CHAPTER III

THE NATURAL PARTIALLY ORDERED SET

3.1 Basic Properties of Regular I'-semigroups

We start elementary properties of idempotent elements of Green’s relations.

Proposition 3.1.1. Let S be a regular I'-semigroup, a,b € S,o,8,7 € T and
a' € VB(a),b' € VI(b). Then the following statements hold.

(1) aRb if and only if acd' Byl = byb' and byb'éaca’ = aaa’.

(2) aLb if and only if a’Bayb/db = a'Ba and b'dbaa’fa = b'6b.

(3) If aHb and b* = o' Bayb'Saca’ then b* € VE(b) and a'Hb*.

Proof. (1) Let aRb. By Lemma 2.2.3, we have a = b or a = bfl;s and b = abt for
some s,t € §,0,,0, € I'.

If a = b then b = aad’Ba and a = byb'db. Thus byt = aad'fayl =
aca'Bbyb and aca’ = byb'dbaa’ = byb'daca’.

If a = bf;s and b = ab,t then

acd = aaa'Bblsaad
= aaa'Bbyb'6b6:saa’
= aoa'Babtyb b6, saa’
= byb'6b0 saa’

= byb'daca
and
byb' = afatyb' Sbyb’ = aca’ Babatyb'Sbyb = aaa’Bbyb .

Conversely, if aaad’Sbyt = byb' and byb'daaa’ = aaa’ then aRb.
(2) The proof of this is similar to the proof of (1).
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(3) Suppose that aHb and b* = a'Bayb/daca’. By (1) and (2) we have that
b*Bbab* = (a'Bayb'daca’)Bbala’ Bavyb'daca’)

= d'Bayb Saca’ Bbyb Sbaa’ Bayb' daca’
= a'Bayb'6byb'dbod’ Bayb facd
= a/Bayb'Sbad Bayb'faca’
= d/Bayb'sbyb'dacad
= d/Baybdacad .
2 !

Thus b* € VA(b).

Next, we will show that a’Hb*. Since b* = d/Bayb'daca’, we get that

ad = daBacd

= ao/fbyt/ daad’

= a'Bbyb Sbyb'baca’

= a'Bbyb dbad Bayb Sacd’
a’Bbab*.

Il

Therefore o’ £b*.
ad = dfaad
= a'Bayb dbad’
= a'Bayb/ byt bad
= a'Bayb'daca’ Bbyb Sbaa’
= b*Bbaa.

Thus a'Rb*. Hence a'Hb*. ]

Note that, for a I'-semigroup S, a € S and « € I. we define the set Eq(R,)
and E,(L,) on S by

Eo(Ra) = Ea(S) N Rq
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and
Eo(Lg) := Ea(S) N L.

Lemma 3.1.2. Let S be a regular I'-semigroup and a € S. Then the following
statements hold.

(1) For all a € T,e € E,(R,) if and only if there exist vy € T',a’ € V.X(a)
such that e = ava'.

(2) For all @ € T, e € E,(L,) if and only if there exist v € T',a’ € V](a)
such that e = a'ya.

(3) For all a,B € T'ye € Ey(L,), f € Eg(R,) if and only if there exists

a' € VB(a) such that e = d'Ba and f = aaa’.

Proof. (1) Let o € T and e € E,(R,). By Lemma 2.2.3(2), we get e = aor e = ayz
for some z € S,y € I". This is obvious when a = e. Assume that e = ayz. By

Lemma 2.2.4(2), we have
a = eaa = ary(zae)oa
and
Toe = Taeae = zaayrae = (zae)aay(zae)

which implies that zae € V%(a). Set @’ := zae. We obtain that aya’ = (ayz)ae =
e. Conversely, assume that e = aya’ for some v € T',a’ € V*(a). Then e =
ayd'aaya’ = eae which implies that e € E,(S). Since a = ayd'aa = eaa and
e = aya' we have that e € R,. Hence e € E,(R,).

(2) The proof is similar to the proof of (1).

(3) Let o, 8 € T'ye € Eq(L,), f € Eg(R,) be such that eLa and fRa. By
Lemma 2.2.3, we have that e = a or there exist v € I,z € S such that e = zva
and f = a or there exist 8 € ',y € S such that f = afy.

Case 1. e = a = f. Then we set a’ := a.



