁza

and

b Bracab’ Bob = b/ B2 f Bbasb! Bob = V' B2 fBb = b Baa

which implies that ' Gza < V' G2b. Consider

a = byu = basb/ Gabriu = basb'Baa,
so alb/Ba. Thus ¥'Ba € Ea,(S) N L,. By Lemma 3.1.2(2), there exist a” €
Vf(a), s € T such that a"fBsa = Vfa. Now, a"fsa = Vfza < Vb, Thus
a = bagb'Bra = baza”Gsa. Let p € Sg‘“*“) (a”Bsa, cyc’). Note that
(a" Bsafp)az(a” Bzafp) = a"Bzabplp = a” Pzadp.
Thus
(b B2b0p) o (b BobOp) = b Bobfpora” Baaciab’ BobOp
= b BobOpasa” Bsbasb' Bracb’ B2b0p
= b/ Byblpona” Bsbasb’ faalbp
= b BebOpasa’ Bzabp

= ¥ B,b0p.
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So @ B3a8p, b Bab0p € Eay(S). Now,

o’ Bzafp = a’Bzabpaqa’Bza
= V' fBra0paqa”Bs f 5b
= b Bobasa” Baabpasa” Bz f Bbasbt' B2b
= b Bobaoa” B3abpasa” Baacsb Bob € (b B20)TST (b G2b)
and a”B3afp and V' G,bp are as-idempotents within the inverse [-semigroup
(¥/82b)TST (b B2b). Thus
a"Bsabp = aBzafpbp
= a"Bzafpasa” Bzalp
= a"Bza8posa” Bacnb Bblp
= (a"Bsafp)as (b’ G2b0p)
(b'B2b0p) 2 (a” B3abp)
= b'[Bblp.

Set g := cdpasa”’ Bsafc. Then

(bdc)yg = blcycd Spasa” Bsalbc
= bfpoasya” Bzabc
= bfpbc
= banb' BbOplc
= baya” Bzabphc
= afpbc
= aoya’Bzabpbcycdc
= aasa’Bsafcyc de

abc.

Thus afc € (b0c)T'S C (bc)I'S U {bfc}. Hence Rope < Rige-
2) = (3) Let g,h € S (e, f) where a,8 € T',e € Ea(S),f € E5(S).
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Then f3g = g and
(901)B(g0f) = 90(fBg)8f = g090f = 96,
fB(g0f) = gbf
and
(901)Bf = gbf.

which implies that g0f € Es(S). By Theorem 3.2.1, g6f < f. Similarly, we can

show that efg < e. By assumption, we have

g0h = g8(fBh) = (g8)Bh < fBh =h
and

hg = (hae)fg = ha(efg) < hae = h.

Since Séa’ﬂ )(e, f) is a sub f-semigroup, we have gbh, hfg € S(ga’ﬂ )(e, f) which implies
that gh, hfg € Eg(S). Since gh < h, we have gdh = (g0h)0h = h8(gbh) and since
hOg < h, we have hfg = (hfg)0h = h8(hfg) which implies that hog = (hfg)6h =
h#(gbh) = gbh. Consider

g =gaelfBg = gbhbg = gb(gbh) = gbh = hbg
= hO(hOg) = hB(gOh) = haelgbfBh = haelfBh

= h.

Hence | 5P (e, f) |= 1.

| (3) = (1) Let e € Ey(S) for some a € I' and a € e['ST¢,a’,a" € Vi(a)n
el'STe,~v,6 € T. We will show that ¢’ = a”. Now, a = ev1zy2¢ for some 71,72 €
T,z € S and a/6aya’ = @’ = ef1yPae for some By, B, € T,y € S, Then

a'da = d'éavyd'éa,

d'6a = efyPaeda = eaefryPaeda = ead'da
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and

a'daye = a'daya'Save,

so a'da € S (a’ba, €). By assumption, a'da is the only one element in S (g/8a, e).

!

