EXECUTIVE SUMMARY

Executive Summary

ได้ผลงานวิจัยซึ่งได้รับการตอบรับตีพิมพ์ในวารสารระดับนานาชาติ "Journal of Applied Mathematics" (Impact Factor 2010= 0.630) จำนวน 1 ผลงาน คือ

J. Suwannawit and N. Petrot, Existence and stability of Iterative algorithm for system of random set-valued variational inclusion involving (A, m, η) -generalized monotone operators, Journal of Applied Mathematics, (accepted).

ซึ่งมีรายละเอียดงานวิจัยโดยสรุป ดังนี้

Let \mathcal{H} be a real Hilbert space equipped with norm $\|\cdot\|$ and inner product $\langle\cdot,\cdot\rangle$ and let $2^{\mathcal{H}}$ and $CB(\mathcal{H})$ denote for the family of all the nonempty subsets of \mathcal{H} and the family of all the nonempty closed bounded subsets of \mathcal{H} , respectively. As usual, we will define $D:CB(\mathcal{H})\times CB(\mathcal{H})\to [0,\infty)$, the Hausdorff metric on $CB(\mathcal{H})$, by

$$D(A,B) = \max \left\{ \sup_{x \in A} \inf_{y \in B} \|x - y\|, \sup_{y \in B} \inf_{x \in A} \|x - y\| \right\}, \text{ for all } A, B \in CB(\mathcal{H}).$$

Let (Ω, Σ, μ) be a complete σ - finite measure space and $\mathcal{B}(\mathcal{H})$ be the class of Borel σ -fields in \mathcal{H} . A mapping $x:\Omega\to\mathcal{H}$ is said to be measurable if $\{t\in\Omega:x(t)\in B\}\in\Sigma$, for all $B\in\mathcal{B}(\mathcal{H})$. We will denote by $\mathcal{M}_{\mathcal{H}}$ for a set of all measurable mappings on \mathcal{H} , that is, $\mathcal{M}_{\mathcal{H}}=\{x:\Omega\to\mathcal{H}|x\text{ is a measurable mapping}\}$.

Let \mathcal{H}_1 and \mathcal{H}_2 be two real Hilbert spaces. Let $F:\Omega\times\mathcal{H}_1\times\mathcal{H}_2\to\mathcal{H}_1$ and $G:\Omega\times\mathcal{H}_1\times\mathcal{H}_2\to\mathcal{H}_2$ be single-valued mappings. Let $U:\Omega\times\mathcal{H}_1\to CB(\mathcal{H}_1), V:\Omega\times\mathcal{H}_2\to CB(\mathcal{H}_2)$ and $M_i:\Omega\times\mathcal{H}_i\to 2^{\mathcal{H}_i}$ be set-valued mappings, for i=1,2. In this paper, we will consider the following problem: find measurable mappings $a,u:\Omega\to\mathcal{H}_1$ and $b,v:\Omega\to\mathcal{H}_2$ such that $u(t)\in U(t,a(t)),v(t)\in V(t,b(t))$ and

$$\begin{cases}
0 \in F(t, a(t), v(t)) + M_1(t, a(t)), \\
0 \in G(t, u(t), b(t)) + M_2(t, b(t)), & \forall t \in \Omega.
\end{cases}$$
(1)

The problem of type (1) is called the system of random set-valued variational inclusion problem. If $a, u: \Omega \to \mathcal{H}_1$ and $b, v: \Omega \to \mathcal{H}_2$ are solutions of problem (1), we will denote by $(a, u, b, v) \in SRSVI_{(M_1, M_2)}(F, G, U, V)$. Notice that, if $U: \Omega \times \mathcal{H}_1 \to \mathcal{H}_1$ and $V: \Omega \times \mathcal{H}_2 \to \mathcal{H}_2$ are two single-valued mappings

then the problem (1) reduces to the following problem: find $a:\Omega\to\mathcal{H}_1$ and $b:\Omega\to\mathcal{H}_2$ such that

$$\begin{cases}
0 \in F(t, a(t), V(t, b(t))) + M_1(t, a(t)), \\
0 \in G(t, U(t, a(t)), b(t)) + M_2(t, b(t)), \quad \forall t \in \Omega.
\end{cases}$$
(2)

In this case, we will denote by $(a,b) \in SRSI_{(M_1,M_2)}(F,G,U,V)$.

We provide the following lemma, and use it for proving our main result.

