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1. INTRODUCTION

It is well known that the ideas and techniques of the variational inequalities are being
applied in a variety of diverse fields of pure and applied sciences and proven to be productive
and innovative. It has been shown that this theory provides the most natural, direct, simple,
unified, and efficient framework for a general treatment of a wide class of linear and nonlinear
problems. The development of variational inequality theory can be viewed as the simultaneous
pursuit of two different lines of research. On the one hand, it reveals the fundamental facts on
the qualitative aspects of the solutions to important classes of problems. On the other hand, it
also enables us to develop highly efficient and powerful new numerical methods for solving, for
example, obstacle, unilateral, free, moving, and complex equilibrium problems. Of course, the
concept of variational inequality has been extended and generalized in several directions and,
it is worth to noticed that, an important and useful generalization of variational inequality
problem is the concept of variational inclusion. Many efficient ways have been studied to find
solutions for variational inclusions and a related technique, as resolvent operator technique,
was of great concern.

In 2006, Jin [!3] investigated the approximation solvability of a type of set-valued varia-
tional inclusions based on the convergence of (H,n)-resolvent operator technique, while the
convergence analysis for approximate solutions much depends on the existence of Cauchy
sequences generated by a proposed iterative algorithm. In the same year, Lan [10] first intro-
duced a concept of (A, n)-monotone operators, which contains the class of (H, n)-monotonicity,
A-monotonicity (see [30, i1, 32]) and other existing monotone operators as special cases. In
such paper, he studied some properties of (4,7)-monotone operators and defined resolvent
operators associated with (4, n)-monotone operators. Then, by using this new resolvent op-
erator, he constructed some iterative algorithms to approximate the solutions of a new class
of nonlinear (A, n)-monotone operator inclusion problems with relaxed cocoercive mappings
in Hilbert spaces. After that, Verma [32] explored sensitivity analysis for strongly monotone
variational inclusions using (A, n)-resolvent operator technique in a Hilbert space setting. For
more examples, ones may consult [G, 18, 14, (1 22, 23]

Meanwhile, in 2001, Verma [29] introduced and studied some systems of variational in-
equalities and developed some iterative algorithms for approximating the solutions of such
those problems. Furthermore, in 2004, Y.P. Fang and N.J. Huang [8] introduced and stud-
ied some new systems of variational inclusions involving H-monotone operators. By Using
the resolvent operator associated with H-monotone operators, they proved the existence and
uniqueness of solutions for the such considered problem and, also some new algorithms for
approximating the solutions are provided. Consequently, in 2007, Lan et al. [21] introduced
and studied an another system of nonlinear A-monotone multivalued variational inclusions
in Hilbert spaces. Recently, base on the generalized (A,7n)-resolvent operator method, R.P.
Argarwal and R.U. Verma [1] considered the existence and approximation of solutions for
a general system of nonlinear set-valued variational inclusions involving relaxed cocoercive
mappings in Hilbert spaces. Notice that, the concept of a system of variational inequality is
very interesting since it is well-known that a variety of equilibrium models, for example, the
traffic equilibrium problem, the spatial equilibrium problem, the Nash equilibrium problem,
and the general equilibrium programming problem, can be uniformly modelled as a system
of variational inequalities. Additional researches on the approximate solvability of system of

1



2 CONTENT OF RESEARCHES

nonlinear variational inequalities are problems, ones may see Cho et al. [3], Cho and Petrot
[7], Noor [27], Petrot [26], Suantai and Petrot [25], and others.

On the other hand, the systematic study of random equations employing the techniques
of functional analysis was first introduced by Spacek [27] and Hans [9] and it has received
considerable attention from numerous authors. It is well-known that the theory of randomness
leads to several new questions like measurability of solutions, probabilistic and statistical
aspects of random solutions, estimate for the difference between the mean value of the solutions
of the random equations and deterministic solutions of the averaged equations. The main
question concerning random operator equations is essentially the same as those of deterministic
operator equations, that is question of existence, uniqueness, characterization, contraction and
approximation of solutions. Of course, random variational inequality theory is an important
part of random function analysis. This topic has attracted many scholars and experts due
to the extensive applications of the random problems. For the examples of research works in
these fascinating areas, ones may see Ahmad and Bazdn [3], Huang [12], Huang et al. [ti],
Khan et al. [ 1], Lan [17], Noor and Elsanousi [2].

In this paper, inspired by the works going on these fields, we introduce a system of set-
valued random variational inclusion problems and provide the sufficient conditions for the
existence of solutions and the algorithm for finding a solution of proposed problems, involving
a class of generalized monotone operators by using the resolvent operator technique, is given.
Furthermore, the stability of the constructed iterative algorithm is also discussed.

2. PRELIMINARIES

Let H be a real Hilbert space equipped with norm || - || and inner product (-,-) and let
2" and CB(H) denote for the family of all the nonempty subsets of H and the family of
all the nonempty closed bounded subsets of H, respectively. As usual, we will define D :
CB(H) x CB(H) — [0,00), the Hausdorff metric on CB(H), by

D(A, B) = max { sup inf ||z — y||,sup inf ||z -yl », forall A,Be CB(H).
zcAYEB yeB T€A

Let (£, %, 1) be a complete o- finite measure space and B(H) be the class of Borel o-fields
in H. A mapping z : © — H is said to be measurable if {t € Q : z(t) € B} € X, for
all B € B(H). We will denote by My for a set of all measurable mappings on H, that is,
Mz = {z : Q — H|z is a measurable mapping}.