Similarly, we can show that a"éa € SS,%O') (a"ba,e). Consider a"da = a"daya'da

and a'da = a’daya”da then (a”da)L(a’da). By Proposition 4.1.3, S (a/§a, €) =
51 (”§a, €) which implies that a“da = ada.
Similarly, we can show that Sga"s)(e,afya’) = éa"s)(e,a'ya”) and we have

aya' = aya”. Now,
a" = d"6ayd" = d'daya” = d'éaya’ = d.

Hence eI'STe is an inverse I'-semigroup. a

Let ¢ : S — S'. Define the relation <g on S’ by for all 2,3’ € §'
¥ <gy o o' =eay =yBf for somee € E(S9), f € Eg(S¢),,B€T.
Then <g is a natural partial order on S’

Lemma 4.3.2. Let ¢ : S — S’ be a homomorphism of regular I'-semigroups. Then
¢ preserves the relation < of E(S) and E(S").

Proof. Let e € E,(S) and f € Eg(S) be such that e < f. Then e = eaf = ffe.

Consider

ed = (eaf)d = (ep)a(f9)
and

ed = (fBe)d = (f)B(eg).

Clearly, e¢p € E,(S') and f¢ € Es(S’), which implies that e¢ < f¢. Thus <
preserves of E(S) and E(S"). O



61

Lemma 4.3.3. Let ¢ : S — S’ be a homomorphism of regular I'-semigroups and
a,be S'. Then the following statements are equivalent.

(1) a <s b.

(2) If f' € E(S¢) N Ry then € < f' and a = €'ab for some o € T,e €
Eo(S¢) N Ra.

(3) If f' € E(S¢) N Ly then €' < f anda = bae' for some a,€ I',e' €
Ea(S¢) N Lo

Proof. (1) = (2) Let f' € E(S¢) N Ry. Then there exists 8 € I' such that [ e
Es(S'). By assumption, a = h'yb for some k' € E,(S$) "Ry, €T and R, < Ry.
Then Ry = R, < Ry = Ry Since h' € Ry, we have I’ = f'Sh/ and h'vf' € Eg(S").
Set ¢ := h'yf. Then h' = h'vf'Bh' = €'/, so €Rh which implies that e¢Ra.

Then
a=h~yb=h~vyfBb=¢pb
and
¢ =hyf =€Bf, ¢ = fBh'vf = fBe.
Thus ¢ < f'.

(2) = (3) Let f' € E(S¢) N L,. Then f' € Ep(S¢) for some § € I
By Lemma 3.1.2(2), there exist y € T',b' € V//(b) such that f' = b/yb. Clearly,
bBY € E,(Ry). Set k' := bpl. By assumption, there exist § €T',e € Es(R,) such
that e < k'’ and a = edb. Set ¢ := b'yedb. Then €’ € Eg(S), ¢ = b'vedb = b'va and

a = edb = k'yedb = bBb yedb = bfe’.
Thus € € Eg(L,). Consider
¢ = b'yedb = b'ybAb'vedb = b'ybBe' = f'Ge’
and

¢ = b'vedb = b'yedbab'yb = €'Bf'.
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Therefore €' < f.
(3) = (1) Let ' € V?(b) for some 7,5 € I'. Clearly, b'db € E,(Ly). By
assumption, there exist a € I',e’ € Eq(L,) such that €' < 5'0b and a = bae’. Then

bae'alt/ € Es(S'). Set f := boe'ab’. Thus
fob = bae'ab'db = bae' = a.

By Theorem 3.2.1, we have a <g b. O

The next theory, we use Lemma 4.3.3 to prove Theorem.

Theorem 4.3.4. Let ¢ : S — S’ be a homomorphism of regular I'-semigroups.
Then ¢ reflects natural partial orders of S and S'.

Proof. Let u,v € S¢ with u <g v and let y € S with y¢ = v. We want to find
z € S such that z < y and z¢ = u.