15

Case 2. e = a and f = afy. Then we can set a’ := f. Thus e = a/fa and
f = afy = efy = eaaly = aof = aaa’.

Case 3. f = a and e = zya. Then this proof is similar to the second case
and set @’ :=e.
Case 4. e = zva and f = afy. Then we choose o' := efylf. By

Lemma 2.2.4, we have that

o Bacd = eOyBfBacedylf
= efyPaaedyff
= elyBabylf
= efyBf

:al

and
aad Ba = aaefyBfBa = afyBa = a.
Thus o’ € V#(a) and we obtain that
a'Ba = efyBfPa = zyabyBfBfa = zyfBfBa=zyffa=zY0a =€
and
aca = aaefylf = abyBf = f.

The converse part is obvious. g

In the proof of Lemma 3.1.2, we see that any two elements in L-class [R-

class, H-class] may be alike and the proof of them is obvious.

Definition 3.1.3. Let a and b be elements of a regular I'-semigroup S. Define

R, < Ry if and only if al'S U {a} C bI'S U {b},
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L, < Ly if and only if STaU {a} C STbU {b},

and
H, < Hy if and only if R, < Ry and L, < Ly.

Proposition 3.1.4. Let S be a regular I'-semigroup and a,b € S. Then H, < Hy
if and only if a € bI'STb.

Proof. Assume that H, < H,. Then L, < L, and R, < R;. Since a € S, we
have a = aacfa for some a,3 € T',c € S. If a = b, it is obvious. If a = zvb and
a = bdy for some 7,6 € T, z,y € S, we get that a = aacfa = bdyacBzyb € bI'STb.
Conversely, assume that a € bI'STb. Then a € bI'S which implies that aI'S C
bI'ST'S C bI'S. Thus al'SU{a} C bI'S C bI'SU{b}, so R, < Rs. Similarly, we can
show that L, < L. Therefore H, < Hp. O

Lemma 3.1.5. Let a,3 € T be such that e € EL(S),f € Eg(S). Ife,f are

D-related then there exist a € S and o’ € VP(a) such that e = a’Ba and f = aaa'.

Proof. Suppose that eDf. Then there exists a € S such that eLa and aRf. Since
eLa, we have e = a or e = zya and a = ace for some z € S,y € I'. Again, since
aRf, we have a = f or a = ffa and f = adk for some k € S,6 € I'.

Case 1. e =a = f. Set a’ := a. Clearly, a’ € V#(a) and e = d'fa, f = acd’.

Case 2. ¢ = a and a = ffBa, f = adk. Set a’ := f. Clearly, o’ € Vf(a) and
e =a'Ba, f = acd’.

Case 3. e = zya, a = ace and a = f. Set o’ := e. Clearly, @’ € V¥(a) and
e=4dfa, f =aad.

Case 4. e = z7va, a = ace and a = ffBa, f = adk. Set a' := edkBf. Then

a'Baca’ = eSkB(fBace)dkpBf
— e5kPabkpf

= edkBf

:(},’
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and
aad'fa = (ace)okB(fPa) = adkfa = ffa = a.
Thus o’ € VP(a). Also
d'Ba = edkBfBa = edkPa = zyadkBa = zyfPa = z7ya = e,
and
aca’ = acedkBf = abkBf = f.
Hence e = d/fa and f = aad’. O

Lemma 3.1.6. Let S be a I'-semigroup and a,b € S, € I'. Suppose that aab is
reqular and e € E,(S).

(1) If eLa and (eab)L(acb) then eab is regular.

(2) If eRb and (aae)R(aab) then ace is reqular.

Proof. Suppose that aab is regular. Let z € Vf(aab) for some v,4 € T
(1) By assumption, we have a = aae and (eab)L(aab). Then eab = cf(aab)

for some c € S,0 € I'. Thus
eab = chaab = cf(aab)yzd(aad) = (eab)y(zda)a(eabd).

Hence eab is regular.
(2) The proof of this is similar to the proof of (1) and we can show that
ace = (ace)a(byz)d(ace). O

3.2 Natural Partial Ordered Sets on Regular I'-semigroups

In this section, we construct a relation on a regular I'-semigroup S by

extending the partial order in [3].
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Let S be a I'-semigroup. We define relations on E(S) as follows :
For e, f € E(S), define

(1) e’ f & e=eaf if e € E,(S) for some a €T,
(2) ex"f © e=fPe if f € Eg(S) for some B €T,
B)exf & ex! fande<x" f

& e=eaf = ffe ife€ Ey(S), f € Ea(S) for some a,B €T

We will show that < is a partial order on E(S).