Let H; and Hs be two real Hilbert spaces. Let F': Q@xH1 xHga — H; and G : QxHyixHg —
H, be single-valued mappings. Let U : @ x H; — CB(H1),V : @ x Ha — CB(H2) and
M; : Q x H; — 2™ be set-valued mappings, for ¢ = 1,2. In this paper, we will consider the
following problem: find measurable mappings a,u : @ — H; and b,v : @ — Ha such that
u(t) € U(t,a(t)),v(t) € V(¢,b(t)) and

{ 0 € F(t,a(t),v(t)) + Mi(t,a(t)),

0.€ G(t.u(t) b(t)) + Ma(t, b(t)), Vte Q. (2.1)

The problem of type (2.1) is called the system of random set-valued variational inclusion prob-
lem. Ifa,u: Q — Hy and b,v : © — Hy are solutions of problem (2.1), we will denote by
(a,u,b,v) € SRSV Iip, ay)(F, G, U V).

Notice that, if U : @ x H; — Hi and V : Q@ x Hz — Ha are two single-valued mappings
then the problem (2.1) reduces to the following problem: find a : Q@ — Hy and b: @ — Ha
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such that

{ 0 € F(t,a(t), V(t,b(t))) + Mi(t,a(t)), (2.2)

0 € G(t, U(t,a(t), b(t)) + Ma(t,b(t)), Vte Q.

In this case, we will denote by (a,b) € SRSI(MLMZ)(F, G, U, V). Other special cases of the
problem (2.1) are presented the following:

(I) If My(t, a(t)) = Op(t, a(t)) and Ma(t, b(t)) = 9¢(t, b(t)), where p : xHy — RU{+00}

ey

(I1I)

(IvV)

and ¢ : O x Hy — R U {+oo} are two proper convex and lower semi-continuous
functions, Oy and d¢ denoted for the subdifferential operators of p and ¢, respectively.
Then (2.1) reduces to the following problem: find a,u : Q — Hp and b,v: Q — Ha
such that u(t) € U(t,a(t)),v(t) € V(t,b(t)) and

{ (F(t,a(t),v(t)), z(t) — a(t)) + p(z(t)) — ¢(a(t)) 2 0, Yz € My,
(Gt u(t), b(1), y(#) = b(E)) + ¢(y(t)) — (b()) = 0, ¥y € Ma,

for all t € Q. The problem (2.3) is called a system of random set-valued mixed
variational inequalities. A special of problem (2.3) was studied in by R.P. Agarwal
and R.U. Verma {i].

Let Ky C Hy, Ko C Ho be two nonempty closed and convex subsets, and g, be the
indicator functions of K; for i = 1,2. If My (¢, z(t)) = 99k, (=(t)) and Ms(t,y(t)) =
88k, (y(t)) for all z € Mg, and y € Mk,. Then the problem (2.1) reduces to
the following problem: find a,u : € — Hi and bv @ @ — Ho such that u(t) €
U(t,a(t)),v(t) € V(t,b(t)) and

{ (F(t,a(t),v(t)), z(t) — a(t)) = 0, Vo€ Mgy,
<G(tau(t)’b(t>)’y(t) = b(t» >0, \7'3/ € MIC%

(2.3)

(2.4)

for all £ € Q.

If Hy = Ho = H and Mi(t,a(t)) = Ma(t,b(t)) = dp(t,a(t)), where ¢ : QxH —
R U {+o0} is proper convex and lower semi-continuous function and 8¢ is denoted
for the subdifferential operators of ¢. Let g : H — H be a nonlinear mapping and
p,m > 0. If we set F(t,a(t), v(t)) = pv(t) +a(t) — g(b(t)) and G(t,u(t), b(t)) = nu(t) +
b(t) — g(a(t)) where u(t) € U(t,a(t)),v(t) € V(t,b(t)). Then problem (2.1) reduces to
the following system of variational inequalities: find a,b : € — H,u(t) € U, alt))
and v(t) € V(t,b(t)) such that

{ (pu(t) + a(t) — g(b(t)), a(x(t)) — a(®)) +¢(g(=(t))) — w(a(t) = 0,
{nu(t) +b(t) — g(a(t)), g(z(t)) = b(t)) + ¢(g(=(t))) — #(b(t)) 2 O,

for all t € Q and g(z(t)) € My. A special of problem (2.5) was studied by R.P.
Argarwal, Y.J. Cho and N. Petrot [2].

Let T : K — H be a nonlinear mapping and p,n > 0 be two fixed constants.
IfH, = Ho = H, K1 = Ko = K,F(t,a(t),v(t)) = pT(v(t)) + a(t) — v(t) and
G(t, u(t),b(t)) = nT(u(t)) + b(t) — u(t). Then (2.4) reduces to the following system
of variational inequalities: find a,u,b,v : © — H such that u(t) € U(t,a(t)),v(t) €
V(t,b(t)) and

{ (pT(v(t)) + a(t) — v(t), z(t) — a(t)) > 0, (2.6)
(T (u(t)) + b(t) — u(t),y(t) — b(¢)) 2 0, ’

for all z,y € My and t € Q. Notice that, if U =V =1, then (2.4), (2.6) are studied
by Kim and Kim [17].

(2.5)

We now recall important basic concepts and definitions, which will be used in this work.
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Definition2.1. A mapping f : @ x H — H is called a random single-valued mapping if for
any = € H, the mapping f(-,z) : @ — H is measurable.

Definition2.2. A set-valued mapping G : @ — 2" is said to be measurable if G l(B)={te
Q:G)NB#0} € X, for all B € B(H).

Definition2.3. A set-valued mapping F': @ xH — 9M is called a random set-valued mapping
if for any x € H, the set-valued mapping F(-,z) : Q@ — 2™ is measurable.