Since y € S, we can choose f € Eg(S) N R, for some B € I'. Since fRy,
there exist b € 3,8 € I" such that f = y6b and y = fBy. Thus

v=y¢=(fBy)d = (f$)Byg) = (f$)Bv

and

fé = (yob)¢ = (y9)6(bs) = v6(bg).

Therefore (f$)Rv which implies that f¢ € Eg(R,). Set f' := f¢. By Lemma 4.3.3
(2), there exist ' € Eo(S¢) N Ry, € I' such €’ 5 f" and u = €'av. Then there
exists e € E,(S) such that e¢ = ¢/. Choose h € Sf,a’ﬁ)(e,f) and g € Sg”a)(f, e).
Thus h¢ € Sf;a’ﬂ)(e¢, fo) = Séa’ﬂ)(e',f’) and g¢ € S[(,ﬂ’a)(f',e’). Since € < f', we
get that ¢ € Eg(S¢). Then

¢ =eBf = eB(he)Bf

and

(h)Bf' = (ho)ae'Bf' = (h¢)ae
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which implies that ¢'L((h¢)Bf"). Now,
(h)Bf = (hBS)¢
and
(h¢)Bf' = (hp)ae' = ho.
Dually, we have that
e = f'Be = f'B(g¢)Be
and
f'B(gd) = f'Be'alge) = €'a(gd)

which implies that e'R(f'B(g¢)). Consider

f'B(ge) = (f0)B(g¢) = (fBg)9

and

f'B(g¢) = ea(gp) = g¢.

By Proposition 4.1.3(3) and 4.1.4, we have that
SYO((hB)$, (FB9)$) = S5 (€ €) = {e'}.

Thus, if k € S (hBf, fBg) then fBk = fBgBk = k and kGf = kBhBf = k.
It implies that k£ < f. Now, we get that k¢ = €. Then k = kBf = kpBybb, so
k € Es(Rypy). By Lemma 4.3.3, kBy <s y. Set = := kfy.

Therefore z¢ = (kBy)é = (k$)5(y$) = . O

Proposition 4.3.5. Let S be a regular I'-semigroup, o, (3,0 € I';e € E.(S) and

f € Es(S). If p is a congruence on a regular I'-semigroup S and h € Séa’ﬁ )(e, )
then hp € S(So"ﬂ )(ep, fp).
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Proof. 1t is obvious. ‘ a

Proposition 4.3.6. Let p be a congruence on a regular T-semigroup S and a € S.

If ap € E(S/p) then ep = ap for some e € E(S). Moreover, H. < H,.

Proof. Let ap € E(S/p). Then ap € Ey(S/p) for some 0 € I'. Thus ap =
(ap)b(ap) = (aba)p. Let z € V5(aba) for some o, € . Set e := aoazfa.
Then

efe = (aazfBa)d(aczfa) = aa(zf(aba)az)fa = aczfa = e
which implies that e € Ey(S). Thus

ap = (aba)p
= ((afa)azf(aba))p
= ((afa)p)a(zp)B((ada)p)
= (ap)a(zp)Blap)
= (aazfa)p
= ep.

Clearly, e = aazfBa € STa and e = aazfa € al'S implies that R, < R, and
L. < L,. O

Proposition 4.3.7. Assume that p be a congruence on a reqular T'-semigroup S.
Leta,b € S, a,8,7,6,0 € T and o' € VF(a),t' € VE(b). If ap € Ep(S/p) then
5P (a) C ap.

Proof. Note that Sea’ﬁ )(a) = S(Sa’ﬁ )(d'Ba,aaa’). By Proposition 4.2.1, Sg"’ﬁ )a) =
aaVP(afa)Ba. By assumption, ap = (ap)8(ap) = (aba)p.