Let e € E(S). Then e € E,(S) for some o € I'. 1t is easy to show that <
is reflexive. Let e < f and f < e. If e, f € Eo(S) for some o € T' then e = f. If
e € Eo(S), f € Ep(S) for some o, 8 € T then e = eaf = ffe and f = ffe = eaf.
Thus e = f. Therefore < is anti-symmetric.

Next, we will show that < is transitive. Assume that e < f and f < g.

Case 1. e, f,g € E,(S) for some @ € T. It is easy to show that < is
transitive.

Case 2. e, f € E4(S),g € Eg(S) for some o, 5 € I'. Then e = eaf = foe
and f = fag = gBf. Thus e = eaf = eafag = eag and e = foe = aBfae = gfe
which implies that e < g.

Case 3. e € Eo(S), f,g € Ep(S) for some a,8 € I'. Then e = eaf = ffe
and f = fBg = gBf. Thus e = eaf = eaffg = efg, e = fBe = gBfBe = gfe
and efe = eaf(3ffe = eafBe = ece = e which implies that e < g.

Case 4. e € E,(S),f € Es(S),g9 € E,(S) for some o,B,y € I Then
e = eaf = fle and f = fBg = gvf. Thus e = eaf = eaffBg = eog and
e = ffBe = gyfBe = gye which implies that e < g. Hence < is a partial order on
E(S).

Let a and b be elements of a regular I-semigroup S.

Define

a<,bif R, <R, and a= fBbfor some f € Eg(R,),B€T.
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Next, we will show that <, is a partial order on a regular I'-semigroup S.

Let a € S. Then there exist z € S,0,8 € I such that a = aazfBa. Set
f := aozx, we have a := ffa and f € R,. Clearly, R, < R,. Thus a <, a.

Let a <, band b <,, a. Then R, < Ry and R, < R,. Thus R, = R, and
a = fBb for some f € Eg(R,). Since R, = R, and f € R, = R, we have that
b € Ry. By Lemma 2.2.4, we have f8b = b, so a = b.

Suppose that a <, b and b <, ¢. Then R, < R, , a = fBb for some
f € Es(R,) and R, < R, b = eac for some e € E4(Ry). Thus R, < R. and
a = fBb = fBeac. Claim that Ry < R, and eaf = f. Since R, = Ry and
R. = Ry, we have Ry = R, < R, = R.. Since f € R, and by Lemma 2.2.4, we get
that eaf = f which implies that

(fBe)a(fBe) = FBfPe = [Be,

so fBe is an a-idempotent element of S .
Next, we will show that fBe € R,. Since f € R,, we get that f = adz for
some 6 € ',z € S. Then ffBe = adzPe and a = ffeac. Thus fBe € R,. Hence

a <, c. Therefore <, is a partial order on S.

A partial order on a regular I-semigroup S is called natural partial order

on S. For convenience, we write a symbol < for the natural partial order <.

Next, we show that the natural partial order has an alternative characteri-

zation:

Theorem 3.2.1. Let a and b be elements of a regular T' -semz’groupv S. Then the
following statements are equivalent.
(1) a<hb
(2) a € bI'S and there exist o, B € I',a’ € V(a) such that a = aca’fb.
(3) There exist 8,7 €T, f € Eg(S),g € E,(S) such that a = fBb= byg.
(4) H, < Hy and for all a,0 € T, ¥ € V2(b),a = aab'da.
(5) H, < Hy and there exist a,6 € T, € VJ(b),a = aab'da.
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Proof. For the case a = b, we have the theorem. Now, we may assume that a # b.

(1) = (2) Let a < b. Then R, < R, and a = ffb for some f € Eg(R,),0 €
I'. By Lemma 3.1.2(1), there exist a € I',@’ € V(a) such that aca’ = f. Thus
a = aad'Bb. Since R, < Ry, we have al'S U {a} C bI'S U {b} which implies that
a€bl'sS.

(2) = (3) By assumption, a = byu for some y € I',u € S. Set f :=aaad’ €
E3(S) and g = uaa’Bb, so we have a = fBb. Thus byg = byuaad'Bb = acd'fb = a
with g € E,(S).

