## CHAPTER II

## **PRELIMINARIES**

## 2.1 Definitions and Examples

In this section, we introduce precise definitions, notations, and examples which will be used in this research.

**Definition 2.1.1.** [17] Let S and  $\Gamma$  be non-empty sets. If there exists a mapping  $S \times \Gamma \times S \to S$ , written  $(a, \alpha, b) = a\alpha b$  for all  $a, b \in S$  and  $\alpha \in \Gamma$ , the set S is called a  $\Gamma$ -semigroup if S satisfies the identity  $(a\alpha b)\beta c = a\alpha(b\beta c)$  for all  $a, b, c \in S$  and  $\alpha, \beta \in \Gamma$ .

From associativity relation, we denote  $a\alpha b\beta c$  for  $(a\alpha b)\beta c$ . Then

$$a\alpha b\beta c := (a\alpha b)\beta c = a\alpha (b\beta c).$$

If S is a  $\Gamma$ -semigroup and  $\Lambda \subseteq \Gamma$  then S is a  $\Lambda$ -semigroup and in case of  $\Lambda = \{\gamma\}$  then S is called a  $\gamma$ -semigroup.

By Definition 2.1.1, it is obviously that if S is a  $\Gamma$ -semigroup then S is a  $\gamma$ -semigroup for all  $\gamma \in \Gamma$ .

The following examples are  $\Gamma$ -semigroups.

**Example 1.** Let S be the set of all  $m \times n$  matrices and  $\Gamma$  be the set of all  $n \times m$  matrices over a field then for  $A, B \in S$  the product AB can not be defined if  $m \neq n$  i.e., S is not a semigroup under the usual matrix multiplication. But for all  $A, B, C \in S$  and  $\alpha, \beta \in \Gamma$  we have  $A\alpha B \in S$  and since matrix multiplication is associative, we have  $(A\alpha B)\beta C = A\alpha(B\beta C)$ . Hence S is a  $\Gamma$ -semigroup.

**Example 2.** Let X and Y be non-empty sets. If S is the set of all functions from X to Y and  $\Gamma$  is the set of all functions from Y to X then for  $f,g\in S$  the composition  $f\circ g$  can not be defined if  $X\neq Y$ . Thus S is not a semigroup under

the usual composite function but S is a  $\Gamma$ -semigroup i.e. for all  $f, g, h \in S, \alpha, \beta \in \Gamma$  we have  $f \circ \alpha \circ g \in S$  and  $(f \circ \alpha \circ g) \circ \beta \circ h = f \circ \alpha \circ (g \circ \beta \circ h)$ .

**Example 3.** Let S be the set of all integers of the form 7n + 2 and  $\Gamma$  be the set of all integers of the form 7n + 5 where  $n \in \mathbb{Z}$ . Define

$$a\gamma b := a + \gamma + b$$

for all  $a, b \in S, \gamma \in \Gamma$ . We will show that S is a  $\Gamma$ -semigroup. Let  $a, b \in S$  and  $\gamma \in \Gamma$ . Then we set  $a := 7n_1 + 2, b := 7n_2 + 2$  and  $\gamma := 7n_3 + 5$  for some  $n_1, n_2, n_3 \in \mathbb{Z}$ . Consider

$$a\gamma b = (7n_1 + 2) + (7n_3 + 5) + (7n_2 + 2) = 7(n_1 + n_2 + n_3 + 1) + 2.$$

Thus  $a\gamma b \in S$ , so S is a  $\Gamma$ -semigroup.

**Definition 2.1.2.** [24] Let S be a  $\Gamma$ -semigroup. A non-empty set H of S is said to be a sub  $\Gamma$ -semigroup of S if  $H\Gamma H \subseteq H$ .

For  $\gamma \in \Gamma$  if we defined  $a \circ b = a\gamma b$  for all  $a, b \in S$  then S becomes a semigroup and denotes this semigroup by  $S_{\gamma}$ .

Let  $\gamma \in \Gamma$ , H is called a sub  $\gamma$ -semigroup of S if  $H\gamma H \subseteq H$ . Then H is called a sub  $\gamma$ -semigroup of S if H is a sub  $\gamma$ -semigroup of  $S_{\gamma}$ .

**Example 4.** Let S = [0,1] and  $\Gamma := \{\frac{1}{n} \mid n \text{ is a positive integer}\}$ . Then S is a  $\Gamma$ -semigroup under usual multiplication. Let  $M := [0,\frac{1}{k}]$  for all  $k \in \mathbb{N}$ . We have that M is a non-empty subset of S and  $a\gamma b \in M$  for all  $a,b \in M$  and  $\gamma \in \Gamma$ . Thus M is a sub  $\Gamma$ -semigroup of S.

**Definition 2.1.3.** [24] Let S be a  $\Gamma$ -semigroup. An element  $a \in S$  is regular if  $a = a\alpha x\beta a$  for some  $x \in S$  and for some  $\alpha, \beta \in \Gamma$ .

S is a regular  $\Gamma$ -semigroup if for all elements of S are regular.