Consider z € aaV®(aba)Ba, we have z = aaypa for some y € VP(aba). Thus



z = aoyf(aba)ayfa = zhzx. Consider

ap = (aba)p

= ((acd'Ba)f(acd’Ba))p

= (ap)a((d'Babaca’)p)B(ap)

= (ap)a((a'Babdzbaca’)p)Blap)

= ((aca'Ba)p)8(zp)d((aca’Ba)p)

= (ap)0(zp)b(ap)

= (ap)0((acyBa)p)b(ap)

= ((aBa)p)a((yBa)p)b(ap)

= (ap)a((yBa)p)f(ap)

= ((aayBa)p)b(ap)

= (zp)0(ap)

= ((zfz)p)6(ap)

= (zp)0(zp)0(ap)

= (zp)f((acyBa)p)f(ap)

= (zp)8((acy)p)B((aba)p)
= (zp)8((acy)p)B(ap)
= (zp)0((acyBa)p)
= (zp)b(zp)
(z6z)p

= p.

Thus z € ap. Hence S Na) C ap.

Let a and b be elements of a regular I'-semigroup S. Define

I(a) := STaUal'S U STal'S U {a}
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and
J, < Jp if and only if I(a) C I(b).

Theorem 4.3.8. Let S be a T'-semigroup without zero. Then the following condi-
tions are equivalent.
(1) S is completely simple.

(2) S is regular and every idempotent is primitive.

Proof. (1) = (2) By Theorem 2.2.7, Corollary 2.2.9 and Theorem 2.2.12, a com-
pletely simple I-semigroup S is regular.

(2) = (1) We will show that S is simple. Since § is regular, every D-class
(and so certainly every J ~class) contains an idempotent. Let e € E(S). Then
there exists a € I such that e € E,(S). We will show that J, is a minimal J-class.

Suppose that J; < J. where f is another idempotent. Then f € Eg(S) for
some B € I and f € I(e).

Case 1. f € STe. Then f = xde for some = € S, € I'. Set

g = effpPxée. Thus

gag = (effBxde)aleffBzde)
= effBzéeSfBxde
= effBfBfBzde
= effPzde
=g

and gae = eag = g, so0 g < e. Since e is primitive, we have g = e. We now have

e = effBzde € STT'S C I(f). 1t follows that I(e) C I(f).
Case 2. f € eI'S. 1t is similar to the proof of Case 1.
Case 3. f € STel'S. Then f = zvyedy for some z,y € S,v,6 € I.
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Set g := edyBfPBzrye. Thus

gag = (edyBfBzye)a(edylfBave)
= eSyBfBzyedyBflzye
= doyBfBfAfBrve
= edypfBzye
=9
and gae = eag = g, which implies that g < e. Since e is primitive, we have g = e.
Now, we have that e = edyBfBzye € STfI'S C I(f). Thus I(e) C I(f).

By case (1)-(3), we have J. < Jy. Thus J. is a minimal J-class.

We will show that J. = S. Let a € S. Since S is regular, there exist
a,f € T,z € S such that a = aozfa. Then h = aax € Es(S). It implies
that a € hI'S C I(h), so a € Jn. Note that J, < Ju. Set e := zyhdy for some
z,y € S,v,0 €T.

Let g := héyoeazyh. Thus gBg = g and hfg = g = gBh which implies
that g < h. Since every idempotent is primitive, we get that g = h. Therefore
h = héyoaeazyh € STel'S, so J, = J,. Hence a € Je. Therefore S = J..

Next, we will show that S = ST'aI'S foralla € S. Let a € S. Thena € J.
which implies that aJe. For z € S and S is regular, we have z € J.. Then zJa.
Hence S C STal'S. Therefore S = STal'S. O

Theorem 4.3.9. A reqular I'-semigroup S without zero is completely simple if and

only if the natural partial order on S is the identity relation.

Proof. Assume that z < y. Since S is regular, there exist o, € T such that
y € VA(y). Set f := yay € Ep(S). Then fRy. By Remark 1, there exists
g € Eg(R,) such that g < f and z = gBy. Since S is completely simple, we have
that f = g. Therefore z = gBy = fBy = yay'By =y.