Definition2.4. A single-valued mapping n : @ x H x H — H is said to be random 7-Lipschitz
continuous if there exists a measurable function 7 : & — (0, 00) such that

In(t, z(8), y(ENI < 7(O)ll2 (@) =y,
for all z,y € My, t €L

Definition2.5. A set-valued mapping U : Q x H — CB(H) is said to be random ¢ — D-
Lipschitz continuous if, there exists a measurable function ¢ : 2 — (0,00) such that

D(U(t, (1)), U(t, y(1))) < ()l () — y(@)|,
for all z,y € My and t € Q, where D(:,-) is the Hausdorfl metric on CB(H).

Definition2.6. A set-valued mapping F : 2 x H — CB(H) is said to be D-continuous if, for
any t € ), the mapping F(t,-) : H — CB(H) is a continuous in D(:, ), where D(-,-) is the
Hausdorff metric on CB(H).

Definition2.7. Let A: Q@ x H — H and : © x H x H — H be two random single-valued
mappings. Then A is said to be

(i) random S-Lipschitz continuous if, there exists a measurable function B:Q — (0,00)
such that

A, 2(8) — A, y(E)I < BE)lI=(#) — v,
for all z,y € My, t € 8.
(ii) random 7- monotone if,

(AL, (1)) — Alt, y(@)), n(t, =(2), y(2))) = 0,
for all z,y € My, t € 2.
(iii) random strictly 7- monotone if, A is a random 7)- monotone and
(A(t, (t)) — At y(£)),n(t, z(2), y(t))) = 0 if and only if z(t) = y(t),
for all z,y € My, 1t € S

(iv) random (r, n)-strongly monotone if, there exists a measurable function r : 2 — (0, 00)
such that

(A(t,2(2)) — A(t, y(£)), n(t, 2(t), (&) > r(®)=() -y,
for all z,y € My, t € 8

Definition2.8. Let A : © x H — H be a random single-valued mapping. A single-valued
mapping F : Q@ x H x H — 'H is said to be
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(i) random (c, u)-relaxed cocoercive with repect to A in the second argument if, there
exist measurable functions ¢, 1 : @ — (0, c0) such that

(F(t, -, 2(8)~ F (£, y(8), Alt, 2(£) = Alt,y(2))) = —cOIF(t, -, 2(t) = F (-, y () IP+u@)llz @) -y O,
for all z,y € My and t € 2.

(ii) random a-Lipschitz continuous in the second argument if, there exists a measurable
function « : £ — (0, c0) such that

|F(t, -, 2(t) — Ft,y(®)] < a®)llz) -y,
for all z,y € My, t € €L

Notice that, in a similar way, we can define the concepts of relaxed cocoercive and Lipschitz
continuous in the third argument.

Definition2.9. Let n: Q@ x H x H — H and A : Q x H — H be two random single-valued
mappings. Then a set-valued mapping M : Q@ x H — 2M is said to be

i) random zy -relaxed monotone 1f, there exists a measurable functionm : 1 — O, o¢]
n
such that

(ult) — v(t), n(t, =), y(£)) = —m(®)|l(t) -y,
for all =,y € My, u(t) € M(t,x(t)),v(t) € M(t,y(t)),t € Q.

(i) random (A, m,n)- monotone if, M is a random (m, n)-relaxed monotone and (Ae +
p(t)M;)(H) = M for all measurable function p : @ — (0,00) and t € Q, where
Ag(x) = A(t, z(t)), Mi(z) = M(E,z(t))-

Definition2.10. Let A : 2 xH — H be a random single-valued mapping and M : Q@ xH — oH
be a random (A, m,n)-monotone mapping. For each a measurable function p : & — (0, 00),
the corresponding random (A, m,n)-resolvent operator Jg,‘ﬁ/[ : 2 x H — H is defined by

JIME (@) = (Ac + p(t) M) (2), Yo € My, tEQ,

where A;(z) = A(t,z(t)), My(z) = M(t,z(t)) and J;’(‘t’%;t (z) = T4 (£ 2(t))-

The following lemma, which related to Jg"f operator, is very useful in order to prove our
results.

Lemma 2.11. Let n: Q x H x H — H be a random single-valued mapping, A:OxH—-H
be a random (r, n)-strongly monotone mapping and M : @ x H — 2" be a random (A, m,n)-
monotone mapping. If p : & — (0,00) is a measurable function with p(t) € (O, %(%) for all
t € Q. Then the following are true:

(i) The corresponding random (A, m,n)-resolvent operator Jg,’ﬁ/] is a random single-valued
mapping,
(i) If n: @ x H x H — H is a random 7-Lipschitz continuous mapping then the cor-

responding random (A, m,n)-resolvent operator JnM

5 T
‘ A U5 Q random
continuous.

r—pm

- Lipschitz

Proof The proof is similar to Proposition 3.9 in [16].

In order to prove our main results, we also need the following well-known facts.
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Lemma 2.12. [4] Let H be a seperable real Hilbert space and U:QxH— CB(H) be a
D-continuous random set-valued mapping. Then for any measurable mapping w : Q — H, the
set-valued mapping U(-,w(-)) : @ — CB(H) is a measurable.

Lemma 2.13. [1] Let H be a seperable real Hilbert space and U,V : €& — CB(H) be two
measurable set-valued mappings, € > 0 be a constant and u : Q@ — H be a measurable selection
of U. Then there exists a measurable selection v : Q — H of V such that

l[u(t) — v(t)| < (1 +e)D(U(L), V(t)), forall te Q.

Lemma 2.14. [33] Let {v.} be a nonnegative real sequence and let {An} be a real sequence
in [0,1] such that L3 gAn = 0o. If there exists a positive integer ny such that
Y1 < (1= An)¥n + Anom, for all n>n1, (2.7)

where oy, > 0 for alln > 0 and o — 0 as n — 00, then limy oo ¥n = 0.

3. EXISTENCE THEOREMS

In this section, we will provide sufficient conditions for the existence solutions of the problem
(2.1). To do this, we shall begin with a useful lemma.