(3) = (4) By assumption, a € bI'S and aI'S C bI'S-which implies that
al'S U {a} C bI'S U {b}, so R, < Rp. Similarly, we can show that STa U {a} C
STb U {b}, so that L, < Ly. Thus H, < Hy. Let a,§ € T,V € Vi(b), we have
immediately that aab'da = a.

(4) = (5) This part is obvious.

(5) = (1) By assumption, R, < Ry and L, < Ly. Let o’ € VF(a) for
some (3,7 € I'. Set f := aya'Bacb’. Then a = aad/da = ayad'faab'éa = féa and
f € E;(S), which prove that f € Es(R,). Since L, < Ly, we get that a = u6b for
some u € 5,0 € I". Thus féb = aab'db = ubb = a. Therefore a < b. O

The next result give a relationship between the natural partial order and

the partial order on E(S).

Proposition 3.2.2. Let S be a regular T-semigroup and a,b € S. Then the fol-
lowing statements are equivalent.

(1) a<b.

(2) For every f € E(Ry), there ezist o € T',e € E4(R,) such thate < f and
a = eab.

(3) For every f' € E(Ly), there ezist o € '€’ € Eq(La) such that € < f'

and a = bae'.

Proof. (1) = (2) Let f € E(Rs). Then there exits 8 € I" such that f € Eg(S)NRy.
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By assumption, a = hvb for some h € E,(R,),y € I and R, < Ry which implies
that R, = R, < Ry = R;. By Lemma 2.2.4(2), we have h = fBh and hyf €
Es(S). Choose e := hyf. Then h = eSh which implies eRh, and so eRa. Thus
a = hyb = hyf(b=efb, and e = eff, e = hyf = fBe. Therefore e < f

(2) = (3) Let f' € E(Ly). Then f' € E(S) N Ly which implies that e
Es(S) for some f € . By Lemma 3.1.2(2), there exist v € L0 € Vj(b) such
that f = b'yb. Clearly, b8b' € E,(Rs). Set f := bBb'. By assumption, there exist
a €T, e € E,(R,) such that e < f and a = eab. Set e := b'yeab. Then

¢ =bya, a=eab= fyeab= bBb'veab="bpe,
and
¢ = blyeab = b'yeafyeab = b'yeablb'yeab = € (e’

which implies that ¢’ € L, and ¢ € Eg(S). Thus € € Ep(L,). Consider €' =
Y ybBb'yeab = f'Be' and € = Vyeabfb'vb = €'Bf'. Therefore e=<f.

(3) = (1) Let &' € V3(b) for some 7,6 € I. Then ¥/'6b € E,(Ly). By
assumption, there exist a € I',e’ € Eo(L,) such that ¢’ < b'6b and @ = bae'. Set
f := baeab'. Clearly, f € Es(S). Thus fob = bae’ = a. By Theorem 3.2.1, we

have a < b. 0O

The following remark follows immediately from the above propositions.

Remark 1. Let S be a regular I'-semigroup and a,b € S. Then the following
statements are equivalent.

(1) a<b.

(2) If f € Ep(R;) for some 3 € T then there exists e € Eg(R,) such that
e < f and a = efb.

(3) If f' € Eg(Ly) for some 8 € T then there exists ¢’ € Eg(La) such that

e < fand a = bpe'.
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Next, we study a relationship of natural partial order on the set of all

idempotent and regular I-semigroups.

Lemma 3.2.3. Let S be a regqular I'-semigroup. Then the following conditions

hold:
(1)gxoL =L
) X = Ro

o .
(2) X oR <

Proof. (1) Let (e, f) €< oL where e, f € E(S). Then there exists h € E(S) such
that e < h and hLf.

Case 1. e, f,h € E,(S) for some o € I'. Then e = eah = hae, h = haf
and f = fah which implies that e = eaf Thus fae = fo(fae) = (foe)af and
fae € E4(S), so fae < f. Since e = ea(fae), we have that eLfae. Thus
(e, f) € Lo .

Case 2. e,h € E,(S), f € Es(S) for some o, € I'. By Lemma 2.2.4(1),
h=hgf and f = fah. Then

e = eah = eahff = eff,
and

fae = faeff = fOfae,

which implies that fae < f. Since e = efae, we obtain that eL fae. Therefore
(e, f) € Lo .