Conversely, assume that the natural partial order on S is the identity rela-

tion. Since S is regular, it contains an idempotent e. Suppose that f € E(S) such
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that f < e. By assumption, we have f = e. By Theorem 4.3.8, S is completely
simple. O

Theorem 4.3.10. Let p be a congruence on a regular T'-semigroup S. Then p is
strictly compatible if and only if ep is a completely simple sub I'-semigroup of S for
all e € E(S).

Proof. Assume that p is strictly compatible and e € E(S). Then there exists
o € T such that e € E,(S). If p* : S — S/p is the canonical homomorphism,
z € ep, f € Eg(R,;) and g € E,(L,), 8,7 € I then f = zb for some b € S,6 €.
Thus

ot = (zb)p* = (zp")d(bp*) = (zp)(bp) = (ep)d(bp) = (er")(bp")

and

ep* = ep = zp = xp" = (fBz)p* = (fp")B(zp").

So fp*Rep*. Similarly, we can show that ep*Lgp*.
By Proposition 4.1.3(3), S (gp*, fp*) = S (ep*, ep*) = {ep*}-
Next, we will show that S)(g, f)p* C SEP)(gp*, fo*).
Let a € S§"P(g, f)p*. Then a = pp* for some p € 5§ (g, f). Thus

av(gp*) = (pp*)1(90") = (P19)p" =pp* =@
and
gp*afp* = (gaf)p* = (gapaf)p* = gp*app’afp’ = gp*canfp’

which implies that a € S (gp*, fp*). Hence S 5P (g, flp* C 5§ (gp*, Fp*).
Clearly, () (g, f) € ep. Therefore, if h € SorP )(g, f) then

(zah)p = (zah)p* = (zp*)a(hp*) = zpaep” = epaep” = ep*aep” = ep” = ep.

It follows that zah € ep. Similarly, we can show that haz € ep.
Next, we will show that zah < = and haz < z. Since gLz, there exist ¢ € S, el
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such that g = cfz. Now,
zah = zahyg = zahyciz,
(zahyc)d(zahyc) = zahygahyc = zahyce,
hox = fBhaz = z6(bfhax)
and
(bBhaz)é(bBhaz) = bBha fBhaz = bBhax.

Then zah < = and har < z. Since p is strictly compatible, we get that T = zah

and haz = z. Thus

h = hyg = hycfz = hyc(zah)
and

h = fBh = z6b6h = (haz)d(bBh)

which implies that zahLh and hRhaz, so z € Hy. By Theorem 4.3.9, the natural
- partial order on it is the identity relation. By Theorem 4.3.8, ep is completely
simple;

Conversely, assume that ep is a completely simple sub I'-semigroup for all
e € E(S) and (z,y) € p,z < y. Since S is regular, there exist a,B € I' such
that ' € VA(y). Set f := yay' € Eg(S). Then fRy. By Remark 1, there exists
g € Eg(R;) such that ¢ < f and z = gBy. Thus g = gB8f = gByay’ = zay', which
implies that

gp = (zay')p = zpay'p = ypay'p = (yay')p = fp

It implies that (g, f) € p. By assumption, fp is completely simple. By Theorem
4.3.8, we have that f = g. Therefore

z=gPBy = fBy =yay'By=y.



70

Let S be a regular I'-semigroup. A non-empty subset X is called a directed
subset of S if for all z,y € X there exists z € X such that 2 <y and z < z.

Define the relation p on a regular I'-semigroup S as follows:
p:={(z,y) € SxS|z<zand z<yfor somez€ S}

Theorem 4.3.11. Let S be a reqular T'-semigroup. Then the following statements
are equivalent.

(1) For all e € E4(S),a €T, (€] is directed.

(2) p is an equivalence relation.

(3) p is congruence.