Lemma 3.1. Let Hy and Ho be two real Hilbert spaces. Let F : QO x Hy x Hy — Hy and
G : Q x Hy x Ho — Ha be single-valued mappings. Let U : @ x Hy — CB(H1),V :Q x Hg —
CB(H3) and M; : Q@ x H; — oMi pe g set-valued mappings for i = 1,2. Assume that M; are
random (A;,ms, ;) - monotone mappings, and A; : @ X H; — H,; be random (r;,m;)- strongly
monotone mappings, for i = 1,2. Then we have the following statements:

Q) if (a,u,b,v) € SRSV I(ps ay)(Fs G U, V) then for any measurable functions p1, p2 :
2 — (0,00) we have

alt) = Tl [Au(t,a() — () F(t at), v(2))],
b(t) = Jgjzt’i/[j;t [As(t, b(t)) — pa()G(t, u(t), b(2))], for all t € Q.

(ii) if there exist two measurable functions p1,p2 - Q1 — (0,00) such that

aM t
at) = T [Aa(t,a(t)) — pr(O)F(t,a(t), v(®))],
b(t) = J7t e [Az(t,b()) — pa(t)G(t u(®), BT,
for all t € Q, then (a,u,b,v) € SRSVI(MI,MZ)(F, G, U, V).

Proof

(i) . Let p1, p2 : © — (0, 00) be any measurable functions. Since (a,u,b,v) € SRSVIng a,)(F, G, U, V),
we have

{ 0 € F(t,a(t),v(t)) + Mi(t, a(t)),
0 € G(t,u(t), b(t)) + Ma(t,b(t)), forall ¢e€ .

Let t € Q2 be fixed. By 0 € F(t,a(t),v(t)) + My(t,a(t)), we obtain
Ai(t,a(t)) — p1OF (t,a(t),v(t)) € A1(t, a()) + pr(H)Ma(t; alt))-
This means
A1(t,a(t)) — pr(t)F(t,alt), v(t)) € (Ar, + p1(t)Mn,) (al?))-
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Thus

a(t) = TR [As(t alt) — ;B F (2, a(t),0(8))]

_ M
where (A, + p1(t)My,) ! = Jgfft),/iit'

Similarly, if 0 € G(t,u(t),b(t)) + Ma(¢,b(t)) we can show that
b(E) = Jtas [Aa(t (1) — po(8)GI(t, u(t), b(E)))

where (Ag, + pa(t)My,) ™t = Jgjzt’;\fjgt. Hence (i) is proved.

(ii) Assume that there exist two measurable functions py, p2 : 8 — (0, 00) such that

a(t) = s [Auta(t) = (O F(E a(t), (D)),

b(t) = Tty m [Aa(t (1)) = pa(8) G, u(t), b(2))]
for all £ € . Let ¢ € Q be fixed. Since a(t) = ng‘;;)’fﬂ;;t [A1(t, a(t)) — p1(t)F(t, a(t), v(t))] then
by the definition of nglét)w 2;, we see that

a(t) = (A, + pr(E)M1,) " [Ai(t, a(t) — pr()F (2, a(t), v(t)]
This implies that
—F(t,a(t),v(t)) € Mi(t,a(t)).
That is,
0 € F(t,a(t),v(t)) + Mi(t,a(t)).

Similarly, if b(t) = Jgjzg)’ff;;t [A2(t, b(t)) — p2(t)G(t, u(t), b(t))] we can show that 0 € G(¢, u(t), b(t))+
Mo(¢,b(t)). This completes the proof.

Due to Lemma 3.1, in order to prove our main theorems, the following assumptions should
be needed.

Assumption (A) :
Ala) Hi and Hs are separable real Hilbert spaces.
AB) m : @ x H; x H; — H; are random 7;-Lipschitz continuous single-valued mappings,
fori=1,2.
Ale) Ai : Q@ x H; — H; are random (r;,7;)-strongly monotone and random g;-Lipschitz
continuous single-valued mappings, for i = 1, 2.
A(d) M;: QxH; — 2™ are random (A;, my, 7;)-monotone set-valued mappings, fori = 1, 2.
Ale) U : QxHy — CB(H4) is arandom ¢1-D-Lipschitz continuous set-valued mapping and
V : Q1 x Hy — CB(Hz2) is a random ¢»-D-Lipschitz continuous set-valued mapping.
A(f) F: Q x Hy x Ho — H; is a random single-valued mapping which has the following
conditions:
(i) F is a random (cy, p1)- relaxed cocoercive with respect to A; in the third argu-
ment and a random ;- Lipschitz continuous in the third argument,
(ii) F is a random (;- Lipschitz continuous in the second argument.
Alg) G : Q x Hy X Hy — Hy is a random single-valued mapping which has the following
conditions:
(i) G is a random (cg, p2)-relaxed cocoercive with respect to As in the second argu-
ment and a random ag-Lipschitz continuous in the second argument,
(i) G is a random (g-Lipschitz continuous in the third argument.

The National Research Council of Thailand
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Now, we are in position to present our main results.

Theorem 3.2. Assume that Assumption (A) holds and there exist two measurable functions
p1,p2 : 2 — (0,00) such that p;i(t) € (0 rilt) ) , for each i = 1,2 and

} ml(t)
B0 - 20 () + 2 03010+ TR0 < 1 - EEE ORI,
T2(¢) n(t)m O {£)¢2(t)

B3(t) — 202(t)pa(t) + 2p2(t)ed(tea (t) + p3(1)a3(t) <1 -

72(t) — p2(t)ma(t) ri(t) — pr(tyma(t)

(3.1)
for all t € 2. Then the problem (2.1) has a solution.