Lemma A: Let \mathcal{H}_1 and \mathcal{H}_2 be two real Hilbert spaces. Let $F:\Omega\times\mathcal{H}_1\times\mathcal{H}_2\to\mathcal{H}_1$ and $G:\Omega\times\mathcal{H}_1\times\mathcal{H}_2\to\mathcal{H}_2$ be single-valued mappings. Let $U:\Omega\times\mathcal{H}_1\to CB(\mathcal{H}_1), V:\Omega\times\mathcal{H}_2\to CB(\mathcal{H}_2)$ and $M_i:\Omega\times\mathcal{H}_i\to 2^{\mathcal{H}_i}$ be a set-valued mappings for i=1,2. Assume that M_i are random (A_i,m_i,η_i) -monotone mappings, and $A_i:\Omega\times\mathcal{H}_i\to\mathcal{H}_i$ be random (r_i,η_i) - strongly monotone mappings, for i=1,2. Then we have the following statements:

(i) if $(a, u, b, v) \in SRSVI_{(M_1, M_2)}(F, G, U, V)$ then for any measurable functions $\rho_1, \rho_2: \Omega \to (0, \infty)$ we have

$$\begin{cases} a(t) = J_{\rho_1(t), A_{1_t}}^{\eta_{1_t}, M_{1_t}} \left[A_1(t, a(t)) - \rho_1(t) F(t, a(t), v(t)) \right], \\ b(t) = J_{\rho_2(t), A_{2_t}}^{\eta_{2_t}, M_{2_t}} \left[A_2(t, b(t)) - \rho_2(t) G(t, u(t), b(t)) \right], \text{ for all } t \in \Omega. \end{cases}$$

(ii) if there exist two measurable functions $\rho_1, \rho_2: \Omega \to (0, \infty)$ such that

$$\begin{cases} a(t) = J_{\rho_1(t), A_{1_t}}^{\eta_{1_t}, M_{1_t}} \left[A_1(t, a(t)) - \rho_1(t) F(t, a(t), v(t)) \right], \\ b(t) = J_{\rho_2(t), A_{2_t}}^{\eta_{2_t}, M_{2_t}} \left[A_2(t, b(t)) - \rho_2(t) G(t, u(t), b(t)) \right], \end{cases}$$

for all $t \in \Omega$, then $(a, u, b, v) \in SRSVI_{(M_1, M_2)}(F, G, U, V)$.

However, due to Lemma A, we see that the following assumptions should be needed.

Assumption (A):

- $\mathcal{A}(a)$ \mathcal{H}_1 and \mathcal{H}_2 are separable real Hilbert spaces.
- $\mathcal{A}(b)$ $\eta_i: \Omega \times \mathcal{H}_i \times \mathcal{H}_i \to \mathcal{H}_i$ are random τ_i -Lipschitz continuous single-valued mappings, for i = 1, 2.
- $\mathcal{A}(c)$ $A_i: \Omega \times \mathcal{H}_i \to \mathcal{H}_i$ are random (r_i, η_i) -strongly monotone and random β_i -Lipschitz continuous single-valued mappings, for i = 1, 2.

- $\mathcal{A}(d)$ $M_i: \Omega \times \mathcal{H}_i \to 2^{\mathcal{H}_i}$ are random (A_i, m_i, η_i) -monotone set-valued mappings, for i = 1, 2.
- $\mathcal{A}(e)$ $U: \Omega \times \mathcal{H}_1 \to CB(\mathcal{H}_1)$ is a random ϕ_1 -D-Lipschitz continuous set-valued mapping and $V: \Omega \times \mathcal{H}_2 \to CB(\mathcal{H}_2)$ is a random ϕ_2 -D-Lipschitz continuous set-valued mapping.
- $\mathcal{A}(f)$ $F: \Omega \times \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{H}_1$ is a random single-valued mapping which has the following conditions:
 - (i) F is a random (c_1, μ_1) relaxed cocoercive with respect to A_1 in the third argument and a random α_1 Lipschitz continuous in the third argument,
 - (ii) F is a random ζ_1 Lipschitz continuous in the second argument.
- $\mathcal{A}(g)$ $G: \Omega \times \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{H}_2$ is a random single-valued mapping which has the following conditions:
 - (i) G is a random (c_2, μ_2) -relaxed cocoercive with respect to A_2 in the second argument and a random α_2 -Lipschitz continuous in the second argument,
 - (ii) G is a random ζ_2 -Lipschitz continuous in the third argument.

Now, we are in position to present our main results.