Case 3. e, f € E4(S),h € Eg(S) for some o, 3 € I'. The proof is similar to
the proof of Case 2.

Case 4. e € E4(S), f € Eg(S) and h € E,(S) for some o, 3,y € I'. Then
e = eah = hye. By Lemma 2.2.4(1), we get that e = eff and fae = faeBf =
fBfae, which prove that fae < f. Since e = efffae, we have that eLfae. By
Cases (1)-(4), we get (e, f) € Lo < which implies that g oL C Lo <.

Similarly, we can show that Lo C< oL.

(2) The proof is similar to the proof of (1). O



23

Proposition 3.2.4. Let S be a reqular I'-semigroup. Then the following statements

hold.
(1) Ife € E(S),a € S and a < e then a € E(S).
(2) For any a,b € S,aRb and a < b implies a = b.
(3) Ifa< c,b< cand H, < Hy then a < b.

Proof. (1) Let e € E(S). Then e € E,(S) for some o € I'. By assumption, there
exist 3,7 € T, f € Es(S),g € E,(S) such that a = fBe = eyg. Thus

aca = fleaeyg = fPeyg = fBa= fBfBe = fle=a

which implies that a € E,(S).
(2) Let aRb. Then there exist z € S, € I' such that b = afiz. Since a < b,
we get that a = f8b for some B € T, f € Eg(S). Thus

a0 = fBb= fBabz = fBfBOT = fBbOT = abz = b.

(3) Assume that a < ¢,b < cand H, < Hp. Let ¢ € VP(c) for some
o, € I'. Then cac € Es(R.). By Remark 1, there exist e € Eg(R.), f € Eg(Rs)
such that e < cac, f < cac and a = efic,b = ffc. By assumption and Proposition

3.1.4, we have a € bI'STb. Then a = bdz6b for some 6,6 € I',z € S. Thus

(¢Bf)Bba(cBf) = ¢Beac'BfBbac'Bf
= dBfBfBeacBf
= dBfBeadBf
= dpf

and

ba(cBf)Bb = fBeac BfBb
= fBfBb

= fBfBc
=b
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from which get that ¢Bf € VA(b). Set b/ :=Bf.

Since e < cac’ and by Theorem 3.2.1, we obtain that

e = efcac
= aac
= bézObac
= fBcdzlbac
= fBbézbbac
= fBaad
= fBefcac
= [Pe.

Therefore aab’'Ba = ef ffefc = efic = a.
Again, by Theorem 3.2.1, we have that a < b. g

Note that by Proposition 3.2.4(1), if e € E,(S) and a < e then a € E,(S).

Proposition 3.2.5. Let e be an a-idempotent and f be a B-idempotent of a regular
[-semigroup S. Then the following statements hold.

(1) Ife X f then e € Eg(S).

(2) VE(fBe) # 0.

Proof. (1) This follows directly from the definition of the relation <.

(2) Since ffe is a regular element, we can choose z € S,v,6 € I such that
fBe = (fBe)yzd(fBe). It follows that

(eyzd fBevzd f)B(fBe)alevzd fBevzdf) = eyzdfBeyzdfBeywdfBeyzdf

= eyzd fleyxdf

~and

(fBe)a(eyxd fBeyxsf)B(fBe) = fBe
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which proves that eyzdfGeyzdf € VO(fBe). Therefore VZ(ffBe) # 0. O

A regular I-semigroup S is called an L-unipotent [R-unipotent] if every
L-class [R-class] of S contains only one a-idempotent for all o € I'.

Proposition 3.2.6. Let S be a regular T'-semigroup. If S is an L-unipotent then

eafBe = fBe for all e € Ey(S), f € Eg(S) for some o, €T.

Proof. Let e € E,(S) and f € Ep(S) for some a,3 € I'. By Proposition 3.2.5(2),
we can choose z € VA(ffBe). Then

(zBfBe)a(zBfPBe) = zBfLe
and
(eazBfBe)a(eassffe) = eazfffe,

so z3fBe, eaxffBe € E,(S) and it follows immediately that (x4 fGe)L(eazBfBe).
The hypothesis implies that

zffBe = eazfPe. (3.1)

Now, z = eazffBeax = eax. 1t follows that z = z(ffz, that is zBf € E(S).
Thus '