Proof Let {e,} be a null sequence of positive real numbers. Starting with measurable map-
pings ag :  — H; and by : © — Hs. By Lemma 2.12, we know that the set-valued mappings
U(-,a0(")) : @ — CB(H1) and V(-,b(-)) : @ — CB(Ha) are measurable mappings. Con-
sequently, by Himmelberg [L0], there exist measurable selections ug : 2 — H; of U (yao("))

and vy : 8 — Hy of V(-,by(-)). We define now the measurable mappings a; : @ — H; and
by : @ — Hy by

ar(®) = I (A, (tao(0)) - o1 () (tao(t), w(®)],
but) = T4 (A (8, bo()) ~ pa(t)C (8, ol bo()]

where JZ?E;)NZF (2) = (A, + pi(t)M;,) "t (z), for all z € My, t € Q and i = 1,2. Further, by
i\b)s Ay

Lemma 2.12, the set-valued mappings U(-,a1(-)) : @ — CB(H1),V(-,b1(-)) : @ — CB(Hz) are
measurable. Again, by Himmelberg [1(] and Lemma 2.13, there exist measurable selections
up : Q — Hy of U(+,a1(")) and vy : & — Hag of V(-,b1(:)) such that

{ lluo(t) — w1 (Ol < (1 +e1)D (U(t, ao(t)), U(E, a1(2))) s
lvo(t) — vr(8))l < (L4 1) D (V (¢, bo(t)), V (£, 01(2)))

for all t € Q. Define measurable mappings ag : 2 — H; and by : © — H» as the following:
M
az(t) = J;,’jzt),j; [A1 (t,a1(t)) = p1(O)F (t,a1(t), vi(t))],
1, ,M:
ba(t) = T4 [As (8,b1(6)) — pa(t)G (£, (8), i (1),

for all t € Q. Continuing this process, inductively, we obtain the sequences {an}, {bn}, {tn}
and {v,} of measurable mappings satisfy the following:

aria(t) = TG (A1 (5,an(8)) — p1()F (£ an(t), oa(®)],
b (£) = J4% (A3 (£,5a(8)) — p2()G (£, un(8), ba(®)], (3:2)

lun(t) = vne1)l < (1 +ens1) D (U(E an(t)), UL, anta(t)))
lon () = vae1 @Il < A +ent1)D (V2 ba(t)), V(£ bnta(£)))

where u,(t) € U(%, an(t)), vn(t) € V(t,ba(t)) and for allt € Q,n=0,1,2,....

Now, since Jg;”ﬁ/{ ! is a random r—:}}?{ Lipschitz continuous mapping, we have
m, M
lan1(t) = an®l = 19,5 4%, [A1(t an()) = p1(E)F (£, an(t), va(D))]
My,

— I, A1t an1(t) = pL O F (¢t an-1(8), vn-1 ()]

(xl (t)
r1(t) — p1(t)ma(t) lA1(t, an(t)) — A1(t, an—1(t))

"pl(t) [F(t, an(t)) Un(t)) - F(ta an—l(t)7 vn—l(t))] ”

IN
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7'1(75)
@ = @ At an ) = Alh o (0)

—p1(t) [F(t, an(t), vn(t)) = F(t, an—1(t), va ()] |l
p1(t)1(t)
1), vn (1)) = F(t, an1(t), va-1(t) {3
00— @ 1 (6 1 (0008 = £ a8, v (0T
for all t € 2. On the other hand, by assumptions A(c) and A(f), we see that
1 AL(t, an(8)) = A1(t,an—1(8) = p1(8) [F(t, an(t), vn(t)) = F(t, an—-1(8), va ()] I

= [l A1(t,an(t)) = Ar(t, an-1(E)]I? = 201(t) (F(t, an(t), va(t) = F(t,an-1(t),vn(t)), A1(t,an(t)) — A1(t an-1()))
+o3OIF(E, an(t), va(t)) = F(t, an-1(t), va ()]
B (B)llan(t) — an—1()|2 + 201 ()1 O F(E an(t), va(t)) — F(t an—1(8), va (O = 201 ()1 (Ollan(t) ~ an-1(D)?
+3ONF(E an(t), va(t)) — F(t, an—1(), va(t)I?
[82(8) — 201()11(8)] llan () — an—1(B)I1% + [201(B)c1 (8) + o3 (O] 1P (E, an (£), va (8)) = F(t, an—1(t), vn (D)II?
[82(8) — 201 ()1 ()] llan(®) = an—1(ON? + [201(t)er(®) + A3 ()] @F (D)llan(t) — an—2 (DI
[B2(8) — 201(B)1 (8) + 201 (B)er (B)ed (¢) + pF (D)aF(®)] llan(t) — an—r (W),
for all t € Q. This gives,

41 (t, an(t)) = A1(t, an-1(t)) = p1(8) [F (¢, an(t), va(t)) = F (¢, an-1(t), va(®))] |

< \/ B2(t) — 201 () pa () + 2p1(B)ea () (t) + pF(t) e (t)llan(t) — an-1 (D), (3.4)
for allt € Q.

IA

IN A

Meanwhile, since F' is a random (3- Lipschitz continuous mapping in the second argument,
we get

IF(t, an—1(t), vn(t)) = F(t, an-1(t), tn1 @)l < G (@)l|va(t) = va-1 (O], (3.5)
for all t € Q. From (3.3), (3.4) and (3.5), we obtain that

lonia(6) ~ane) < 2D Zm DL J5200) — 200 00a(0) + 201 0er 1 6) + AR

m1(t)p1(8)Ci(t)
0 = Omi@ 1n® — v Ol
= Ballonl) ~ors @1+ IO G0 =i, )
where
M) = _";Et&)ml(t) VB ®) = 2010 () + 201 (Der (D) + ARl (®)  (BT)
for all t € Q.