Main Theorem (I) Assume that Assumption (\mathcal{A}) holds and there exist two measurable functions $\rho_1,\rho_2:\Omega\to(0,\infty)$ such that $\rho_i(t)\in\left(0,\frac{r_i(t)}{m_i(t)}\right)$, for each i=1,2 and

$$\frac{\tau_{1}(t)}{r_{1}(t) - \rho_{1}(t)m_{1}(t)} \sqrt{\beta_{1}^{2}(t) - 2\rho_{1}(t)\mu_{1}(t) + 2\rho_{1}(t)\alpha_{1}^{2}(t)c_{1}(t) + \rho_{1}^{2}(t)\alpha_{1}^{2}(t)} < 1 - \frac{\tau_{2}(t)\rho_{2}(t)\zeta_{2}(t)\phi_{1}(t)}{r_{2}(t) - \rho_{2}(t)m_{2}(t)};$$

$$\frac{\tau_{2}(t)}{r_{2}(t) - \rho_{2}(t)m_{2}(t)} \sqrt{\beta_{2}^{2}(t) - 2\rho_{2}(t)\mu_{2}(t) + 2\rho_{2}(t)\alpha_{2}^{2}(t)c_{2}(t) + \rho_{2}^{2}(t)\alpha_{2}^{2}(t)} < 1 - \frac{\tau_{1}(t)\rho_{1}(t)\zeta_{1}(t)\phi_{2}(t)}{r_{1}(t) - \rho_{1}(t)m_{1}(t)};$$
(3)

for all $t \in \Omega$. Then the problem (1) has a solution.

In particular, we have the following result.

Main Theorem (II) Let $U: \Omega \times \mathcal{H}_1 \to \mathcal{H}_1$ and $V: \Omega \times \mathcal{H}_2 \to \mathcal{H}_2$ be two random single-valued mappings. Assume that Assumption (A) holds and there exist measurable functions ρ_1, ρ_2 satisfy (3). Then problem (2) has a unique solution.

In the proof of Main Theorem (II), in fact, we have constructed a sequence of measurable mappings $\{(a_n,b_n)\}$ and show that its limit point is nothing but the unique element of $SRSI_{(M_1,M_2)}(F,G,U,V)$. In this section, we will consider the stability of such a constructed sequence.

Let F, G, M_i, η_i, A_i and ρ_i , for i = 1, 2, be random mappings defined as in Main Theorem (II). Now, for each $t \in \Omega$, if $\{(x_n(t), y_n(t))\}$ is any sequence in $\mathcal{H}_1 \times \mathcal{H}_2$. We will consider the sequence $\{(S_n(t), T_n(t))\}$ which is defined by

$$S_n(t) = J_{\rho_1(t), A_{1_t}}^{\eta_{1_t}, M_{1_t}} [A_1(t, x_n(t)) - \rho_1(t) F(t, x_n(t), V(t, y_n(t)))],$$

$$T_n(t) = J_{\rho_2(t), A_{2_t}}^{\eta_{2_t}, M_{2_t}} [A_2(t, y_n(t)) - \rho_2(t) G(t, U(t, x_n(t)), y_n(t))],$$
(4)

where $U: \Omega \times \mathcal{H}_1 \to \mathcal{H}_1$ and $V: \Omega \times \mathcal{H}_2 \to \mathcal{H}_2$ and $t \in \Omega$. Consequently, we put

$$\delta_n(t) = \|(x_{n+1}(t), y_{n+1}(t)) - (S_n(t), T_n(t))\|^+.$$
(5)

Meanwhile, let $Q:\Omega\times\mathcal{H}_1\times\mathcal{H}_2\to\mathcal{H}_1\times\mathcal{H}_2$ be defined by

$$Q(t,a(t),b(t))\left(J_{\rho_{1}(t),A_{1_{t}}}^{\eta_{1_{t}},M_{1_{t}}}[A_{1}(t,a(t))-\rho_{1}(t)F(t,a(t),b(t))],J_{\rho_{2}(t),A_{2_{t}}}^{\eta_{2_{t}},M_{2_{t}}}[A_{2}(t,b(t))-\rho_{2}(t)G(t,a(t),b(t))]\right) \quad (6)$$

for all $a \in \mathcal{M}_{\mathcal{H}_1}, b \in \mathcal{M}_{\mathcal{H}_2}, t \in \Omega$. In view of Lemma A, we see that $(a,b) \in SRSI_{(M_1,M_2)}(F,G,U,V)$ if and only if $(a,b) \in F(Q)$.

Now, we prove the stability of the sequence $\{(a_n, b_n)\}$ with respect to mapping Q, defined by (6).

Main Theorem (III) Assume that Assumption (\mathcal{A}) holds and there exist ρ_1, ρ_2 satisfy (3). Then for each $t \in \Omega$, we have $\lim_{n \to \infty} \delta_n(t) = 0$ if and only if $\lim_{n \to \infty} (x_n(t), y_n(t)) = (a(t), b(t))$, where $\delta_n(t)$ are defined by (5) and $(a(t), b(t)) \in F(Q)$.