**Example 5.** Let  $\mathbb{Q}^-$  be the set of all negative rational numbers and  $\Gamma := \{-\frac{1}{p} \mid p \text{ is prime}\}$ . Then  $\mathbb{Q}^-$  is a  $\Gamma$ -semigroup under usual product of rational numbers.

Next, we will show that  $\mathbb{Q}^-$  is a regular  $\Gamma$ -semigroup.

Let  $a:=-\frac{m}{n}\in\mathbb{Q}^-$  for  $m,n\in\mathbb{N}$ . Then we can write  $m=p_1p_2\cdots p_k$  where  $p_i$  are prime for all i=1,2,...,k and  $k\in\mathbb{N}$ . Choose  $\alpha:=-\frac{1}{p_1}$  and  $\beta:=-\frac{1}{p_k}$  are elements in  $\Gamma$ .

Taking 
$$x := -\frac{n}{p_2 p_3 \cdots p_{k-1}} \in \mathbb{Q}^-$$
, we have that 
$$a\alpha x \beta a = \left(-\frac{p_1 p_2 \cdots p_k}{n}\right) \left(-\frac{1}{p_1}\right) \left(-\frac{n}{p_2 p_3 \cdots p_{k-1}}\right) \left(-\frac{1}{p_k}\right) \left(-\frac{p_1 p_2 \cdots p_k}{n}\right)$$
$$= -\frac{p_1 p_2 \cdots p_k}{n}$$

Thus a is regular which implies that  $\mathbb{Q}^-$  is a regular  $\Gamma$ -semigroup.

**Definition 2.1.4.** [25] Let S be a  $\Gamma$ -semigroup and  $a \in S$ . Let  $x \in S$  and  $\alpha, \beta \in \Gamma$ . An element x is said to be an  $(\alpha, \beta)$ -inverse of a if  $a = a\alpha x\beta a$  and  $x = x\beta a\alpha x$ .

 $V_{\alpha}^{\beta}(a)$  denotes the set of all  $(\alpha, \beta)$ -inverses of a, i.e.

$$V_{\alpha}^{\beta}(a) := \{ x \in S \mid x = x\beta a\alpha x, a = a\alpha x\beta a \}.$$

**Example 6.** By Example 5, we have

$$x\beta a\alpha x = \left(-\frac{n}{p_2 p_3 \cdots p_{k-1}}\right) \left(-\frac{1}{p_k}\right) \left(-\frac{p_1 p_2 \cdots p_k}{n}\right) \left(-\frac{1}{p_1}\right) \left(-\frac{n}{p_2 p_3 \cdots p_{k-1}}\right)$$

$$= -\frac{n}{p_2 p_3 \cdots p_{k-1}}$$

$$= x.$$

Thus 
$$-\frac{n}{p_2 p_3 \cdots p_{k-1}} \in V_{(-\frac{1}{p_1})}^{(-\frac{1}{p_k})}(a)$$
.

**Definition 2.1.5.** [19] A regular Γ-semigroup S is called an *inverse* Γ-semigroup if for all  $a \in S, \alpha, \beta \in \Gamma$ ,  $V_{\alpha}^{\beta}(a) \neq \emptyset$  implies  $|V_{\alpha}^{\beta}(a)| = 1$ .

That is, every element a of S has a unique  $(\alpha, \beta)$ -inverse.

**Definition 2.1.6.** [16] Let S be a  $\Gamma$ -semigroup. An element  $e \in S$  is said to be an  $\alpha$ -idempotent of S, where  $\alpha \in \Gamma$  if  $e\alpha e = e$ . We denote the set of all  $\alpha$ -idempotents of S as follows:  $E_{\alpha}(S) := \{e \in S \mid e\alpha e = e\}$ .

Let  $E(S) := \bigcup_{\alpha \in \Gamma} E_{\alpha}(S)$ . Then we called E(S) the set of all idempotents of S. If x is an idempotent of S, we mean  $x \in E(S)$ .

**Definition 2.1.7.** A regular Γ-semigroup S with the set of all idempotents E(S) will be called a *locally inverse* Γ-semigroup if  $e\Gamma S\Gamma e$  is an inverse Γ-semigroup for every  $e \in E(S)$ .

**Definition 2.1.8.** [26] The Green's equivalence relation  $\mathcal{L}, \mathcal{R}, \mathcal{H}$  and  $\mathcal{D}$  on a  $\Gamma$ -semigroup S are defined by the following rules :

- (1)  $a\mathcal{L}b$  if and only if  $S\Gamma a \cup \{a\} = S\Gamma b \cup \{b\}$ .
- (2)  $a\mathcal{R}b$  if and only if  $a\Gamma S \cup \{a\} = b\Gamma S \cup \{b\}$ .
- (3)  $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ .
- (4)  $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$ .

The  $\mathcal{L}$ -class (resp.  $\mathcal{R}$ -class,  $\mathcal{H}$ -class,  $\mathcal{D}$ -class) containing the element a will be written  $L_a$  (resp.  $R_a$ ,  $H_a$ ,  $D_a$ ).