(fBeczBf)B(fBeazff) = fBeazBf,

which implies that fBeazxBf € Eg(S) and (z8f)L(fBeczff).
Again, the hypothesis implies that z8f = fBeaz(f. Then

zpfBe = fBe. (3.2)

By (3.1) and (3.2), we get that ffe = eaxBfle.
Therefore eaffBe = eaxBffe = ffe. O

Proposition 3.2.7. Let S be a regular I'-semigroup. If e and f are a-idempotent

with eafae = fae then S is an L-unipotent.
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Proof. Let o € T and e, f € Eo(S) be such that eLf. By Lemma 2.2.4(1), we get
that e = eaf and f = fae. By the hypothesis we get that

e=caf =eafae= fae=f.
O

Remark 2. By Proposition 3.2.6 and 3.2.7, we get that S is an L-unipotent if

and only if eafae = fae for some e, f € E,(S),a €T.

Proposition 3.2.8. Let S be a regular I'-semigroup and e € E(S). If a € eI'STe
then the following statements hold.

(1) There ezist 7,8 € T, a’ € V(a) N el'STe such that a'da < e.

(2) There exist 7,6 € T',a” € V2(a) N el'STe such that aya” < e.

(3) If &', a” € V(a) Nel'STe then a'd6aLa’"da and aya'Raya”.

Proof. Let e € E,(S) for some a € T and let a € e'ST'e. Then there exist
8,7 €T,z € S such that a = efze. Since a is a regular element of .S, we get that
a = adyba for some y € S,6,0 € I.
(1) Set @' := edybadybe. Then
daead = edybadybeaefryeaedybadybe

= edybadybadyfadyle

= edybadybe

= a,
and

acd aa = efryeaedybadybeaefzye = adybadyba = a

which then implies that o’ € V2(a) Nel'STe. Then a’'aa < e.
(2) The proof is similar to the proof of (1).
(3) Let o’,a” € V3(a) Nel'STe. Then

a'8a = d'daya’da , a"da = a"davyd'da
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and
aya' = aya"’Saya’ , aya" = aya'Saya”.
Therefore a’daLa”da and aya'Raya”. O

Theorem 3.2.9. The partial order on E(S) of a reqular semigroup S is the re-

striction of the natural partial order on S to E(S).

Proof. Let e, f € E(S) be such that e < f. Then there exists § € ' such that
f € Es(S). By the proof of Proposition 3.2.4(1), we get that e € Ep(S). By
Theorem 3.2.1, there exist g € E,(S),h € E5(S), 7,6 € I'such that e = fyg = hdf.
Thus e = fB3fvg = fBe and e = hdf3f = eBf. Therefore e < f. The converse is

obvious. O

3.3 Primitive Congruences on Regular I'-semigroups

In this section, we find a relation on a regular I-semigroup S and show

that this relation is a primitive congruence on S.

A regular I'-semigroup S satisfies £-majorization [R-majorization)] if for

any a,b,c € S,a < ¢,b < ¢ and aLb [aRb] imply that a = b.

Theorem 3.3.1. Let S be a regqular T'-semigroup. Then the following statements
are equivalent.

(1) < is right compatible.

(2) S satisfies L-majorization for idempotents.

(3) S satisfies L-majorization.

Proof. (1) = (2) Let e, f, g € E(S) be such that f < e,g < e and fLg. Then there
exists @ € T such that e € E,(S). By Proposition 3.2.5, we have that f,g € E,(S).

Thus f = fag and g = gaf. By hypothesis, we get that

f=fag<eag=gand g=gaf Seaf =f.
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Therefore f = g.

(2) = (3) Let a,b,c € S be such that a < ¢, b < c and alb. Then
a = eac = cff for some e € E,(S), f € E5(S),a,8 € . Let ¢ € V(c) for some
v,0 € I'. It follows that

d'da = (déc)y(d'da),
d'da = ddeacyddc = (dda)y(c'dc)
and
dda = déeaclf = (cd'da)y(c'da)

which proves that ¢'da < d/éc. Thus a = cycddcBf = cycd'da, we have that aLc da.
Similarly, since b < ¢ we have b = ejayc = cfBifi for some e; € Ey (S), fL €

Eg,(S),04,01 € T'. Then
c'db = (d'6c)y('b),
c'db = d'bejaicydde = ('6b)y(d'dc)
and
c'db = c'deyancBy fi = (c'b)y(c'6b)

which proves that ¢db < céc, b = cyddb and bLc'6b with ¢'6b € E,(S). This implies
that ¢/6aLc/6b. By the hypothesis, we obtain ¢’da = ¢/6b. Therefore a = cydéa =
cycdd6b = b.