Proof. (1) = (2) Clearly, p is reflexive and anti-symmetric. Assume that (z,9),
(y,2) € p. Then there exist u;,up € S such that uy < z,u1 Ly and up SY,u2 < 2
Since S is regular, there exist o, 3 € I' such that y' € VB(y). Set f:=yBy €

E,(R,). By Remark 1, there exists e; € E, (R,,) such that e; < f and u; = ej0y.
Again, by Remark 1, there exists e; € E, «(Ry,) such that e; < f and uz = e2ay.
By assumption and e, < f,ez < f, there is g € (f] such that g < e; and g < e

Since e;Ruq, there are a € S,8 € T such that e; = u;6a. Thus
gyuy = ejagyu; = urdaagyur

where aagyu, € E5(S) and u;daag € E,(S) which implies that gyu; < uy. Since
< is transitive and gay = gyejay = gyu;, we obtain that goy < z. In a similar
way, it can be shown that gay < 2. Thus (z, z) € p. Therefore p is an equivalence
relation.

(2) = (3) We must be shown that p is compatible. Let z < yandc € 5,0 €
I'. Then there exist o, B € T such that ¥ € VP(y). Set f :=yay’ € Eg(S)N R,
and f' := /By € E4(S) N L,. By Remark 1, there exist e € Eg(Rs), €' € Eo(Ls)

such that e < f, T =efy and € < f', z = yae'. Then

¢ = flacaf =y Byac oy By = y Bray' By = y' BeByay' By = ' BePy.
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Since ¢ € S, there exists ¢’ € Vf;s(c) for some 7,8 € I'. Set g := ddc € E,(S) N Le.
Let h e S (g, f) and k € 5P (g,¢€). Then

y'BhOy =y Bhrygby = y' Bhyc'dcby
and
By = cygfy = cygbfBy = cygbhffBy = cygbyay Bhy.

Thus y'BhOyLcdy. It is clearly that y/Shfy < f' and ' Bhly € E4(S). Set h' :=
Y BhOy € E,(Legy) N (f'].

Consider
y' BkbeByoy' Bkbefy = y BkbeffBkOeSy
= y'BkbeSkOefSy
= y Bkbepy,
' Bkbefy = y' Bkygbz = ' Bkyc dchx
and

cdz = cygbkbeBy = cheBfBkbefy = chzay Bkbely.

So y/BkbeByLchzr. Tt is easy to show that y'Skfefy < f'. Set k' := y/BkbeBy €
Eo(Legz) N (f']. Thus €, k" € (f].
Now, every element of (f] is p-related to f’ and by assumption, we have

(¢, K), (W, k') € p. Hence (¢/] N (K] N (K] # 0. If I € (] N (R'] N (K] then
2 := chyal = chyae'al = chzal,

czal = chzalak’ = chralay Bkyd dcbz

and

cByal = chyalah’ = chyay' Bhyc by
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where czalay Bkyc, cOyalay'Bhyc € Es(S) and lay' Bkyc'dchz, loy' Bhryd dcly €
E4(S). Thus z < cfz and z < cfy. It implies that (cfz, cfy) € p. In a similar way,
it can be shown that (cfz,cfy) € p. Therefore p is a congruence.

(3) = (1) Assume that p is a congruence and o € I'. Let e € Eo(S)
and f,g € (e]. Then f < e and g < e. Since < is reflexive, we obtain that
(f,e),(e,g) € p. By assumption, (f,g) € p. It implies that z < f and z < g for
some z € S. By Proposition 3.2.4 and 3.2.5, 2 € E4(S). Thus z < f and z < g.

Since < is transitive, we have that z < e. O
Theorem 4.3.12. Let S be a regular T'-semigroup and
p={(z,y) €S xS|z<zand z <y for somez€ S}

Then the congruence p is the finest primitive congruence on S.

Proof. Let ¢ be a primitive congruence on S and (z,y) € p. Then there exists
2 € S such that z < = and z < y. By Theorem 4.3.4, z0* < zo* and z0* < yo*
where o* is the canonical homomorphism of S onto S/o. By Theorem 4.3.9, we

conclude that zo* = z0* = yo*, that is (z,y) € 0. Therefore p C 0. O