## 2.2 Basic Properties

In this section certain basic results are presented. Reference will be made to these throughout the thesis.

**Proposition 2.2.1.** [25] S is a regular  $\Gamma$ -semigroup if and only if  $V_{\alpha}^{\beta}(a) \neq \emptyset$  for all  $a \in S$ , for some  $\alpha, \beta \in \Gamma$ .

**Theorem 2.2.2.** [21] Let S be a  $\Gamma$ -semigroup, S is an inverse  $\Gamma$ -semigroup if and only if

- (1) S is regular,
- (2) if  $e, f \in E_{\alpha}(S)$  then  $e\alpha f = f\alpha e$  where  $\alpha \in \Gamma$ .

**Lemma 2.2.3.** [26] Let S be a  $\Gamma$ -semigroup. Then for all  $a, b \in S$ , we have

(1)  $a\mathcal{L}b$  if and only if a = b or there exist  $x, y \in S$  and  $\alpha, \beta \in \Gamma$  such that  $a = x\alpha b$  and  $b = y\beta a$ .

- (2)  $a\mathcal{R}b$  if and only if a = b or there exist  $x, y \in S$  and  $\alpha, \beta \in \Gamma$  such that  $a = b\alpha x$  and  $b = a\beta y$ .
  - (3)  $a\mathcal{H}b$  if and only if  $a\mathcal{L}b$  and  $a\mathcal{R}b$ .
  - (4)  $a\mathcal{D}b$  if and only if there exists  $c \in S$  such that  $a\mathcal{L}c$  and  $c\mathcal{R}b$ .

**Lemma 2.2.4.** [26] Let S be a  $\Gamma$ -semigroup,  $\alpha \in \Gamma$  and e be an  $\alpha$ -idempotent. Then

- (1)  $a\alpha e = a$  for all  $a \in L_e$ .
- (2)  $e\alpha a = a$  for all  $a \in R_e$ .
- (3)  $a\alpha e = a = e\alpha a$  for all  $a \in H_e$ .

**Proposition 2.2.5.** Let S be a regular  $\Gamma$ -semigroup. Then for all  $a \in S$ , there exist  $\alpha, \beta \in \Gamma$  and  $a' \in V_{\alpha}^{\beta}(a)$  such that  $a'\beta a \in E_{\alpha}(S)$  and  $a\alpha a' \in E_{\beta}(S)$ .

For a  $\Gamma$ -semigroup S and  $\alpha \in \Gamma$ , we define a new operation  $\circ$  on S by

 $a \circ b := a\alpha b$  for all  $a, b \in S$ .

Then  $(S, \circ)$  is a semigroup. Such semigroup is denoted by  $S_{\alpha}$ . A nonempty set T is called a *subgroup* [27] of  $S_{\alpha}$  if  $(T, \circ)$  is a group.

**Definition 2.2.6.** [21] A  $\Gamma$ - semigroup S is called *left (right ) simple* if it has no proper left (right ) ideals. S is said to be *simple* if it has no proper ideals.

**Theorem 2.2.7.** [21] Let S be a  $\Gamma$ - semigroup.  $S_{\gamma}$  is a group for some  $\gamma \in \Gamma$  if and only if S is both left simple and right simple.

**Definition 2.2.8.** Let S be a  $\Gamma$ -semigroup without zero. We shall say that S is completely simple if S is simple and if it contains a primitive idempotent.

Corollary 2.2.9. [24] Let S be a  $\Gamma$ -semigroup. If  $S_{\alpha}$  is a group for some  $\alpha \in \Gamma$  then  $S_{\alpha}$  is a group for all  $\alpha \in \Gamma$ .

**Definition 2.2.10.** [28] Let S be a  $\Gamma$ -semigroup and  $a \in S$ . If  $a = a\alpha x\beta a$  and  $a\alpha x = x\beta a$  for some  $x \in S$ ,  $\alpha, \beta \in \Gamma$  then an element a is called an  $(\alpha, \beta)$ -completely

regular element of S.

A  $\Gamma$ -semigroup S will be called *completely regular* if every element of S is an  $(\alpha, \beta)$ -completely regular element for some  $\alpha, \beta \in \Gamma$ .

Corollary 2.2.11. [28] Let S be a  $\Gamma$ -semigroup and  $e \in E(S)$ . Then  $H_e$  is a subgroup of  $S_{\gamma}$  for some  $\gamma \in \Gamma$ .

**Theorem 2.2.12.** [28] Let S be a  $\Gamma$ -semigroup. Then the following statements are equivalent.

- (1) S is completely regular.
- (2) Each element of S lies in a subgroup of  $S_{\gamma}$  for some  $\gamma \in \Gamma$ .
- (3) Every H-class is a subgroup of  $S_{\gamma}$  for some  $\gamma \in \Gamma$ .

**Definition 2.2.13.** [3] Let X be a partially ordered set. An equivalence relation  $\rho$  on X is called *strictly compatible with*  $\leq$  if no two distinct  $\rho$ -related elements are comparable with respect to  $\leq$ .