(3) = (1) Let a < b. By Theorem 3.2.1, a = eab = b3 f for some e €
E.(S),f € Es(S),a,8 € T. Also, let c € 5,6 € " and z € V(abc) for some
~,6 € I'. Then

b(cyzda) = (bcyzde)ab,

(eyzda)f(cyzda) = cyzda,
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and
(bBcyzbe)a(bbcyzde) = bcyzdalbcyxde = bcyzde
which proves that blcyzda < b. Again, we have that
abeyzda = bB(fOcyzda) = (abeyzde)ab,
(flcyzéa)B(flcyzda) = fOcyzda
and
(abcyzde)a(abeyzde) = abeyzde

which give afcyzda < b. It is easy to show that (bfcyzda)L(abcyzda). By the
hypothesis, we get that bfcyzda = afcyzda. Since z € Vf(aﬁc), we get that

abfc = afcyzdabc = bfcyxdabe and afc = eablc

with zdafc € E,(S). We conclude that afc < blc. O

Dually, we get the following statements.

Corollary 3.3.2. Let S be a regular I'-semigroup. Then the following statements
are equivalent.

(1) < is left compatible.

(2) S satisfies R-majorization for idempotents.

(3) S satisfies R-majorization.

Proof. The proof is similar to that of Theorem 3.3.1. O

Theorem 3.3.3. Let S be a regular I'-semigroup. Then the following statements
are equivalent.

(1) < is compatible.

(2) S satisfies L- and R-magorization for idempotents.

(3) S satisfies L- and R-majorization.
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Proof. 1t follows from Theorem 3.3.1 and Corollary 3.3.2. O

Theorem 3.3.4. Let S be a regular I'-semigroup and the natural partial order on

S be compatible with multiplication. Then
w:={(a,b) e SxS|c<aandc<b for somece S}

is a congruence on S.

Proof. Note that w is reflexive and symmetric. Next, we will show that w is tran-
sitive. Let (a,b),(b,c) € w. Then there exist z,y € S such that ¢ < a,z < b
and y < b,y < c. It implies that z = fBb and y = bae for some f € Eg(S),e €
Eq(S),B,a € I'. Then

zae = ffBbae = ffBy.

Set 2z := zae = fPy. By hypothesis and z < b we get that z = zae < bae =y and
y < b implies that 2 = fBy < fBb=1z,80 2 < z < a and z < y < ¢. It implies
that (a,c) € w. By hypothesis, w is compatible.

Therefore w is a congruence on S. O

A non-zero element of a regular I'-semigroup S is primitive if it is minimal
among the non-zero elements of S. A regular I'-semigroup S is said to be primitive
if each of its non-zero idempotents is primitive. A congruence p on a regular I'-
semigroup S is called primitive if S/p is primitive. Clearly, if S is trivially ordered

then S is primitive.

A mapping ¢ : X — Y of a quasi-ordered set (X, <x) into a quasi-ordered
set (Y, <y) reflecting (3] if for all y,4 € X¢ such that ¥’ <y y and z € X with

z¢ = y there is some z’ € X such that 2’ <x z and 2'¢ = ¢/'.

Theorem 3.3.5. Let S be a reqular I'-semigroup such that w is a congruence and
the natural homomorphism for w is reflecting the natural partial order. Then w is

the least primitive congruence on S.
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Proof. Define the natural homomorphism ¢ : S — S/w by sp = sw for all s € S.
We will show that S/w is trivially ordered. Let y,z € S/w be such that y < z.
Since ¢ is reflecting the natural partial order, there exist s,t € S such that s < ¢

and sy = y,tp = z. Since s < t, we now get that swt. Thus

Therefore S/w is trivially ordered.

Let p be any congruence on S/w such that (S/p,<) is trivially ordered
and let 1 denotes the natural homomorphism corresponding p. Suppose that swt.
There exists w € S such that w < s and w < ¢, giving wy < s¢ and wy <
in S/p. Since S/p is trivially ordered, we obtain that sy = wyp = {3, so sp = tp.
Thus spt immediately implies that w C p.

Therefore w is the least primitive congruence on S. a