Similarly, by using assumptions A(c) and A(g), we know that

o) = bu(® < Aolentt) - br-s(0] + A2 ) — s 129

where
8alt) = 2 [0 = 2palt)olt) + 20202100 + OGO (39)
for all t € Q.

Next, since U is a random ¢;-D-Lipschitz continuous mapping and V' is a random ¢9-D-
Lipschitz continuous mapping, by the choices of {u,} and {v,}, we have

on(t) = va—1 (Ol < (1 +ea)D (V(E,ba(t)), V(E br-1 (1))
< (1 + 5n)¢2(t)"bn(t) - bn-—l(t)”1 (3'10)
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and
lun(t) —un—1(0)ll < (1 +ea)D (Ut an(t), U(t, an-1(t)))
< (L +en)di()lan(t) — an-1 (@), (3.11)
for all t € ©2. Now, by (3.6), (3.8), (3.10) and (3.11), we obtain that
len1(8) = an @)+ Poura(® = ba(l < (8000 + (1420 ZOBOEE Y 4oy o)

T1(t)p1(t)C1{t)da(t)

* (AZ“) e ) = ma )

) 18a0) = a0l
for all t € Q. This implies that

lan+1(t) = an(l + [bn+1(8) — bu(O)]l < On(t) (lan(t) = an—1(WI] + [|bn(t) — baa (D)) 5
where

_ T2(t)p2(t)Ca(t) 1 (t) T1(t)p1()C1(t)$2(t)
) = {0 0+ e ECRRRE e 1+ e TR,
for all t € Q.
Next, let us define a norm || - ||* on Hy x Ha by

(I = llz]l + llyll, for all (z,y) € Hy x Ha.
It is well-known that (H; X Ho, || - ||) is a Hilbert space. Moreover, for each n € N, we have
[(@n+1(t), brr1(8)) = (an(®), ba (O™ < On(®)ll(an(t), ba(t)) = (@n-1(t), a1 (@)Y,

forall t € Q.
Let

Ta(t)p2(t)C2(t) 1 () T1(t)p1 ()G () pa(t)
o0 = mox{ oo+ ZAPIOE IR st + LORCROES
We see that 6,(t) | 8(t) as n — co. Moreover, condition (3.1) yields that 0 < 6(t) < 1 for all
t € Q. This allows us to choose ¢ € (6(t),1) and a natural number N such that 6,(¢) < ¢ for
all n > N. Using this one together with (3.12), we get
l(@nt1(2), bnt1(1)) = (an(®), ba(INIT < Ill(an(t), ba(t)) = (@n—1(t), ba-1(E))IT,
for all t € 2 and n > N. Thus, for each n > N, we obtain

N(an+1(8), bap1(t)) — (an(t), buENIT < 9" N|[(ans1(t), b1 () — (an(t), ba (e,
for all t € Q. So, for any m > n > N, we have

(@m(®), bm () = (an(t), ba(OIT < B (@ian (1), bia (£)) — (i), b))

}, for each {%12)

< EI N (ana (), b (8) — (an(0), by )
< gt (0) - (an(e) b )F39)

for all ¢ € 2. Since ¥ € (0,1), it follows that {9"}32 5, converges to 0, as n — oo. This
means that {(a,(t),br(t))} is a Cauchy sequence, for each ¢t € Q. Thus, there are a(t) € Hy
and b(t) € Hy such that a,(t) — a(t) and b,(t) — b(t) as n — oo, for each t € .

Next, we will show that {u,(t)} and {v,(t)} converge to an element of U(t,a(t)) and
V(t,b(t)), for all ¢ € Q. Indeed, for m > n > N, we have from (3.10), (3.11) and (3.13) that
l(wm (), vm () ~ (un (), vn (B))(I* llum (8) = un ()] + llvm (£) — va (B)]

S e () — wiOll + 25 i () — vl
SR+ i) b2 (Ollair1(t) — as(O)lf + ZR5HA + £ap)b1 (O lbira (8) — bi(B) ]
2¢(OZT I (@ir1 (8), b1 (1)) — (as(t), bs ()] +

S a0, b1 () ~ (an (@), b )

IA N IA
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where ¢(t) = max{1(t), $2(t)}, for each t € Q. This implies that {(un(t),vn(t))} is a Cauchy
sequence in (H; X Hay, || - [|7), for all t € Q. Therefore, there exist u(t) € Hi and v(t) € Ha
such that u,(t) — u(t) and v,(t) — v(t) as n — oo, for each t € Q. Furthermore,

inf{|lu(t) — 'Ol : W' () € Ut a(t)} < fult) — vl + | i0f llun(t) - w(®)ll
lu(t) = ua ()l + DU (¢ an(t)), U (E, al?)))
[u(t) = un (@)l + d1(8)llan(t) — a(®)ll.  (3.14)
Since u,(t) — u(t) and an(t) — a(t) as n — oo, we have from the closedness property

of U(t,a(t)) and (3.14) that u(t) € U(t,a(t)), for all £ € Q. Similarly, we can show that
v(t) € V(¢,b(t)), for all t € Q.

IA 1A

Finally, in view of (3.2) and applying the continuity of A;, F, G and J"’ IIXI’, for i = 1,2, we
see that

a(t) = Jrpa [Aulta() = puBF(E at),u(®)],

bt) = Jrara [Ae(t,b(1)) — pa(t)G(t u(t), b)),

for all t € . Thus Lemma 3.1(ii) implies that (a,b,u,v) is a solution to problem (2.1). This
completes the proof.

In particular, we have the following result.

Theorem 3.3. Let U : QO x Hy — Hy and V : Q x Ho — Ha be two random single-valued
mappings. Assume that Assumptwn (A) holds and there exist measurable functions p1, p2
satisfy (3.1). Then problem (2.2) has a unique solution.

Proof From Theorem 3.2, we know that the problem (2.2) has a solution. So it remains to
prove that, in fact, it has the unique solution. Assume that a,a™ : Q@ — Hy and b,b* : Q@ — Ha
such that (a,b), (a*,b*) are solutions of the problem (2.2). Using the same lines as obtaining
(3.6) and (3.8), by replacing a, with a and an 41 with a*, we have

o) ~a" @l < Aa@late) - oo+ ZIOGLIT b)), for il ¢ @05)

and, by replacing b, with b and b,41 with b*, we obtain that

. . 72(t)p2(t)Ca(t) 91 (1) .
lot) = o* @I < Az()|Ib(t) — b* ()| + r2() — pa(Bma(®) lla(t) — a* ()|, for all ¢ €3616)

where A1(t) and Ay(t) are defined as in (3.7) and (3.9), respectively. From (3.15) and (3.16),
we get

Ia(0,60) ~ @ @0 < [auo+ ZOROSDABN o) - o)

+ [ty + ZOPOSLIET ) - o)

< 0D|l(alt), b(t)) — (a* (), B*@®)|IF, for all t € Q,

where 6(t) is defined as in (3.12). Since 0 < 8(t) < 1, it follows that (a(t), b(t)) = (a*(t),b*(?)),
for all £ € Q. This completes the proof.
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4. STABILITY ANALYSIS

In the proof of Theorem 3.3, in fact, we have constructed a sequence of measurable mappings
{(an, bn)} and show that its limit point is nothing but the unique element of SRS, ) (F,GLUL V).
In this section, we will consider the stability of such a constructed sequence.

We start with a definition for stability analysis.

Definitiond4.1. Let My, Ha be real Hilbert spaces. Let Q : QxHjxHg — HyxHa, (ag(t), bo(t)) €
Hi x Hz and let (an41(t), bnt1(t)) = h(Q,an(t),ba(t)) define an iterative procedure which
yields a sequence of points {(an(t),bn(t))} in Hy x Ha, where h is an iterative procedure in-
volving the mapping Q. Let F(Q) = {(a,b) € My X M : Q(¢,a(t), b(t)) = (a(t), b(t)),Vt €
Q} # 0 and that {(an, b,)} converges to a random fixed point (a,b) of Q. Let {(zn,yn)} be an
arbitrary sequence in My X Myyg and let 0n(t) = [[(Zn41(t), Yns1(t)) —~ R(Q, zn(t), yn (1)), for
eachn > 0 and ¢t € Q2. For each ¢ € Q, if limy, o0 0n(¢) = 0 implies that limy, e (zn(t), yn(t)) —
(a(t),b(t)), then the iteration procedure defined by (@n+1(t),bny1(t)) = A(Q, an(t),bn(t)) is
said to be Q-stable or stable with respect to Q.

Let F,G, M;,m;, A; and p;, for ¢ = 1,2, be random mappings defined as in Theorem 3.2.
Now, for each t € §, if {(z,(t),yn(t))} is any sequence in H; x Hy. We will consider the
sequence {(Sp(t), Tn(t))} which is defined by

Salt) = T (A1t 2n(t)) — pr(8)F (F za(t), V(E ya (),

Ta(t) = Ja [Aa(t,un(t)) — pa()G(t Ut 0 (1)), yn (1)), (4.1)
where U : 2 x Hy — Hj and V : @ X Hy — Ha and ¢ € Q. Consequently, we put
On(t) = l(@n+1(8), yn+1(8)) — (Sult), ()™ (4.2)

Meanwhile, let Q : £2 x H; x Ha — Hj x Hg be defined by

QU o(0),6(1)) = (J2e574% 1AL (E a(t) = p1(OF (2, alt), bO), 245 [Aa(t, (1)) — p2(DG(E a(t), b)) (43)

foralla € My,b € My, t € Q. Inview of Lemma 3.1, we see that (a,b) € SRSI ppy ) (Fy G, U V)
if and only if (a,b) € F(Q).

Now, we prove the stability of the sequence {(an,bn)} with respect to mapping Q, defined
by (4.3).

Theorem 4.2. Assume that Assumption (A) holds and there exist py, pa satisfy (3.1). Then
for each t € Q, we have limy, o 0,(t) =0 if and only if limy_oo(Tn(t), yn(t)) = (a(t), b(t)),
where 8n(t) are defined by (4.2) and (a(t),b(t)) € F(Q).

Proof According to Theorem 3.3, the solution set SRST (M1, M) (F; G, U, V) of problem (2.2) is

a singleton set, that is, SRSI(a, pr,)(F, G, U, V) = {(a,b)}. For each t € , let {(z(t), yn(?))}
be any sequence in H; x Ha. By (4.1) and (4.2), we have

[(@n41(8), ynt1(2)) — (alt), bENIT

(@1 (8)s gnt1(8)) = (Sn®), T + 1(Su(t), Tu(t)) — (alt), bENIIT

1(Sn(2), Tn(2)) = (a(t), b()I* + a(t)

= 1T (A1t 2n(6) = P (OF (tonlt), Vit 3a()] - a()]

T A2t 9n(8)) = (G Ut 2a(0),un(E)] ~ BN +a(t).  (44)

i
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Since J’“’ 4, is a random
and Lemma 3.1(1), we get

- Lipschitz continuous mapping, by assumptions A(c), A(f)

ry— pm

It (AL 2a(®) = O F(E 2a (), V(e yn ()] - a()]

= AL (ALt en(®) = pOF (6 2n(0), V(L3N] - Tt (A1t a() — p1(O F(ta(e), V(L)) |
Tl(t)

S O e ®) = At a®) = () [FE 2 (8), VE ya(8) — F(t o), VE(ON]
T1(t)

S T A6 ) — Av(ta(8)  p1e) [F (0, V(U () - Fta(®), Vi un )]

pLt)mi(t)
O =@ [F (@ a(t), V({E, yn(1)) — F(t, alt), V(E,bE)- (4.5)

On the other hand, by assumptions A(c) and A(f), we see that

ALt za(t)) = Av(t a(t)) = pr(8) [F(t 2n(t), V(L yn () — F(t,a(t), V(e yn (@)1
= At a(®) — Arlt alt)II? - 201(t) (F(t 2 (8), V(6 yn (1)) = F(5a(t), V(E 3n (), AL(t 2a () - A1, a(®)))
FAE N, 2n (), V(5 yn () = F(t alt), VL, yn(0)))1?
BEOllen () = aOI” + 201 (B)er (DIIF(E 2n (), V(6 ya () — (2, alt), VE yaODIE = 2011 (@) (t) — a(®)]?
+o OIF(t 2n(8), V(5 yn (1)) ~ F(t, alt), V(E yn ()]
(810 = 2011 ()] llzn (8) — a(®) + [201 (D)1 (t) + A3 (O] |1F(E 2n(E), V(L yn(£))) — F(t alt), V(& ya (@)
[B2(8) = 201 ()11 ()] llen () = a(®)II + [201(B)ea (1) + 1 (8)] @F (D)llzn (8) — a(t)?
[B1(®) = 201 ()1 (1) + 201(D)er (DaF (1) + pT ()0 ()] Nz (t) — a(®)]f?.

IN

IANIN

This gives,
A1(t, za(t)) — Ar(t, a(t)) — p1(t) [F (¢, 2a(8), V(T yn(1))) — F (¢, a(t), V(& ya ()] I
\/ﬁi?(t) = 2p1()pa (t) + 201 (H)er (B)of (2) + PR () (t) |za(t) — a(t)]l. (4.6)

Meanwhile, since F is a random (;- Lipschitz continuous mapping in the second argument,
we get

1E(, a(t), V(¢ ya (1)) — F(t,a(t), V(E N < () d2()lyn(t) — b)) (4.7)
From (4.5) - (4.7), we obtain that

1725 [As(t 2 (8) — prOF( 2a(0), V(5 yn ()] - a(®)]

T1(t)VB(E) — 201 () (t) + 21 ()e1 ()aF () + pT(8) a3 (2)
1 r1(t) — pr(t)mi(2) : LDz (t) — a(t)]]

+l)1(t)T1(t)C1(t)¢2(t)

t) — b(t)li, 4.8
e o (®) — b0 (43)
where
_ 71(t) 204y _
Malt) = s Gy V) — 201(0m(0) + 201 Der (D0 (1) + 11030
Similarly, since J p72’ 22 is a random T—z—p?;;n-g Lipschitz continuous mapping, by assumption
A(c), A(g) and Lemma 3.1, we obtain that
1M t
12260 [As(t,a(8)) — p2(G(L Ut 2a (), ()] — B(E)]

T2(6)p2(t)C2(8)$1(2)

< Aa()llya(t) — b(E)]| + ro(t) — p2(t)ma(t)

[z (2) — a(®)]l, (4.9)
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where
8alt) = =5 —7;25(1 — \/gg(t) — 2pa()pa(t) + 202(t)ca(t)ad(t) + p3(t)a3(2).
Thus

[(@a+1(), Yns1(8)) — (alt), ENIT

IA

() p2(t)C2(t) 1 (¢) .
[Al(tn- r2<t>_p2<t>m2(t>}“$n“> @ (410)

T1(t)p1()C1 (¢)a(t) _
+[aat + ZOGLRE 1, ) - o)
(0 (2) 30 (0)) ~ (@), DI+ (0
(1= (L= 8O () ) — (alt), BN +5n(0),

where 6(t) = max {Al(t) + Tiit()tp "’_(;)Zc(ig,)&g ) Ao(t) + Ti(lt()t’)”_(;)ﬁ)(zqut()t )} ,forall t € Q.
So

IA

l(@ns1(t), ynr1(8)) = (a(t), BEDIT
In(t)

< (1= @ = 0WNNEn(t), yn(t)) = (a®),bENIT + (1 - 6(t)) - a=o@) (4.11)
In view of (4.11), if limp e 05 (t) = 0, we see that Lemma 2.14 implies
Jlim (2 (t), yn(2)) = (a(t), 0(2))- (4.12)

Conversely, suppose that limy, e (2, (), yn(t)) = (a(t),b(t)) and using (4.5) and (4.9), we
see that

on(t) “(xn—i—l(t)ayrH-l(t)) - (Sn(t)7Tn(t))|l+

<
< N@ar1(8), ynar () = (@(®), bENIT + [1(al?), b(t)) = (Sn(®), TaIT
< N @nt1(8)s grar (1) = (@®), bENIT + OO (@ (t), yn(t)) — (alt), bEIT

for all t € Q. Consequently, if for each ¢t € Q we assume lim,—.0(zn(t), yn(t)) = (a(t),b(t)),
we will have lim,, . 0, () = 0. This completes the proof.

Remark 4.3. Theorem 4.2 shows that the iterative sequence {(an, bn)}, which has constructed
in Theorem 3.3, is Q- stable.

5. CONCLUSION

We have introduced a new system of set-valued random variational inclusions involving
(A, m,n)-monotone operator and random relaxed cocoercive operators in Hilbert space. By
using the resolvent operator technique, we have constructed an iterative algorithm and then
the approximation solvability of a aforesaid problem is examined. Moreover, we have con-
sidered the stability of such iterative algorithm. It is worth noting that for a suitable and
appropriate choice of the operators, as F, G, M, 1, A, one can obtain a large number of various
classes of variational inequalities, this means that problem (2.1) is quite general and unify-
ing. Consequently , the results presented in this paper are very interesting and improve some
known corresponding results in the literature.
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